1 /*
2  * Copyright (C) 2009 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 /*
18  * This program constructs binary patches for images -- such as boot.img and recovery.img -- that
19  * consist primarily of large chunks of gzipped data interspersed with uncompressed data.  Doing a
20  * naive bsdiff of these files is not useful because small changes in the data lead to large
21  * changes in the compressed bitstream; bsdiff patches of gzipped data are typically as large as
22  * the data itself.
23  *
24  * To patch these usefully, we break the source and target images up into chunks of two types:
25  * "normal" and "gzip".  Normal chunks are simply patched using a plain bsdiff.  Gzip chunks are
26  * first expanded, then a bsdiff is applied to the uncompressed data, then the patched data is
27  * gzipped using the same encoder parameters.  Patched chunks are concatenated together to create
28  * the output file; the output image should be *exactly* the same series of bytes as the target
29  * image used originally to generate the patch.
30  *
31  * To work well with this tool, the gzipped sections of the target image must have been generated
32  * using the same deflate encoder that is available in applypatch, namely, the one in the zlib
33  * library.  In practice this means that images should be compressed using the "minigzip" tool
34  * included in the zlib distribution, not the GNU gzip program.
35  *
36  * An "imgdiff" patch consists of a header describing the chunk structure of the file and any
37  * encoding parameters needed for the gzipped chunks, followed by N bsdiff patches, one per chunk.
38  *
39  * For a diff to be generated, the source and target must be in well-formed zip archive format;
40  * or they are image files with the same "chunk" structure: that is, the same number of gzipped and
41  * normal chunks in the same order.  Android boot and recovery images currently consist of five
42  * chunks: a small normal header, a gzipped kernel, a small normal section, a gzipped ramdisk, and
43  * finally a small normal footer.
44  *
45  * Caveats:  we locate gzipped sections within the source and target images by searching for the
46  * byte sequence 1f8b0800:  1f8b is the gzip magic number; 08 specifies the "deflate" encoding
47  * [the only encoding supported by the gzip standard]; and 00 is the flags byte.  We do not
48  * currently support any extra header fields (which would be indicated by a nonzero flags byte).
49  * We also don't handle the case when that byte sequence appears spuriously in the file.  (Note
50  * that it would have to occur spuriously within a normal chunk to be a problem.)
51  *
52  *
53  * The imgdiff patch header looks like this:
54  *
55  *    "IMGDIFF2"                  (8)   [magic number and version]
56  *    chunk count                 (4)
57  *    for each chunk:
58  *        chunk type              (4)   [CHUNK_{NORMAL, GZIP, DEFLATE, RAW}]
59  *        if chunk type == CHUNK_NORMAL:
60  *           source start         (8)
61  *           source len           (8)
62  *           bsdiff patch offset  (8)   [from start of patch file]
63  *        if chunk type == CHUNK_GZIP:      (version 1 only)
64  *           source start         (8)
65  *           source len           (8)
66  *           bsdiff patch offset  (8)   [from start of patch file]
67  *           source expanded len  (8)   [size of uncompressed source]
68  *           target expected len  (8)   [size of uncompressed target]
69  *           gzip level           (4)
70  *                method          (4)
71  *                windowBits      (4)
72  *                memLevel        (4)
73  *                strategy        (4)
74  *           gzip header len      (4)
75  *           gzip header          (gzip header len)
76  *           gzip footer          (8)
77  *        if chunk type == CHUNK_DEFLATE:   (version 2 only)
78  *           source start         (8)
79  *           source len           (8)
80  *           bsdiff patch offset  (8)   [from start of patch file]
81  *           source expanded len  (8)   [size of uncompressed source]
82  *           target expected len  (8)   [size of uncompressed target]
83  *           gzip level           (4)
84  *                method          (4)
85  *                windowBits      (4)
86  *                memLevel        (4)
87  *                strategy        (4)
88  *        if chunk type == RAW:             (version 2 only)
89  *           target len           (4)
90  *           data                 (target len)
91  *
92  * All integers are little-endian.  "source start" and "source len" specify the section of the
93  * input image that comprises this chunk, including the gzip header and footer for gzip chunks.
94  * "source expanded len" is the size of the uncompressed source data.  "target expected len" is the
95  * size of the uncompressed data after applying the bsdiff patch.  The next five parameters
96  * specify the zlib parameters to be used when compressing the patched data, and the next three
97  * specify the header and footer to be wrapped around the compressed data to create the output
98  * chunk (so that header contents like the timestamp are recreated exactly).
99  *
100  * After the header there are 'chunk count' bsdiff patches; the offset of each from the beginning
101  * of the file is specified in the header.
102  *
103  * This tool can take an optional file of "bonus data".  This is an extra file of data that is
104  * appended to chunk #1 after it is compressed (it must be a CHUNK_DEFLATE chunk).  The same file
105  * must be available (and passed to applypatch with -b) when applying the patch.  This is used to
106  * reduce the size of recovery-from-boot patches by combining the boot image with recovery ramdisk
107  * information that is stored on the system partition.
108  *
109  * When generating the patch between two zip files, this tool has an option "--block-limit" to
110  * split the large source/target files into several pair of pieces, with each piece has at most
111  * *limit* blocks.  When this option is used, we also need to output the split info into the file
112  * path specified by "--split-info".
113  *
114  * Format of split info file:
115  *   2                                      [version of imgdiff]
116  *   n                                      [count of split pieces]
117  *   <patch_size>, <tgt_size>, <src_range>  [size and ranges for split piece#1]
118  *   ...
119  *   <patch_size>, <tgt_size>, <src_range>  [size and ranges for split piece#n]
120  *
121  * To split a pair of large zip files, we walk through the chunks in target zip and search by its
122  * entry_name in the source zip.  If the entry_name is non-empty and a matching entry in source
123  * is found, we'll add the source entry to the current split source image; otherwise we'll skip
124  * this chunk and later do bsdiff between all the skipped trunks and the whole split source image.
125  * We move on to the next pair of pieces if the size of the split source image reaches the block
126  * limit.
127  *
128  * After the split, the target pieces are continuous and block aligned, while the source pieces
129  * are mutually exclusive.  Some of the source blocks may not be used if there's no matching
130  * entry_name in the target; as a result, they won't be included in any of these split source
131  * images.  Then we will generate patches accordingly between each split image pairs; in particular,
132  * the unmatched trunks in the split target will diff against the entire split source image.
133  *
134  * For example:
135  * Input: [src_image, tgt_image]
136  * Split: [src-0, tgt-0; src-1, tgt-1, src-2, tgt-2]
137  * Diff:  [  patch-0;      patch-1;      patch-2]
138  *
139  * Patch: [(src-0, patch-0) = tgt-0; (src-1, patch-1) = tgt-1; (src-2, patch-2) = tgt-2]
140  * Concatenate: [tgt-0 + tgt-1 + tgt-2 = tgt_image]
141  */
142 
143 #include "applypatch/imgdiff.h"
144 
145 #include <errno.h>
146 #include <fcntl.h>
147 #include <getopt.h>
148 #include <stdio.h>
149 #include <stdlib.h>
150 #include <string.h>
151 #include <sys/stat.h>
152 #include <sys/types.h>
153 #include <unistd.h>
154 
155 #include <algorithm>
156 #include <string>
157 #include <vector>
158 
159 #include <android-base/file.h>
160 #include <android-base/logging.h>
161 #include <android-base/memory.h>
162 #include <android-base/parseint.h>
163 #include <android-base/stringprintf.h>
164 #include <android-base/strings.h>
165 #include <android-base/unique_fd.h>
166 #include <bsdiff/bsdiff.h>
167 #include <ziparchive/zip_archive.h>
168 #include <zlib.h>
169 
170 #include "applypatch/imgdiff_image.h"
171 #include "otautil/rangeset.h"
172 
173 using android::base::get_unaligned;
174 
175 static constexpr size_t VERSION = 2;
176 
177 // We assume the header "IMGDIFF#" is 8 bytes.
178 static_assert(VERSION <= 9, "VERSION occupies more than one byte");
179 
180 static constexpr size_t BLOCK_SIZE = 4096;
181 static constexpr size_t BUFFER_SIZE = 0x8000;
182 
183 // If we use this function to write the offset and length (type size_t), their values should not
184 // exceed 2^63; because the signed bit will be casted away.
Write8(int fd,int64_t value)185 static inline bool Write8(int fd, int64_t value) {
186   return android::base::WriteFully(fd, &value, sizeof(int64_t));
187 }
188 
189 // Similarly, the value should not exceed 2^31 if we are casting from size_t (e.g. target chunk
190 // size).
Write4(int fd,int32_t value)191 static inline bool Write4(int fd, int32_t value) {
192   return android::base::WriteFully(fd, &value, sizeof(int32_t));
193 }
194 
195 // Trim the head or tail to align with the block size. Return false if the chunk has nothing left
196 // after alignment.
AlignHead(size_t * start,size_t * length)197 static bool AlignHead(size_t* start, size_t* length) {
198   size_t residual = (*start % BLOCK_SIZE == 0) ? 0 : BLOCK_SIZE - *start % BLOCK_SIZE;
199 
200   if (*length <= residual) {
201     *length = 0;
202     return false;
203   }
204 
205   // Trim the data in the beginning.
206   *start += residual;
207   *length -= residual;
208   return true;
209 }
210 
AlignTail(size_t * start,size_t * length)211 static bool AlignTail(size_t* start, size_t* length) {
212   size_t residual = (*start + *length) % BLOCK_SIZE;
213   if (*length <= residual) {
214     *length = 0;
215     return false;
216   }
217 
218   // Trim the data in the end.
219   *length -= residual;
220   return true;
221 }
222 
223 // Remove the used blocks from the source chunk to make sure the source ranges are mutually
224 // exclusive after split. Return false if we fail to get the non-overlapped ranges. In such
225 // a case, we'll skip the entire source chunk.
RemoveUsedBlocks(size_t * start,size_t * length,const SortedRangeSet & used_ranges)226 static bool RemoveUsedBlocks(size_t* start, size_t* length, const SortedRangeSet& used_ranges) {
227   if (!used_ranges.Overlaps(*start, *length)) {
228     return true;
229   }
230 
231   // TODO find the largest non-overlap chunk.
232   LOG(INFO) << "Removing block " << used_ranges.ToString() << " from " << *start << " - "
233             << *start + *length - 1;
234 
235   // If there's no duplicate entry name, we should only overlap in the head or tail block. Try to
236   // trim both blocks. Skip this source chunk in case it still overlaps with the used ranges.
237   if (AlignHead(start, length) && !used_ranges.Overlaps(*start, *length)) {
238     return true;
239   }
240   if (AlignTail(start, length) && !used_ranges.Overlaps(*start, *length)) {
241     return true;
242   }
243 
244   LOG(WARNING) << "Failed to remove the overlapped block ranges; skip the source";
245   return false;
246 }
247 
248 static const struct option OPTIONS[] = {
249   { "zip-mode", no_argument, nullptr, 'z' },
250   { "bonus-file", required_argument, nullptr, 'b' },
251   { "block-limit", required_argument, nullptr, 0 },
252   { "debug-dir", required_argument, nullptr, 0 },
253   { "split-info", required_argument, nullptr, 0 },
254   { "verbose", no_argument, nullptr, 'v' },
255   { nullptr, 0, nullptr, 0 },
256 };
257 
ImageChunk(int type,size_t start,const std::vector<uint8_t> * file_content,size_t raw_data_len,std::string entry_name)258 ImageChunk::ImageChunk(int type, size_t start, const std::vector<uint8_t>* file_content,
259                        size_t raw_data_len, std::string entry_name)
260     : type_(type),
261       start_(start),
262       input_file_ptr_(file_content),
263       raw_data_len_(raw_data_len),
264       compress_level_(6),
265       entry_name_(std::move(entry_name)) {
266   CHECK(file_content != nullptr) << "input file container can't be nullptr";
267 }
268 
GetRawData() const269 const uint8_t* ImageChunk::GetRawData() const {
270   CHECK_LE(start_ + raw_data_len_, input_file_ptr_->size());
271   return input_file_ptr_->data() + start_;
272 }
273 
DataForPatch() const274 const uint8_t * ImageChunk::DataForPatch() const {
275   if (type_ == CHUNK_DEFLATE) {
276     return uncompressed_data_.data();
277   }
278   return GetRawData();
279 }
280 
DataLengthForPatch() const281 size_t ImageChunk::DataLengthForPatch() const {
282   if (type_ == CHUNK_DEFLATE) {
283     return uncompressed_data_.size();
284   }
285   return raw_data_len_;
286 }
287 
Dump(size_t index) const288 void ImageChunk::Dump(size_t index) const {
289   LOG(INFO) << "chunk: " << index << ", type: " << type_ << ", start: " << start_
290             << ", len: " << DataLengthForPatch() << ", name: " << entry_name_;
291 }
292 
operator ==(const ImageChunk & other) const293 bool ImageChunk::operator==(const ImageChunk& other) const {
294   if (type_ != other.type_) {
295     return false;
296   }
297   return (raw_data_len_ == other.raw_data_len_ &&
298           memcmp(GetRawData(), other.GetRawData(), raw_data_len_) == 0);
299 }
300 
SetUncompressedData(std::vector<uint8_t> data)301 void ImageChunk::SetUncompressedData(std::vector<uint8_t> data) {
302   uncompressed_data_ = std::move(data);
303 }
304 
SetBonusData(const std::vector<uint8_t> & bonus_data)305 bool ImageChunk::SetBonusData(const std::vector<uint8_t>& bonus_data) {
306   if (type_ != CHUNK_DEFLATE) {
307     return false;
308   }
309   uncompressed_data_.insert(uncompressed_data_.end(), bonus_data.begin(), bonus_data.end());
310   return true;
311 }
312 
ChangeDeflateChunkToNormal()313 void ImageChunk::ChangeDeflateChunkToNormal() {
314   if (type_ != CHUNK_DEFLATE) return;
315   type_ = CHUNK_NORMAL;
316   // No need to clear the entry name.
317   uncompressed_data_.clear();
318 }
319 
IsAdjacentNormal(const ImageChunk & other) const320 bool ImageChunk::IsAdjacentNormal(const ImageChunk& other) const {
321   if (type_ != CHUNK_NORMAL || other.type_ != CHUNK_NORMAL) {
322     return false;
323   }
324   return (other.start_ == start_ + raw_data_len_);
325 }
326 
MergeAdjacentNormal(const ImageChunk & other)327 void ImageChunk::MergeAdjacentNormal(const ImageChunk& other) {
328   CHECK(IsAdjacentNormal(other));
329   raw_data_len_ = raw_data_len_ + other.raw_data_len_;
330 }
331 
MakePatch(const ImageChunk & tgt,const ImageChunk & src,std::vector<uint8_t> * patch_data,bsdiff::SuffixArrayIndexInterface ** bsdiff_cache)332 bool ImageChunk::MakePatch(const ImageChunk& tgt, const ImageChunk& src,
333                            std::vector<uint8_t>* patch_data,
334                            bsdiff::SuffixArrayIndexInterface** bsdiff_cache) {
335 #if defined(__ANDROID__)
336   char ptemp[] = "/data/local/tmp/imgdiff-patch-XXXXXX";
337 #else
338   char ptemp[] = "/tmp/imgdiff-patch-XXXXXX";
339 #endif
340 
341   int fd = mkstemp(ptemp);
342   if (fd == -1) {
343     PLOG(ERROR) << "MakePatch failed to create a temporary file";
344     return false;
345   }
346   close(fd);
347 
348   int r = bsdiff::bsdiff(src.DataForPatch(), src.DataLengthForPatch(), tgt.DataForPatch(),
349                          tgt.DataLengthForPatch(), ptemp, bsdiff_cache);
350   if (r != 0) {
351     LOG(ERROR) << "bsdiff() failed: " << r;
352     return false;
353   }
354 
355   android::base::unique_fd patch_fd(open(ptemp, O_RDONLY));
356   if (patch_fd == -1) {
357     PLOG(ERROR) << "Failed to open " << ptemp;
358     return false;
359   }
360   struct stat st;
361   if (fstat(patch_fd, &st) != 0) {
362     PLOG(ERROR) << "Failed to stat patch file " << ptemp;
363     return false;
364   }
365 
366   size_t sz = static_cast<size_t>(st.st_size);
367 
368   patch_data->resize(sz);
369   if (!android::base::ReadFully(patch_fd, patch_data->data(), sz)) {
370     PLOG(ERROR) << "Failed to read " << ptemp;
371     unlink(ptemp);
372     return false;
373   }
374 
375   unlink(ptemp);
376 
377   return true;
378 }
379 
ReconstructDeflateChunk()380 bool ImageChunk::ReconstructDeflateChunk() {
381   if (type_ != CHUNK_DEFLATE) {
382     LOG(ERROR) << "Attempted to reconstruct non-deflate chunk";
383     return false;
384   }
385 
386   // We only check two combinations of encoder parameters:  level 6 (the default) and level 9
387   // (the maximum).
388   for (int level = 6; level <= 9; level += 3) {
389     if (TryReconstruction(level)) {
390       compress_level_ = level;
391       return true;
392     }
393   }
394 
395   return false;
396 }
397 
398 /*
399  * Takes the uncompressed data stored in the chunk, compresses it using the zlib parameters stored
400  * in the chunk, and checks that it matches exactly the compressed data we started with (also
401  * stored in the chunk).
402  */
TryReconstruction(int level)403 bool ImageChunk::TryReconstruction(int level) {
404   z_stream strm;
405   strm.zalloc = Z_NULL;
406   strm.zfree = Z_NULL;
407   strm.opaque = Z_NULL;
408   strm.avail_in = uncompressed_data_.size();
409   strm.next_in = uncompressed_data_.data();
410   int ret = deflateInit2(&strm, level, METHOD, WINDOWBITS, MEMLEVEL, STRATEGY);
411   if (ret < 0) {
412     LOG(ERROR) << "Failed to initialize deflate: " << ret;
413     return false;
414   }
415 
416   std::vector<uint8_t> buffer(BUFFER_SIZE);
417   size_t offset = 0;
418   do {
419     strm.avail_out = buffer.size();
420     strm.next_out = buffer.data();
421     ret = deflate(&strm, Z_FINISH);
422     if (ret < 0) {
423       LOG(ERROR) << "Failed to deflate: " << ret;
424       return false;
425     }
426 
427     size_t compressed_size = buffer.size() - strm.avail_out;
428     if (memcmp(buffer.data(), input_file_ptr_->data() + start_ + offset, compressed_size) != 0) {
429       // mismatch; data isn't the same.
430       deflateEnd(&strm);
431       return false;
432     }
433     offset += compressed_size;
434   } while (ret != Z_STREAM_END);
435   deflateEnd(&strm);
436 
437   if (offset != raw_data_len_) {
438     // mismatch; ran out of data before we should have.
439     return false;
440   }
441   return true;
442 }
443 
PatchChunk(const ImageChunk & tgt,const ImageChunk & src,std::vector<uint8_t> data)444 PatchChunk::PatchChunk(const ImageChunk& tgt, const ImageChunk& src, std::vector<uint8_t> data)
445     : type_(tgt.GetType()),
446       source_start_(src.GetStartOffset()),
447       source_len_(src.GetRawDataLength()),
448       source_uncompressed_len_(src.DataLengthForPatch()),
449       target_start_(tgt.GetStartOffset()),
450       target_len_(tgt.GetRawDataLength()),
451       target_uncompressed_len_(tgt.DataLengthForPatch()),
452       target_compress_level_(tgt.GetCompressLevel()),
453       data_(std::move(data)) {}
454 
455 // Construct a CHUNK_RAW patch from the target data directly.
PatchChunk(const ImageChunk & tgt)456 PatchChunk::PatchChunk(const ImageChunk& tgt)
457     : type_(CHUNK_RAW),
458       source_start_(0),
459       source_len_(0),
460       source_uncompressed_len_(0),
461       target_start_(tgt.GetStartOffset()),
462       target_len_(tgt.GetRawDataLength()),
463       target_uncompressed_len_(tgt.DataLengthForPatch()),
464       target_compress_level_(tgt.GetCompressLevel()),
465       data_(tgt.GetRawData(), tgt.GetRawData() + tgt.GetRawDataLength()) {}
466 
467 // Return true if raw data is smaller than the patch size.
RawDataIsSmaller(const ImageChunk & tgt,size_t patch_size)468 bool PatchChunk::RawDataIsSmaller(const ImageChunk& tgt, size_t patch_size) {
469   size_t target_len = tgt.GetRawDataLength();
470   return target_len < patch_size || (tgt.GetType() == CHUNK_NORMAL && target_len <= 160);
471 }
472 
UpdateSourceOffset(const SortedRangeSet & src_range)473 void PatchChunk::UpdateSourceOffset(const SortedRangeSet& src_range) {
474   if (type_ == CHUNK_DEFLATE) {
475     source_start_ = src_range.GetOffsetInRangeSet(source_start_);
476   }
477 }
478 
479 // Header size:
480 // header_type    4 bytes
481 // CHUNK_NORMAL   8*3 = 24 bytes
482 // CHUNK_DEFLATE  8*5 + 4*5 = 60 bytes
483 // CHUNK_RAW      4 bytes + patch_size
GetHeaderSize() const484 size_t PatchChunk::GetHeaderSize() const {
485   switch (type_) {
486     case CHUNK_NORMAL:
487       return 4 + 8 * 3;
488     case CHUNK_DEFLATE:
489       return 4 + 8 * 5 + 4 * 5;
490     case CHUNK_RAW:
491       return 4 + 4 + data_.size();
492     default:
493       CHECK(false) << "unexpected chunk type: " << type_;  // Should not reach here.
494       return 0;
495   }
496 }
497 
498 // Return the offset of the next patch into the patch data.
WriteHeaderToFd(int fd,size_t offset,size_t index) const499 size_t PatchChunk::WriteHeaderToFd(int fd, size_t offset, size_t index) const {
500   Write4(fd, type_);
501   switch (type_) {
502     case CHUNK_NORMAL:
503       LOG(INFO) << android::base::StringPrintf("chunk %zu: normal   (%10zu, %10zu)  %10zu", index,
504                                                target_start_, target_len_, data_.size());
505       Write8(fd, static_cast<int64_t>(source_start_));
506       Write8(fd, static_cast<int64_t>(source_len_));
507       Write8(fd, static_cast<int64_t>(offset));
508       return offset + data_.size();
509     case CHUNK_DEFLATE:
510       LOG(INFO) << android::base::StringPrintf("chunk %zu: deflate  (%10zu, %10zu)  %10zu", index,
511                                                target_start_, target_len_, data_.size());
512       Write8(fd, static_cast<int64_t>(source_start_));
513       Write8(fd, static_cast<int64_t>(source_len_));
514       Write8(fd, static_cast<int64_t>(offset));
515       Write8(fd, static_cast<int64_t>(source_uncompressed_len_));
516       Write8(fd, static_cast<int64_t>(target_uncompressed_len_));
517       Write4(fd, target_compress_level_);
518       Write4(fd, ImageChunk::METHOD);
519       Write4(fd, ImageChunk::WINDOWBITS);
520       Write4(fd, ImageChunk::MEMLEVEL);
521       Write4(fd, ImageChunk::STRATEGY);
522       return offset + data_.size();
523     case CHUNK_RAW:
524       LOG(INFO) << android::base::StringPrintf("chunk %zu: raw      (%10zu, %10zu)", index,
525                                                target_start_, target_len_);
526       Write4(fd, static_cast<int32_t>(data_.size()));
527       if (!android::base::WriteFully(fd, data_.data(), data_.size())) {
528         CHECK(false) << "Failed to write " << data_.size() << " bytes patch";
529       }
530       return offset;
531     default:
532       CHECK(false) << "unexpected chunk type: " << type_;
533       return offset;
534   }
535 }
536 
PatchSize() const537 size_t PatchChunk::PatchSize() const {
538   if (type_ == CHUNK_RAW) {
539     return GetHeaderSize();
540   }
541   return GetHeaderSize() + data_.size();
542 }
543 
544 // Write the contents of |patch_chunks| to |patch_fd|.
WritePatchDataToFd(const std::vector<PatchChunk> & patch_chunks,int patch_fd)545 bool PatchChunk::WritePatchDataToFd(const std::vector<PatchChunk>& patch_chunks, int patch_fd) {
546   // Figure out how big the imgdiff file header is going to be, so that we can correctly compute
547   // the offset of each bsdiff patch within the file.
548   size_t total_header_size = 12;
549   for (const auto& patch : patch_chunks) {
550     total_header_size += patch.GetHeaderSize();
551   }
552 
553   size_t offset = total_header_size;
554 
555   // Write out the headers.
556   if (!android::base::WriteStringToFd("IMGDIFF" + std::to_string(VERSION), patch_fd)) {
557     PLOG(ERROR) << "Failed to write \"IMGDIFF" << VERSION << "\"";
558     return false;
559   }
560 
561   Write4(patch_fd, static_cast<int32_t>(patch_chunks.size()));
562   LOG(INFO) << "Writing " << patch_chunks.size() << " patch headers...";
563   for (size_t i = 0; i < patch_chunks.size(); ++i) {
564     offset = patch_chunks[i].WriteHeaderToFd(patch_fd, offset, i);
565   }
566 
567   // Append each chunk's bsdiff patch, in order.
568   for (const auto& patch : patch_chunks) {
569     if (patch.type_ == CHUNK_RAW) {
570       continue;
571     }
572     if (!android::base::WriteFully(patch_fd, patch.data_.data(), patch.data_.size())) {
573       PLOG(ERROR) << "Failed to write " << patch.data_.size() << " bytes patch to patch_fd";
574       return false;
575     }
576   }
577 
578   return true;
579 }
580 
operator [](size_t i)581 ImageChunk& Image::operator[](size_t i) {
582   CHECK_LT(i, chunks_.size());
583   return chunks_[i];
584 }
585 
operator [](size_t i) const586 const ImageChunk& Image::operator[](size_t i) const {
587   CHECK_LT(i, chunks_.size());
588   return chunks_[i];
589 }
590 
MergeAdjacentNormalChunks()591 void Image::MergeAdjacentNormalChunks() {
592   size_t merged_last = 0, cur = 0;
593   while (cur < chunks_.size()) {
594     // Look for normal chunks adjacent to the current one. If such chunk exists, extend the
595     // length of the current normal chunk.
596     size_t to_check = cur + 1;
597     while (to_check < chunks_.size() && chunks_[cur].IsAdjacentNormal(chunks_[to_check])) {
598       chunks_[cur].MergeAdjacentNormal(chunks_[to_check]);
599       to_check++;
600     }
601 
602     if (merged_last != cur) {
603       chunks_[merged_last] = std::move(chunks_[cur]);
604     }
605     merged_last++;
606     cur = to_check;
607   }
608   if (merged_last < chunks_.size()) {
609     chunks_.erase(chunks_.begin() + merged_last, chunks_.end());
610   }
611 }
612 
DumpChunks() const613 void Image::DumpChunks() const {
614   std::string type = is_source_ ? "source" : "target";
615   LOG(INFO) << "Dumping chunks for " << type;
616   for (size_t i = 0; i < chunks_.size(); ++i) {
617     chunks_[i].Dump(i);
618   }
619 }
620 
ReadFile(const std::string & filename,std::vector<uint8_t> * file_content)621 bool Image::ReadFile(const std::string& filename, std::vector<uint8_t>* file_content) {
622   CHECK(file_content != nullptr);
623 
624   android::base::unique_fd fd(open(filename.c_str(), O_RDONLY));
625   if (fd == -1) {
626     PLOG(ERROR) << "Failed to open " << filename;
627     return false;
628   }
629   struct stat st;
630   if (fstat(fd, &st) != 0) {
631     PLOG(ERROR) << "Failed to stat " << filename;
632     return false;
633   }
634 
635   size_t sz = static_cast<size_t>(st.st_size);
636   file_content->resize(sz);
637   if (!android::base::ReadFully(fd, file_content->data(), sz)) {
638     PLOG(ERROR) << "Failed to read " << filename;
639     return false;
640   }
641   fd.reset();
642 
643   return true;
644 }
645 
Initialize(const std::string & filename)646 bool ZipModeImage::Initialize(const std::string& filename) {
647   if (!ReadFile(filename, &file_content_)) {
648     return false;
649   }
650 
651   // Omit the trailing zeros before we pass the file to ziparchive handler.
652   size_t zipfile_size;
653   if (!GetZipFileSize(&zipfile_size)) {
654     LOG(ERROR) << "Failed to parse the actual size of " << filename;
655     return false;
656   }
657   ZipArchiveHandle handle;
658   int err = OpenArchiveFromMemory(const_cast<uint8_t*>(file_content_.data()), zipfile_size,
659                                   filename.c_str(), &handle);
660   if (err != 0) {
661     LOG(ERROR) << "Failed to open zip file " << filename << ": " << ErrorCodeString(err);
662     CloseArchive(handle);
663     return false;
664   }
665 
666   if (!InitializeChunks(filename, handle)) {
667     CloseArchive(handle);
668     return false;
669   }
670 
671   CloseArchive(handle);
672   return true;
673 }
674 
675 // Iterate the zip entries and compose the image chunks accordingly.
InitializeChunks(const std::string & filename,ZipArchiveHandle handle)676 bool ZipModeImage::InitializeChunks(const std::string& filename, ZipArchiveHandle handle) {
677   void* cookie;
678   int ret = StartIteration(handle, &cookie);
679   if (ret != 0) {
680     LOG(ERROR) << "Failed to iterate over entries in " << filename << ": " << ErrorCodeString(ret);
681     return false;
682   }
683 
684   // Create a list of deflated zip entries, sorted by offset.
685   std::vector<std::pair<std::string, ZipEntry>> temp_entries;
686   std::string name;
687   ZipEntry entry;
688   while ((ret = Next(cookie, &entry, &name)) == 0) {
689     if (entry.method == kCompressDeflated || limit_ > 0) {
690       temp_entries.emplace_back(name, entry);
691     }
692   }
693 
694   if (ret != -1) {
695     LOG(ERROR) << "Error while iterating over zip entries: " << ErrorCodeString(ret);
696     return false;
697   }
698   std::sort(temp_entries.begin(), temp_entries.end(),
699             [](auto& entry1, auto& entry2) { return entry1.second.offset < entry2.second.offset; });
700 
701   EndIteration(cookie);
702 
703   // For source chunks, we don't need to compose chunks for the metadata.
704   if (is_source_) {
705     for (auto& entry : temp_entries) {
706       if (!AddZipEntryToChunks(handle, entry.first, &entry.second)) {
707         LOG(ERROR) << "Failed to add " << entry.first << " to source chunks";
708         return false;
709       }
710     }
711 
712     // Add the end of zip file (mainly central directory) as a normal chunk.
713     size_t entries_end = 0;
714     if (!temp_entries.empty()) {
715       entries_end = static_cast<size_t>(temp_entries.back().second.offset +
716                                         temp_entries.back().second.compressed_length);
717     }
718     CHECK_LT(entries_end, file_content_.size());
719     chunks_.emplace_back(CHUNK_NORMAL, entries_end, &file_content_,
720                          file_content_.size() - entries_end);
721 
722     return true;
723   }
724 
725   // For target chunks, add the deflate entries as CHUNK_DEFLATE and the contents between two
726   // deflate entries as CHUNK_NORMAL.
727   size_t pos = 0;
728   size_t nextentry = 0;
729   while (pos < file_content_.size()) {
730     if (nextentry < temp_entries.size() &&
731         static_cast<off64_t>(pos) == temp_entries[nextentry].second.offset) {
732       // Add the next zip entry.
733       std::string entry_name = temp_entries[nextentry].first;
734       if (!AddZipEntryToChunks(handle, entry_name, &temp_entries[nextentry].second)) {
735         LOG(ERROR) << "Failed to add " << entry_name << " to target chunks";
736         return false;
737       }
738 
739       pos += temp_entries[nextentry].second.compressed_length;
740       ++nextentry;
741       continue;
742     }
743 
744     // Use a normal chunk to take all the data up to the start of the next entry.
745     size_t raw_data_len;
746     if (nextentry < temp_entries.size()) {
747       raw_data_len = temp_entries[nextentry].second.offset - pos;
748     } else {
749       raw_data_len = file_content_.size() - pos;
750     }
751     chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, raw_data_len);
752 
753     pos += raw_data_len;
754   }
755 
756   return true;
757 }
758 
AddZipEntryToChunks(ZipArchiveHandle handle,const std::string & entry_name,ZipEntry * entry)759 bool ZipModeImage::AddZipEntryToChunks(ZipArchiveHandle handle, const std::string& entry_name,
760                                        ZipEntry* entry) {
761   size_t compressed_len = entry->compressed_length;
762   if (compressed_len == 0) return true;
763 
764   // Split the entry into several normal chunks if it's too large.
765   if (limit_ > 0 && compressed_len > limit_) {
766     int count = 0;
767     while (compressed_len > 0) {
768       size_t length = std::min(limit_, compressed_len);
769       std::string name = entry_name + "-" + std::to_string(count);
770       chunks_.emplace_back(CHUNK_NORMAL, entry->offset + limit_ * count, &file_content_, length,
771                            name);
772 
773       count++;
774       compressed_len -= length;
775     }
776   } else if (entry->method == kCompressDeflated) {
777     size_t uncompressed_len = entry->uncompressed_length;
778     std::vector<uint8_t> uncompressed_data(uncompressed_len);
779     int ret = ExtractToMemory(handle, entry, uncompressed_data.data(), uncompressed_len);
780     if (ret != 0) {
781       LOG(ERROR) << "Failed to extract " << entry_name << " with size " << uncompressed_len << ": "
782                  << ErrorCodeString(ret);
783       return false;
784     }
785     ImageChunk curr(CHUNK_DEFLATE, entry->offset, &file_content_, compressed_len, entry_name);
786     curr.SetUncompressedData(std::move(uncompressed_data));
787     chunks_.push_back(std::move(curr));
788   } else {
789     chunks_.emplace_back(CHUNK_NORMAL, entry->offset, &file_content_, compressed_len, entry_name);
790   }
791 
792   return true;
793 }
794 
795 // EOCD record
796 // offset 0: signature 0x06054b50, 4 bytes
797 // offset 4: number of this disk, 2 bytes
798 // ...
799 // offset 20: comment length, 2 bytes
800 // offset 22: comment, n bytes
GetZipFileSize(size_t * input_file_size)801 bool ZipModeImage::GetZipFileSize(size_t* input_file_size) {
802   if (file_content_.size() < 22) {
803     LOG(ERROR) << "File is too small to be a zip file";
804     return false;
805   }
806 
807   // Look for End of central directory record of the zip file, and calculate the actual
808   // zip_file size.
809   for (int i = file_content_.size() - 22; i >= 0; i--) {
810     if (file_content_[i] == 0x50) {
811       if (get_unaligned<uint32_t>(&file_content_[i]) == 0x06054b50) {
812         // double-check: this archive consists of a single "disk".
813         CHECK_EQ(get_unaligned<uint16_t>(&file_content_[i + 4]), 0);
814 
815         uint16_t comment_length = get_unaligned<uint16_t>(&file_content_[i + 20]);
816         size_t file_size = i + 22 + comment_length;
817         CHECK_LE(file_size, file_content_.size());
818         *input_file_size = file_size;
819         return true;
820       }
821     }
822   }
823 
824   // EOCD not found, this file is likely not a valid zip file.
825   return false;
826 }
827 
PseudoSource() const828 ImageChunk ZipModeImage::PseudoSource() const {
829   CHECK(is_source_);
830   return ImageChunk(CHUNK_NORMAL, 0, &file_content_, file_content_.size());
831 }
832 
FindChunkByName(const std::string & name,bool find_normal) const833 const ImageChunk* ZipModeImage::FindChunkByName(const std::string& name, bool find_normal) const {
834   if (name.empty()) {
835     return nullptr;
836   }
837   for (auto& chunk : chunks_) {
838     if (chunk.GetType() != CHUNK_DEFLATE && !find_normal) {
839       continue;
840     }
841 
842     if (chunk.GetEntryName() == name) {
843       return &chunk;
844     }
845 
846     // Edge case when target chunk is split due to size limit but source chunk isn't.
847     if (name == (chunk.GetEntryName() + "-0") || chunk.GetEntryName() == (name + "-0")) {
848       return &chunk;
849     }
850 
851     // TODO handle the .so files with incremental version number.
852     // (e.g. lib/arm64-v8a/libcronet.59.0.3050.4.so)
853   }
854 
855   return nullptr;
856 }
857 
FindChunkByName(const std::string & name,bool find_normal)858 ImageChunk* ZipModeImage::FindChunkByName(const std::string& name, bool find_normal) {
859   return const_cast<ImageChunk*>(
860       static_cast<const ZipModeImage*>(this)->FindChunkByName(name, find_normal));
861 }
862 
CheckAndProcessChunks(ZipModeImage * tgt_image,ZipModeImage * src_image)863 bool ZipModeImage::CheckAndProcessChunks(ZipModeImage* tgt_image, ZipModeImage* src_image) {
864   for (auto& tgt_chunk : *tgt_image) {
865     if (tgt_chunk.GetType() != CHUNK_DEFLATE) {
866       continue;
867     }
868 
869     ImageChunk* src_chunk = src_image->FindChunkByName(tgt_chunk.GetEntryName());
870     if (src_chunk == nullptr) {
871       tgt_chunk.ChangeDeflateChunkToNormal();
872     } else if (tgt_chunk == *src_chunk) {
873       // If two deflate chunks are identical (eg, the kernel has not changed between two builds),
874       // treat them as normal chunks. This makes applypatch much faster -- it can apply a trivial
875       // patch to the compressed data, rather than uncompressing and recompressing to apply the
876       // trivial patch to the uncompressed data.
877       tgt_chunk.ChangeDeflateChunkToNormal();
878       src_chunk->ChangeDeflateChunkToNormal();
879     } else if (!tgt_chunk.ReconstructDeflateChunk()) {
880       // We cannot recompress the data and get exactly the same bits as are in the input target
881       // image. Treat the chunk as a normal non-deflated chunk.
882       LOG(WARNING) << "Failed to reconstruct target deflate chunk [" << tgt_chunk.GetEntryName()
883                    << "]; treating as normal";
884 
885       tgt_chunk.ChangeDeflateChunkToNormal();
886       src_chunk->ChangeDeflateChunkToNormal();
887     }
888   }
889 
890   // For zips, we only need merge normal chunks for the target:  deflated chunks are matched via
891   // filename, and normal chunks are patched using the entire source file as the source.
892   if (tgt_image->limit_ == 0) {
893     tgt_image->MergeAdjacentNormalChunks();
894     tgt_image->DumpChunks();
895   }
896 
897   return true;
898 }
899 
900 // For each target chunk, look for the corresponding source chunk by the zip_entry name. If
901 // found, add the range of this chunk in the original source file to the block aligned source
902 // ranges. Construct the split src & tgt image once the size of source range reaches limit.
SplitZipModeImageWithLimit(const ZipModeImage & tgt_image,const ZipModeImage & src_image,std::vector<ZipModeImage> * split_tgt_images,std::vector<ZipModeImage> * split_src_images,std::vector<SortedRangeSet> * split_src_ranges)903 bool ZipModeImage::SplitZipModeImageWithLimit(const ZipModeImage& tgt_image,
904                                               const ZipModeImage& src_image,
905                                               std::vector<ZipModeImage>* split_tgt_images,
906                                               std::vector<ZipModeImage>* split_src_images,
907                                               std::vector<SortedRangeSet>* split_src_ranges) {
908   CHECK_EQ(tgt_image.limit_, src_image.limit_);
909   size_t limit = tgt_image.limit_;
910 
911   src_image.DumpChunks();
912   LOG(INFO) << "Splitting " << tgt_image.NumOfChunks() << " tgt chunks...";
913 
914   SortedRangeSet used_src_ranges;  // ranges used for previous split source images.
915 
916   // Reserve the central directory in advance for the last split image.
917   const auto& central_directory = src_image.cend() - 1;
918   CHECK_EQ(CHUNK_NORMAL, central_directory->GetType());
919   used_src_ranges.Insert(central_directory->GetStartOffset(),
920                          central_directory->DataLengthForPatch());
921 
922   SortedRangeSet src_ranges;
923   std::vector<ImageChunk> split_src_chunks;
924   std::vector<ImageChunk> split_tgt_chunks;
925   for (auto tgt = tgt_image.cbegin(); tgt != tgt_image.cend(); tgt++) {
926     const ImageChunk* src = src_image.FindChunkByName(tgt->GetEntryName(), true);
927     if (src == nullptr) {
928       split_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt->GetStartOffset(), &tgt_image.file_content_,
929                                     tgt->GetRawDataLength());
930       continue;
931     }
932 
933     size_t src_offset = src->GetStartOffset();
934     size_t src_length = src->GetRawDataLength();
935 
936     CHECK(src_length > 0);
937     CHECK_LE(src_length, limit);
938 
939     // Make sure this source range hasn't been used before so that the src_range pieces don't
940     // overlap with each other.
941     if (!RemoveUsedBlocks(&src_offset, &src_length, used_src_ranges)) {
942       split_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt->GetStartOffset(), &tgt_image.file_content_,
943                                     tgt->GetRawDataLength());
944     } else if (src_ranges.blocks() * BLOCK_SIZE + src_length <= limit) {
945       src_ranges.Insert(src_offset, src_length);
946 
947       // Add the deflate source chunk if it hasn't been aligned.
948       if (src->GetType() == CHUNK_DEFLATE && src_length == src->GetRawDataLength()) {
949         split_src_chunks.push_back(*src);
950         split_tgt_chunks.push_back(*tgt);
951       } else {
952         // TODO split smarter to avoid alignment of large deflate chunks
953         split_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt->GetStartOffset(), &tgt_image.file_content_,
954                                       tgt->GetRawDataLength());
955       }
956     } else {
957       bool added_image = ZipModeImage::AddSplitImageFromChunkList(
958           tgt_image, src_image, src_ranges, split_tgt_chunks, split_src_chunks, split_tgt_images,
959           split_src_images);
960 
961       split_tgt_chunks.clear();
962       split_src_chunks.clear();
963       // No need to update the split_src_ranges if we don't update the split source images.
964       if (added_image) {
965         used_src_ranges.Insert(src_ranges);
966         split_src_ranges->push_back(std::move(src_ranges));
967       }
968       src_ranges = {};
969 
970       // We don't have enough space for the current chunk; start a new split image and handle
971       // this chunk there.
972       tgt--;
973     }
974   }
975 
976   // TODO Trim it in case the CD exceeds limit too much.
977   src_ranges.Insert(central_directory->GetStartOffset(), central_directory->DataLengthForPatch());
978   bool added_image = ZipModeImage::AddSplitImageFromChunkList(tgt_image, src_image, src_ranges,
979                                                               split_tgt_chunks, split_src_chunks,
980                                                               split_tgt_images, split_src_images);
981   if (added_image) {
982     split_src_ranges->push_back(std::move(src_ranges));
983   }
984 
985   ValidateSplitImages(*split_tgt_images, *split_src_images, *split_src_ranges,
986                       tgt_image.file_content_.size());
987 
988   return true;
989 }
990 
AddSplitImageFromChunkList(const ZipModeImage & tgt_image,const ZipModeImage & src_image,const SortedRangeSet & split_src_ranges,const std::vector<ImageChunk> & split_tgt_chunks,const std::vector<ImageChunk> & split_src_chunks,std::vector<ZipModeImage> * split_tgt_images,std::vector<ZipModeImage> * split_src_images)991 bool ZipModeImage::AddSplitImageFromChunkList(const ZipModeImage& tgt_image,
992                                               const ZipModeImage& src_image,
993                                               const SortedRangeSet& split_src_ranges,
994                                               const std::vector<ImageChunk>& split_tgt_chunks,
995                                               const std::vector<ImageChunk>& split_src_chunks,
996                                               std::vector<ZipModeImage>* split_tgt_images,
997                                               std::vector<ZipModeImage>* split_src_images) {
998   CHECK(!split_tgt_chunks.empty());
999 
1000   std::vector<ImageChunk> aligned_tgt_chunks;
1001 
1002   // Align the target chunks in the beginning with BLOCK_SIZE.
1003   size_t i = 0;
1004   while (i < split_tgt_chunks.size()) {
1005     size_t tgt_start = split_tgt_chunks[i].GetStartOffset();
1006     size_t tgt_length = split_tgt_chunks[i].GetRawDataLength();
1007 
1008     // Current ImageChunk is long enough to align.
1009     if (AlignHead(&tgt_start, &tgt_length)) {
1010       aligned_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt_start, &tgt_image.file_content_,
1011                                       tgt_length);
1012       break;
1013     }
1014 
1015     i++;
1016   }
1017 
1018   // Nothing left after alignment in the current split tgt chunks; skip adding the split_tgt_image.
1019   if (i == split_tgt_chunks.size()) {
1020     return false;
1021   }
1022 
1023   aligned_tgt_chunks.insert(aligned_tgt_chunks.end(), split_tgt_chunks.begin() + i + 1,
1024                             split_tgt_chunks.end());
1025   CHECK(!aligned_tgt_chunks.empty());
1026 
1027   // Add a normal chunk to align the contents in the end.
1028   size_t end_offset =
1029       aligned_tgt_chunks.back().GetStartOffset() + aligned_tgt_chunks.back().GetRawDataLength();
1030   if (end_offset % BLOCK_SIZE != 0 && end_offset < tgt_image.file_content_.size()) {
1031     size_t tail_block_length = std::min<size_t>(tgt_image.file_content_.size() - end_offset,
1032                                                 BLOCK_SIZE - (end_offset % BLOCK_SIZE));
1033     aligned_tgt_chunks.emplace_back(CHUNK_NORMAL, end_offset, &tgt_image.file_content_,
1034                                     tail_block_length);
1035   }
1036 
1037   ZipModeImage split_tgt_image(false);
1038   split_tgt_image.Initialize(aligned_tgt_chunks, {});
1039   split_tgt_image.MergeAdjacentNormalChunks();
1040 
1041   // Construct the split source file based on the split src ranges.
1042   std::vector<uint8_t> split_src_content;
1043   for (const auto& r : split_src_ranges) {
1044     size_t end = std::min(src_image.file_content_.size(), r.second * BLOCK_SIZE);
1045     split_src_content.insert(split_src_content.end(),
1046                              src_image.file_content_.begin() + r.first * BLOCK_SIZE,
1047                              src_image.file_content_.begin() + end);
1048   }
1049 
1050   // We should not have an empty src in our design; otherwise we will encounter an error in
1051   // bsdiff since split_src_content.data() == nullptr.
1052   CHECK(!split_src_content.empty());
1053 
1054   ZipModeImage split_src_image(true);
1055   split_src_image.Initialize(split_src_chunks, split_src_content);
1056 
1057   split_tgt_images->push_back(std::move(split_tgt_image));
1058   split_src_images->push_back(std::move(split_src_image));
1059 
1060   return true;
1061 }
1062 
ValidateSplitImages(const std::vector<ZipModeImage> & split_tgt_images,const std::vector<ZipModeImage> & split_src_images,std::vector<SortedRangeSet> & split_src_ranges,size_t total_tgt_size)1063 void ZipModeImage::ValidateSplitImages(const std::vector<ZipModeImage>& split_tgt_images,
1064                                        const std::vector<ZipModeImage>& split_src_images,
1065                                        std::vector<SortedRangeSet>& split_src_ranges,
1066                                        size_t total_tgt_size) {
1067   CHECK_EQ(split_tgt_images.size(), split_src_images.size());
1068 
1069   LOG(INFO) << "Validating " << split_tgt_images.size() << " images";
1070 
1071   // Verify that the target image pieces is continuous and can add up to the total size.
1072   size_t last_offset = 0;
1073   for (const auto& tgt_image : split_tgt_images) {
1074     CHECK(!tgt_image.chunks_.empty());
1075 
1076     CHECK_EQ(last_offset, tgt_image.chunks_.front().GetStartOffset());
1077     CHECK(last_offset % BLOCK_SIZE == 0);
1078 
1079     // Check the target chunks within the split image are continuous.
1080     for (const auto& chunk : tgt_image.chunks_) {
1081       CHECK_EQ(last_offset, chunk.GetStartOffset());
1082       last_offset += chunk.GetRawDataLength();
1083     }
1084   }
1085   CHECK_EQ(total_tgt_size, last_offset);
1086 
1087   // Verify that the source ranges are mutually exclusive.
1088   CHECK_EQ(split_src_images.size(), split_src_ranges.size());
1089   SortedRangeSet used_src_ranges;
1090   for (size_t i = 0; i < split_src_ranges.size(); i++) {
1091     CHECK(!used_src_ranges.Overlaps(split_src_ranges[i]))
1092         << "src range " << split_src_ranges[i].ToString() << " overlaps "
1093         << used_src_ranges.ToString();
1094     used_src_ranges.Insert(split_src_ranges[i]);
1095   }
1096 }
1097 
GeneratePatchesInternal(const ZipModeImage & tgt_image,const ZipModeImage & src_image,std::vector<PatchChunk> * patch_chunks)1098 bool ZipModeImage::GeneratePatchesInternal(const ZipModeImage& tgt_image,
1099                                            const ZipModeImage& src_image,
1100                                            std::vector<PatchChunk>* patch_chunks) {
1101   LOG(INFO) << "Constructing patches for " << tgt_image.NumOfChunks() << " chunks...";
1102   patch_chunks->clear();
1103 
1104   bsdiff::SuffixArrayIndexInterface* bsdiff_cache = nullptr;
1105   for (size_t i = 0; i < tgt_image.NumOfChunks(); i++) {
1106     const auto& tgt_chunk = tgt_image[i];
1107 
1108     if (PatchChunk::RawDataIsSmaller(tgt_chunk, 0)) {
1109       patch_chunks->emplace_back(tgt_chunk);
1110       continue;
1111     }
1112 
1113     const ImageChunk* src_chunk = (tgt_chunk.GetType() != CHUNK_DEFLATE)
1114                                       ? nullptr
1115                                       : src_image.FindChunkByName(tgt_chunk.GetEntryName());
1116 
1117     const auto& src_ref = (src_chunk == nullptr) ? src_image.PseudoSource() : *src_chunk;
1118     bsdiff::SuffixArrayIndexInterface** bsdiff_cache_ptr =
1119         (src_chunk == nullptr) ? &bsdiff_cache : nullptr;
1120 
1121     std::vector<uint8_t> patch_data;
1122     if (!ImageChunk::MakePatch(tgt_chunk, src_ref, &patch_data, bsdiff_cache_ptr)) {
1123       LOG(ERROR) << "Failed to generate patch, name: " << tgt_chunk.GetEntryName();
1124       return false;
1125     }
1126 
1127     LOG(INFO) << "patch " << i << " is " << patch_data.size() << " bytes (of "
1128               << tgt_chunk.GetRawDataLength() << ")";
1129 
1130     if (PatchChunk::RawDataIsSmaller(tgt_chunk, patch_data.size())) {
1131       patch_chunks->emplace_back(tgt_chunk);
1132     } else {
1133       patch_chunks->emplace_back(tgt_chunk, src_ref, std::move(patch_data));
1134     }
1135   }
1136   delete bsdiff_cache;
1137 
1138   CHECK_EQ(patch_chunks->size(), tgt_image.NumOfChunks());
1139   return true;
1140 }
1141 
GeneratePatches(const ZipModeImage & tgt_image,const ZipModeImage & src_image,const std::string & patch_name)1142 bool ZipModeImage::GeneratePatches(const ZipModeImage& tgt_image, const ZipModeImage& src_image,
1143                                    const std::string& patch_name) {
1144   std::vector<PatchChunk> patch_chunks;
1145 
1146   ZipModeImage::GeneratePatchesInternal(tgt_image, src_image, &patch_chunks);
1147 
1148   CHECK_EQ(tgt_image.NumOfChunks(), patch_chunks.size());
1149 
1150   android::base::unique_fd patch_fd(
1151       open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
1152   if (patch_fd == -1) {
1153     PLOG(ERROR) << "Failed to open " << patch_name;
1154     return false;
1155   }
1156 
1157   return PatchChunk::WritePatchDataToFd(patch_chunks, patch_fd);
1158 }
1159 
GeneratePatches(const std::vector<ZipModeImage> & split_tgt_images,const std::vector<ZipModeImage> & split_src_images,const std::vector<SortedRangeSet> & split_src_ranges,const std::string & patch_name,const std::string & split_info_file,const std::string & debug_dir)1160 bool ZipModeImage::GeneratePatches(const std::vector<ZipModeImage>& split_tgt_images,
1161                                    const std::vector<ZipModeImage>& split_src_images,
1162                                    const std::vector<SortedRangeSet>& split_src_ranges,
1163                                    const std::string& patch_name,
1164                                    const std::string& split_info_file,
1165                                    const std::string& debug_dir) {
1166   LOG(INFO) << "Constructing patches for " << split_tgt_images.size() << " split images...";
1167 
1168   android::base::unique_fd patch_fd(
1169       open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
1170   if (patch_fd == -1) {
1171     PLOG(ERROR) << "Failed to open " << patch_name;
1172     return false;
1173   }
1174 
1175   std::vector<std::string> split_info_list;
1176   for (size_t i = 0; i < split_tgt_images.size(); i++) {
1177     std::vector<PatchChunk> patch_chunks;
1178     if (!ZipModeImage::GeneratePatchesInternal(split_tgt_images[i], split_src_images[i],
1179                                                &patch_chunks)) {
1180       LOG(ERROR) << "Failed to generate split patch";
1181       return false;
1182     }
1183 
1184     size_t total_patch_size = 12;
1185     for (auto& p : patch_chunks) {
1186       p.UpdateSourceOffset(split_src_ranges[i]);
1187       total_patch_size += p.PatchSize();
1188     }
1189 
1190     if (!PatchChunk::WritePatchDataToFd(patch_chunks, patch_fd)) {
1191       return false;
1192     }
1193 
1194     size_t split_tgt_size = split_tgt_images[i].chunks_.back().GetStartOffset() +
1195                             split_tgt_images[i].chunks_.back().GetRawDataLength() -
1196                             split_tgt_images[i].chunks_.front().GetStartOffset();
1197     std::string split_info = android::base::StringPrintf(
1198         "%zu %zu %s", total_patch_size, split_tgt_size, split_src_ranges[i].ToString().c_str());
1199     split_info_list.push_back(split_info);
1200 
1201     // Write the split source & patch into the debug directory.
1202     if (!debug_dir.empty()) {
1203       std::string src_name = android::base::StringPrintf("%s/src-%zu", debug_dir.c_str(), i);
1204       android::base::unique_fd fd(
1205           open(src_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
1206 
1207       if (fd == -1) {
1208         PLOG(ERROR) << "Failed to open " << src_name;
1209         return false;
1210       }
1211       if (!android::base::WriteFully(fd, split_src_images[i].PseudoSource().DataForPatch(),
1212                                      split_src_images[i].PseudoSource().DataLengthForPatch())) {
1213         PLOG(ERROR) << "Failed to write split source data into " << src_name;
1214         return false;
1215       }
1216 
1217       std::string patch_name = android::base::StringPrintf("%s/patch-%zu", debug_dir.c_str(), i);
1218       fd.reset(open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
1219 
1220       if (fd == -1) {
1221         PLOG(ERROR) << "Failed to open " << patch_name;
1222         return false;
1223       }
1224       if (!PatchChunk::WritePatchDataToFd(patch_chunks, fd)) {
1225         return false;
1226       }
1227     }
1228   }
1229 
1230   // Store the split in the following format:
1231   // Line 0:   imgdiff version#
1232   // Line 1:   number of pieces
1233   // Line 2:   patch_size_1 tgt_size_1 src_range_1
1234   // ...
1235   // Line n+1: patch_size_n tgt_size_n src_range_n
1236   std::string split_info_string = android::base::StringPrintf(
1237       "%zu\n%zu\n", VERSION, split_info_list.size()) + android::base::Join(split_info_list, '\n');
1238   if (!android::base::WriteStringToFile(split_info_string, split_info_file)) {
1239     PLOG(ERROR) << "Failed to write split info to " << split_info_file;
1240     return false;
1241   }
1242 
1243   return true;
1244 }
1245 
Initialize(const std::string & filename)1246 bool ImageModeImage::Initialize(const std::string& filename) {
1247   if (!ReadFile(filename, &file_content_)) {
1248     return false;
1249   }
1250 
1251   size_t sz = file_content_.size();
1252   size_t pos = 0;
1253   while (pos < sz) {
1254     // 0x00 no header flags, 0x08 deflate compression, 0x1f8b gzip magic number
1255     if (sz - pos >= 4 && get_unaligned<uint32_t>(file_content_.data() + pos) == 0x00088b1f) {
1256       // 'pos' is the offset of the start of a gzip chunk.
1257       size_t chunk_offset = pos;
1258 
1259       // The remaining data is too small to be a gzip chunk; treat them as a normal chunk.
1260       if (sz - pos < GZIP_HEADER_LEN + GZIP_FOOTER_LEN) {
1261         chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, sz - pos);
1262         break;
1263       }
1264 
1265       // We need three chunks for the deflated image in total, one normal chunk for the header,
1266       // one deflated chunk for the body, and another normal chunk for the footer.
1267       chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, GZIP_HEADER_LEN);
1268       pos += GZIP_HEADER_LEN;
1269 
1270       // We must decompress this chunk in order to discover where it ends, and so we can update
1271       // the uncompressed_data of the image body and its length.
1272 
1273       z_stream strm;
1274       strm.zalloc = Z_NULL;
1275       strm.zfree = Z_NULL;
1276       strm.opaque = Z_NULL;
1277       strm.avail_in = sz - pos;
1278       strm.next_in = file_content_.data() + pos;
1279 
1280       // -15 means we are decoding a 'raw' deflate stream; zlib will
1281       // not expect zlib headers.
1282       int ret = inflateInit2(&strm, -15);
1283       if (ret < 0) {
1284         LOG(ERROR) << "Failed to initialize inflate: " << ret;
1285         return false;
1286       }
1287 
1288       size_t allocated = BUFFER_SIZE;
1289       std::vector<uint8_t> uncompressed_data(allocated);
1290       size_t uncompressed_len = 0, raw_data_len = 0;
1291       do {
1292         strm.avail_out = allocated - uncompressed_len;
1293         strm.next_out = uncompressed_data.data() + uncompressed_len;
1294         ret = inflate(&strm, Z_NO_FLUSH);
1295         if (ret < 0) {
1296           LOG(WARNING) << "Inflate failed [" << strm.msg << "] at offset [" << chunk_offset
1297                        << "]; treating as a normal chunk";
1298           break;
1299         }
1300         uncompressed_len = allocated - strm.avail_out;
1301         if (strm.avail_out == 0) {
1302           allocated *= 2;
1303           uncompressed_data.resize(allocated);
1304         }
1305       } while (ret != Z_STREAM_END);
1306 
1307       raw_data_len = sz - strm.avail_in - pos;
1308       inflateEnd(&strm);
1309 
1310       if (ret < 0) {
1311         continue;
1312       }
1313 
1314       // The footer contains the size of the uncompressed data.  Double-check to make sure that it
1315       // matches the size of the data we got when we actually did the decompression.
1316       size_t footer_index = pos + raw_data_len + GZIP_FOOTER_LEN - 4;
1317       if (sz - footer_index < 4) {
1318         LOG(WARNING) << "invalid footer position; treating as a normal chunk";
1319         continue;
1320       }
1321       size_t footer_size = get_unaligned<uint32_t>(file_content_.data() + footer_index);
1322       if (footer_size != uncompressed_len) {
1323         LOG(WARNING) << "footer size " << footer_size << " != " << uncompressed_len
1324                      << "; treating as a normal chunk";
1325         continue;
1326       }
1327 
1328       ImageChunk body(CHUNK_DEFLATE, pos, &file_content_, raw_data_len);
1329       uncompressed_data.resize(uncompressed_len);
1330       body.SetUncompressedData(std::move(uncompressed_data));
1331       chunks_.push_back(std::move(body));
1332 
1333       pos += raw_data_len;
1334 
1335       // create a normal chunk for the footer
1336       chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, GZIP_FOOTER_LEN);
1337 
1338       pos += GZIP_FOOTER_LEN;
1339     } else {
1340       // Use a normal chunk to take all the contents until the next gzip chunk (or EOF); we expect
1341       // the number of chunks to be small (5 for typical boot and recovery images).
1342 
1343       // Scan forward until we find a gzip header.
1344       size_t data_len = 0;
1345       while (data_len + pos < sz) {
1346         if (data_len + pos + 4 <= sz &&
1347             get_unaligned<uint32_t>(file_content_.data() + pos + data_len) == 0x00088b1f) {
1348           break;
1349         }
1350         data_len++;
1351       }
1352       chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, data_len);
1353 
1354       pos += data_len;
1355     }
1356   }
1357 
1358   return true;
1359 }
1360 
SetBonusData(const std::vector<uint8_t> & bonus_data)1361 bool ImageModeImage::SetBonusData(const std::vector<uint8_t>& bonus_data) {
1362   CHECK(is_source_);
1363   if (chunks_.size() < 2 || !chunks_[1].SetBonusData(bonus_data)) {
1364     LOG(ERROR) << "Failed to set bonus data";
1365     DumpChunks();
1366     return false;
1367   }
1368 
1369   LOG(INFO) << "  using " << bonus_data.size() << " bytes of bonus data";
1370   return true;
1371 }
1372 
1373 // In Image Mode, verify that the source and target images have the same chunk structure (ie, the
1374 // same sequence of deflate and normal chunks).
CheckAndProcessChunks(ImageModeImage * tgt_image,ImageModeImage * src_image)1375 bool ImageModeImage::CheckAndProcessChunks(ImageModeImage* tgt_image, ImageModeImage* src_image) {
1376   // In image mode, merge the gzip header and footer in with any adjacent normal chunks.
1377   tgt_image->MergeAdjacentNormalChunks();
1378   src_image->MergeAdjacentNormalChunks();
1379 
1380   if (tgt_image->NumOfChunks() != src_image->NumOfChunks()) {
1381     LOG(ERROR) << "Source and target don't have same number of chunks!";
1382     tgt_image->DumpChunks();
1383     src_image->DumpChunks();
1384     return false;
1385   }
1386   for (size_t i = 0; i < tgt_image->NumOfChunks(); ++i) {
1387     if ((*tgt_image)[i].GetType() != (*src_image)[i].GetType()) {
1388       LOG(ERROR) << "Source and target don't have same chunk structure! (chunk " << i << ")";
1389       tgt_image->DumpChunks();
1390       src_image->DumpChunks();
1391       return false;
1392     }
1393   }
1394 
1395   for (size_t i = 0; i < tgt_image->NumOfChunks(); ++i) {
1396     auto& tgt_chunk = (*tgt_image)[i];
1397     auto& src_chunk = (*src_image)[i];
1398     if (tgt_chunk.GetType() != CHUNK_DEFLATE) {
1399       continue;
1400     }
1401 
1402     // If two deflate chunks are identical treat them as normal chunks.
1403     if (tgt_chunk == src_chunk) {
1404       tgt_chunk.ChangeDeflateChunkToNormal();
1405       src_chunk.ChangeDeflateChunkToNormal();
1406     } else if (!tgt_chunk.ReconstructDeflateChunk()) {
1407       // We cannot recompress the data and get exactly the same bits as are in the input target
1408       // image, fall back to normal
1409       LOG(WARNING) << "Failed to reconstruct target deflate chunk " << i << " ["
1410                    << tgt_chunk.GetEntryName() << "]; treating as normal";
1411       tgt_chunk.ChangeDeflateChunkToNormal();
1412       src_chunk.ChangeDeflateChunkToNormal();
1413     }
1414   }
1415 
1416   // For images, we need to maintain the parallel structure of the chunk lists, so do the merging
1417   // in both the source and target lists.
1418   tgt_image->MergeAdjacentNormalChunks();
1419   src_image->MergeAdjacentNormalChunks();
1420   if (tgt_image->NumOfChunks() != src_image->NumOfChunks()) {
1421     // This shouldn't happen.
1422     LOG(ERROR) << "Merging normal chunks went awry";
1423     return false;
1424   }
1425 
1426   return true;
1427 }
1428 
1429 // In image mode, generate patches against the given source chunks and bonus_data; write the
1430 // result to |patch_name|.
GeneratePatches(const ImageModeImage & tgt_image,const ImageModeImage & src_image,const std::string & patch_name)1431 bool ImageModeImage::GeneratePatches(const ImageModeImage& tgt_image,
1432                                      const ImageModeImage& src_image,
1433                                      const std::string& patch_name) {
1434   LOG(INFO) << "Constructing patches for " << tgt_image.NumOfChunks() << " chunks...";
1435   std::vector<PatchChunk> patch_chunks;
1436   patch_chunks.reserve(tgt_image.NumOfChunks());
1437 
1438   for (size_t i = 0; i < tgt_image.NumOfChunks(); i++) {
1439     const auto& tgt_chunk = tgt_image[i];
1440     const auto& src_chunk = src_image[i];
1441 
1442     if (PatchChunk::RawDataIsSmaller(tgt_chunk, 0)) {
1443       patch_chunks.emplace_back(tgt_chunk);
1444       continue;
1445     }
1446 
1447     std::vector<uint8_t> patch_data;
1448     if (!ImageChunk::MakePatch(tgt_chunk, src_chunk, &patch_data, nullptr)) {
1449       LOG(ERROR) << "Failed to generate patch for target chunk " << i;
1450       return false;
1451     }
1452     LOG(INFO) << "patch " << i << " is " << patch_data.size() << " bytes (of "
1453               << tgt_chunk.GetRawDataLength() << ")";
1454 
1455     if (PatchChunk::RawDataIsSmaller(tgt_chunk, patch_data.size())) {
1456       patch_chunks.emplace_back(tgt_chunk);
1457     } else {
1458       patch_chunks.emplace_back(tgt_chunk, src_chunk, std::move(patch_data));
1459     }
1460   }
1461 
1462   CHECK_EQ(tgt_image.NumOfChunks(), patch_chunks.size());
1463 
1464   android::base::unique_fd patch_fd(
1465       open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
1466   if (patch_fd == -1) {
1467     PLOG(ERROR) << "Failed to open " << patch_name;
1468     return false;
1469   }
1470 
1471   return PatchChunk::WritePatchDataToFd(patch_chunks, patch_fd);
1472 }
1473 
imgdiff(int argc,const char ** argv)1474 int imgdiff(int argc, const char** argv) {
1475   bool verbose = false;
1476   bool zip_mode = false;
1477   std::vector<uint8_t> bonus_data;
1478   size_t blocks_limit = 0;
1479   std::string split_info_file;
1480   std::string debug_dir;
1481 
1482   int opt;
1483   int option_index;
1484   optind = 0;  // Reset the getopt state so that we can call it multiple times for test.
1485 
1486   while ((opt = getopt_long(argc, const_cast<char**>(argv), "zb:v", OPTIONS, &option_index)) !=
1487          -1) {
1488     switch (opt) {
1489       case 'z':
1490         zip_mode = true;
1491         break;
1492       case 'b': {
1493         android::base::unique_fd fd(open(optarg, O_RDONLY));
1494         if (fd == -1) {
1495           PLOG(ERROR) << "Failed to open bonus file " << optarg;
1496           return 1;
1497         }
1498         struct stat st;
1499         if (fstat(fd, &st) != 0) {
1500           PLOG(ERROR) << "Failed to stat bonus file " << optarg;
1501           return 1;
1502         }
1503 
1504         size_t bonus_size = st.st_size;
1505         bonus_data.resize(bonus_size);
1506         if (!android::base::ReadFully(fd, bonus_data.data(), bonus_size)) {
1507           PLOG(ERROR) << "Failed to read bonus file " << optarg;
1508           return 1;
1509         }
1510         break;
1511       }
1512       case 'v':
1513         verbose = true;
1514         break;
1515       case 0: {
1516         std::string name = OPTIONS[option_index].name;
1517         if (name == "block-limit" && !android::base::ParseUint(optarg, &blocks_limit)) {
1518           LOG(ERROR) << "Failed to parse size blocks_limit: " << optarg;
1519           return 1;
1520         } else if (name == "split-info") {
1521           split_info_file = optarg;
1522         } else if (name == "debug-dir") {
1523           debug_dir = optarg;
1524         }
1525         break;
1526       }
1527       default:
1528         LOG(ERROR) << "unexpected opt: " << static_cast<char>(opt);
1529         return 2;
1530     }
1531   }
1532 
1533   if (!verbose) {
1534     android::base::SetMinimumLogSeverity(android::base::WARNING);
1535   }
1536 
1537   if (argc - optind != 3) {
1538     LOG(ERROR) << "usage: " << argv[0] << " [options] <src-img> <tgt-img> <patch-file>";
1539     LOG(ERROR)
1540         << "  -z <zip-mode>,    Generate patches in zip mode, src and tgt should be zip files.\n"
1541            "  -b <bonus-file>,  Bonus file in addition to src, image mode only.\n"
1542            "  --block-limit,    For large zips, split the src and tgt based on the block limit;\n"
1543            "                    and generate patches between each pair of pieces. Concatenate "
1544            "these\n"
1545            "                    patches together and output them into <patch-file>.\n"
1546            "  --split-info,     Output the split information (patch_size, tgt_size, src_ranges);\n"
1547            "                    zip mode with block-limit only.\n"
1548            "  --debug-dir,      Debug directory to put the split srcs and patches, zip mode only.\n"
1549            "  -v, --verbose,    Enable verbose logging.";
1550     return 2;
1551   }
1552 
1553   if (zip_mode) {
1554     ZipModeImage src_image(true, blocks_limit * BLOCK_SIZE);
1555     ZipModeImage tgt_image(false, blocks_limit * BLOCK_SIZE);
1556 
1557     if (!src_image.Initialize(argv[optind])) {
1558       return 1;
1559     }
1560     if (!tgt_image.Initialize(argv[optind + 1])) {
1561       return 1;
1562     }
1563 
1564     if (!ZipModeImage::CheckAndProcessChunks(&tgt_image, &src_image)) {
1565       return 1;
1566     }
1567 
1568     // Compute bsdiff patches for each chunk's data (the uncompressed data, in the case of
1569     // deflate chunks).
1570     if (blocks_limit > 0) {
1571       if (split_info_file.empty()) {
1572         LOG(ERROR) << "split-info path cannot be empty when generating patches with a block-limit";
1573         return 1;
1574       }
1575 
1576       std::vector<ZipModeImage> split_tgt_images;
1577       std::vector<ZipModeImage> split_src_images;
1578       std::vector<SortedRangeSet> split_src_ranges;
1579       ZipModeImage::SplitZipModeImageWithLimit(tgt_image, src_image, &split_tgt_images,
1580                                                &split_src_images, &split_src_ranges);
1581 
1582       if (!ZipModeImage::GeneratePatches(split_tgt_images, split_src_images, split_src_ranges,
1583                                          argv[optind + 2], split_info_file, debug_dir)) {
1584         return 1;
1585       }
1586 
1587     } else if (!ZipModeImage::GeneratePatches(tgt_image, src_image, argv[optind + 2])) {
1588       return 1;
1589     }
1590   } else {
1591     ImageModeImage src_image(true);
1592     ImageModeImage tgt_image(false);
1593 
1594     if (!src_image.Initialize(argv[optind])) {
1595       return 1;
1596     }
1597     if (!tgt_image.Initialize(argv[optind + 1])) {
1598       return 1;
1599     }
1600 
1601     if (!ImageModeImage::CheckAndProcessChunks(&tgt_image, &src_image)) {
1602       return 1;
1603     }
1604 
1605     if (!bonus_data.empty() && !src_image.SetBonusData(bonus_data)) {
1606       return 1;
1607     }
1608 
1609     if (!ImageModeImage::GeneratePatches(tgt_image, src_image, argv[optind + 2])) {
1610       return 1;
1611     }
1612   }
1613 
1614   return 0;
1615 }
1616