1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "heap.h"
18
19 #include <limits>
20 #include "android-base/thread_annotations.h"
21 #if defined(__BIONIC__) || defined(__GLIBC__)
22 #include <malloc.h> // For mallinfo()
23 #endif
24 #include <memory>
25 #include <vector>
26
27 #include "android-base/stringprintf.h"
28
29 #include "allocation_listener.h"
30 #include "art_field-inl.h"
31 #include "backtrace_helper.h"
32 #include "base/allocator.h"
33 #include "base/arena_allocator.h"
34 #include "base/dumpable.h"
35 #include "base/file_utils.h"
36 #include "base/histogram-inl.h"
37 #include "base/logging.h" // For VLOG.
38 #include "base/memory_tool.h"
39 #include "base/mutex.h"
40 #include "base/os.h"
41 #include "base/stl_util.h"
42 #include "base/systrace.h"
43 #include "base/time_utils.h"
44 #include "base/utils.h"
45 #include "class_root-inl.h"
46 #include "common_throws.h"
47 #include "debugger.h"
48 #include "dex/dex_file-inl.h"
49 #include "entrypoints/quick/quick_alloc_entrypoints.h"
50 #include "gc/accounting/card_table-inl.h"
51 #include "gc/accounting/heap_bitmap-inl.h"
52 #include "gc/accounting/mod_union_table-inl.h"
53 #include "gc/accounting/read_barrier_table.h"
54 #include "gc/accounting/remembered_set.h"
55 #include "gc/accounting/space_bitmap-inl.h"
56 #include "gc/collector/concurrent_copying.h"
57 #include "gc/collector/mark_sweep.h"
58 #include "gc/collector/partial_mark_sweep.h"
59 #include "gc/collector/semi_space.h"
60 #include "gc/collector/sticky_mark_sweep.h"
61 #include "gc/racing_check.h"
62 #include "gc/reference_processor.h"
63 #include "gc/scoped_gc_critical_section.h"
64 #include "gc/space/bump_pointer_space.h"
65 #include "gc/space/dlmalloc_space-inl.h"
66 #include "gc/space/image_space.h"
67 #include "gc/space/large_object_space.h"
68 #include "gc/space/region_space.h"
69 #include "gc/space/rosalloc_space-inl.h"
70 #include "gc/space/space-inl.h"
71 #include "gc/space/zygote_space.h"
72 #include "gc/task_processor.h"
73 #include "gc/verification.h"
74 #include "gc_pause_listener.h"
75 #include "gc_root.h"
76 #include "handle_scope-inl.h"
77 #include "heap-inl.h"
78 #include "heap-visit-objects-inl.h"
79 #include "image.h"
80 #include "intern_table.h"
81 #include "jit/jit.h"
82 #include "jit/jit_code_cache.h"
83 #include "jni/java_vm_ext.h"
84 #include "mirror/class-inl.h"
85 #include "mirror/executable-inl.h"
86 #include "mirror/field.h"
87 #include "mirror/method_handle_impl.h"
88 #include "mirror/object-inl.h"
89 #include "mirror/object-refvisitor-inl.h"
90 #include "mirror/object_array-inl.h"
91 #include "mirror/reference-inl.h"
92 #include "mirror/var_handle.h"
93 #include "nativehelper/scoped_local_ref.h"
94 #include "obj_ptr-inl.h"
95 #include "reflection.h"
96 #include "runtime.h"
97 #include "scoped_thread_state_change-inl.h"
98 #include "thread_list.h"
99 #include "verify_object-inl.h"
100 #include "well_known_classes.h"
101
102 namespace art {
103
104 namespace gc {
105
106 DEFINE_RUNTIME_DEBUG_FLAG(Heap, kStressCollectorTransition);
107
108 // Minimum amount of remaining bytes before a concurrent GC is triggered.
109 static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
110 static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
111 // Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more
112 // relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator
113 // threads (lower pauses, use less memory bandwidth).
GetStickyGcThroughputAdjustment(bool use_generational_cc)114 static double GetStickyGcThroughputAdjustment(bool use_generational_cc) {
115 return use_generational_cc ? 0.5 : 1.0;
116 }
117 // Whether or not we compact the zygote in PreZygoteFork.
118 static constexpr bool kCompactZygote = kMovingCollector;
119 // How many reserve entries are at the end of the allocation stack, these are only needed if the
120 // allocation stack overflows.
121 static constexpr size_t kAllocationStackReserveSize = 1024;
122 // Default mark stack size in bytes.
123 static const size_t kDefaultMarkStackSize = 64 * KB;
124 // Define space name.
125 static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"};
126 static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"};
127 static const char* kMemMapSpaceName[2] = {"main space", "main space 1"};
128 static const char* kNonMovingSpaceName = "non moving space";
129 static const char* kZygoteSpaceName = "zygote space";
130 static constexpr bool kGCALotMode = false;
131 // GC alot mode uses a small allocation stack to stress test a lot of GC.
132 static constexpr size_t kGcAlotAllocationStackSize = 4 * KB /
133 sizeof(mirror::HeapReference<mirror::Object>);
134 // Verify objet has a small allocation stack size since searching the allocation stack is slow.
135 static constexpr size_t kVerifyObjectAllocationStackSize = 16 * KB /
136 sizeof(mirror::HeapReference<mirror::Object>);
137 static constexpr size_t kDefaultAllocationStackSize = 8 * MB /
138 sizeof(mirror::HeapReference<mirror::Object>);
139
140 // For deterministic compilation, we need the heap to be at a well-known address.
141 static constexpr uint32_t kAllocSpaceBeginForDeterministicAoT = 0x40000000;
142 // Dump the rosalloc stats on SIGQUIT.
143 static constexpr bool kDumpRosAllocStatsOnSigQuit = false;
144
145 static const char* kRegionSpaceName = "main space (region space)";
146
147 // If true, we log all GCs in the both the foreground and background. Used for debugging.
148 static constexpr bool kLogAllGCs = false;
149
150 // Use Max heap for 2 seconds, this is smaller than the usual 5s window since we don't want to leave
151 // allocate with relaxed ergonomics for that long.
152 static constexpr size_t kPostForkMaxHeapDurationMS = 2000;
153
154 #if defined(__LP64__) || !defined(ADDRESS_SANITIZER)
155 // 300 MB (0x12c00000) - (default non-moving space capacity).
156 uint8_t* const Heap::kPreferredAllocSpaceBegin =
157 reinterpret_cast<uint8_t*>(300 * MB - kDefaultNonMovingSpaceCapacity);
158 #else
159 #ifdef __ANDROID__
160 // For 32-bit Android, use 0x20000000 because asan reserves 0x04000000 - 0x20000000.
161 uint8_t* const Heap::kPreferredAllocSpaceBegin = reinterpret_cast<uint8_t*>(0x20000000);
162 #else
163 // For 32-bit host, use 0x40000000 because asan uses most of the space below this.
164 uint8_t* const Heap::kPreferredAllocSpaceBegin = reinterpret_cast<uint8_t*>(0x40000000);
165 #endif
166 #endif
167
CareAboutPauseTimes()168 static inline bool CareAboutPauseTimes() {
169 return Runtime::Current()->InJankPerceptibleProcessState();
170 }
171
VerifyBootImagesContiguity(const std::vector<gc::space::ImageSpace * > & image_spaces)172 static void VerifyBootImagesContiguity(const std::vector<gc::space::ImageSpace*>& image_spaces) {
173 uint32_t boot_image_size = 0u;
174 for (size_t i = 0u, num_spaces = image_spaces.size(); i != num_spaces; ) {
175 const ImageHeader& image_header = image_spaces[i]->GetImageHeader();
176 uint32_t reservation_size = image_header.GetImageReservationSize();
177 uint32_t image_count = image_header.GetImageSpaceCount();
178
179 CHECK_NE(image_count, 0u);
180 CHECK_LE(image_count, num_spaces - i);
181 CHECK_NE(reservation_size, 0u);
182 for (size_t j = 1u; j != image_count; ++j) {
183 CHECK_EQ(image_spaces[i + j]->GetImageHeader().GetComponentCount(), 0u);
184 CHECK_EQ(image_spaces[i + j]->GetImageHeader().GetImageReservationSize(), 0u);
185 }
186
187 // Check the start of the heap.
188 CHECK_EQ(image_spaces[0]->Begin() + boot_image_size, image_spaces[i]->Begin());
189 // Check contiguous layout of images and oat files.
190 const uint8_t* current_heap = image_spaces[i]->Begin();
191 const uint8_t* current_oat = image_spaces[i]->GetImageHeader().GetOatFileBegin();
192 for (size_t j = 0u; j != image_count; ++j) {
193 const ImageHeader& current_header = image_spaces[i + j]->GetImageHeader();
194 CHECK_EQ(current_heap, image_spaces[i + j]->Begin());
195 CHECK_EQ(current_oat, current_header.GetOatFileBegin());
196 current_heap += RoundUp(current_header.GetImageSize(), kPageSize);
197 CHECK_GT(current_header.GetOatFileEnd(), current_header.GetOatFileBegin());
198 current_oat = current_header.GetOatFileEnd();
199 }
200 // Check that oat files start at the end of images.
201 CHECK_EQ(current_heap, image_spaces[i]->GetImageHeader().GetOatFileBegin());
202 // Check that the reservation size equals the size of images and oat files.
203 CHECK_EQ(reservation_size, static_cast<size_t>(current_oat - image_spaces[i]->Begin()));
204
205 boot_image_size += reservation_size;
206 i += image_count;
207 }
208 }
209
Heap(size_t initial_size,size_t growth_limit,size_t min_free,size_t max_free,double target_utilization,double foreground_heap_growth_multiplier,size_t stop_for_native_allocs,size_t capacity,size_t non_moving_space_capacity,const std::vector<std::string> & boot_class_path,const std::vector<std::string> & boot_class_path_locations,const std::string & image_file_name,const InstructionSet image_instruction_set,CollectorType foreground_collector_type,CollectorType background_collector_type,space::LargeObjectSpaceType large_object_space_type,size_t large_object_threshold,size_t parallel_gc_threads,size_t conc_gc_threads,bool low_memory_mode,size_t long_pause_log_threshold,size_t long_gc_log_threshold,bool ignore_target_footprint,bool always_log_explicit_gcs,bool use_tlab,bool verify_pre_gc_heap,bool verify_pre_sweeping_heap,bool verify_post_gc_heap,bool verify_pre_gc_rosalloc,bool verify_pre_sweeping_rosalloc,bool verify_post_gc_rosalloc,bool gc_stress_mode,bool measure_gc_performance,bool use_homogeneous_space_compaction_for_oom,bool use_generational_cc,uint64_t min_interval_homogeneous_space_compaction_by_oom,bool dump_region_info_before_gc,bool dump_region_info_after_gc,space::ImageSpaceLoadingOrder image_space_loading_order)210 Heap::Heap(size_t initial_size,
211 size_t growth_limit,
212 size_t min_free,
213 size_t max_free,
214 double target_utilization,
215 double foreground_heap_growth_multiplier,
216 size_t stop_for_native_allocs,
217 size_t capacity,
218 size_t non_moving_space_capacity,
219 const std::vector<std::string>& boot_class_path,
220 const std::vector<std::string>& boot_class_path_locations,
221 const std::string& image_file_name,
222 const InstructionSet image_instruction_set,
223 CollectorType foreground_collector_type,
224 CollectorType background_collector_type,
225 space::LargeObjectSpaceType large_object_space_type,
226 size_t large_object_threshold,
227 size_t parallel_gc_threads,
228 size_t conc_gc_threads,
229 bool low_memory_mode,
230 size_t long_pause_log_threshold,
231 size_t long_gc_log_threshold,
232 bool ignore_target_footprint,
233 bool always_log_explicit_gcs,
234 bool use_tlab,
235 bool verify_pre_gc_heap,
236 bool verify_pre_sweeping_heap,
237 bool verify_post_gc_heap,
238 bool verify_pre_gc_rosalloc,
239 bool verify_pre_sweeping_rosalloc,
240 bool verify_post_gc_rosalloc,
241 bool gc_stress_mode,
242 bool measure_gc_performance,
243 bool use_homogeneous_space_compaction_for_oom,
244 bool use_generational_cc,
245 uint64_t min_interval_homogeneous_space_compaction_by_oom,
246 bool dump_region_info_before_gc,
247 bool dump_region_info_after_gc,
248 space::ImageSpaceLoadingOrder image_space_loading_order)
249 : non_moving_space_(nullptr),
250 rosalloc_space_(nullptr),
251 dlmalloc_space_(nullptr),
252 main_space_(nullptr),
253 collector_type_(kCollectorTypeNone),
254 foreground_collector_type_(foreground_collector_type),
255 background_collector_type_(background_collector_type),
256 desired_collector_type_(foreground_collector_type_),
257 pending_task_lock_(nullptr),
258 parallel_gc_threads_(parallel_gc_threads),
259 conc_gc_threads_(conc_gc_threads),
260 low_memory_mode_(low_memory_mode),
261 long_pause_log_threshold_(long_pause_log_threshold),
262 long_gc_log_threshold_(long_gc_log_threshold),
263 process_cpu_start_time_ns_(ProcessCpuNanoTime()),
264 pre_gc_last_process_cpu_time_ns_(process_cpu_start_time_ns_),
265 post_gc_last_process_cpu_time_ns_(process_cpu_start_time_ns_),
266 pre_gc_weighted_allocated_bytes_(0.0),
267 post_gc_weighted_allocated_bytes_(0.0),
268 ignore_target_footprint_(ignore_target_footprint),
269 always_log_explicit_gcs_(always_log_explicit_gcs),
270 zygote_creation_lock_("zygote creation lock", kZygoteCreationLock),
271 zygote_space_(nullptr),
272 large_object_threshold_(large_object_threshold),
273 disable_thread_flip_count_(0),
274 thread_flip_running_(false),
275 collector_type_running_(kCollectorTypeNone),
276 last_gc_cause_(kGcCauseNone),
277 thread_running_gc_(nullptr),
278 last_gc_type_(collector::kGcTypeNone),
279 next_gc_type_(collector::kGcTypePartial),
280 capacity_(capacity),
281 growth_limit_(growth_limit),
282 target_footprint_(initial_size),
283 // Using kPostMonitorLock as a lock at kDefaultMutexLevel is acquired after
284 // this one.
285 process_state_update_lock_("process state update lock", kPostMonitorLock),
286 min_foreground_target_footprint_(0),
287 concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
288 total_bytes_freed_ever_(0),
289 total_objects_freed_ever_(0),
290 num_bytes_allocated_(0),
291 native_bytes_registered_(0),
292 old_native_bytes_allocated_(0),
293 native_objects_notified_(0),
294 num_bytes_freed_revoke_(0),
295 verify_missing_card_marks_(false),
296 verify_system_weaks_(false),
297 verify_pre_gc_heap_(verify_pre_gc_heap),
298 verify_pre_sweeping_heap_(verify_pre_sweeping_heap),
299 verify_post_gc_heap_(verify_post_gc_heap),
300 verify_mod_union_table_(false),
301 verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
302 verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc),
303 verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
304 gc_stress_mode_(gc_stress_mode),
305 /* For GC a lot mode, we limit the allocation stacks to be kGcAlotInterval allocations. This
306 * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
307 * verification is enabled, we limit the size of allocation stacks to speed up their
308 * searching.
309 */
310 max_allocation_stack_size_(kGCALotMode ? kGcAlotAllocationStackSize
311 : (kVerifyObjectSupport > kVerifyObjectModeFast) ? kVerifyObjectAllocationStackSize :
312 kDefaultAllocationStackSize),
313 current_allocator_(kAllocatorTypeDlMalloc),
314 current_non_moving_allocator_(kAllocatorTypeNonMoving),
315 bump_pointer_space_(nullptr),
316 temp_space_(nullptr),
317 region_space_(nullptr),
318 min_free_(min_free),
319 max_free_(max_free),
320 target_utilization_(target_utilization),
321 foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier),
322 stop_for_native_allocs_(stop_for_native_allocs),
323 total_wait_time_(0),
324 verify_object_mode_(kVerifyObjectModeDisabled),
325 disable_moving_gc_count_(0),
326 semi_space_collector_(nullptr),
327 active_concurrent_copying_collector_(nullptr),
328 young_concurrent_copying_collector_(nullptr),
329 concurrent_copying_collector_(nullptr),
330 is_running_on_memory_tool_(Runtime::Current()->IsRunningOnMemoryTool()),
331 use_tlab_(use_tlab),
332 main_space_backup_(nullptr),
333 min_interval_homogeneous_space_compaction_by_oom_(
334 min_interval_homogeneous_space_compaction_by_oom),
335 last_time_homogeneous_space_compaction_by_oom_(NanoTime()),
336 pending_collector_transition_(nullptr),
337 pending_heap_trim_(nullptr),
338 use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom),
339 use_generational_cc_(use_generational_cc),
340 running_collection_is_blocking_(false),
341 blocking_gc_count_(0U),
342 blocking_gc_time_(0U),
343 last_update_time_gc_count_rate_histograms_( // Round down by the window duration.
344 (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration),
345 gc_count_last_window_(0U),
346 blocking_gc_count_last_window_(0U),
347 gc_count_rate_histogram_("gc count rate histogram", 1U, kGcCountRateMaxBucketCount),
348 blocking_gc_count_rate_histogram_("blocking gc count rate histogram", 1U,
349 kGcCountRateMaxBucketCount),
350 alloc_tracking_enabled_(false),
351 alloc_record_depth_(AllocRecordObjectMap::kDefaultAllocStackDepth),
352 backtrace_lock_(nullptr),
353 seen_backtrace_count_(0u),
354 unique_backtrace_count_(0u),
355 gc_disabled_for_shutdown_(false),
356 dump_region_info_before_gc_(dump_region_info_before_gc),
357 dump_region_info_after_gc_(dump_region_info_after_gc),
358 boot_image_spaces_(),
359 boot_images_start_address_(0u),
360 boot_images_size_(0u) {
361 if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
362 LOG(INFO) << "Heap() entering";
363 }
364 if (kUseReadBarrier) {
365 CHECK_EQ(foreground_collector_type_, kCollectorTypeCC);
366 CHECK_EQ(background_collector_type_, kCollectorTypeCCBackground);
367 } else if (background_collector_type_ != gc::kCollectorTypeHomogeneousSpaceCompact) {
368 CHECK_EQ(IsMovingGc(foreground_collector_type_), IsMovingGc(background_collector_type_))
369 << "Changing from " << foreground_collector_type_ << " to "
370 << background_collector_type_ << " (or visa versa) is not supported.";
371 }
372 verification_.reset(new Verification(this));
373 CHECK_GE(large_object_threshold, kMinLargeObjectThreshold);
374 ScopedTrace trace(__FUNCTION__);
375 Runtime* const runtime = Runtime::Current();
376 // If we aren't the zygote, switch to the default non zygote allocator. This may update the
377 // entrypoints.
378 const bool is_zygote = runtime->IsZygote();
379 if (!is_zygote) {
380 // Background compaction is currently not supported for command line runs.
381 if (background_collector_type_ != foreground_collector_type_) {
382 VLOG(heap) << "Disabling background compaction for non zygote";
383 background_collector_type_ = foreground_collector_type_;
384 }
385 }
386 ChangeCollector(desired_collector_type_);
387 live_bitmap_.reset(new accounting::HeapBitmap(this));
388 mark_bitmap_.reset(new accounting::HeapBitmap(this));
389
390 // We don't have hspace compaction enabled with CC.
391 if (foreground_collector_type_ == kCollectorTypeCC) {
392 use_homogeneous_space_compaction_for_oom_ = false;
393 }
394 bool support_homogeneous_space_compaction =
395 background_collector_type_ == gc::kCollectorTypeHomogeneousSpaceCompact ||
396 use_homogeneous_space_compaction_for_oom_;
397 // We may use the same space the main space for the non moving space if we don't need to compact
398 // from the main space.
399 // This is not the case if we support homogeneous compaction or have a moving background
400 // collector type.
401 bool separate_non_moving_space = is_zygote ||
402 support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) ||
403 IsMovingGc(background_collector_type_);
404
405 // Requested begin for the alloc space, to follow the mapped image and oat files
406 uint8_t* request_begin = nullptr;
407 // Calculate the extra space required after the boot image, see allocations below.
408 size_t heap_reservation_size = 0u;
409 if (separate_non_moving_space) {
410 heap_reservation_size = non_moving_space_capacity;
411 } else if (foreground_collector_type_ != kCollectorTypeCC && is_zygote) {
412 heap_reservation_size = capacity_;
413 }
414 heap_reservation_size = RoundUp(heap_reservation_size, kPageSize);
415 // Load image space(s).
416 std::vector<std::unique_ptr<space::ImageSpace>> boot_image_spaces;
417 MemMap heap_reservation;
418 if (space::ImageSpace::LoadBootImage(boot_class_path,
419 boot_class_path_locations,
420 image_file_name,
421 image_instruction_set,
422 image_space_loading_order,
423 runtime->ShouldRelocate(),
424 /*executable=*/ !runtime->IsAotCompiler(),
425 is_zygote,
426 heap_reservation_size,
427 &boot_image_spaces,
428 &heap_reservation)) {
429 DCHECK_EQ(heap_reservation_size, heap_reservation.IsValid() ? heap_reservation.Size() : 0u);
430 DCHECK(!boot_image_spaces.empty());
431 request_begin = boot_image_spaces.back()->GetImageHeader().GetOatFileEnd();
432 DCHECK(!heap_reservation.IsValid() || request_begin == heap_reservation.Begin())
433 << "request_begin=" << static_cast<const void*>(request_begin)
434 << " heap_reservation.Begin()=" << static_cast<const void*>(heap_reservation.Begin());
435 for (std::unique_ptr<space::ImageSpace>& space : boot_image_spaces) {
436 boot_image_spaces_.push_back(space.get());
437 AddSpace(space.release());
438 }
439 boot_images_start_address_ = PointerToLowMemUInt32(boot_image_spaces_.front()->Begin());
440 uint32_t boot_images_end =
441 PointerToLowMemUInt32(boot_image_spaces_.back()->GetImageHeader().GetOatFileEnd());
442 boot_images_size_ = boot_images_end - boot_images_start_address_;
443 if (kIsDebugBuild) {
444 VerifyBootImagesContiguity(boot_image_spaces_);
445 }
446 } else {
447 if (foreground_collector_type_ == kCollectorTypeCC) {
448 // Need to use a low address so that we can allocate a contiguous 2 * Xmx space
449 // when there's no image (dex2oat for target).
450 request_begin = kPreferredAllocSpaceBegin;
451 }
452 // Gross hack to make dex2oat deterministic.
453 if (foreground_collector_type_ == kCollectorTypeMS && Runtime::Current()->IsAotCompiler()) {
454 // Currently only enabled for MS collector since that is what the deterministic dex2oat uses.
455 // b/26849108
456 request_begin = reinterpret_cast<uint8_t*>(kAllocSpaceBeginForDeterministicAoT);
457 }
458 }
459
460 /*
461 requested_alloc_space_begin -> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
462 +- nonmoving space (non_moving_space_capacity)+-
463 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
464 +-????????????????????????????????????????????+-
465 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
466 +-main alloc space / bump space 1 (capacity_) +-
467 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
468 +-????????????????????????????????????????????+-
469 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
470 +-main alloc space2 / bump space 2 (capacity_)+-
471 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
472 */
473
474 MemMap main_mem_map_1;
475 MemMap main_mem_map_2;
476
477 std::string error_str;
478 MemMap non_moving_space_mem_map;
479 if (separate_non_moving_space) {
480 ScopedTrace trace2("Create separate non moving space");
481 // If we are the zygote, the non moving space becomes the zygote space when we run
482 // PreZygoteFork the first time. In this case, call the map "zygote space" since we can't
483 // rename the mem map later.
484 const char* space_name = is_zygote ? kZygoteSpaceName : kNonMovingSpaceName;
485 // Reserve the non moving mem map before the other two since it needs to be at a specific
486 // address.
487 DCHECK_EQ(heap_reservation.IsValid(), !boot_image_spaces_.empty());
488 if (heap_reservation.IsValid()) {
489 non_moving_space_mem_map = heap_reservation.RemapAtEnd(
490 heap_reservation.Begin(), space_name, PROT_READ | PROT_WRITE, &error_str);
491 } else {
492 non_moving_space_mem_map = MapAnonymousPreferredAddress(
493 space_name, request_begin, non_moving_space_capacity, &error_str);
494 }
495 CHECK(non_moving_space_mem_map.IsValid()) << error_str;
496 DCHECK(!heap_reservation.IsValid());
497 // Try to reserve virtual memory at a lower address if we have a separate non moving space.
498 request_begin = kPreferredAllocSpaceBegin + non_moving_space_capacity;
499 }
500 // Attempt to create 2 mem maps at or after the requested begin.
501 if (foreground_collector_type_ != kCollectorTypeCC) {
502 ScopedTrace trace2("Create main mem map");
503 if (separate_non_moving_space || !is_zygote) {
504 main_mem_map_1 = MapAnonymousPreferredAddress(
505 kMemMapSpaceName[0], request_begin, capacity_, &error_str);
506 } else {
507 // If no separate non-moving space and we are the zygote, the main space must come right after
508 // the image space to avoid a gap. This is required since we want the zygote space to be
509 // adjacent to the image space.
510 DCHECK_EQ(heap_reservation.IsValid(), !boot_image_spaces_.empty());
511 main_mem_map_1 = MemMap::MapAnonymous(
512 kMemMapSpaceName[0],
513 request_begin,
514 capacity_,
515 PROT_READ | PROT_WRITE,
516 /* low_4gb= */ true,
517 /* reuse= */ false,
518 heap_reservation.IsValid() ? &heap_reservation : nullptr,
519 &error_str);
520 }
521 CHECK(main_mem_map_1.IsValid()) << error_str;
522 DCHECK(!heap_reservation.IsValid());
523 }
524 if (support_homogeneous_space_compaction ||
525 background_collector_type_ == kCollectorTypeSS ||
526 foreground_collector_type_ == kCollectorTypeSS) {
527 ScopedTrace trace2("Create main mem map 2");
528 main_mem_map_2 = MapAnonymousPreferredAddress(
529 kMemMapSpaceName[1], main_mem_map_1.End(), capacity_, &error_str);
530 CHECK(main_mem_map_2.IsValid()) << error_str;
531 }
532
533 // Create the non moving space first so that bitmaps don't take up the address range.
534 if (separate_non_moving_space) {
535 ScopedTrace trace2("Add non moving space");
536 // Non moving space is always dlmalloc since we currently don't have support for multiple
537 // active rosalloc spaces.
538 const size_t size = non_moving_space_mem_map.Size();
539 const void* non_moving_space_mem_map_begin = non_moving_space_mem_map.Begin();
540 non_moving_space_ = space::DlMallocSpace::CreateFromMemMap(std::move(non_moving_space_mem_map),
541 "zygote / non moving space",
542 kDefaultStartingSize,
543 initial_size,
544 size,
545 size,
546 /* can_move_objects= */ false);
547 CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space "
548 << non_moving_space_mem_map_begin;
549 non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
550 AddSpace(non_moving_space_);
551 }
552 // Create other spaces based on whether or not we have a moving GC.
553 if (foreground_collector_type_ == kCollectorTypeCC) {
554 CHECK(separate_non_moving_space);
555 // Reserve twice the capacity, to allow evacuating every region for explicit GCs.
556 MemMap region_space_mem_map =
557 space::RegionSpace::CreateMemMap(kRegionSpaceName, capacity_ * 2, request_begin);
558 CHECK(region_space_mem_map.IsValid()) << "No region space mem map";
559 region_space_ = space::RegionSpace::Create(
560 kRegionSpaceName, std::move(region_space_mem_map), use_generational_cc_);
561 AddSpace(region_space_);
562 } else if (IsMovingGc(foreground_collector_type_)) {
563 // Create bump pointer spaces.
564 // We only to create the bump pointer if the foreground collector is a compacting GC.
565 // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
566 bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1",
567 std::move(main_mem_map_1));
568 CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
569 AddSpace(bump_pointer_space_);
570 temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
571 std::move(main_mem_map_2));
572 CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
573 AddSpace(temp_space_);
574 CHECK(separate_non_moving_space);
575 } else {
576 CreateMainMallocSpace(std::move(main_mem_map_1), initial_size, growth_limit_, capacity_);
577 CHECK(main_space_ != nullptr);
578 AddSpace(main_space_);
579 if (!separate_non_moving_space) {
580 non_moving_space_ = main_space_;
581 CHECK(!non_moving_space_->CanMoveObjects());
582 }
583 if (main_mem_map_2.IsValid()) {
584 const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
585 main_space_backup_.reset(CreateMallocSpaceFromMemMap(std::move(main_mem_map_2),
586 initial_size,
587 growth_limit_,
588 capacity_,
589 name,
590 /* can_move_objects= */ true));
591 CHECK(main_space_backup_.get() != nullptr);
592 // Add the space so its accounted for in the heap_begin and heap_end.
593 AddSpace(main_space_backup_.get());
594 }
595 }
596 CHECK(non_moving_space_ != nullptr);
597 CHECK(!non_moving_space_->CanMoveObjects());
598 // Allocate the large object space.
599 if (large_object_space_type == space::LargeObjectSpaceType::kFreeList) {
600 large_object_space_ = space::FreeListSpace::Create("free list large object space", capacity_);
601 CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
602 } else if (large_object_space_type == space::LargeObjectSpaceType::kMap) {
603 large_object_space_ = space::LargeObjectMapSpace::Create("mem map large object space");
604 CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
605 } else {
606 // Disable the large object space by making the cutoff excessively large.
607 large_object_threshold_ = std::numeric_limits<size_t>::max();
608 large_object_space_ = nullptr;
609 }
610 if (large_object_space_ != nullptr) {
611 AddSpace(large_object_space_);
612 }
613 // Compute heap capacity. Continuous spaces are sorted in order of Begin().
614 CHECK(!continuous_spaces_.empty());
615 // Relies on the spaces being sorted.
616 uint8_t* heap_begin = continuous_spaces_.front()->Begin();
617 uint8_t* heap_end = continuous_spaces_.back()->Limit();
618 size_t heap_capacity = heap_end - heap_begin;
619 // Remove the main backup space since it slows down the GC to have unused extra spaces.
620 // TODO: Avoid needing to do this.
621 if (main_space_backup_.get() != nullptr) {
622 RemoveSpace(main_space_backup_.get());
623 }
624 // Allocate the card table.
625 // We currently don't support dynamically resizing the card table.
626 // Since we don't know where in the low_4gb the app image will be located, make the card table
627 // cover the whole low_4gb. TODO: Extend the card table in AddSpace.
628 UNUSED(heap_capacity);
629 // Start at 4 KB, we can be sure there are no spaces mapped this low since the address range is
630 // reserved by the kernel.
631 static constexpr size_t kMinHeapAddress = 4 * KB;
632 card_table_.reset(accounting::CardTable::Create(reinterpret_cast<uint8_t*>(kMinHeapAddress),
633 4 * GB - kMinHeapAddress));
634 CHECK(card_table_.get() != nullptr) << "Failed to create card table";
635 if (foreground_collector_type_ == kCollectorTypeCC && kUseTableLookupReadBarrier) {
636 rb_table_.reset(new accounting::ReadBarrierTable());
637 DCHECK(rb_table_->IsAllCleared());
638 }
639 if (HasBootImageSpace()) {
640 // Don't add the image mod union table if we are running without an image, this can crash if
641 // we use the CardCache implementation.
642 for (space::ImageSpace* image_space : GetBootImageSpaces()) {
643 accounting::ModUnionTable* mod_union_table = new accounting::ModUnionTableToZygoteAllocspace(
644 "Image mod-union table", this, image_space);
645 CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
646 AddModUnionTable(mod_union_table);
647 }
648 }
649 if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) {
650 accounting::RememberedSet* non_moving_space_rem_set =
651 new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
652 CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
653 AddRememberedSet(non_moving_space_rem_set);
654 }
655 // TODO: Count objects in the image space here?
656 num_bytes_allocated_.store(0, std::memory_order_relaxed);
657 mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize,
658 kDefaultMarkStackSize));
659 const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize;
660 allocation_stack_.reset(accounting::ObjectStack::Create(
661 "allocation stack", max_allocation_stack_size_, alloc_stack_capacity));
662 live_stack_.reset(accounting::ObjectStack::Create(
663 "live stack", max_allocation_stack_size_, alloc_stack_capacity));
664 // It's still too early to take a lock because there are no threads yet, but we can create locks
665 // now. We don't create it earlier to make it clear that you can't use locks during heap
666 // initialization.
667 gc_complete_lock_ = new Mutex("GC complete lock");
668 gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
669 *gc_complete_lock_));
670
671 thread_flip_lock_ = new Mutex("GC thread flip lock");
672 thread_flip_cond_.reset(new ConditionVariable("GC thread flip condition variable",
673 *thread_flip_lock_));
674 task_processor_.reset(new TaskProcessor());
675 reference_processor_.reset(new ReferenceProcessor());
676 pending_task_lock_ = new Mutex("Pending task lock");
677 if (ignore_target_footprint_) {
678 SetIdealFootprint(std::numeric_limits<size_t>::max());
679 concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
680 }
681 CHECK_NE(target_footprint_.load(std::memory_order_relaxed), 0U);
682 // Create our garbage collectors.
683 for (size_t i = 0; i < 2; ++i) {
684 const bool concurrent = i != 0;
685 if ((MayUseCollector(kCollectorTypeCMS) && concurrent) ||
686 (MayUseCollector(kCollectorTypeMS) && !concurrent)) {
687 garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
688 garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
689 garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
690 }
691 }
692 if (kMovingCollector) {
693 if (MayUseCollector(kCollectorTypeSS) ||
694 MayUseCollector(kCollectorTypeHomogeneousSpaceCompact) ||
695 use_homogeneous_space_compaction_for_oom_) {
696 semi_space_collector_ = new collector::SemiSpace(this);
697 garbage_collectors_.push_back(semi_space_collector_);
698 }
699 if (MayUseCollector(kCollectorTypeCC)) {
700 concurrent_copying_collector_ = new collector::ConcurrentCopying(this,
701 /*young_gen=*/false,
702 use_generational_cc_,
703 "",
704 measure_gc_performance);
705 if (use_generational_cc_) {
706 young_concurrent_copying_collector_ = new collector::ConcurrentCopying(
707 this,
708 /*young_gen=*/true,
709 use_generational_cc_,
710 "young",
711 measure_gc_performance);
712 }
713 active_concurrent_copying_collector_ = concurrent_copying_collector_;
714 DCHECK(region_space_ != nullptr);
715 concurrent_copying_collector_->SetRegionSpace(region_space_);
716 if (use_generational_cc_) {
717 young_concurrent_copying_collector_->SetRegionSpace(region_space_);
718 // At this point, non-moving space should be created.
719 DCHECK(non_moving_space_ != nullptr);
720 concurrent_copying_collector_->CreateInterRegionRefBitmaps();
721 }
722 garbage_collectors_.push_back(concurrent_copying_collector_);
723 if (use_generational_cc_) {
724 garbage_collectors_.push_back(young_concurrent_copying_collector_);
725 }
726 }
727 }
728 if (!GetBootImageSpaces().empty() && non_moving_space_ != nullptr &&
729 (is_zygote || separate_non_moving_space)) {
730 // Check that there's no gap between the image space and the non moving space so that the
731 // immune region won't break (eg. due to a large object allocated in the gap). This is only
732 // required when we're the zygote.
733 // Space with smallest Begin().
734 space::ImageSpace* first_space = nullptr;
735 for (space::ImageSpace* space : boot_image_spaces_) {
736 if (first_space == nullptr || space->Begin() < first_space->Begin()) {
737 first_space = space;
738 }
739 }
740 bool no_gap = MemMap::CheckNoGaps(*first_space->GetMemMap(), *non_moving_space_->GetMemMap());
741 if (!no_gap) {
742 PrintFileToLog("/proc/self/maps", LogSeverity::ERROR);
743 MemMap::DumpMaps(LOG_STREAM(ERROR), /* terse= */ true);
744 LOG(FATAL) << "There's a gap between the image space and the non-moving space";
745 }
746 }
747 instrumentation::Instrumentation* const instrumentation = runtime->GetInstrumentation();
748 if (gc_stress_mode_) {
749 backtrace_lock_ = new Mutex("GC complete lock");
750 }
751 if (is_running_on_memory_tool_ || gc_stress_mode_) {
752 instrumentation->InstrumentQuickAllocEntryPoints();
753 }
754 if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
755 LOG(INFO) << "Heap() exiting";
756 }
757 }
758
MapAnonymousPreferredAddress(const char * name,uint8_t * request_begin,size_t capacity,std::string * out_error_str)759 MemMap Heap::MapAnonymousPreferredAddress(const char* name,
760 uint8_t* request_begin,
761 size_t capacity,
762 std::string* out_error_str) {
763 while (true) {
764 MemMap map = MemMap::MapAnonymous(name,
765 request_begin,
766 capacity,
767 PROT_READ | PROT_WRITE,
768 /*low_4gb=*/ true,
769 /*reuse=*/ false,
770 /*reservation=*/ nullptr,
771 out_error_str);
772 if (map.IsValid() || request_begin == nullptr) {
773 return map;
774 }
775 // Retry a second time with no specified request begin.
776 request_begin = nullptr;
777 }
778 }
779
MayUseCollector(CollectorType type) const780 bool Heap::MayUseCollector(CollectorType type) const {
781 return foreground_collector_type_ == type || background_collector_type_ == type;
782 }
783
CreateMallocSpaceFromMemMap(MemMap && mem_map,size_t initial_size,size_t growth_limit,size_t capacity,const char * name,bool can_move_objects)784 space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap&& mem_map,
785 size_t initial_size,
786 size_t growth_limit,
787 size_t capacity,
788 const char* name,
789 bool can_move_objects) {
790 space::MallocSpace* malloc_space = nullptr;
791 if (kUseRosAlloc) {
792 // Create rosalloc space.
793 malloc_space = space::RosAllocSpace::CreateFromMemMap(std::move(mem_map),
794 name,
795 kDefaultStartingSize,
796 initial_size,
797 growth_limit,
798 capacity,
799 low_memory_mode_,
800 can_move_objects);
801 } else {
802 malloc_space = space::DlMallocSpace::CreateFromMemMap(std::move(mem_map),
803 name,
804 kDefaultStartingSize,
805 initial_size,
806 growth_limit,
807 capacity,
808 can_move_objects);
809 }
810 if (collector::SemiSpace::kUseRememberedSet) {
811 accounting::RememberedSet* rem_set =
812 new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space);
813 CHECK(rem_set != nullptr) << "Failed to create main space remembered set";
814 AddRememberedSet(rem_set);
815 }
816 CHECK(malloc_space != nullptr) << "Failed to create " << name;
817 malloc_space->SetFootprintLimit(malloc_space->Capacity());
818 return malloc_space;
819 }
820
CreateMainMallocSpace(MemMap && mem_map,size_t initial_size,size_t growth_limit,size_t capacity)821 void Heap::CreateMainMallocSpace(MemMap&& mem_map,
822 size_t initial_size,
823 size_t growth_limit,
824 size_t capacity) {
825 // Is background compaction is enabled?
826 bool can_move_objects = IsMovingGc(background_collector_type_) !=
827 IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_;
828 // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will
829 // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact
830 // from the main space to the zygote space. If background compaction is enabled, always pass in
831 // that we can move objets.
832 if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) {
833 // After the zygote we want this to be false if we don't have background compaction enabled so
834 // that getting primitive array elements is faster.
835 can_move_objects = !HasZygoteSpace();
836 }
837 if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) {
838 RemoveRememberedSet(main_space_);
839 }
840 const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0];
841 main_space_ = CreateMallocSpaceFromMemMap(std::move(mem_map),
842 initial_size,
843 growth_limit,
844 capacity, name,
845 can_move_objects);
846 SetSpaceAsDefault(main_space_);
847 VLOG(heap) << "Created main space " << main_space_;
848 }
849
ChangeAllocator(AllocatorType allocator)850 void Heap::ChangeAllocator(AllocatorType allocator) {
851 if (current_allocator_ != allocator) {
852 // These two allocators are only used internally and don't have any entrypoints.
853 CHECK_NE(allocator, kAllocatorTypeLOS);
854 CHECK_NE(allocator, kAllocatorTypeNonMoving);
855 current_allocator_ = allocator;
856 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
857 SetQuickAllocEntryPointsAllocator(current_allocator_);
858 Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
859 }
860 }
861
IsCompilingBoot() const862 bool Heap::IsCompilingBoot() const {
863 if (!Runtime::Current()->IsAotCompiler()) {
864 return false;
865 }
866 ScopedObjectAccess soa(Thread::Current());
867 for (const auto& space : continuous_spaces_) {
868 if (space->IsImageSpace() || space->IsZygoteSpace()) {
869 return false;
870 }
871 }
872 return true;
873 }
874
IncrementDisableMovingGC(Thread * self)875 void Heap::IncrementDisableMovingGC(Thread* self) {
876 // Need to do this holding the lock to prevent races where the GC is about to run / running when
877 // we attempt to disable it.
878 ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
879 MutexLock mu(self, *gc_complete_lock_);
880 ++disable_moving_gc_count_;
881 if (IsMovingGc(collector_type_running_)) {
882 WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self);
883 }
884 }
885
DecrementDisableMovingGC(Thread * self)886 void Heap::DecrementDisableMovingGC(Thread* self) {
887 MutexLock mu(self, *gc_complete_lock_);
888 CHECK_GT(disable_moving_gc_count_, 0U);
889 --disable_moving_gc_count_;
890 }
891
IncrementDisableThreadFlip(Thread * self)892 void Heap::IncrementDisableThreadFlip(Thread* self) {
893 // Supposed to be called by mutators. If thread_flip_running_ is true, block. Otherwise, go ahead.
894 CHECK(kUseReadBarrier);
895 bool is_nested = self->GetDisableThreadFlipCount() > 0;
896 self->IncrementDisableThreadFlipCount();
897 if (is_nested) {
898 // If this is a nested JNI critical section enter, we don't need to wait or increment the global
899 // counter. The global counter is incremented only once for a thread for the outermost enter.
900 return;
901 }
902 ScopedThreadStateChange tsc(self, kWaitingForGcThreadFlip);
903 MutexLock mu(self, *thread_flip_lock_);
904 thread_flip_cond_->CheckSafeToWait(self);
905 bool has_waited = false;
906 uint64_t wait_start = 0;
907 if (thread_flip_running_) {
908 wait_start = NanoTime();
909 ScopedTrace trace("IncrementDisableThreadFlip");
910 while (thread_flip_running_) {
911 has_waited = true;
912 thread_flip_cond_->Wait(self);
913 }
914 }
915 ++disable_thread_flip_count_;
916 if (has_waited) {
917 uint64_t wait_time = NanoTime() - wait_start;
918 total_wait_time_ += wait_time;
919 if (wait_time > long_pause_log_threshold_) {
920 LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time);
921 }
922 }
923 }
924
DecrementDisableThreadFlip(Thread * self)925 void Heap::DecrementDisableThreadFlip(Thread* self) {
926 // Supposed to be called by mutators. Decrement disable_thread_flip_count_ and potentially wake up
927 // the GC waiting before doing a thread flip.
928 CHECK(kUseReadBarrier);
929 self->DecrementDisableThreadFlipCount();
930 bool is_outermost = self->GetDisableThreadFlipCount() == 0;
931 if (!is_outermost) {
932 // If this is not an outermost JNI critical exit, we don't need to decrement the global counter.
933 // The global counter is decremented only once for a thread for the outermost exit.
934 return;
935 }
936 MutexLock mu(self, *thread_flip_lock_);
937 CHECK_GT(disable_thread_flip_count_, 0U);
938 --disable_thread_flip_count_;
939 if (disable_thread_flip_count_ == 0) {
940 // Potentially notify the GC thread blocking to begin a thread flip.
941 thread_flip_cond_->Broadcast(self);
942 }
943 }
944
ThreadFlipBegin(Thread * self)945 void Heap::ThreadFlipBegin(Thread* self) {
946 // Supposed to be called by GC. Set thread_flip_running_ to be true. If disable_thread_flip_count_
947 // > 0, block. Otherwise, go ahead.
948 CHECK(kUseReadBarrier);
949 ScopedThreadStateChange tsc(self, kWaitingForGcThreadFlip);
950 MutexLock mu(self, *thread_flip_lock_);
951 thread_flip_cond_->CheckSafeToWait(self);
952 bool has_waited = false;
953 uint64_t wait_start = NanoTime();
954 CHECK(!thread_flip_running_);
955 // Set this to true before waiting so that frequent JNI critical enter/exits won't starve
956 // GC. This like a writer preference of a reader-writer lock.
957 thread_flip_running_ = true;
958 while (disable_thread_flip_count_ > 0) {
959 has_waited = true;
960 thread_flip_cond_->Wait(self);
961 }
962 if (has_waited) {
963 uint64_t wait_time = NanoTime() - wait_start;
964 total_wait_time_ += wait_time;
965 if (wait_time > long_pause_log_threshold_) {
966 LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time);
967 }
968 }
969 }
970
ThreadFlipEnd(Thread * self)971 void Heap::ThreadFlipEnd(Thread* self) {
972 // Supposed to be called by GC. Set thread_flip_running_ to false and potentially wake up mutators
973 // waiting before doing a JNI critical.
974 CHECK(kUseReadBarrier);
975 MutexLock mu(self, *thread_flip_lock_);
976 CHECK(thread_flip_running_);
977 thread_flip_running_ = false;
978 // Potentially notify mutator threads blocking to enter a JNI critical section.
979 thread_flip_cond_->Broadcast(self);
980 }
981
GrowHeapOnJankPerceptibleSwitch()982 void Heap::GrowHeapOnJankPerceptibleSwitch() {
983 MutexLock mu(Thread::Current(), process_state_update_lock_);
984 size_t orig_target_footprint = target_footprint_.load(std::memory_order_relaxed);
985 if (orig_target_footprint < min_foreground_target_footprint_) {
986 target_footprint_.compare_exchange_strong(orig_target_footprint,
987 min_foreground_target_footprint_,
988 std::memory_order_relaxed);
989 }
990 min_foreground_target_footprint_ = 0;
991 }
992
UpdateProcessState(ProcessState old_process_state,ProcessState new_process_state)993 void Heap::UpdateProcessState(ProcessState old_process_state, ProcessState new_process_state) {
994 if (old_process_state != new_process_state) {
995 const bool jank_perceptible = new_process_state == kProcessStateJankPerceptible;
996 if (jank_perceptible) {
997 // Transition back to foreground right away to prevent jank.
998 RequestCollectorTransition(foreground_collector_type_, 0);
999 GrowHeapOnJankPerceptibleSwitch();
1000 } else {
1001 // Don't delay for debug builds since we may want to stress test the GC.
1002 // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have
1003 // special handling which does a homogenous space compaction once but then doesn't transition
1004 // the collector. Similarly, we invoke a full compaction for kCollectorTypeCC but don't
1005 // transition the collector.
1006 RequestCollectorTransition(background_collector_type_,
1007 kStressCollectorTransition
1008 ? 0
1009 : kCollectorTransitionWait);
1010 }
1011 }
1012 }
1013
CreateThreadPool()1014 void Heap::CreateThreadPool() {
1015 const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
1016 if (num_threads != 0) {
1017 thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
1018 }
1019 }
1020
MarkAllocStackAsLive(accounting::ObjectStack * stack)1021 void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
1022 space::ContinuousSpace* space1 = main_space_ != nullptr ? main_space_ : non_moving_space_;
1023 space::ContinuousSpace* space2 = non_moving_space_;
1024 // TODO: Generalize this to n bitmaps?
1025 CHECK(space1 != nullptr);
1026 CHECK(space2 != nullptr);
1027 MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
1028 (large_object_space_ != nullptr ? large_object_space_->GetLiveBitmap() : nullptr),
1029 stack);
1030 }
1031
DeleteThreadPool()1032 void Heap::DeleteThreadPool() {
1033 thread_pool_.reset(nullptr);
1034 }
1035
AddSpace(space::Space * space)1036 void Heap::AddSpace(space::Space* space) {
1037 CHECK(space != nullptr);
1038 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1039 if (space->IsContinuousSpace()) {
1040 DCHECK(!space->IsDiscontinuousSpace());
1041 space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
1042 // Continuous spaces don't necessarily have bitmaps.
1043 accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
1044 accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
1045 // The region space bitmap is not added since VisitObjects visits the region space objects with
1046 // special handling.
1047 if (live_bitmap != nullptr && !space->IsRegionSpace()) {
1048 CHECK(mark_bitmap != nullptr);
1049 live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
1050 mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
1051 }
1052 continuous_spaces_.push_back(continuous_space);
1053 // Ensure that spaces remain sorted in increasing order of start address.
1054 std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
1055 [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
1056 return a->Begin() < b->Begin();
1057 });
1058 } else {
1059 CHECK(space->IsDiscontinuousSpace());
1060 space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
1061 live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
1062 mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
1063 discontinuous_spaces_.push_back(discontinuous_space);
1064 }
1065 if (space->IsAllocSpace()) {
1066 alloc_spaces_.push_back(space->AsAllocSpace());
1067 }
1068 }
1069
SetSpaceAsDefault(space::ContinuousSpace * continuous_space)1070 void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) {
1071 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1072 if (continuous_space->IsDlMallocSpace()) {
1073 dlmalloc_space_ = continuous_space->AsDlMallocSpace();
1074 } else if (continuous_space->IsRosAllocSpace()) {
1075 rosalloc_space_ = continuous_space->AsRosAllocSpace();
1076 }
1077 }
1078
RemoveSpace(space::Space * space)1079 void Heap::RemoveSpace(space::Space* space) {
1080 DCHECK(space != nullptr);
1081 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1082 if (space->IsContinuousSpace()) {
1083 DCHECK(!space->IsDiscontinuousSpace());
1084 space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
1085 // Continuous spaces don't necessarily have bitmaps.
1086 accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
1087 accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
1088 if (live_bitmap != nullptr && !space->IsRegionSpace()) {
1089 DCHECK(mark_bitmap != nullptr);
1090 live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
1091 mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
1092 }
1093 auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
1094 DCHECK(it != continuous_spaces_.end());
1095 continuous_spaces_.erase(it);
1096 } else {
1097 DCHECK(space->IsDiscontinuousSpace());
1098 space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
1099 live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
1100 mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
1101 auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
1102 discontinuous_space);
1103 DCHECK(it != discontinuous_spaces_.end());
1104 discontinuous_spaces_.erase(it);
1105 }
1106 if (space->IsAllocSpace()) {
1107 auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
1108 DCHECK(it != alloc_spaces_.end());
1109 alloc_spaces_.erase(it);
1110 }
1111 }
1112
CalculateGcWeightedAllocatedBytes(uint64_t gc_last_process_cpu_time_ns,uint64_t current_process_cpu_time) const1113 double Heap::CalculateGcWeightedAllocatedBytes(uint64_t gc_last_process_cpu_time_ns,
1114 uint64_t current_process_cpu_time) const {
1115 uint64_t bytes_allocated = GetBytesAllocated();
1116 double weight = current_process_cpu_time - gc_last_process_cpu_time_ns;
1117 return weight * bytes_allocated;
1118 }
1119
CalculatePreGcWeightedAllocatedBytes()1120 void Heap::CalculatePreGcWeightedAllocatedBytes() {
1121 uint64_t current_process_cpu_time = ProcessCpuNanoTime();
1122 pre_gc_weighted_allocated_bytes_ +=
1123 CalculateGcWeightedAllocatedBytes(pre_gc_last_process_cpu_time_ns_, current_process_cpu_time);
1124 pre_gc_last_process_cpu_time_ns_ = current_process_cpu_time;
1125 }
1126
CalculatePostGcWeightedAllocatedBytes()1127 void Heap::CalculatePostGcWeightedAllocatedBytes() {
1128 uint64_t current_process_cpu_time = ProcessCpuNanoTime();
1129 post_gc_weighted_allocated_bytes_ +=
1130 CalculateGcWeightedAllocatedBytes(post_gc_last_process_cpu_time_ns_, current_process_cpu_time);
1131 post_gc_last_process_cpu_time_ns_ = current_process_cpu_time;
1132 }
1133
GetTotalGcCpuTime()1134 uint64_t Heap::GetTotalGcCpuTime() {
1135 uint64_t sum = 0;
1136 for (auto* collector : garbage_collectors_) {
1137 sum += collector->GetTotalCpuTime();
1138 }
1139 return sum;
1140 }
1141
DumpGcPerformanceInfo(std::ostream & os)1142 void Heap::DumpGcPerformanceInfo(std::ostream& os) {
1143 // Dump cumulative timings.
1144 os << "Dumping cumulative Gc timings\n";
1145 uint64_t total_duration = 0;
1146 // Dump cumulative loggers for each GC type.
1147 uint64_t total_paused_time = 0;
1148 for (auto* collector : garbage_collectors_) {
1149 total_duration += collector->GetCumulativeTimings().GetTotalNs();
1150 total_paused_time += collector->GetTotalPausedTimeNs();
1151 collector->DumpPerformanceInfo(os);
1152 }
1153 if (total_duration != 0) {
1154 const double total_seconds = total_duration / 1.0e9;
1155 const double total_cpu_seconds = GetTotalGcCpuTime() / 1.0e9;
1156 os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
1157 os << "Mean GC size throughput: "
1158 << PrettySize(GetBytesFreedEver() / total_seconds) << "/s"
1159 << " per cpu-time: "
1160 << PrettySize(GetBytesFreedEver() / total_cpu_seconds) << "/s\n";
1161 os << "Mean GC object throughput: "
1162 << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
1163 }
1164 uint64_t total_objects_allocated = GetObjectsAllocatedEver();
1165 os << "Total number of allocations " << total_objects_allocated << "\n";
1166 os << "Total bytes allocated " << PrettySize(GetBytesAllocatedEver()) << "\n";
1167 os << "Total bytes freed " << PrettySize(GetBytesFreedEver()) << "\n";
1168 os << "Free memory " << PrettySize(GetFreeMemory()) << "\n";
1169 os << "Free memory until GC " << PrettySize(GetFreeMemoryUntilGC()) << "\n";
1170 os << "Free memory until OOME " << PrettySize(GetFreeMemoryUntilOOME()) << "\n";
1171 os << "Total memory " << PrettySize(GetTotalMemory()) << "\n";
1172 os << "Max memory " << PrettySize(GetMaxMemory()) << "\n";
1173 if (HasZygoteSpace()) {
1174 os << "Zygote space size " << PrettySize(zygote_space_->Size()) << "\n";
1175 }
1176 os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
1177 os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
1178 os << "Total GC count: " << GetGcCount() << "\n";
1179 os << "Total GC time: " << PrettyDuration(GetGcTime()) << "\n";
1180 os << "Total blocking GC count: " << GetBlockingGcCount() << "\n";
1181 os << "Total blocking GC time: " << PrettyDuration(GetBlockingGcTime()) << "\n";
1182
1183 {
1184 MutexLock mu(Thread::Current(), *gc_complete_lock_);
1185 if (gc_count_rate_histogram_.SampleSize() > 0U) {
1186 os << "Histogram of GC count per " << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
1187 gc_count_rate_histogram_.DumpBins(os);
1188 os << "\n";
1189 }
1190 if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
1191 os << "Histogram of blocking GC count per "
1192 << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
1193 blocking_gc_count_rate_histogram_.DumpBins(os);
1194 os << "\n";
1195 }
1196 }
1197
1198 if (kDumpRosAllocStatsOnSigQuit && rosalloc_space_ != nullptr) {
1199 rosalloc_space_->DumpStats(os);
1200 }
1201
1202 os << "Native bytes total: " << GetNativeBytes()
1203 << " registered: " << native_bytes_registered_.load(std::memory_order_relaxed) << "\n";
1204
1205 os << "Total native bytes at last GC: "
1206 << old_native_bytes_allocated_.load(std::memory_order_relaxed) << "\n";
1207
1208 BaseMutex::DumpAll(os);
1209 }
1210
ResetGcPerformanceInfo()1211 void Heap::ResetGcPerformanceInfo() {
1212 for (auto* collector : garbage_collectors_) {
1213 collector->ResetMeasurements();
1214 }
1215
1216 process_cpu_start_time_ns_ = ProcessCpuNanoTime();
1217
1218 pre_gc_last_process_cpu_time_ns_ = process_cpu_start_time_ns_;
1219 pre_gc_weighted_allocated_bytes_ = 0u;
1220
1221 post_gc_last_process_cpu_time_ns_ = process_cpu_start_time_ns_;
1222 post_gc_weighted_allocated_bytes_ = 0u;
1223
1224 total_bytes_freed_ever_.store(0);
1225 total_objects_freed_ever_.store(0);
1226 total_wait_time_ = 0;
1227 blocking_gc_count_ = 0;
1228 blocking_gc_time_ = 0;
1229 gc_count_last_window_ = 0;
1230 blocking_gc_count_last_window_ = 0;
1231 last_update_time_gc_count_rate_histograms_ = // Round down by the window duration.
1232 (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
1233 {
1234 MutexLock mu(Thread::Current(), *gc_complete_lock_);
1235 gc_count_rate_histogram_.Reset();
1236 blocking_gc_count_rate_histogram_.Reset();
1237 }
1238 }
1239
GetGcCount() const1240 uint64_t Heap::GetGcCount() const {
1241 uint64_t gc_count = 0U;
1242 for (auto* collector : garbage_collectors_) {
1243 gc_count += collector->GetCumulativeTimings().GetIterations();
1244 }
1245 return gc_count;
1246 }
1247
GetGcTime() const1248 uint64_t Heap::GetGcTime() const {
1249 uint64_t gc_time = 0U;
1250 for (auto* collector : garbage_collectors_) {
1251 gc_time += collector->GetCumulativeTimings().GetTotalNs();
1252 }
1253 return gc_time;
1254 }
1255
GetBlockingGcCount() const1256 uint64_t Heap::GetBlockingGcCount() const {
1257 return blocking_gc_count_;
1258 }
1259
GetBlockingGcTime() const1260 uint64_t Heap::GetBlockingGcTime() const {
1261 return blocking_gc_time_;
1262 }
1263
DumpGcCountRateHistogram(std::ostream & os) const1264 void Heap::DumpGcCountRateHistogram(std::ostream& os) const {
1265 MutexLock mu(Thread::Current(), *gc_complete_lock_);
1266 if (gc_count_rate_histogram_.SampleSize() > 0U) {
1267 gc_count_rate_histogram_.DumpBins(os);
1268 }
1269 }
1270
DumpBlockingGcCountRateHistogram(std::ostream & os) const1271 void Heap::DumpBlockingGcCountRateHistogram(std::ostream& os) const {
1272 MutexLock mu(Thread::Current(), *gc_complete_lock_);
1273 if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
1274 blocking_gc_count_rate_histogram_.DumpBins(os);
1275 }
1276 }
1277
1278 ALWAYS_INLINE
GetAndOverwriteAllocationListener(Atomic<AllocationListener * > * storage,AllocationListener * new_value)1279 static inline AllocationListener* GetAndOverwriteAllocationListener(
1280 Atomic<AllocationListener*>* storage, AllocationListener* new_value) {
1281 return storage->exchange(new_value);
1282 }
1283
~Heap()1284 Heap::~Heap() {
1285 VLOG(heap) << "Starting ~Heap()";
1286 STLDeleteElements(&garbage_collectors_);
1287 // If we don't reset then the mark stack complains in its destructor.
1288 allocation_stack_->Reset();
1289 allocation_records_.reset();
1290 live_stack_->Reset();
1291 STLDeleteValues(&mod_union_tables_);
1292 STLDeleteValues(&remembered_sets_);
1293 STLDeleteElements(&continuous_spaces_);
1294 STLDeleteElements(&discontinuous_spaces_);
1295 delete gc_complete_lock_;
1296 delete thread_flip_lock_;
1297 delete pending_task_lock_;
1298 delete backtrace_lock_;
1299 uint64_t unique_count = unique_backtrace_count_.load();
1300 uint64_t seen_count = seen_backtrace_count_.load();
1301 if (unique_count != 0 || seen_count != 0) {
1302 LOG(INFO) << "gc stress unique=" << unique_count << " total=" << (unique_count + seen_count);
1303 }
1304 VLOG(heap) << "Finished ~Heap()";
1305 }
1306
1307
FindContinuousSpaceFromAddress(const mirror::Object * addr) const1308 space::ContinuousSpace* Heap::FindContinuousSpaceFromAddress(const mirror::Object* addr) const {
1309 for (const auto& space : continuous_spaces_) {
1310 if (space->Contains(addr)) {
1311 return space;
1312 }
1313 }
1314 return nullptr;
1315 }
1316
FindContinuousSpaceFromObject(ObjPtr<mirror::Object> obj,bool fail_ok) const1317 space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(ObjPtr<mirror::Object> obj,
1318 bool fail_ok) const {
1319 space::ContinuousSpace* space = FindContinuousSpaceFromAddress(obj.Ptr());
1320 if (space != nullptr) {
1321 return space;
1322 }
1323 if (!fail_ok) {
1324 LOG(FATAL) << "object " << obj << " not inside any spaces!";
1325 }
1326 return nullptr;
1327 }
1328
FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object> obj,bool fail_ok) const1329 space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object> obj,
1330 bool fail_ok) const {
1331 for (const auto& space : discontinuous_spaces_) {
1332 if (space->Contains(obj.Ptr())) {
1333 return space;
1334 }
1335 }
1336 if (!fail_ok) {
1337 LOG(FATAL) << "object " << obj << " not inside any spaces!";
1338 }
1339 return nullptr;
1340 }
1341
FindSpaceFromObject(ObjPtr<mirror::Object> obj,bool fail_ok) const1342 space::Space* Heap::FindSpaceFromObject(ObjPtr<mirror::Object> obj, bool fail_ok) const {
1343 space::Space* result = FindContinuousSpaceFromObject(obj, true);
1344 if (result != nullptr) {
1345 return result;
1346 }
1347 return FindDiscontinuousSpaceFromObject(obj, fail_ok);
1348 }
1349
FindSpaceFromAddress(const void * addr) const1350 space::Space* Heap::FindSpaceFromAddress(const void* addr) const {
1351 for (const auto& space : continuous_spaces_) {
1352 if (space->Contains(reinterpret_cast<const mirror::Object*>(addr))) {
1353 return space;
1354 }
1355 }
1356 for (const auto& space : discontinuous_spaces_) {
1357 if (space->Contains(reinterpret_cast<const mirror::Object*>(addr))) {
1358 return space;
1359 }
1360 }
1361 return nullptr;
1362 }
1363
DumpSpaceNameFromAddress(const void * addr) const1364 std::string Heap::DumpSpaceNameFromAddress(const void* addr) const {
1365 space::Space* space = FindSpaceFromAddress(addr);
1366 return (space != nullptr) ? space->GetName() : "no space";
1367 }
1368
ThrowOutOfMemoryError(Thread * self,size_t byte_count,AllocatorType allocator_type)1369 void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) {
1370 // If we're in a stack overflow, do not create a new exception. It would require running the
1371 // constructor, which will of course still be in a stack overflow.
1372 if (self->IsHandlingStackOverflow()) {
1373 self->SetException(
1374 Runtime::Current()->GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow());
1375 return;
1376 }
1377
1378 std::ostringstream oss;
1379 size_t total_bytes_free = GetFreeMemory();
1380 oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
1381 << " free bytes and " << PrettySize(GetFreeMemoryUntilOOME()) << " until OOM,"
1382 << " target footprint " << target_footprint_.load(std::memory_order_relaxed)
1383 << ", growth limit "
1384 << growth_limit_;
1385 // If the allocation failed due to fragmentation, print out the largest continuous allocation.
1386 if (total_bytes_free >= byte_count) {
1387 space::AllocSpace* space = nullptr;
1388 if (allocator_type == kAllocatorTypeNonMoving) {
1389 space = non_moving_space_;
1390 } else if (allocator_type == kAllocatorTypeRosAlloc ||
1391 allocator_type == kAllocatorTypeDlMalloc) {
1392 space = main_space_;
1393 } else if (allocator_type == kAllocatorTypeBumpPointer ||
1394 allocator_type == kAllocatorTypeTLAB) {
1395 space = bump_pointer_space_;
1396 } else if (allocator_type == kAllocatorTypeRegion ||
1397 allocator_type == kAllocatorTypeRegionTLAB) {
1398 space = region_space_;
1399 }
1400
1401 // There is no fragmentation info to log for large-object space.
1402 if (allocator_type != kAllocatorTypeLOS) {
1403 CHECK(space != nullptr) << "allocator_type:" << allocator_type
1404 << " byte_count:" << byte_count
1405 << " total_bytes_free:" << total_bytes_free;
1406 space->LogFragmentationAllocFailure(oss, byte_count);
1407 }
1408 }
1409 self->ThrowOutOfMemoryError(oss.str().c_str());
1410 }
1411
DoPendingCollectorTransition()1412 void Heap::DoPendingCollectorTransition() {
1413 CollectorType desired_collector_type = desired_collector_type_;
1414 // Launch homogeneous space compaction if it is desired.
1415 if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) {
1416 if (!CareAboutPauseTimes()) {
1417 PerformHomogeneousSpaceCompact();
1418 } else {
1419 VLOG(gc) << "Homogeneous compaction ignored due to jank perceptible process state";
1420 }
1421 } else if (desired_collector_type == kCollectorTypeCCBackground) {
1422 DCHECK(kUseReadBarrier);
1423 if (!CareAboutPauseTimes()) {
1424 // Invoke CC full compaction.
1425 CollectGarbageInternal(collector::kGcTypeFull,
1426 kGcCauseCollectorTransition,
1427 /*clear_soft_references=*/false);
1428 } else {
1429 VLOG(gc) << "CC background compaction ignored due to jank perceptible process state";
1430 }
1431 } else {
1432 CHECK_EQ(desired_collector_type, collector_type_) << "Unsupported collector transition";
1433 }
1434 }
1435
Trim(Thread * self)1436 void Heap::Trim(Thread* self) {
1437 Runtime* const runtime = Runtime::Current();
1438 if (!CareAboutPauseTimes()) {
1439 // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care
1440 // about pauses.
1441 ScopedTrace trace("Deflating monitors");
1442 // Avoid race conditions on the lock word for CC.
1443 ScopedGCCriticalSection gcs(self, kGcCauseTrim, kCollectorTypeHeapTrim);
1444 ScopedSuspendAll ssa(__FUNCTION__);
1445 uint64_t start_time = NanoTime();
1446 size_t count = runtime->GetMonitorList()->DeflateMonitors();
1447 VLOG(heap) << "Deflating " << count << " monitors took "
1448 << PrettyDuration(NanoTime() - start_time);
1449 }
1450 TrimIndirectReferenceTables(self);
1451 TrimSpaces(self);
1452 // Trim arenas that may have been used by JIT or verifier.
1453 runtime->GetArenaPool()->TrimMaps();
1454 }
1455
1456 class TrimIndirectReferenceTableClosure : public Closure {
1457 public:
TrimIndirectReferenceTableClosure(Barrier * barrier)1458 explicit TrimIndirectReferenceTableClosure(Barrier* barrier) : barrier_(barrier) {
1459 }
Run(Thread * thread)1460 void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS {
1461 thread->GetJniEnv()->TrimLocals();
1462 // If thread is a running mutator, then act on behalf of the trim thread.
1463 // See the code in ThreadList::RunCheckpoint.
1464 barrier_->Pass(Thread::Current());
1465 }
1466
1467 private:
1468 Barrier* const barrier_;
1469 };
1470
TrimIndirectReferenceTables(Thread * self)1471 void Heap::TrimIndirectReferenceTables(Thread* self) {
1472 ScopedObjectAccess soa(self);
1473 ScopedTrace trace(__PRETTY_FUNCTION__);
1474 JavaVMExt* vm = soa.Vm();
1475 // Trim globals indirect reference table.
1476 vm->TrimGlobals();
1477 // Trim locals indirect reference tables.
1478 Barrier barrier(0);
1479 TrimIndirectReferenceTableClosure closure(&barrier);
1480 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
1481 size_t barrier_count = Runtime::Current()->GetThreadList()->RunCheckpoint(&closure);
1482 if (barrier_count != 0) {
1483 barrier.Increment(self, barrier_count);
1484 }
1485 }
1486
StartGC(Thread * self,GcCause cause,CollectorType collector_type)1487 void Heap::StartGC(Thread* self, GcCause cause, CollectorType collector_type) {
1488 // Need to do this before acquiring the locks since we don't want to get suspended while
1489 // holding any locks.
1490 ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1491 MutexLock mu(self, *gc_complete_lock_);
1492 // Ensure there is only one GC at a time.
1493 WaitForGcToCompleteLocked(cause, self);
1494 collector_type_running_ = collector_type;
1495 last_gc_cause_ = cause;
1496 thread_running_gc_ = self;
1497 }
1498
TrimSpaces(Thread * self)1499 void Heap::TrimSpaces(Thread* self) {
1500 // Pretend we are doing a GC to prevent background compaction from deleting the space we are
1501 // trimming.
1502 StartGC(self, kGcCauseTrim, kCollectorTypeHeapTrim);
1503 ScopedTrace trace(__PRETTY_FUNCTION__);
1504 const uint64_t start_ns = NanoTime();
1505 // Trim the managed spaces.
1506 uint64_t total_alloc_space_allocated = 0;
1507 uint64_t total_alloc_space_size = 0;
1508 uint64_t managed_reclaimed = 0;
1509 {
1510 ScopedObjectAccess soa(self);
1511 for (const auto& space : continuous_spaces_) {
1512 if (space->IsMallocSpace()) {
1513 gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
1514 if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) {
1515 // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock
1516 // for a long period of time.
1517 managed_reclaimed += malloc_space->Trim();
1518 }
1519 total_alloc_space_size += malloc_space->Size();
1520 }
1521 }
1522 }
1523 total_alloc_space_allocated = GetBytesAllocated();
1524 if (large_object_space_ != nullptr) {
1525 total_alloc_space_allocated -= large_object_space_->GetBytesAllocated();
1526 }
1527 if (bump_pointer_space_ != nullptr) {
1528 total_alloc_space_allocated -= bump_pointer_space_->Size();
1529 }
1530 if (region_space_ != nullptr) {
1531 total_alloc_space_allocated -= region_space_->GetBytesAllocated();
1532 }
1533 const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
1534 static_cast<float>(total_alloc_space_size);
1535 uint64_t gc_heap_end_ns = NanoTime();
1536 // We never move things in the native heap, so we can finish the GC at this point.
1537 FinishGC(self, collector::kGcTypeNone);
1538
1539 VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
1540 << ", advised=" << PrettySize(managed_reclaimed) << ") heap. Managed heap utilization of "
1541 << static_cast<int>(100 * managed_utilization) << "%.";
1542 }
1543
IsValidObjectAddress(const void * addr) const1544 bool Heap::IsValidObjectAddress(const void* addr) const {
1545 if (addr == nullptr) {
1546 return true;
1547 }
1548 return IsAligned<kObjectAlignment>(addr) && FindSpaceFromAddress(addr) != nullptr;
1549 }
1550
IsNonDiscontinuousSpaceHeapAddress(const void * addr) const1551 bool Heap::IsNonDiscontinuousSpaceHeapAddress(const void* addr) const {
1552 return FindContinuousSpaceFromAddress(reinterpret_cast<const mirror::Object*>(addr)) != nullptr;
1553 }
1554
IsLiveObjectLocked(ObjPtr<mirror::Object> obj,bool search_allocation_stack,bool search_live_stack,bool sorted)1555 bool Heap::IsLiveObjectLocked(ObjPtr<mirror::Object> obj,
1556 bool search_allocation_stack,
1557 bool search_live_stack,
1558 bool sorted) {
1559 if (UNLIKELY(!IsAligned<kObjectAlignment>(obj.Ptr()))) {
1560 return false;
1561 }
1562 if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj.Ptr())) {
1563 mirror::Class* klass = obj->GetClass<kVerifyNone>();
1564 if (obj == klass) {
1565 // This case happens for java.lang.Class.
1566 return true;
1567 }
1568 return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
1569 } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj.Ptr())) {
1570 // If we are in the allocated region of the temp space, then we are probably live (e.g. during
1571 // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
1572 return temp_space_->Contains(obj.Ptr());
1573 }
1574 if (region_space_ != nullptr && region_space_->HasAddress(obj.Ptr())) {
1575 return true;
1576 }
1577 space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
1578 space::DiscontinuousSpace* d_space = nullptr;
1579 if (c_space != nullptr) {
1580 if (c_space->GetLiveBitmap()->Test(obj.Ptr())) {
1581 return true;
1582 }
1583 } else {
1584 d_space = FindDiscontinuousSpaceFromObject(obj, true);
1585 if (d_space != nullptr) {
1586 if (d_space->GetLiveBitmap()->Test(obj.Ptr())) {
1587 return true;
1588 }
1589 }
1590 }
1591 // This is covering the allocation/live stack swapping that is done without mutators suspended.
1592 for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
1593 if (i > 0) {
1594 NanoSleep(MsToNs(10));
1595 }
1596 if (search_allocation_stack) {
1597 if (sorted) {
1598 if (allocation_stack_->ContainsSorted(obj.Ptr())) {
1599 return true;
1600 }
1601 } else if (allocation_stack_->Contains(obj.Ptr())) {
1602 return true;
1603 }
1604 }
1605
1606 if (search_live_stack) {
1607 if (sorted) {
1608 if (live_stack_->ContainsSorted(obj.Ptr())) {
1609 return true;
1610 }
1611 } else if (live_stack_->Contains(obj.Ptr())) {
1612 return true;
1613 }
1614 }
1615 }
1616 // We need to check the bitmaps again since there is a race where we mark something as live and
1617 // then clear the stack containing it.
1618 if (c_space != nullptr) {
1619 if (c_space->GetLiveBitmap()->Test(obj.Ptr())) {
1620 return true;
1621 }
1622 } else {
1623 d_space = FindDiscontinuousSpaceFromObject(obj, true);
1624 if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj.Ptr())) {
1625 return true;
1626 }
1627 }
1628 return false;
1629 }
1630
DumpSpaces() const1631 std::string Heap::DumpSpaces() const {
1632 std::ostringstream oss;
1633 DumpSpaces(oss);
1634 return oss.str();
1635 }
1636
DumpSpaces(std::ostream & stream) const1637 void Heap::DumpSpaces(std::ostream& stream) const {
1638 for (const auto& space : continuous_spaces_) {
1639 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1640 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1641 stream << space << " " << *space << "\n";
1642 if (live_bitmap != nullptr) {
1643 stream << live_bitmap << " " << *live_bitmap << "\n";
1644 }
1645 if (mark_bitmap != nullptr) {
1646 stream << mark_bitmap << " " << *mark_bitmap << "\n";
1647 }
1648 }
1649 for (const auto& space : discontinuous_spaces_) {
1650 stream << space << " " << *space << "\n";
1651 }
1652 }
1653
VerifyObjectBody(ObjPtr<mirror::Object> obj)1654 void Heap::VerifyObjectBody(ObjPtr<mirror::Object> obj) {
1655 if (verify_object_mode_ == kVerifyObjectModeDisabled) {
1656 return;
1657 }
1658
1659 // Ignore early dawn of the universe verifications.
1660 if (UNLIKELY(num_bytes_allocated_.load(std::memory_order_relaxed) < 10 * KB)) {
1661 return;
1662 }
1663 CHECK_ALIGNED(obj.Ptr(), kObjectAlignment) << "Object isn't aligned";
1664 mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset());
1665 CHECK(c != nullptr) << "Null class in object " << obj;
1666 CHECK_ALIGNED(c, kObjectAlignment) << "Class " << c << " not aligned in object " << obj;
1667 CHECK(VerifyClassClass(c));
1668
1669 if (verify_object_mode_ > kVerifyObjectModeFast) {
1670 // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
1671 CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces();
1672 }
1673 }
1674
VerifyHeap()1675 void Heap::VerifyHeap() {
1676 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1677 auto visitor = [&](mirror::Object* obj) {
1678 VerifyObjectBody(obj);
1679 };
1680 // Technically we need the mutator lock here to call Visit. However, VerifyObjectBody is already
1681 // NO_THREAD_SAFETY_ANALYSIS.
1682 auto no_thread_safety_analysis = [&]() NO_THREAD_SAFETY_ANALYSIS {
1683 GetLiveBitmap()->Visit(visitor);
1684 };
1685 no_thread_safety_analysis();
1686 }
1687
RecordFree(uint64_t freed_objects,int64_t freed_bytes)1688 void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) {
1689 // Use signed comparison since freed bytes can be negative when background compaction foreground
1690 // transitions occurs. This is typically due to objects moving from a bump pointer space to a
1691 // free list backed space, which may increase memory footprint due to padding and binning.
1692 RACING_DCHECK_LE(freed_bytes,
1693 static_cast<int64_t>(num_bytes_allocated_.load(std::memory_order_relaxed)));
1694 // Note: This relies on 2s complement for handling negative freed_bytes.
1695 num_bytes_allocated_.fetch_sub(static_cast<ssize_t>(freed_bytes), std::memory_order_relaxed);
1696 if (Runtime::Current()->HasStatsEnabled()) {
1697 RuntimeStats* thread_stats = Thread::Current()->GetStats();
1698 thread_stats->freed_objects += freed_objects;
1699 thread_stats->freed_bytes += freed_bytes;
1700 // TODO: Do this concurrently.
1701 RuntimeStats* global_stats = Runtime::Current()->GetStats();
1702 global_stats->freed_objects += freed_objects;
1703 global_stats->freed_bytes += freed_bytes;
1704 }
1705 }
1706
RecordFreeRevoke()1707 void Heap::RecordFreeRevoke() {
1708 // Subtract num_bytes_freed_revoke_ from num_bytes_allocated_ to cancel out the
1709 // ahead-of-time, bulk counting of bytes allocated in rosalloc thread-local buffers.
1710 // If there's a concurrent revoke, ok to not necessarily reset num_bytes_freed_revoke_
1711 // all the way to zero exactly as the remainder will be subtracted at the next GC.
1712 size_t bytes_freed = num_bytes_freed_revoke_.load(std::memory_order_relaxed);
1713 CHECK_GE(num_bytes_freed_revoke_.fetch_sub(bytes_freed, std::memory_order_relaxed),
1714 bytes_freed) << "num_bytes_freed_revoke_ underflow";
1715 CHECK_GE(num_bytes_allocated_.fetch_sub(bytes_freed, std::memory_order_relaxed),
1716 bytes_freed) << "num_bytes_allocated_ underflow";
1717 GetCurrentGcIteration()->SetFreedRevoke(bytes_freed);
1718 }
1719
GetRosAllocSpace(gc::allocator::RosAlloc * rosalloc) const1720 space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const {
1721 if (rosalloc_space_ != nullptr && rosalloc_space_->GetRosAlloc() == rosalloc) {
1722 return rosalloc_space_;
1723 }
1724 for (const auto& space : continuous_spaces_) {
1725 if (space->AsContinuousSpace()->IsRosAllocSpace()) {
1726 if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) {
1727 return space->AsContinuousSpace()->AsRosAllocSpace();
1728 }
1729 }
1730 }
1731 return nullptr;
1732 }
1733
EntrypointsInstrumented()1734 static inline bool EntrypointsInstrumented() REQUIRES_SHARED(Locks::mutator_lock_) {
1735 instrumentation::Instrumentation* const instrumentation =
1736 Runtime::Current()->GetInstrumentation();
1737 return instrumentation != nullptr && instrumentation->AllocEntrypointsInstrumented();
1738 }
1739
AllocateInternalWithGc(Thread * self,AllocatorType allocator,bool instrumented,size_t alloc_size,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated,ObjPtr<mirror::Class> * klass)1740 mirror::Object* Heap::AllocateInternalWithGc(Thread* self,
1741 AllocatorType allocator,
1742 bool instrumented,
1743 size_t alloc_size,
1744 size_t* bytes_allocated,
1745 size_t* usable_size,
1746 size_t* bytes_tl_bulk_allocated,
1747 ObjPtr<mirror::Class>* klass) {
1748 // After a GC (due to allocation failure) we should retrieve at least this
1749 // fraction of the current max heap size. Otherwise throw OOME.
1750 constexpr double kMinFreeHeapAfterGcForAlloc = 0.01;
1751 bool was_default_allocator = allocator == GetCurrentAllocator();
1752 // Make sure there is no pending exception since we may need to throw an OOME.
1753 self->AssertNoPendingException();
1754 DCHECK(klass != nullptr);
1755
1756 StackHandleScope<1> hs(self);
1757 HandleWrapperObjPtr<mirror::Class> h_klass(hs.NewHandleWrapper(klass));
1758
1759 auto send_object_pre_alloc =
1760 [&]() REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_) {
1761 if (UNLIKELY(instrumented)) {
1762 AllocationListener* l = alloc_listener_.load(std::memory_order_seq_cst);
1763 if (UNLIKELY(l != nullptr) && UNLIKELY(l->HasPreAlloc())) {
1764 l->PreObjectAllocated(self, h_klass, &alloc_size);
1765 }
1766 }
1767 };
1768 #define PERFORM_SUSPENDING_OPERATION(op) \
1769 [&]() REQUIRES(Roles::uninterruptible_) REQUIRES_SHARED(Locks::mutator_lock_) { \
1770 ScopedAllowThreadSuspension ats; \
1771 auto res = (op); \
1772 send_object_pre_alloc(); \
1773 return res; \
1774 }()
1775
1776 // The allocation failed. If the GC is running, block until it completes, and then retry the
1777 // allocation.
1778 collector::GcType last_gc =
1779 PERFORM_SUSPENDING_OPERATION(WaitForGcToComplete(kGcCauseForAlloc, self));
1780 // If we were the default allocator but the allocator changed while we were suspended,
1781 // abort the allocation.
1782 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1783 (!instrumented && EntrypointsInstrumented())) {
1784 return nullptr;
1785 }
1786 if (last_gc != collector::kGcTypeNone) {
1787 // A GC was in progress and we blocked, retry allocation now that memory has been freed.
1788 mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1789 usable_size, bytes_tl_bulk_allocated);
1790 if (ptr != nullptr) {
1791 return ptr;
1792 }
1793 }
1794
1795 auto have_reclaimed_enough = [&]() {
1796 size_t curr_bytes_allocated = GetBytesAllocated();
1797 double curr_free_heap =
1798 static_cast<double>(growth_limit_ - curr_bytes_allocated) / growth_limit_;
1799 return curr_free_heap >= kMinFreeHeapAfterGcForAlloc;
1800 };
1801 // We perform one GC as per the next_gc_type_ (chosen in GrowForUtilization),
1802 // if it's not already tried. If that doesn't succeed then go for the most
1803 // exhaustive option. Perform a full-heap collection including clearing
1804 // SoftReferences. In case of ConcurrentCopying, it will also ensure that
1805 // all regions are evacuated. If allocation doesn't succeed even after that
1806 // then there is no hope, so we throw OOME.
1807 collector::GcType tried_type = next_gc_type_;
1808 if (last_gc < tried_type) {
1809 const bool gc_ran = PERFORM_SUSPENDING_OPERATION(
1810 CollectGarbageInternal(tried_type, kGcCauseForAlloc, false) != collector::kGcTypeNone);
1811
1812 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1813 (!instrumented && EntrypointsInstrumented())) {
1814 return nullptr;
1815 }
1816 if (gc_ran && have_reclaimed_enough()) {
1817 mirror::Object* ptr = TryToAllocate<true, false>(self, allocator,
1818 alloc_size, bytes_allocated,
1819 usable_size, bytes_tl_bulk_allocated);
1820 if (ptr != nullptr) {
1821 return ptr;
1822 }
1823 }
1824 }
1825 // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
1826 // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
1827 // VM spec requires that all SoftReferences have been collected and cleared before throwing
1828 // OOME.
1829 VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
1830 << " allocation";
1831 // TODO: Run finalization, but this may cause more allocations to occur.
1832 // We don't need a WaitForGcToComplete here either.
1833 DCHECK(!gc_plan_.empty());
1834 PERFORM_SUSPENDING_OPERATION(CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true));
1835 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1836 (!instrumented && EntrypointsInstrumented())) {
1837 return nullptr;
1838 }
1839 mirror::Object* ptr = nullptr;
1840 if (have_reclaimed_enough()) {
1841 ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1842 usable_size, bytes_tl_bulk_allocated);
1843 }
1844
1845 if (ptr == nullptr) {
1846 const uint64_t current_time = NanoTime();
1847 switch (allocator) {
1848 case kAllocatorTypeRosAlloc:
1849 // Fall-through.
1850 case kAllocatorTypeDlMalloc: {
1851 if (use_homogeneous_space_compaction_for_oom_ &&
1852 current_time - last_time_homogeneous_space_compaction_by_oom_ >
1853 min_interval_homogeneous_space_compaction_by_oom_) {
1854 last_time_homogeneous_space_compaction_by_oom_ = current_time;
1855 HomogeneousSpaceCompactResult result =
1856 PERFORM_SUSPENDING_OPERATION(PerformHomogeneousSpaceCompact());
1857 // Thread suspension could have occurred.
1858 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1859 (!instrumented && EntrypointsInstrumented())) {
1860 return nullptr;
1861 }
1862 switch (result) {
1863 case HomogeneousSpaceCompactResult::kSuccess:
1864 // If the allocation succeeded, we delayed an oom.
1865 ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1866 usable_size, bytes_tl_bulk_allocated);
1867 if (ptr != nullptr) {
1868 count_delayed_oom_++;
1869 }
1870 break;
1871 case HomogeneousSpaceCompactResult::kErrorReject:
1872 // Reject due to disabled moving GC.
1873 break;
1874 case HomogeneousSpaceCompactResult::kErrorVMShuttingDown:
1875 // Throw OOM by default.
1876 break;
1877 default: {
1878 UNIMPLEMENTED(FATAL) << "homogeneous space compaction result: "
1879 << static_cast<size_t>(result);
1880 UNREACHABLE();
1881 }
1882 }
1883 // Always print that we ran homogeneous space compation since this can cause jank.
1884 VLOG(heap) << "Ran heap homogeneous space compaction, "
1885 << " requested defragmentation "
1886 << count_requested_homogeneous_space_compaction_.load()
1887 << " performed defragmentation "
1888 << count_performed_homogeneous_space_compaction_.load()
1889 << " ignored homogeneous space compaction "
1890 << count_ignored_homogeneous_space_compaction_.load()
1891 << " delayed count = "
1892 << count_delayed_oom_.load();
1893 }
1894 break;
1895 }
1896 default: {
1897 // Do nothing for others allocators.
1898 }
1899 }
1900 }
1901 #undef PERFORM_SUSPENDING_OPERATION
1902 // If the allocation hasn't succeeded by this point, throw an OOM error.
1903 if (ptr == nullptr) {
1904 ScopedAllowThreadSuspension ats;
1905 ThrowOutOfMemoryError(self, alloc_size, allocator);
1906 }
1907 return ptr;
1908 }
1909
SetTargetHeapUtilization(float target)1910 void Heap::SetTargetHeapUtilization(float target) {
1911 DCHECK_GT(target, 0.1f); // asserted in Java code
1912 DCHECK_LT(target, 1.0f);
1913 target_utilization_ = target;
1914 }
1915
GetObjectsAllocated() const1916 size_t Heap::GetObjectsAllocated() const {
1917 Thread* const self = Thread::Current();
1918 ScopedThreadStateChange tsc(self, kWaitingForGetObjectsAllocated);
1919 // Prevent GC running during GetObjectsAllocated since we may get a checkpoint request that tells
1920 // us to suspend while we are doing SuspendAll. b/35232978
1921 gc::ScopedGCCriticalSection gcs(Thread::Current(),
1922 gc::kGcCauseGetObjectsAllocated,
1923 gc::kCollectorTypeGetObjectsAllocated);
1924 // Need SuspendAll here to prevent lock violation if RosAlloc does it during InspectAll.
1925 ScopedSuspendAll ssa(__FUNCTION__);
1926 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1927 size_t total = 0;
1928 for (space::AllocSpace* space : alloc_spaces_) {
1929 total += space->GetObjectsAllocated();
1930 }
1931 return total;
1932 }
1933
GetObjectsAllocatedEver() const1934 uint64_t Heap::GetObjectsAllocatedEver() const {
1935 uint64_t total = GetObjectsFreedEver();
1936 // If we are detached, we can't use GetObjectsAllocated since we can't change thread states.
1937 if (Thread::Current() != nullptr) {
1938 total += GetObjectsAllocated();
1939 }
1940 return total;
1941 }
1942
GetBytesAllocatedEver() const1943 uint64_t Heap::GetBytesAllocatedEver() const {
1944 // Force the returned value to be monotonically increasing, in the sense that if this is called
1945 // at A and B, such that A happens-before B, then the call at B returns a value no smaller than
1946 // that at A. This is not otherwise guaranteed, since num_bytes_allocated_ is decremented first,
1947 // and total_bytes_freed_ever_ is incremented later.
1948 static std::atomic<uint64_t> max_bytes_so_far(0);
1949 uint64_t so_far = max_bytes_so_far.load(std::memory_order_relaxed);
1950 uint64_t current_bytes = GetBytesFreedEver(std::memory_order_acquire);
1951 current_bytes += GetBytesAllocated();
1952 do {
1953 if (current_bytes <= so_far) {
1954 return so_far;
1955 }
1956 } while (!max_bytes_so_far.compare_exchange_weak(so_far /* updated */,
1957 current_bytes, std::memory_order_relaxed));
1958 return current_bytes;
1959 }
1960
1961 // Check whether the given object is an instance of the given class.
MatchesClass(mirror::Object * obj,Handle<mirror::Class> h_class,bool use_is_assignable_from)1962 static bool MatchesClass(mirror::Object* obj,
1963 Handle<mirror::Class> h_class,
1964 bool use_is_assignable_from) REQUIRES_SHARED(Locks::mutator_lock_) {
1965 mirror::Class* instance_class = obj->GetClass();
1966 CHECK(instance_class != nullptr);
1967 ObjPtr<mirror::Class> klass = h_class.Get();
1968 if (use_is_assignable_from) {
1969 return klass != nullptr && klass->IsAssignableFrom(instance_class);
1970 }
1971 return instance_class == klass;
1972 }
1973
CountInstances(const std::vector<Handle<mirror::Class>> & classes,bool use_is_assignable_from,uint64_t * counts)1974 void Heap::CountInstances(const std::vector<Handle<mirror::Class>>& classes,
1975 bool use_is_assignable_from,
1976 uint64_t* counts) {
1977 auto instance_counter = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1978 for (size_t i = 0; i < classes.size(); ++i) {
1979 if (MatchesClass(obj, classes[i], use_is_assignable_from)) {
1980 ++counts[i];
1981 }
1982 }
1983 };
1984 VisitObjects(instance_counter);
1985 }
1986
GetInstances(VariableSizedHandleScope & scope,Handle<mirror::Class> h_class,bool use_is_assignable_from,int32_t max_count,std::vector<Handle<mirror::Object>> & instances)1987 void Heap::GetInstances(VariableSizedHandleScope& scope,
1988 Handle<mirror::Class> h_class,
1989 bool use_is_assignable_from,
1990 int32_t max_count,
1991 std::vector<Handle<mirror::Object>>& instances) {
1992 DCHECK_GE(max_count, 0);
1993 auto instance_collector = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1994 if (MatchesClass(obj, h_class, use_is_assignable_from)) {
1995 if (max_count == 0 || instances.size() < static_cast<size_t>(max_count)) {
1996 instances.push_back(scope.NewHandle(obj));
1997 }
1998 }
1999 };
2000 VisitObjects(instance_collector);
2001 }
2002
GetReferringObjects(VariableSizedHandleScope & scope,Handle<mirror::Object> o,int32_t max_count,std::vector<Handle<mirror::Object>> & referring_objects)2003 void Heap::GetReferringObjects(VariableSizedHandleScope& scope,
2004 Handle<mirror::Object> o,
2005 int32_t max_count,
2006 std::vector<Handle<mirror::Object>>& referring_objects) {
2007 class ReferringObjectsFinder {
2008 public:
2009 ReferringObjectsFinder(VariableSizedHandleScope& scope_in,
2010 Handle<mirror::Object> object_in,
2011 int32_t max_count_in,
2012 std::vector<Handle<mirror::Object>>& referring_objects_in)
2013 REQUIRES_SHARED(Locks::mutator_lock_)
2014 : scope_(scope_in),
2015 object_(object_in),
2016 max_count_(max_count_in),
2017 referring_objects_(referring_objects_in) {}
2018
2019 // For Object::VisitReferences.
2020 void operator()(ObjPtr<mirror::Object> obj,
2021 MemberOffset offset,
2022 bool is_static ATTRIBUTE_UNUSED) const
2023 REQUIRES_SHARED(Locks::mutator_lock_) {
2024 mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
2025 if (ref == object_.Get() && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
2026 referring_objects_.push_back(scope_.NewHandle(obj));
2027 }
2028 }
2029
2030 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
2031 const {}
2032 void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
2033
2034 private:
2035 VariableSizedHandleScope& scope_;
2036 Handle<mirror::Object> const object_;
2037 const uint32_t max_count_;
2038 std::vector<Handle<mirror::Object>>& referring_objects_;
2039 DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
2040 };
2041 ReferringObjectsFinder finder(scope, o, max_count, referring_objects);
2042 auto referring_objects_finder = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2043 obj->VisitReferences(finder, VoidFunctor());
2044 };
2045 VisitObjects(referring_objects_finder);
2046 }
2047
CollectGarbage(bool clear_soft_references,GcCause cause)2048 void Heap::CollectGarbage(bool clear_soft_references, GcCause cause) {
2049 // Even if we waited for a GC we still need to do another GC since weaks allocated during the
2050 // last GC will not have necessarily been cleared.
2051 CollectGarbageInternal(gc_plan_.back(), cause, clear_soft_references);
2052 }
2053
SupportHomogeneousSpaceCompactAndCollectorTransitions() const2054 bool Heap::SupportHomogeneousSpaceCompactAndCollectorTransitions() const {
2055 return main_space_backup_.get() != nullptr && main_space_ != nullptr &&
2056 foreground_collector_type_ == kCollectorTypeCMS;
2057 }
2058
PerformHomogeneousSpaceCompact()2059 HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() {
2060 Thread* self = Thread::Current();
2061 // Inc requested homogeneous space compaction.
2062 count_requested_homogeneous_space_compaction_++;
2063 // Store performed homogeneous space compaction at a new request arrival.
2064 ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
2065 Locks::mutator_lock_->AssertNotHeld(self);
2066 {
2067 ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
2068 MutexLock mu(self, *gc_complete_lock_);
2069 // Ensure there is only one GC at a time.
2070 WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self);
2071 // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable
2072 // count is non zero.
2073 // If the collector type changed to something which doesn't benefit from homogeneous space
2074 // compaction, exit.
2075 if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_) ||
2076 !main_space_->CanMoveObjects()) {
2077 return kErrorReject;
2078 }
2079 if (!SupportHomogeneousSpaceCompactAndCollectorTransitions()) {
2080 return kErrorUnsupported;
2081 }
2082 collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact;
2083 }
2084 if (Runtime::Current()->IsShuttingDown(self)) {
2085 // Don't allow heap transitions to happen if the runtime is shutting down since these can
2086 // cause objects to get finalized.
2087 FinishGC(self, collector::kGcTypeNone);
2088 return HomogeneousSpaceCompactResult::kErrorVMShuttingDown;
2089 }
2090 collector::GarbageCollector* collector;
2091 {
2092 ScopedSuspendAll ssa(__FUNCTION__);
2093 uint64_t start_time = NanoTime();
2094 // Launch compaction.
2095 space::MallocSpace* to_space = main_space_backup_.release();
2096 space::MallocSpace* from_space = main_space_;
2097 to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2098 const uint64_t space_size_before_compaction = from_space->Size();
2099 AddSpace(to_space);
2100 // Make sure that we will have enough room to copy.
2101 CHECK_GE(to_space->GetFootprintLimit(), from_space->GetFootprintLimit());
2102 collector = Compact(to_space, from_space, kGcCauseHomogeneousSpaceCompact);
2103 const uint64_t space_size_after_compaction = to_space->Size();
2104 main_space_ = to_space;
2105 main_space_backup_.reset(from_space);
2106 RemoveSpace(from_space);
2107 SetSpaceAsDefault(main_space_); // Set as default to reset the proper dlmalloc space.
2108 // Update performed homogeneous space compaction count.
2109 count_performed_homogeneous_space_compaction_++;
2110 // Print statics log and resume all threads.
2111 uint64_t duration = NanoTime() - start_time;
2112 VLOG(heap) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: "
2113 << PrettySize(space_size_before_compaction) << " -> "
2114 << PrettySize(space_size_after_compaction) << " compact-ratio: "
2115 << std::fixed << static_cast<double>(space_size_after_compaction) /
2116 static_cast<double>(space_size_before_compaction);
2117 }
2118 // Finish GC.
2119 // Get the references we need to enqueue.
2120 SelfDeletingTask* clear = reference_processor_->CollectClearedReferences(self);
2121 GrowForUtilization(semi_space_collector_);
2122 LogGC(kGcCauseHomogeneousSpaceCompact, collector);
2123 FinishGC(self, collector::kGcTypeFull);
2124 // Enqueue any references after losing the GC locks.
2125 clear->Run(self);
2126 clear->Finalize();
2127 {
2128 ScopedObjectAccess soa(self);
2129 soa.Vm()->UnloadNativeLibraries();
2130 }
2131 return HomogeneousSpaceCompactResult::kSuccess;
2132 }
2133
ChangeCollector(CollectorType collector_type)2134 void Heap::ChangeCollector(CollectorType collector_type) {
2135 // TODO: Only do this with all mutators suspended to avoid races.
2136 if (collector_type != collector_type_) {
2137 collector_type_ = collector_type;
2138 gc_plan_.clear();
2139 switch (collector_type_) {
2140 case kCollectorTypeCC: {
2141 if (use_generational_cc_) {
2142 gc_plan_.push_back(collector::kGcTypeSticky);
2143 }
2144 gc_plan_.push_back(collector::kGcTypeFull);
2145 if (use_tlab_) {
2146 ChangeAllocator(kAllocatorTypeRegionTLAB);
2147 } else {
2148 ChangeAllocator(kAllocatorTypeRegion);
2149 }
2150 break;
2151 }
2152 case kCollectorTypeSS: {
2153 gc_plan_.push_back(collector::kGcTypeFull);
2154 if (use_tlab_) {
2155 ChangeAllocator(kAllocatorTypeTLAB);
2156 } else {
2157 ChangeAllocator(kAllocatorTypeBumpPointer);
2158 }
2159 break;
2160 }
2161 case kCollectorTypeMS: {
2162 gc_plan_.push_back(collector::kGcTypeSticky);
2163 gc_plan_.push_back(collector::kGcTypePartial);
2164 gc_plan_.push_back(collector::kGcTypeFull);
2165 ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
2166 break;
2167 }
2168 case kCollectorTypeCMS: {
2169 gc_plan_.push_back(collector::kGcTypeSticky);
2170 gc_plan_.push_back(collector::kGcTypePartial);
2171 gc_plan_.push_back(collector::kGcTypeFull);
2172 ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
2173 break;
2174 }
2175 default: {
2176 UNIMPLEMENTED(FATAL);
2177 UNREACHABLE();
2178 }
2179 }
2180 if (IsGcConcurrent()) {
2181 concurrent_start_bytes_ =
2182 UnsignedDifference(target_footprint_.load(std::memory_order_relaxed),
2183 kMinConcurrentRemainingBytes);
2184 } else {
2185 concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2186 }
2187 }
2188 }
2189
2190 // Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
2191 class ZygoteCompactingCollector final : public collector::SemiSpace {
2192 public:
ZygoteCompactingCollector(gc::Heap * heap,bool is_running_on_memory_tool)2193 ZygoteCompactingCollector(gc::Heap* heap, bool is_running_on_memory_tool)
2194 : SemiSpace(heap, "zygote collector"),
2195 bin_live_bitmap_(nullptr),
2196 bin_mark_bitmap_(nullptr),
2197 is_running_on_memory_tool_(is_running_on_memory_tool) {}
2198
BuildBins(space::ContinuousSpace * space)2199 void BuildBins(space::ContinuousSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) {
2200 bin_live_bitmap_ = space->GetLiveBitmap();
2201 bin_mark_bitmap_ = space->GetMarkBitmap();
2202 uintptr_t prev = reinterpret_cast<uintptr_t>(space->Begin());
2203 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
2204 // Note: This requires traversing the space in increasing order of object addresses.
2205 auto visitor = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2206 uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
2207 size_t bin_size = object_addr - prev;
2208 // Add the bin consisting of the end of the previous object to the start of the current object.
2209 AddBin(bin_size, prev);
2210 prev = object_addr + RoundUp(obj->SizeOf<kDefaultVerifyFlags>(), kObjectAlignment);
2211 };
2212 bin_live_bitmap_->Walk(visitor);
2213 // Add the last bin which spans after the last object to the end of the space.
2214 AddBin(reinterpret_cast<uintptr_t>(space->End()) - prev, prev);
2215 }
2216
2217 private:
2218 // Maps from bin sizes to locations.
2219 std::multimap<size_t, uintptr_t> bins_;
2220 // Live bitmap of the space which contains the bins.
2221 accounting::ContinuousSpaceBitmap* bin_live_bitmap_;
2222 // Mark bitmap of the space which contains the bins.
2223 accounting::ContinuousSpaceBitmap* bin_mark_bitmap_;
2224 const bool is_running_on_memory_tool_;
2225
AddBin(size_t size,uintptr_t position)2226 void AddBin(size_t size, uintptr_t position) {
2227 if (is_running_on_memory_tool_) {
2228 MEMORY_TOOL_MAKE_DEFINED(reinterpret_cast<void*>(position), size);
2229 }
2230 if (size != 0) {
2231 bins_.insert(std::make_pair(size, position));
2232 }
2233 }
2234
ShouldSweepSpace(space::ContinuousSpace * space ATTRIBUTE_UNUSED) const2235 bool ShouldSweepSpace(space::ContinuousSpace* space ATTRIBUTE_UNUSED) const override {
2236 // Don't sweep any spaces since we probably blasted the internal accounting of the free list
2237 // allocator.
2238 return false;
2239 }
2240
MarkNonForwardedObject(mirror::Object * obj)2241 mirror::Object* MarkNonForwardedObject(mirror::Object* obj) override
2242 REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
2243 size_t obj_size = obj->SizeOf<kDefaultVerifyFlags>();
2244 size_t alloc_size = RoundUp(obj_size, kObjectAlignment);
2245 mirror::Object* forward_address;
2246 // Find the smallest bin which we can move obj in.
2247 auto it = bins_.lower_bound(alloc_size);
2248 if (it == bins_.end()) {
2249 // No available space in the bins, place it in the target space instead (grows the zygote
2250 // space).
2251 size_t bytes_allocated, unused_bytes_tl_bulk_allocated;
2252 forward_address = to_space_->Alloc(
2253 self_, alloc_size, &bytes_allocated, nullptr, &unused_bytes_tl_bulk_allocated);
2254 if (to_space_live_bitmap_ != nullptr) {
2255 to_space_live_bitmap_->Set(forward_address);
2256 } else {
2257 GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
2258 GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
2259 }
2260 } else {
2261 size_t size = it->first;
2262 uintptr_t pos = it->second;
2263 bins_.erase(it); // Erase the old bin which we replace with the new smaller bin.
2264 forward_address = reinterpret_cast<mirror::Object*>(pos);
2265 // Set the live and mark bits so that sweeping system weaks works properly.
2266 bin_live_bitmap_->Set(forward_address);
2267 bin_mark_bitmap_->Set(forward_address);
2268 DCHECK_GE(size, alloc_size);
2269 // Add a new bin with the remaining space.
2270 AddBin(size - alloc_size, pos + alloc_size);
2271 }
2272 // Copy the object over to its new location.
2273 // Historical note: We did not use `alloc_size` to avoid a Valgrind error.
2274 memcpy(reinterpret_cast<void*>(forward_address), obj, obj_size);
2275 if (kUseBakerReadBarrier) {
2276 obj->AssertReadBarrierState();
2277 forward_address->AssertReadBarrierState();
2278 }
2279 return forward_address;
2280 }
2281 };
2282
UnBindBitmaps()2283 void Heap::UnBindBitmaps() {
2284 TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings());
2285 for (const auto& space : GetContinuousSpaces()) {
2286 if (space->IsContinuousMemMapAllocSpace()) {
2287 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
2288 if (alloc_space->GetLiveBitmap() != nullptr && alloc_space->HasBoundBitmaps()) {
2289 alloc_space->UnBindBitmaps();
2290 }
2291 }
2292 }
2293 }
2294
IncrementFreedEver()2295 void Heap::IncrementFreedEver() {
2296 // Counters are updated only by us, but may be read concurrently.
2297 // The updates should become visible after the corresponding live object info.
2298 total_objects_freed_ever_.store(total_objects_freed_ever_.load(std::memory_order_relaxed)
2299 + GetCurrentGcIteration()->GetFreedObjects()
2300 + GetCurrentGcIteration()->GetFreedLargeObjects(),
2301 std::memory_order_release);
2302 total_bytes_freed_ever_.store(total_bytes_freed_ever_.load(std::memory_order_relaxed)
2303 + GetCurrentGcIteration()->GetFreedBytes()
2304 + GetCurrentGcIteration()->GetFreedLargeObjectBytes(),
2305 std::memory_order_release);
2306 }
2307
2308 #pragma clang diagnostic push
2309 #if !ART_USE_FUTEXES
2310 // Frame gets too large, perhaps due to Bionic pthread_mutex_lock size. We don't care.
2311 # pragma clang diagnostic ignored "-Wframe-larger-than="
2312 #endif
2313 // This has a large frame, but shouldn't be run anywhere near the stack limit.
PreZygoteFork()2314 void Heap::PreZygoteFork() {
2315 if (!HasZygoteSpace()) {
2316 // We still want to GC in case there is some unreachable non moving objects that could cause a
2317 // suboptimal bin packing when we compact the zygote space.
2318 CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
2319 // Trim the pages at the end of the non moving space. Trim while not holding zygote lock since
2320 // the trim process may require locking the mutator lock.
2321 non_moving_space_->Trim();
2322 }
2323 Thread* self = Thread::Current();
2324 MutexLock mu(self, zygote_creation_lock_);
2325 // Try to see if we have any Zygote spaces.
2326 if (HasZygoteSpace()) {
2327 return;
2328 }
2329 Runtime::Current()->GetInternTable()->AddNewTable();
2330 Runtime::Current()->GetClassLinker()->MoveClassTableToPreZygote();
2331 VLOG(heap) << "Starting PreZygoteFork";
2332 // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote
2333 // there.
2334 non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2335 const bool same_space = non_moving_space_ == main_space_;
2336 if (kCompactZygote) {
2337 // Temporarily disable rosalloc verification because the zygote
2338 // compaction will mess up the rosalloc internal metadata.
2339 ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
2340 ZygoteCompactingCollector zygote_collector(this, is_running_on_memory_tool_);
2341 zygote_collector.BuildBins(non_moving_space_);
2342 // Create a new bump pointer space which we will compact into.
2343 space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
2344 non_moving_space_->Limit());
2345 // Compact the bump pointer space to a new zygote bump pointer space.
2346 bool reset_main_space = false;
2347 if (IsMovingGc(collector_type_)) {
2348 if (collector_type_ == kCollectorTypeCC) {
2349 zygote_collector.SetFromSpace(region_space_);
2350 } else {
2351 zygote_collector.SetFromSpace(bump_pointer_space_);
2352 }
2353 } else {
2354 CHECK(main_space_ != nullptr);
2355 CHECK_NE(main_space_, non_moving_space_)
2356 << "Does not make sense to compact within the same space";
2357 // Copy from the main space.
2358 zygote_collector.SetFromSpace(main_space_);
2359 reset_main_space = true;
2360 }
2361 zygote_collector.SetToSpace(&target_space);
2362 zygote_collector.SetSwapSemiSpaces(false);
2363 zygote_collector.Run(kGcCauseCollectorTransition, false);
2364 if (reset_main_space) {
2365 main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2366 madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED);
2367 MemMap mem_map = main_space_->ReleaseMemMap();
2368 RemoveSpace(main_space_);
2369 space::Space* old_main_space = main_space_;
2370 CreateMainMallocSpace(std::move(mem_map),
2371 kDefaultInitialSize,
2372 std::min(mem_map.Size(), growth_limit_),
2373 mem_map.Size());
2374 delete old_main_space;
2375 AddSpace(main_space_);
2376 } else {
2377 if (collector_type_ == kCollectorTypeCC) {
2378 region_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2379 // Evacuated everything out of the region space, clear the mark bitmap.
2380 region_space_->GetMarkBitmap()->Clear();
2381 } else {
2382 bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2383 }
2384 }
2385 if (temp_space_ != nullptr) {
2386 CHECK(temp_space_->IsEmpty());
2387 }
2388 IncrementFreedEver();
2389 // Update the end and write out image.
2390 non_moving_space_->SetEnd(target_space.End());
2391 non_moving_space_->SetLimit(target_space.Limit());
2392 VLOG(heap) << "Create zygote space with size=" << non_moving_space_->Size() << " bytes";
2393 }
2394 // Change the collector to the post zygote one.
2395 ChangeCollector(foreground_collector_type_);
2396 // Save the old space so that we can remove it after we complete creating the zygote space.
2397 space::MallocSpace* old_alloc_space = non_moving_space_;
2398 // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
2399 // the remaining available space.
2400 // Remove the old space before creating the zygote space since creating the zygote space sets
2401 // the old alloc space's bitmaps to null.
2402 RemoveSpace(old_alloc_space);
2403 if (collector::SemiSpace::kUseRememberedSet) {
2404 // Consistency bound check.
2405 FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
2406 // Remove the remembered set for the now zygote space (the old
2407 // non-moving space). Note now that we have compacted objects into
2408 // the zygote space, the data in the remembered set is no longer
2409 // needed. The zygote space will instead have a mod-union table
2410 // from this point on.
2411 RemoveRememberedSet(old_alloc_space);
2412 }
2413 // Remaining space becomes the new non moving space.
2414 zygote_space_ = old_alloc_space->CreateZygoteSpace(kNonMovingSpaceName, low_memory_mode_,
2415 &non_moving_space_);
2416 CHECK(!non_moving_space_->CanMoveObjects());
2417 if (same_space) {
2418 main_space_ = non_moving_space_;
2419 SetSpaceAsDefault(main_space_);
2420 }
2421 delete old_alloc_space;
2422 CHECK(HasZygoteSpace()) << "Failed creating zygote space";
2423 AddSpace(zygote_space_);
2424 non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
2425 AddSpace(non_moving_space_);
2426 constexpr bool set_mark_bit = kUseBakerReadBarrier
2427 && gc::collector::ConcurrentCopying::kGrayDirtyImmuneObjects;
2428 if (set_mark_bit) {
2429 // Treat all of the objects in the zygote as marked to avoid unnecessary dirty pages. This is
2430 // safe since we mark all of the objects that may reference non immune objects as gray.
2431 zygote_space_->SetMarkBitInLiveObjects();
2432 }
2433
2434 // Create the zygote space mod union table.
2435 accounting::ModUnionTable* mod_union_table =
2436 new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space_);
2437 CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
2438
2439 if (collector_type_ != kCollectorTypeCC) {
2440 // Set all the cards in the mod-union table since we don't know which objects contain references
2441 // to large objects.
2442 mod_union_table->SetCards();
2443 } else {
2444 // Make sure to clear the zygote space cards so that we don't dirty pages in the next GC. There
2445 // may be dirty cards from the zygote compaction or reference processing. These cards are not
2446 // necessary to have marked since the zygote space may not refer to any objects not in the
2447 // zygote or image spaces at this point.
2448 mod_union_table->ProcessCards();
2449 mod_union_table->ClearTable();
2450
2451 // For CC we never collect zygote large objects. This means we do not need to set the cards for
2452 // the zygote mod-union table and we can also clear all of the existing image mod-union tables.
2453 // The existing mod-union tables are only for image spaces and may only reference zygote and
2454 // image objects.
2455 for (auto& pair : mod_union_tables_) {
2456 CHECK(pair.first->IsImageSpace());
2457 CHECK(!pair.first->AsImageSpace()->GetImageHeader().IsAppImage());
2458 accounting::ModUnionTable* table = pair.second;
2459 table->ClearTable();
2460 }
2461 }
2462 AddModUnionTable(mod_union_table);
2463 large_object_space_->SetAllLargeObjectsAsZygoteObjects(self, set_mark_bit);
2464 if (collector::SemiSpace::kUseRememberedSet) {
2465 // Add a new remembered set for the post-zygote non-moving space.
2466 accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
2467 new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
2468 non_moving_space_);
2469 CHECK(post_zygote_non_moving_space_rem_set != nullptr)
2470 << "Failed to create post-zygote non-moving space remembered set";
2471 AddRememberedSet(post_zygote_non_moving_space_rem_set);
2472 }
2473 }
2474 #pragma clang diagnostic pop
2475
FlushAllocStack()2476 void Heap::FlushAllocStack() {
2477 MarkAllocStackAsLive(allocation_stack_.get());
2478 allocation_stack_->Reset();
2479 }
2480
MarkAllocStack(accounting::ContinuousSpaceBitmap * bitmap1,accounting::ContinuousSpaceBitmap * bitmap2,accounting::LargeObjectBitmap * large_objects,accounting::ObjectStack * stack)2481 void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
2482 accounting::ContinuousSpaceBitmap* bitmap2,
2483 accounting::LargeObjectBitmap* large_objects,
2484 accounting::ObjectStack* stack) {
2485 DCHECK(bitmap1 != nullptr);
2486 DCHECK(bitmap2 != nullptr);
2487 const auto* limit = stack->End();
2488 for (auto* it = stack->Begin(); it != limit; ++it) {
2489 const mirror::Object* obj = it->AsMirrorPtr();
2490 if (!kUseThreadLocalAllocationStack || obj != nullptr) {
2491 if (bitmap1->HasAddress(obj)) {
2492 bitmap1->Set(obj);
2493 } else if (bitmap2->HasAddress(obj)) {
2494 bitmap2->Set(obj);
2495 } else {
2496 DCHECK(large_objects != nullptr);
2497 large_objects->Set(obj);
2498 }
2499 }
2500 }
2501 }
2502
SwapSemiSpaces()2503 void Heap::SwapSemiSpaces() {
2504 CHECK(bump_pointer_space_ != nullptr);
2505 CHECK(temp_space_ != nullptr);
2506 std::swap(bump_pointer_space_, temp_space_);
2507 }
2508
Compact(space::ContinuousMemMapAllocSpace * target_space,space::ContinuousMemMapAllocSpace * source_space,GcCause gc_cause)2509 collector::GarbageCollector* Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
2510 space::ContinuousMemMapAllocSpace* source_space,
2511 GcCause gc_cause) {
2512 CHECK(kMovingCollector);
2513 if (target_space != source_space) {
2514 // Don't swap spaces since this isn't a typical semi space collection.
2515 semi_space_collector_->SetSwapSemiSpaces(false);
2516 semi_space_collector_->SetFromSpace(source_space);
2517 semi_space_collector_->SetToSpace(target_space);
2518 semi_space_collector_->Run(gc_cause, false);
2519 return semi_space_collector_;
2520 }
2521 LOG(FATAL) << "Unsupported";
2522 UNREACHABLE();
2523 }
2524
TraceHeapSize(size_t heap_size)2525 void Heap::TraceHeapSize(size_t heap_size) {
2526 ATraceIntegerValue("Heap size (KB)", heap_size / KB);
2527 }
2528
2529 #if defined(__GLIBC__)
2530 # define IF_GLIBC(x) x
2531 #else
2532 # define IF_GLIBC(x)
2533 #endif
2534
GetNativeBytes()2535 size_t Heap::GetNativeBytes() {
2536 size_t malloc_bytes;
2537 #if defined(__BIONIC__) || defined(__GLIBC__)
2538 IF_GLIBC(size_t mmapped_bytes;)
2539 struct mallinfo mi = mallinfo();
2540 // In spite of the documentation, the jemalloc version of this call seems to do what we want,
2541 // and it is thread-safe.
2542 if (sizeof(size_t) > sizeof(mi.uordblks) && sizeof(size_t) > sizeof(mi.hblkhd)) {
2543 // Shouldn't happen, but glibc declares uordblks as int.
2544 // Avoiding sign extension gets us correct behavior for another 2 GB.
2545 malloc_bytes = (unsigned int)mi.uordblks;
2546 IF_GLIBC(mmapped_bytes = (unsigned int)mi.hblkhd;)
2547 } else {
2548 malloc_bytes = mi.uordblks;
2549 IF_GLIBC(mmapped_bytes = mi.hblkhd;)
2550 }
2551 // From the spec, it appeared mmapped_bytes <= malloc_bytes. Reality was sometimes
2552 // dramatically different. (b/119580449 was an early bug.) If so, we try to fudge it.
2553 // However, malloc implementations seem to interpret hblkhd differently, namely as
2554 // mapped blocks backing the entire heap (e.g. jemalloc) vs. large objects directly
2555 // allocated via mmap (e.g. glibc). Thus we now only do this for glibc, where it
2556 // previously helped, and which appears to use a reading of the spec compatible
2557 // with our adjustment.
2558 #if defined(__GLIBC__)
2559 if (mmapped_bytes > malloc_bytes) {
2560 malloc_bytes = mmapped_bytes;
2561 }
2562 #endif // GLIBC
2563 #else // Neither Bionic nor Glibc
2564 // We should hit this case only in contexts in which GC triggering is not critical. Effectively
2565 // disable GC triggering based on malloc().
2566 malloc_bytes = 1000;
2567 #endif
2568 return malloc_bytes + native_bytes_registered_.load(std::memory_order_relaxed);
2569 // An alternative would be to get RSS from /proc/self/statm. Empirically, that's no
2570 // more expensive, and it would allow us to count memory allocated by means other than malloc.
2571 // However it would change as pages are unmapped and remapped due to memory pressure, among
2572 // other things. It seems risky to trigger GCs as a result of such changes.
2573 }
2574
CollectGarbageInternal(collector::GcType gc_type,GcCause gc_cause,bool clear_soft_references)2575 collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type,
2576 GcCause gc_cause,
2577 bool clear_soft_references) {
2578 Thread* self = Thread::Current();
2579 Runtime* runtime = Runtime::Current();
2580 // If the heap can't run the GC, silently fail and return that no GC was run.
2581 switch (gc_type) {
2582 case collector::kGcTypePartial: {
2583 if (!HasZygoteSpace()) {
2584 return collector::kGcTypeNone;
2585 }
2586 break;
2587 }
2588 default: {
2589 // Other GC types don't have any special cases which makes them not runnable. The main case
2590 // here is full GC.
2591 }
2592 }
2593 ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
2594 Locks::mutator_lock_->AssertNotHeld(self);
2595 if (self->IsHandlingStackOverflow()) {
2596 // If we are throwing a stack overflow error we probably don't have enough remaining stack
2597 // space to run the GC.
2598 return collector::kGcTypeNone;
2599 }
2600 bool compacting_gc;
2601 {
2602 gc_complete_lock_->AssertNotHeld(self);
2603 ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
2604 MutexLock mu(self, *gc_complete_lock_);
2605 // Ensure there is only one GC at a time.
2606 WaitForGcToCompleteLocked(gc_cause, self);
2607 compacting_gc = IsMovingGc(collector_type_);
2608 // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
2609 if (compacting_gc && disable_moving_gc_count_ != 0) {
2610 LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
2611 return collector::kGcTypeNone;
2612 }
2613 if (gc_disabled_for_shutdown_) {
2614 return collector::kGcTypeNone;
2615 }
2616 collector_type_running_ = collector_type_;
2617 }
2618 if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
2619 ++runtime->GetStats()->gc_for_alloc_count;
2620 ++self->GetStats()->gc_for_alloc_count;
2621 }
2622 const size_t bytes_allocated_before_gc = GetBytesAllocated();
2623
2624 DCHECK_LT(gc_type, collector::kGcTypeMax);
2625 DCHECK_NE(gc_type, collector::kGcTypeNone);
2626
2627 collector::GarbageCollector* collector = nullptr;
2628 // TODO: Clean this up.
2629 if (compacting_gc) {
2630 DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
2631 current_allocator_ == kAllocatorTypeTLAB ||
2632 current_allocator_ == kAllocatorTypeRegion ||
2633 current_allocator_ == kAllocatorTypeRegionTLAB);
2634 switch (collector_type_) {
2635 case kCollectorTypeSS:
2636 semi_space_collector_->SetFromSpace(bump_pointer_space_);
2637 semi_space_collector_->SetToSpace(temp_space_);
2638 semi_space_collector_->SetSwapSemiSpaces(true);
2639 collector = semi_space_collector_;
2640 break;
2641 case kCollectorTypeCC:
2642 if (use_generational_cc_) {
2643 // TODO: Other threads must do the flip checkpoint before they start poking at
2644 // active_concurrent_copying_collector_. So we should not concurrency here.
2645 active_concurrent_copying_collector_ = (gc_type == collector::kGcTypeSticky) ?
2646 young_concurrent_copying_collector_ : concurrent_copying_collector_;
2647 DCHECK(active_concurrent_copying_collector_->RegionSpace() == region_space_);
2648 }
2649 collector = active_concurrent_copying_collector_;
2650 break;
2651 default:
2652 LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_);
2653 }
2654 if (collector != active_concurrent_copying_collector_) {
2655 temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2656 if (kIsDebugBuild) {
2657 // Try to read each page of the memory map in case mprotect didn't work properly b/19894268.
2658 temp_space_->GetMemMap()->TryReadable();
2659 }
2660 CHECK(temp_space_->IsEmpty());
2661 }
2662 gc_type = collector::kGcTypeFull; // TODO: Not hard code this in.
2663 } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
2664 current_allocator_ == kAllocatorTypeDlMalloc) {
2665 collector = FindCollectorByGcType(gc_type);
2666 } else {
2667 LOG(FATAL) << "Invalid current allocator " << current_allocator_;
2668 }
2669
2670 CHECK(collector != nullptr)
2671 << "Could not find garbage collector with collector_type="
2672 << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type;
2673 collector->Run(gc_cause, clear_soft_references || runtime->IsZygote());
2674 IncrementFreedEver();
2675 RequestTrim(self);
2676 // Collect cleared references.
2677 SelfDeletingTask* clear = reference_processor_->CollectClearedReferences(self);
2678 // Grow the heap so that we know when to perform the next GC.
2679 GrowForUtilization(collector, bytes_allocated_before_gc);
2680 LogGC(gc_cause, collector);
2681 FinishGC(self, gc_type);
2682 // Actually enqueue all cleared references. Do this after the GC has officially finished since
2683 // otherwise we can deadlock.
2684 clear->Run(self);
2685 clear->Finalize();
2686 // Inform DDMS that a GC completed.
2687 Dbg::GcDidFinish();
2688
2689 old_native_bytes_allocated_.store(GetNativeBytes());
2690
2691 // Unload native libraries for class unloading. We do this after calling FinishGC to prevent
2692 // deadlocks in case the JNI_OnUnload function does allocations.
2693 {
2694 ScopedObjectAccess soa(self);
2695 soa.Vm()->UnloadNativeLibraries();
2696 }
2697 return gc_type;
2698 }
2699
LogGC(GcCause gc_cause,collector::GarbageCollector * collector)2700 void Heap::LogGC(GcCause gc_cause, collector::GarbageCollector* collector) {
2701 const size_t duration = GetCurrentGcIteration()->GetDurationNs();
2702 const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes();
2703 // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC
2704 // (mutator time blocked >= long_pause_log_threshold_).
2705 bool log_gc = kLogAllGCs || (gc_cause == kGcCauseExplicit && always_log_explicit_gcs_);
2706 if (!log_gc && CareAboutPauseTimes()) {
2707 // GC for alloc pauses the allocating thread, so consider it as a pause.
2708 log_gc = duration > long_gc_log_threshold_ ||
2709 (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
2710 for (uint64_t pause : pause_times) {
2711 log_gc = log_gc || pause >= long_pause_log_threshold_;
2712 }
2713 }
2714 if (log_gc) {
2715 const size_t percent_free = GetPercentFree();
2716 const size_t current_heap_size = GetBytesAllocated();
2717 const size_t total_memory = GetTotalMemory();
2718 std::ostringstream pause_string;
2719 for (size_t i = 0; i < pause_times.size(); ++i) {
2720 pause_string << PrettyDuration((pause_times[i] / 1000) * 1000)
2721 << ((i != pause_times.size() - 1) ? "," : "");
2722 }
2723 LOG(INFO) << gc_cause << " " << collector->GetName()
2724 << " GC freed " << current_gc_iteration_.GetFreedObjects() << "("
2725 << PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, "
2726 << current_gc_iteration_.GetFreedLargeObjects() << "("
2727 << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, "
2728 << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
2729 << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
2730 << " total " << PrettyDuration((duration / 1000) * 1000);
2731 VLOG(heap) << Dumpable<TimingLogger>(*current_gc_iteration_.GetTimings());
2732 }
2733 }
2734
FinishGC(Thread * self,collector::GcType gc_type)2735 void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
2736 MutexLock mu(self, *gc_complete_lock_);
2737 collector_type_running_ = kCollectorTypeNone;
2738 if (gc_type != collector::kGcTypeNone) {
2739 last_gc_type_ = gc_type;
2740
2741 // Update stats.
2742 ++gc_count_last_window_;
2743 if (running_collection_is_blocking_) {
2744 // If the currently running collection was a blocking one,
2745 // increment the counters and reset the flag.
2746 ++blocking_gc_count_;
2747 blocking_gc_time_ += GetCurrentGcIteration()->GetDurationNs();
2748 ++blocking_gc_count_last_window_;
2749 }
2750 // Update the gc count rate histograms if due.
2751 UpdateGcCountRateHistograms();
2752 }
2753 // Reset.
2754 running_collection_is_blocking_ = false;
2755 thread_running_gc_ = nullptr;
2756 // Wake anyone who may have been waiting for the GC to complete.
2757 gc_complete_cond_->Broadcast(self);
2758 }
2759
UpdateGcCountRateHistograms()2760 void Heap::UpdateGcCountRateHistograms() {
2761 // Invariant: if the time since the last update includes more than
2762 // one windows, all the GC runs (if > 0) must have happened in first
2763 // window because otherwise the update must have already taken place
2764 // at an earlier GC run. So, we report the non-first windows with
2765 // zero counts to the histograms.
2766 DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
2767 uint64_t now = NanoTime();
2768 DCHECK_GE(now, last_update_time_gc_count_rate_histograms_);
2769 uint64_t time_since_last_update = now - last_update_time_gc_count_rate_histograms_;
2770 uint64_t num_of_windows = time_since_last_update / kGcCountRateHistogramWindowDuration;
2771
2772 // The computed number of windows can be incoherently high if NanoTime() is not monotonic.
2773 // Setting a limit on its maximum value reduces the impact on CPU time in such cases.
2774 if (num_of_windows > kGcCountRateHistogramMaxNumMissedWindows) {
2775 LOG(WARNING) << "Reducing the number of considered missed Gc histogram windows from "
2776 << num_of_windows << " to " << kGcCountRateHistogramMaxNumMissedWindows;
2777 num_of_windows = kGcCountRateHistogramMaxNumMissedWindows;
2778 }
2779
2780 if (time_since_last_update >= kGcCountRateHistogramWindowDuration) {
2781 // Record the first window.
2782 gc_count_rate_histogram_.AddValue(gc_count_last_window_ - 1); // Exclude the current run.
2783 blocking_gc_count_rate_histogram_.AddValue(running_collection_is_blocking_ ?
2784 blocking_gc_count_last_window_ - 1 : blocking_gc_count_last_window_);
2785 // Record the other windows (with zero counts).
2786 for (uint64_t i = 0; i < num_of_windows - 1; ++i) {
2787 gc_count_rate_histogram_.AddValue(0);
2788 blocking_gc_count_rate_histogram_.AddValue(0);
2789 }
2790 // Update the last update time and reset the counters.
2791 last_update_time_gc_count_rate_histograms_ =
2792 (now / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
2793 gc_count_last_window_ = 1; // Include the current run.
2794 blocking_gc_count_last_window_ = running_collection_is_blocking_ ? 1 : 0;
2795 }
2796 DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
2797 }
2798
2799 class RootMatchesObjectVisitor : public SingleRootVisitor {
2800 public:
RootMatchesObjectVisitor(const mirror::Object * obj)2801 explicit RootMatchesObjectVisitor(const mirror::Object* obj) : obj_(obj) { }
2802
VisitRoot(mirror::Object * root,const RootInfo & info)2803 void VisitRoot(mirror::Object* root, const RootInfo& info)
2804 override REQUIRES_SHARED(Locks::mutator_lock_) {
2805 if (root == obj_) {
2806 LOG(INFO) << "Object " << obj_ << " is a root " << info.ToString();
2807 }
2808 }
2809
2810 private:
2811 const mirror::Object* const obj_;
2812 };
2813
2814
2815 class ScanVisitor {
2816 public:
operator ()(const mirror::Object * obj) const2817 void operator()(const mirror::Object* obj) const {
2818 LOG(ERROR) << "Would have rescanned object " << obj;
2819 }
2820 };
2821
2822 // Verify a reference from an object.
2823 class VerifyReferenceVisitor : public SingleRootVisitor {
2824 public:
VerifyReferenceVisitor(Thread * self,Heap * heap,size_t * fail_count,bool verify_referent)2825 VerifyReferenceVisitor(Thread* self, Heap* heap, size_t* fail_count, bool verify_referent)
2826 REQUIRES_SHARED(Locks::mutator_lock_)
2827 : self_(self), heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {
2828 CHECK_EQ(self_, Thread::Current());
2829 }
2830
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const2831 void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED, ObjPtr<mirror::Reference> ref) const
2832 REQUIRES_SHARED(Locks::mutator_lock_) {
2833 if (verify_referent_) {
2834 VerifyReference(ref.Ptr(), ref->GetReferent(), mirror::Reference::ReferentOffset());
2835 }
2836 }
2837
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const2838 void operator()(ObjPtr<mirror::Object> obj,
2839 MemberOffset offset,
2840 bool is_static ATTRIBUTE_UNUSED) const
2841 REQUIRES_SHARED(Locks::mutator_lock_) {
2842 VerifyReference(obj.Ptr(), obj->GetFieldObject<mirror::Object>(offset), offset);
2843 }
2844
IsLive(ObjPtr<mirror::Object> obj) const2845 bool IsLive(ObjPtr<mirror::Object> obj) const NO_THREAD_SAFETY_ANALYSIS {
2846 return heap_->IsLiveObjectLocked(obj, true, false, true);
2847 }
2848
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const2849 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
2850 REQUIRES_SHARED(Locks::mutator_lock_) {
2851 if (!root->IsNull()) {
2852 VisitRoot(root);
2853 }
2854 }
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const2855 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
2856 REQUIRES_SHARED(Locks::mutator_lock_) {
2857 const_cast<VerifyReferenceVisitor*>(this)->VisitRoot(
2858 root->AsMirrorPtr(), RootInfo(kRootVMInternal));
2859 }
2860
VisitRoot(mirror::Object * root,const RootInfo & root_info)2861 void VisitRoot(mirror::Object* root, const RootInfo& root_info) override
2862 REQUIRES_SHARED(Locks::mutator_lock_) {
2863 if (root == nullptr) {
2864 LOG(ERROR) << "Root is null with info " << root_info.GetType();
2865 } else if (!VerifyReference(nullptr, root, MemberOffset(0))) {
2866 LOG(ERROR) << "Root " << root << " is dead with type " << mirror::Object::PrettyTypeOf(root)
2867 << " thread_id= " << root_info.GetThreadId() << " root_type= " << root_info.GetType();
2868 }
2869 }
2870
2871 private:
2872 // TODO: Fix the no thread safety analysis.
2873 // Returns false on failure.
VerifyReference(mirror::Object * obj,mirror::Object * ref,MemberOffset offset) const2874 bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
2875 NO_THREAD_SAFETY_ANALYSIS {
2876 if (ref == nullptr || IsLive(ref)) {
2877 // Verify that the reference is live.
2878 return true;
2879 }
2880 CHECK_EQ(self_, Thread::Current()); // fail_count_ is private to the calling thread.
2881 *fail_count_ += 1;
2882 if (*fail_count_ == 1) {
2883 // Only print message for the first failure to prevent spam.
2884 LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
2885 }
2886 if (obj != nullptr) {
2887 // Only do this part for non roots.
2888 accounting::CardTable* card_table = heap_->GetCardTable();
2889 accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
2890 accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2891 uint8_t* card_addr = card_table->CardFromAddr(obj);
2892 LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
2893 << offset << "\n card value = " << static_cast<int>(*card_addr);
2894 if (heap_->IsValidObjectAddress(obj->GetClass())) {
2895 LOG(ERROR) << "Obj type " << obj->PrettyTypeOf();
2896 } else {
2897 LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
2898 }
2899
2900 // Attempt to find the class inside of the recently freed objects.
2901 space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
2902 if (ref_space != nullptr && ref_space->IsMallocSpace()) {
2903 space::MallocSpace* space = ref_space->AsMallocSpace();
2904 mirror::Class* ref_class = space->FindRecentFreedObject(ref);
2905 if (ref_class != nullptr) {
2906 LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
2907 << ref_class->PrettyClass();
2908 } else {
2909 LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
2910 }
2911 }
2912
2913 if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
2914 ref->GetClass()->IsClass()) {
2915 LOG(ERROR) << "Ref type " << ref->PrettyTypeOf();
2916 } else {
2917 LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
2918 << ") is not a valid heap address";
2919 }
2920
2921 card_table->CheckAddrIsInCardTable(reinterpret_cast<const uint8_t*>(obj));
2922 void* cover_begin = card_table->AddrFromCard(card_addr);
2923 void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
2924 accounting::CardTable::kCardSize);
2925 LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
2926 << "-" << cover_end;
2927 accounting::ContinuousSpaceBitmap* bitmap =
2928 heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
2929
2930 if (bitmap == nullptr) {
2931 LOG(ERROR) << "Object " << obj << " has no bitmap";
2932 if (!VerifyClassClass(obj->GetClass())) {
2933 LOG(ERROR) << "Object " << obj << " failed class verification!";
2934 }
2935 } else {
2936 // Print out how the object is live.
2937 if (bitmap->Test(obj)) {
2938 LOG(ERROR) << "Object " << obj << " found in live bitmap";
2939 }
2940 if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
2941 LOG(ERROR) << "Object " << obj << " found in allocation stack";
2942 }
2943 if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
2944 LOG(ERROR) << "Object " << obj << " found in live stack";
2945 }
2946 if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
2947 LOG(ERROR) << "Ref " << ref << " found in allocation stack";
2948 }
2949 if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
2950 LOG(ERROR) << "Ref " << ref << " found in live stack";
2951 }
2952 // Attempt to see if the card table missed the reference.
2953 ScanVisitor scan_visitor;
2954 uint8_t* byte_cover_begin = reinterpret_cast<uint8_t*>(card_table->AddrFromCard(card_addr));
2955 card_table->Scan<false>(bitmap, byte_cover_begin,
2956 byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
2957 }
2958
2959 // Search to see if any of the roots reference our object.
2960 RootMatchesObjectVisitor visitor1(obj);
2961 Runtime::Current()->VisitRoots(&visitor1);
2962 // Search to see if any of the roots reference our reference.
2963 RootMatchesObjectVisitor visitor2(ref);
2964 Runtime::Current()->VisitRoots(&visitor2);
2965 }
2966 return false;
2967 }
2968
2969 Thread* const self_;
2970 Heap* const heap_;
2971 size_t* const fail_count_;
2972 const bool verify_referent_;
2973 };
2974
2975 // Verify all references within an object, for use with HeapBitmap::Visit.
2976 class VerifyObjectVisitor {
2977 public:
VerifyObjectVisitor(Thread * self,Heap * heap,size_t * fail_count,bool verify_referent)2978 VerifyObjectVisitor(Thread* self, Heap* heap, size_t* fail_count, bool verify_referent)
2979 : self_(self), heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
2980
operator ()(mirror::Object * obj)2981 void operator()(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2982 // Note: we are verifying the references in obj but not obj itself, this is because obj must
2983 // be live or else how did we find it in the live bitmap?
2984 VerifyReferenceVisitor visitor(self_, heap_, fail_count_, verify_referent_);
2985 // The class doesn't count as a reference but we should verify it anyways.
2986 obj->VisitReferences(visitor, visitor);
2987 }
2988
VerifyRoots()2989 void VerifyRoots() REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Locks::heap_bitmap_lock_) {
2990 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
2991 VerifyReferenceVisitor visitor(self_, heap_, fail_count_, verify_referent_);
2992 Runtime::Current()->VisitRoots(&visitor);
2993 }
2994
GetFailureCount() const2995 uint32_t GetFailureCount() const REQUIRES(Locks::mutator_lock_) {
2996 CHECK_EQ(self_, Thread::Current());
2997 return *fail_count_;
2998 }
2999
3000 private:
3001 Thread* const self_;
3002 Heap* const heap_;
3003 size_t* const fail_count_;
3004 const bool verify_referent_;
3005 };
3006
PushOnAllocationStackWithInternalGC(Thread * self,ObjPtr<mirror::Object> * obj)3007 void Heap::PushOnAllocationStackWithInternalGC(Thread* self, ObjPtr<mirror::Object>* obj) {
3008 // Slow path, the allocation stack push back must have already failed.
3009 DCHECK(!allocation_stack_->AtomicPushBack(obj->Ptr()));
3010 do {
3011 // TODO: Add handle VerifyObject.
3012 StackHandleScope<1> hs(self);
3013 HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
3014 // Push our object into the reserve region of the allocation stack. This is only required due
3015 // to heap verification requiring that roots are live (either in the live bitmap or in the
3016 // allocation stack).
3017 CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(obj->Ptr()));
3018 CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
3019 } while (!allocation_stack_->AtomicPushBack(obj->Ptr()));
3020 }
3021
PushOnThreadLocalAllocationStackWithInternalGC(Thread * self,ObjPtr<mirror::Object> * obj)3022 void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self,
3023 ObjPtr<mirror::Object>* obj) {
3024 // Slow path, the allocation stack push back must have already failed.
3025 DCHECK(!self->PushOnThreadLocalAllocationStack(obj->Ptr()));
3026 StackReference<mirror::Object>* start_address;
3027 StackReference<mirror::Object>* end_address;
3028 while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address,
3029 &end_address)) {
3030 // TODO: Add handle VerifyObject.
3031 StackHandleScope<1> hs(self);
3032 HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
3033 // Push our object into the reserve region of the allocaiton stack. This is only required due
3034 // to heap verification requiring that roots are live (either in the live bitmap or in the
3035 // allocation stack).
3036 CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(obj->Ptr()));
3037 // Push into the reserve allocation stack.
3038 CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
3039 }
3040 self->SetThreadLocalAllocationStack(start_address, end_address);
3041 // Retry on the new thread-local allocation stack.
3042 CHECK(self->PushOnThreadLocalAllocationStack(obj->Ptr())); // Must succeed.
3043 }
3044
3045 // Must do this with mutators suspended since we are directly accessing the allocation stacks.
VerifyHeapReferences(bool verify_referents)3046 size_t Heap::VerifyHeapReferences(bool verify_referents) {
3047 Thread* self = Thread::Current();
3048 Locks::mutator_lock_->AssertExclusiveHeld(self);
3049 // Lets sort our allocation stacks so that we can efficiently binary search them.
3050 allocation_stack_->Sort();
3051 live_stack_->Sort();
3052 // Since we sorted the allocation stack content, need to revoke all
3053 // thread-local allocation stacks.
3054 RevokeAllThreadLocalAllocationStacks(self);
3055 size_t fail_count = 0;
3056 VerifyObjectVisitor visitor(self, this, &fail_count, verify_referents);
3057 // Verify objects in the allocation stack since these will be objects which were:
3058 // 1. Allocated prior to the GC (pre GC verification).
3059 // 2. Allocated during the GC (pre sweep GC verification).
3060 // We don't want to verify the objects in the live stack since they themselves may be
3061 // pointing to dead objects if they are not reachable.
3062 VisitObjectsPaused(visitor);
3063 // Verify the roots:
3064 visitor.VerifyRoots();
3065 if (visitor.GetFailureCount() > 0) {
3066 // Dump mod-union tables.
3067 for (const auto& table_pair : mod_union_tables_) {
3068 accounting::ModUnionTable* mod_union_table = table_pair.second;
3069 mod_union_table->Dump(LOG_STREAM(ERROR) << mod_union_table->GetName() << ": ");
3070 }
3071 // Dump remembered sets.
3072 for (const auto& table_pair : remembered_sets_) {
3073 accounting::RememberedSet* remembered_set = table_pair.second;
3074 remembered_set->Dump(LOG_STREAM(ERROR) << remembered_set->GetName() << ": ");
3075 }
3076 DumpSpaces(LOG_STREAM(ERROR));
3077 }
3078 return visitor.GetFailureCount();
3079 }
3080
3081 class VerifyReferenceCardVisitor {
3082 public:
VerifyReferenceCardVisitor(Heap * heap,bool * failed)3083 VerifyReferenceCardVisitor(Heap* heap, bool* failed)
3084 REQUIRES_SHARED(Locks::mutator_lock_,
3085 Locks::heap_bitmap_lock_)
3086 : heap_(heap), failed_(failed) {
3087 }
3088
3089 // There is no card marks for native roots on a class.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const3090 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
3091 const {}
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const3092 void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
3093
3094 // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
3095 // annotalysis on visitors.
operator ()(mirror::Object * obj,MemberOffset offset,bool is_static) const3096 void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
3097 NO_THREAD_SAFETY_ANALYSIS {
3098 mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
3099 // Filter out class references since changing an object's class does not mark the card as dirty.
3100 // Also handles large objects, since the only reference they hold is a class reference.
3101 if (ref != nullptr && !ref->IsClass()) {
3102 accounting::CardTable* card_table = heap_->GetCardTable();
3103 // If the object is not dirty and it is referencing something in the live stack other than
3104 // class, then it must be on a dirty card.
3105 if (!card_table->AddrIsInCardTable(obj)) {
3106 LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
3107 *failed_ = true;
3108 } else if (!card_table->IsDirty(obj)) {
3109 // TODO: Check mod-union tables.
3110 // Card should be either kCardDirty if it got re-dirtied after we aged it, or
3111 // kCardDirty - 1 if it didnt get touched since we aged it.
3112 accounting::ObjectStack* live_stack = heap_->live_stack_.get();
3113 if (live_stack->ContainsSorted(ref)) {
3114 if (live_stack->ContainsSorted(obj)) {
3115 LOG(ERROR) << "Object " << obj << " found in live stack";
3116 }
3117 if (heap_->GetLiveBitmap()->Test(obj)) {
3118 LOG(ERROR) << "Object " << obj << " found in live bitmap";
3119 }
3120 LOG(ERROR) << "Object " << obj << " " << mirror::Object::PrettyTypeOf(obj)
3121 << " references " << ref << " " << mirror::Object::PrettyTypeOf(ref)
3122 << " in live stack";
3123
3124 // Print which field of the object is dead.
3125 if (!obj->IsObjectArray()) {
3126 ObjPtr<mirror::Class> klass = is_static ? obj->AsClass() : obj->GetClass();
3127 CHECK(klass != nullptr);
3128 for (ArtField& field : (is_static ? klass->GetSFields() : klass->GetIFields())) {
3129 if (field.GetOffset().Int32Value() == offset.Int32Value()) {
3130 LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
3131 << field.PrettyField();
3132 break;
3133 }
3134 }
3135 } else {
3136 ObjPtr<mirror::ObjectArray<mirror::Object>> object_array =
3137 obj->AsObjectArray<mirror::Object>();
3138 for (int32_t i = 0; i < object_array->GetLength(); ++i) {
3139 if (object_array->Get(i) == ref) {
3140 LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
3141 }
3142 }
3143 }
3144
3145 *failed_ = true;
3146 }
3147 }
3148 }
3149 }
3150
3151 private:
3152 Heap* const heap_;
3153 bool* const failed_;
3154 };
3155
3156 class VerifyLiveStackReferences {
3157 public:
VerifyLiveStackReferences(Heap * heap)3158 explicit VerifyLiveStackReferences(Heap* heap)
3159 : heap_(heap),
3160 failed_(false) {}
3161
operator ()(mirror::Object * obj) const3162 void operator()(mirror::Object* obj) const
3163 REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
3164 VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
3165 obj->VisitReferences(visitor, VoidFunctor());
3166 }
3167
Failed() const3168 bool Failed() const {
3169 return failed_;
3170 }
3171
3172 private:
3173 Heap* const heap_;
3174 bool failed_;
3175 };
3176
VerifyMissingCardMarks()3177 bool Heap::VerifyMissingCardMarks() {
3178 Thread* self = Thread::Current();
3179 Locks::mutator_lock_->AssertExclusiveHeld(self);
3180 // We need to sort the live stack since we binary search it.
3181 live_stack_->Sort();
3182 // Since we sorted the allocation stack content, need to revoke all
3183 // thread-local allocation stacks.
3184 RevokeAllThreadLocalAllocationStacks(self);
3185 VerifyLiveStackReferences visitor(this);
3186 GetLiveBitmap()->Visit(visitor);
3187 // We can verify objects in the live stack since none of these should reference dead objects.
3188 for (auto* it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
3189 if (!kUseThreadLocalAllocationStack || it->AsMirrorPtr() != nullptr) {
3190 visitor(it->AsMirrorPtr());
3191 }
3192 }
3193 return !visitor.Failed();
3194 }
3195
SwapStacks()3196 void Heap::SwapStacks() {
3197 if (kUseThreadLocalAllocationStack) {
3198 live_stack_->AssertAllZero();
3199 }
3200 allocation_stack_.swap(live_stack_);
3201 }
3202
RevokeAllThreadLocalAllocationStacks(Thread * self)3203 void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
3204 // This must be called only during the pause.
3205 DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
3206 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
3207 MutexLock mu2(self, *Locks::thread_list_lock_);
3208 std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
3209 for (Thread* t : thread_list) {
3210 t->RevokeThreadLocalAllocationStack();
3211 }
3212 }
3213
AssertThreadLocalBuffersAreRevoked(Thread * thread)3214 void Heap::AssertThreadLocalBuffersAreRevoked(Thread* thread) {
3215 if (kIsDebugBuild) {
3216 if (rosalloc_space_ != nullptr) {
3217 rosalloc_space_->AssertThreadLocalBuffersAreRevoked(thread);
3218 }
3219 if (bump_pointer_space_ != nullptr) {
3220 bump_pointer_space_->AssertThreadLocalBuffersAreRevoked(thread);
3221 }
3222 }
3223 }
3224
AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked()3225 void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
3226 if (kIsDebugBuild) {
3227 if (bump_pointer_space_ != nullptr) {
3228 bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
3229 }
3230 }
3231 }
3232
FindModUnionTableFromSpace(space::Space * space)3233 accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
3234 auto it = mod_union_tables_.find(space);
3235 if (it == mod_union_tables_.end()) {
3236 return nullptr;
3237 }
3238 return it->second;
3239 }
3240
FindRememberedSetFromSpace(space::Space * space)3241 accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
3242 auto it = remembered_sets_.find(space);
3243 if (it == remembered_sets_.end()) {
3244 return nullptr;
3245 }
3246 return it->second;
3247 }
3248
ProcessCards(TimingLogger * timings,bool use_rem_sets,bool process_alloc_space_cards,bool clear_alloc_space_cards)3249 void Heap::ProcessCards(TimingLogger* timings,
3250 bool use_rem_sets,
3251 bool process_alloc_space_cards,
3252 bool clear_alloc_space_cards) {
3253 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3254 // Clear cards and keep track of cards cleared in the mod-union table.
3255 for (const auto& space : continuous_spaces_) {
3256 accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
3257 accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
3258 if (table != nullptr) {
3259 const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
3260 "ImageModUnionClearCards";
3261 TimingLogger::ScopedTiming t2(name, timings);
3262 table->ProcessCards();
3263 } else if (use_rem_sets && rem_set != nullptr) {
3264 DCHECK(collector::SemiSpace::kUseRememberedSet) << static_cast<int>(collector_type_);
3265 TimingLogger::ScopedTiming t2("AllocSpaceRemSetClearCards", timings);
3266 rem_set->ClearCards();
3267 } else if (process_alloc_space_cards) {
3268 TimingLogger::ScopedTiming t2("AllocSpaceClearCards", timings);
3269 if (clear_alloc_space_cards) {
3270 uint8_t* end = space->End();
3271 if (space->IsImageSpace()) {
3272 // Image space end is the end of the mirror objects, it is not necessarily page or card
3273 // aligned. Align up so that the check in ClearCardRange does not fail.
3274 end = AlignUp(end, accounting::CardTable::kCardSize);
3275 }
3276 card_table_->ClearCardRange(space->Begin(), end);
3277 } else {
3278 // No mod union table for the AllocSpace. Age the cards so that the GC knows that these
3279 // cards were dirty before the GC started.
3280 // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
3281 // -> clean(cleaning thread).
3282 // The races are we either end up with: Aged card, unaged card. Since we have the
3283 // checkpoint roots and then we scan / update mod union tables after. We will always
3284 // scan either card. If we end up with the non aged card, we scan it it in the pause.
3285 card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(),
3286 VoidFunctor());
3287 }
3288 }
3289 }
3290 }
3291
3292 struct IdentityMarkHeapReferenceVisitor : public MarkObjectVisitor {
MarkObjectart::gc::IdentityMarkHeapReferenceVisitor3293 mirror::Object* MarkObject(mirror::Object* obj) override {
3294 return obj;
3295 }
MarkHeapReferenceart::gc::IdentityMarkHeapReferenceVisitor3296 void MarkHeapReference(mirror::HeapReference<mirror::Object>*, bool) override {
3297 }
3298 };
3299
PreGcVerificationPaused(collector::GarbageCollector * gc)3300 void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) {
3301 Thread* const self = Thread::Current();
3302 TimingLogger* const timings = current_gc_iteration_.GetTimings();
3303 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3304 if (verify_pre_gc_heap_) {
3305 TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyHeapReferences", timings);
3306 size_t failures = VerifyHeapReferences();
3307 if (failures > 0) {
3308 LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
3309 << " failures";
3310 }
3311 }
3312 // Check that all objects which reference things in the live stack are on dirty cards.
3313 if (verify_missing_card_marks_) {
3314 TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyMissingCardMarks", timings);
3315 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
3316 SwapStacks();
3317 // Sort the live stack so that we can quickly binary search it later.
3318 CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName()
3319 << " missing card mark verification failed\n" << DumpSpaces();
3320 SwapStacks();
3321 }
3322 if (verify_mod_union_table_) {
3323 TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyModUnionTables", timings);
3324 ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
3325 for (const auto& table_pair : mod_union_tables_) {
3326 accounting::ModUnionTable* mod_union_table = table_pair.second;
3327 IdentityMarkHeapReferenceVisitor visitor;
3328 mod_union_table->UpdateAndMarkReferences(&visitor);
3329 mod_union_table->Verify();
3330 }
3331 }
3332 }
3333
PreGcVerification(collector::GarbageCollector * gc)3334 void Heap::PreGcVerification(collector::GarbageCollector* gc) {
3335 if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) {
3336 collector::GarbageCollector::ScopedPause pause(gc, false);
3337 PreGcVerificationPaused(gc);
3338 }
3339 }
3340
PrePauseRosAllocVerification(collector::GarbageCollector * gc ATTRIBUTE_UNUSED)3341 void Heap::PrePauseRosAllocVerification(collector::GarbageCollector* gc ATTRIBUTE_UNUSED) {
3342 // TODO: Add a new runtime option for this?
3343 if (verify_pre_gc_rosalloc_) {
3344 RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification");
3345 }
3346 }
3347
PreSweepingGcVerification(collector::GarbageCollector * gc)3348 void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
3349 Thread* const self = Thread::Current();
3350 TimingLogger* const timings = current_gc_iteration_.GetTimings();
3351 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3352 // Called before sweeping occurs since we want to make sure we are not going so reclaim any
3353 // reachable objects.
3354 if (verify_pre_sweeping_heap_) {
3355 TimingLogger::ScopedTiming t2("(Paused)PostSweepingVerifyHeapReferences", timings);
3356 CHECK_NE(self->GetState(), kRunnable);
3357 {
3358 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
3359 // Swapping bound bitmaps does nothing.
3360 gc->SwapBitmaps();
3361 }
3362 // Pass in false since concurrent reference processing can mean that the reference referents
3363 // may point to dead objects at the point which PreSweepingGcVerification is called.
3364 size_t failures = VerifyHeapReferences(false);
3365 if (failures > 0) {
3366 LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures
3367 << " failures";
3368 }
3369 {
3370 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
3371 gc->SwapBitmaps();
3372 }
3373 }
3374 if (verify_pre_sweeping_rosalloc_) {
3375 RosAllocVerification(timings, "PreSweepingRosAllocVerification");
3376 }
3377 }
3378
PostGcVerificationPaused(collector::GarbageCollector * gc)3379 void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) {
3380 // Only pause if we have to do some verification.
3381 Thread* const self = Thread::Current();
3382 TimingLogger* const timings = GetCurrentGcIteration()->GetTimings();
3383 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3384 if (verify_system_weaks_) {
3385 ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
3386 collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
3387 mark_sweep->VerifySystemWeaks();
3388 }
3389 if (verify_post_gc_rosalloc_) {
3390 RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification");
3391 }
3392 if (verify_post_gc_heap_) {
3393 TimingLogger::ScopedTiming t2("(Paused)PostGcVerifyHeapReferences", timings);
3394 size_t failures = VerifyHeapReferences();
3395 if (failures > 0) {
3396 LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
3397 << " failures";
3398 }
3399 }
3400 }
3401
PostGcVerification(collector::GarbageCollector * gc)3402 void Heap::PostGcVerification(collector::GarbageCollector* gc) {
3403 if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) {
3404 collector::GarbageCollector::ScopedPause pause(gc, false);
3405 PostGcVerificationPaused(gc);
3406 }
3407 }
3408
RosAllocVerification(TimingLogger * timings,const char * name)3409 void Heap::RosAllocVerification(TimingLogger* timings, const char* name) {
3410 TimingLogger::ScopedTiming t(name, timings);
3411 for (const auto& space : continuous_spaces_) {
3412 if (space->IsRosAllocSpace()) {
3413 VLOG(heap) << name << " : " << space->GetName();
3414 space->AsRosAllocSpace()->Verify();
3415 }
3416 }
3417 }
3418
WaitForGcToComplete(GcCause cause,Thread * self)3419 collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) {
3420 ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
3421 MutexLock mu(self, *gc_complete_lock_);
3422 return WaitForGcToCompleteLocked(cause, self);
3423 }
3424
WaitForGcToCompleteLocked(GcCause cause,Thread * self)3425 collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) {
3426 gc_complete_cond_->CheckSafeToWait(self);
3427 collector::GcType last_gc_type = collector::kGcTypeNone;
3428 GcCause last_gc_cause = kGcCauseNone;
3429 uint64_t wait_start = NanoTime();
3430 while (collector_type_running_ != kCollectorTypeNone) {
3431 if (self != task_processor_->GetRunningThread()) {
3432 // The current thread is about to wait for a currently running
3433 // collection to finish. If the waiting thread is not the heap
3434 // task daemon thread, the currently running collection is
3435 // considered as a blocking GC.
3436 running_collection_is_blocking_ = true;
3437 VLOG(gc) << "Waiting for a blocking GC " << cause;
3438 }
3439 SCOPED_TRACE << "GC: Wait For Completion " << cause;
3440 // We must wait, change thread state then sleep on gc_complete_cond_;
3441 gc_complete_cond_->Wait(self);
3442 last_gc_type = last_gc_type_;
3443 last_gc_cause = last_gc_cause_;
3444 }
3445 uint64_t wait_time = NanoTime() - wait_start;
3446 total_wait_time_ += wait_time;
3447 if (wait_time > long_pause_log_threshold_) {
3448 LOG(INFO) << "WaitForGcToComplete blocked " << cause << " on " << last_gc_cause << " for "
3449 << PrettyDuration(wait_time);
3450 }
3451 if (self != task_processor_->GetRunningThread()) {
3452 // The current thread is about to run a collection. If the thread
3453 // is not the heap task daemon thread, it's considered as a
3454 // blocking GC (i.e., blocking itself).
3455 running_collection_is_blocking_ = true;
3456 // Don't log fake "GC" types that are only used for debugger or hidden APIs. If we log these,
3457 // it results in log spam. kGcCauseExplicit is already logged in LogGC, so avoid it here too.
3458 if (cause == kGcCauseForAlloc ||
3459 cause == kGcCauseForNativeAlloc ||
3460 cause == kGcCauseDisableMovingGc) {
3461 VLOG(gc) << "Starting a blocking GC " << cause;
3462 }
3463 }
3464 return last_gc_type;
3465 }
3466
DumpForSigQuit(std::ostream & os)3467 void Heap::DumpForSigQuit(std::ostream& os) {
3468 os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
3469 << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
3470 DumpGcPerformanceInfo(os);
3471 }
3472
GetPercentFree()3473 size_t Heap::GetPercentFree() {
3474 return static_cast<size_t>(100.0f * static_cast<float>(
3475 GetFreeMemory()) / target_footprint_.load(std::memory_order_relaxed));
3476 }
3477
SetIdealFootprint(size_t target_footprint)3478 void Heap::SetIdealFootprint(size_t target_footprint) {
3479 if (target_footprint > GetMaxMemory()) {
3480 VLOG(gc) << "Clamp target GC heap from " << PrettySize(target_footprint) << " to "
3481 << PrettySize(GetMaxMemory());
3482 target_footprint = GetMaxMemory();
3483 }
3484 target_footprint_.store(target_footprint, std::memory_order_relaxed);
3485 }
3486
IsMovableObject(ObjPtr<mirror::Object> obj) const3487 bool Heap::IsMovableObject(ObjPtr<mirror::Object> obj) const {
3488 if (kMovingCollector) {
3489 space::Space* space = FindContinuousSpaceFromObject(obj.Ptr(), true);
3490 if (space != nullptr) {
3491 // TODO: Check large object?
3492 return space->CanMoveObjects();
3493 }
3494 }
3495 return false;
3496 }
3497
FindCollectorByGcType(collector::GcType gc_type)3498 collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) {
3499 for (auto* collector : garbage_collectors_) {
3500 if (collector->GetCollectorType() == collector_type_ &&
3501 collector->GetGcType() == gc_type) {
3502 return collector;
3503 }
3504 }
3505 return nullptr;
3506 }
3507
HeapGrowthMultiplier() const3508 double Heap::HeapGrowthMultiplier() const {
3509 // If we don't care about pause times we are background, so return 1.0.
3510 if (!CareAboutPauseTimes()) {
3511 return 1.0;
3512 }
3513 return foreground_heap_growth_multiplier_;
3514 }
3515
GrowForUtilization(collector::GarbageCollector * collector_ran,size_t bytes_allocated_before_gc)3516 void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran,
3517 size_t bytes_allocated_before_gc) {
3518 // We know what our utilization is at this moment.
3519 // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
3520 const size_t bytes_allocated = GetBytesAllocated();
3521 // Trace the new heap size after the GC is finished.
3522 TraceHeapSize(bytes_allocated);
3523 uint64_t target_size, grow_bytes;
3524 collector::GcType gc_type = collector_ran->GetGcType();
3525 MutexLock mu(Thread::Current(), process_state_update_lock_);
3526 // Use the multiplier to grow more for foreground.
3527 const double multiplier = HeapGrowthMultiplier();
3528 if (gc_type != collector::kGcTypeSticky) {
3529 // Grow the heap for non sticky GC.
3530 uint64_t delta = bytes_allocated * (1.0 / GetTargetHeapUtilization() - 1.0);
3531 DCHECK_LE(delta, std::numeric_limits<size_t>::max()) << "bytes_allocated=" << bytes_allocated
3532 << " target_utilization_=" << target_utilization_;
3533 grow_bytes = std::min(delta, static_cast<uint64_t>(max_free_));
3534 grow_bytes = std::max(grow_bytes, static_cast<uint64_t>(min_free_));
3535 target_size = bytes_allocated + static_cast<uint64_t>(grow_bytes * multiplier);
3536 next_gc_type_ = collector::kGcTypeSticky;
3537 } else {
3538 collector::GcType non_sticky_gc_type = NonStickyGcType();
3539 // Find what the next non sticky collector will be.
3540 collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type);
3541 if (use_generational_cc_) {
3542 if (non_sticky_collector == nullptr) {
3543 non_sticky_collector = FindCollectorByGcType(collector::kGcTypePartial);
3544 }
3545 CHECK(non_sticky_collector != nullptr);
3546 }
3547 double sticky_gc_throughput_adjustment = GetStickyGcThroughputAdjustment(use_generational_cc_);
3548
3549 // If the throughput of the current sticky GC >= throughput of the non sticky collector, then
3550 // do another sticky collection next.
3551 // We also check that the bytes allocated aren't over the target_footprint, or
3552 // concurrent_start_bytes in case of concurrent GCs, in order to prevent a
3553 // pathological case where dead objects which aren't reclaimed by sticky could get accumulated
3554 // if the sticky GC throughput always remained >= the full/partial throughput.
3555 size_t target_footprint = target_footprint_.load(std::memory_order_relaxed);
3556 if (current_gc_iteration_.GetEstimatedThroughput() * sticky_gc_throughput_adjustment >=
3557 non_sticky_collector->GetEstimatedMeanThroughput() &&
3558 non_sticky_collector->NumberOfIterations() > 0 &&
3559 bytes_allocated <= (IsGcConcurrent() ? concurrent_start_bytes_ : target_footprint)) {
3560 next_gc_type_ = collector::kGcTypeSticky;
3561 } else {
3562 next_gc_type_ = non_sticky_gc_type;
3563 }
3564 // If we have freed enough memory, shrink the heap back down.
3565 const size_t adjusted_max_free = static_cast<size_t>(max_free_ * multiplier);
3566 if (bytes_allocated + adjusted_max_free < target_footprint) {
3567 target_size = bytes_allocated + adjusted_max_free;
3568 grow_bytes = max_free_;
3569 } else {
3570 target_size = std::max(bytes_allocated, target_footprint);
3571 // The same whether jank perceptible or not; just avoid the adjustment.
3572 grow_bytes = 0;
3573 }
3574 }
3575 CHECK_LE(target_size, std::numeric_limits<size_t>::max());
3576 if (!ignore_target_footprint_) {
3577 SetIdealFootprint(target_size);
3578 // Store target size (computed with foreground heap growth multiplier) for updating
3579 // target_footprint_ when process state switches to foreground.
3580 // target_size = 0 ensures that target_footprint_ is not updated on
3581 // process-state switch.
3582 min_foreground_target_footprint_ =
3583 (multiplier <= 1.0 && grow_bytes > 0)
3584 ? bytes_allocated + static_cast<size_t>(grow_bytes * foreground_heap_growth_multiplier_)
3585 : 0;
3586
3587 if (IsGcConcurrent()) {
3588 const uint64_t freed_bytes = current_gc_iteration_.GetFreedBytes() +
3589 current_gc_iteration_.GetFreedLargeObjectBytes() +
3590 current_gc_iteration_.GetFreedRevokeBytes();
3591 // Bytes allocated will shrink by freed_bytes after the GC runs, so if we want to figure out
3592 // how many bytes were allocated during the GC we need to add freed_bytes back on.
3593 CHECK_GE(bytes_allocated + freed_bytes, bytes_allocated_before_gc);
3594 const size_t bytes_allocated_during_gc = bytes_allocated + freed_bytes -
3595 bytes_allocated_before_gc;
3596 // Calculate when to perform the next ConcurrentGC.
3597 // Estimate how many remaining bytes we will have when we need to start the next GC.
3598 size_t remaining_bytes = bytes_allocated_during_gc;
3599 remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
3600 remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
3601 size_t target_footprint = target_footprint_.load(std::memory_order_relaxed);
3602 if (UNLIKELY(remaining_bytes > target_footprint)) {
3603 // A never going to happen situation that from the estimated allocation rate we will exceed
3604 // the applications entire footprint with the given estimated allocation rate. Schedule
3605 // another GC nearly straight away.
3606 remaining_bytes = std::min(kMinConcurrentRemainingBytes, target_footprint);
3607 }
3608 DCHECK_LE(target_footprint_.load(std::memory_order_relaxed), GetMaxMemory());
3609 // Start a concurrent GC when we get close to the estimated remaining bytes. When the
3610 // allocation rate is very high, remaining_bytes could tell us that we should start a GC
3611 // right away.
3612 concurrent_start_bytes_ = std::max(target_footprint - remaining_bytes, bytes_allocated);
3613 }
3614 }
3615 }
3616
ClampGrowthLimit()3617 void Heap::ClampGrowthLimit() {
3618 // Use heap bitmap lock to guard against races with BindLiveToMarkBitmap.
3619 ScopedObjectAccess soa(Thread::Current());
3620 WriterMutexLock mu(soa.Self(), *Locks::heap_bitmap_lock_);
3621 capacity_ = growth_limit_;
3622 for (const auto& space : continuous_spaces_) {
3623 if (space->IsMallocSpace()) {
3624 gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
3625 malloc_space->ClampGrowthLimit();
3626 }
3627 }
3628 if (collector_type_ == kCollectorTypeCC) {
3629 DCHECK(region_space_ != nullptr);
3630 // Twice the capacity as CC needs extra space for evacuating objects.
3631 region_space_->ClampGrowthLimit(2 * capacity_);
3632 }
3633 // This space isn't added for performance reasons.
3634 if (main_space_backup_.get() != nullptr) {
3635 main_space_backup_->ClampGrowthLimit();
3636 }
3637 }
3638
ClearGrowthLimit()3639 void Heap::ClearGrowthLimit() {
3640 if (target_footprint_.load(std::memory_order_relaxed) == growth_limit_
3641 && growth_limit_ < capacity_) {
3642 target_footprint_.store(capacity_, std::memory_order_relaxed);
3643 concurrent_start_bytes_ =
3644 UnsignedDifference(capacity_, kMinConcurrentRemainingBytes);
3645 }
3646 growth_limit_ = capacity_;
3647 ScopedObjectAccess soa(Thread::Current());
3648 for (const auto& space : continuous_spaces_) {
3649 if (space->IsMallocSpace()) {
3650 gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
3651 malloc_space->ClearGrowthLimit();
3652 malloc_space->SetFootprintLimit(malloc_space->Capacity());
3653 }
3654 }
3655 // This space isn't added for performance reasons.
3656 if (main_space_backup_.get() != nullptr) {
3657 main_space_backup_->ClearGrowthLimit();
3658 main_space_backup_->SetFootprintLimit(main_space_backup_->Capacity());
3659 }
3660 }
3661
AddFinalizerReference(Thread * self,ObjPtr<mirror::Object> * object)3662 void Heap::AddFinalizerReference(Thread* self, ObjPtr<mirror::Object>* object) {
3663 ScopedObjectAccess soa(self);
3664 ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(*object));
3665 jvalue args[1];
3666 args[0].l = arg.get();
3667 InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args);
3668 // Restore object in case it gets moved.
3669 *object = soa.Decode<mirror::Object>(arg.get());
3670 }
3671
RequestConcurrentGCAndSaveObject(Thread * self,bool force_full,ObjPtr<mirror::Object> * obj)3672 void Heap::RequestConcurrentGCAndSaveObject(Thread* self,
3673 bool force_full,
3674 ObjPtr<mirror::Object>* obj) {
3675 StackHandleScope<1> hs(self);
3676 HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
3677 RequestConcurrentGC(self, kGcCauseBackground, force_full);
3678 }
3679
3680 class Heap::ConcurrentGCTask : public HeapTask {
3681 public:
ConcurrentGCTask(uint64_t target_time,GcCause cause,bool force_full)3682 ConcurrentGCTask(uint64_t target_time, GcCause cause, bool force_full)
3683 : HeapTask(target_time), cause_(cause), force_full_(force_full) {}
Run(Thread * self)3684 void Run(Thread* self) override {
3685 gc::Heap* heap = Runtime::Current()->GetHeap();
3686 heap->ConcurrentGC(self, cause_, force_full_);
3687 heap->ClearConcurrentGCRequest();
3688 }
3689
3690 private:
3691 const GcCause cause_;
3692 const bool force_full_; // If true, force full (or partial) collection.
3693 };
3694
CanAddHeapTask(Thread * self)3695 static bool CanAddHeapTask(Thread* self) REQUIRES(!Locks::runtime_shutdown_lock_) {
3696 Runtime* runtime = Runtime::Current();
3697 return runtime != nullptr && runtime->IsFinishedStarting() && !runtime->IsShuttingDown(self) &&
3698 !self->IsHandlingStackOverflow();
3699 }
3700
ClearConcurrentGCRequest()3701 void Heap::ClearConcurrentGCRequest() {
3702 concurrent_gc_pending_.store(false, std::memory_order_relaxed);
3703 }
3704
RequestConcurrentGC(Thread * self,GcCause cause,bool force_full)3705 void Heap::RequestConcurrentGC(Thread* self, GcCause cause, bool force_full) {
3706 if (CanAddHeapTask(self) &&
3707 concurrent_gc_pending_.CompareAndSetStrongSequentiallyConsistent(false, true)) {
3708 task_processor_->AddTask(self, new ConcurrentGCTask(NanoTime(), // Start straight away.
3709 cause,
3710 force_full));
3711 }
3712 }
3713
ConcurrentGC(Thread * self,GcCause cause,bool force_full)3714 void Heap::ConcurrentGC(Thread* self, GcCause cause, bool force_full) {
3715 if (!Runtime::Current()->IsShuttingDown(self)) {
3716 // Wait for any GCs currently running to finish.
3717 if (WaitForGcToComplete(cause, self) == collector::kGcTypeNone) {
3718 // If we can't run the GC type we wanted to run, find the next appropriate one and try
3719 // that instead. E.g. can't do partial, so do full instead.
3720 collector::GcType next_gc_type = next_gc_type_;
3721 // If forcing full and next gc type is sticky, override with a non-sticky type.
3722 if (force_full && next_gc_type == collector::kGcTypeSticky) {
3723 next_gc_type = NonStickyGcType();
3724 }
3725 if (CollectGarbageInternal(next_gc_type, cause, false) == collector::kGcTypeNone) {
3726 for (collector::GcType gc_type : gc_plan_) {
3727 // Attempt to run the collector, if we succeed, we are done.
3728 if (gc_type > next_gc_type &&
3729 CollectGarbageInternal(gc_type, cause, false) != collector::kGcTypeNone) {
3730 break;
3731 }
3732 }
3733 }
3734 }
3735 }
3736 }
3737
3738 class Heap::CollectorTransitionTask : public HeapTask {
3739 public:
CollectorTransitionTask(uint64_t target_time)3740 explicit CollectorTransitionTask(uint64_t target_time) : HeapTask(target_time) {}
3741
Run(Thread * self)3742 void Run(Thread* self) override {
3743 gc::Heap* heap = Runtime::Current()->GetHeap();
3744 heap->DoPendingCollectorTransition();
3745 heap->ClearPendingCollectorTransition(self);
3746 }
3747 };
3748
ClearPendingCollectorTransition(Thread * self)3749 void Heap::ClearPendingCollectorTransition(Thread* self) {
3750 MutexLock mu(self, *pending_task_lock_);
3751 pending_collector_transition_ = nullptr;
3752 }
3753
RequestCollectorTransition(CollectorType desired_collector_type,uint64_t delta_time)3754 void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
3755 Thread* self = Thread::Current();
3756 desired_collector_type_ = desired_collector_type;
3757 if (desired_collector_type_ == collector_type_ || !CanAddHeapTask(self)) {
3758 return;
3759 }
3760 if (collector_type_ == kCollectorTypeCC) {
3761 // For CC, we invoke a full compaction when going to the background, but the collector type
3762 // doesn't change.
3763 DCHECK_EQ(desired_collector_type_, kCollectorTypeCCBackground);
3764 }
3765 DCHECK_NE(collector_type_, kCollectorTypeCCBackground);
3766 CollectorTransitionTask* added_task = nullptr;
3767 const uint64_t target_time = NanoTime() + delta_time;
3768 {
3769 MutexLock mu(self, *pending_task_lock_);
3770 // If we have an existing collector transition, update the targe time to be the new target.
3771 if (pending_collector_transition_ != nullptr) {
3772 task_processor_->UpdateTargetRunTime(self, pending_collector_transition_, target_time);
3773 return;
3774 }
3775 added_task = new CollectorTransitionTask(target_time);
3776 pending_collector_transition_ = added_task;
3777 }
3778 task_processor_->AddTask(self, added_task);
3779 }
3780
3781 class Heap::HeapTrimTask : public HeapTask {
3782 public:
HeapTrimTask(uint64_t delta_time)3783 explicit HeapTrimTask(uint64_t delta_time) : HeapTask(NanoTime() + delta_time) { }
Run(Thread * self)3784 void Run(Thread* self) override {
3785 gc::Heap* heap = Runtime::Current()->GetHeap();
3786 heap->Trim(self);
3787 heap->ClearPendingTrim(self);
3788 }
3789 };
3790
ClearPendingTrim(Thread * self)3791 void Heap::ClearPendingTrim(Thread* self) {
3792 MutexLock mu(self, *pending_task_lock_);
3793 pending_heap_trim_ = nullptr;
3794 }
3795
RequestTrim(Thread * self)3796 void Heap::RequestTrim(Thread* self) {
3797 if (!CanAddHeapTask(self)) {
3798 return;
3799 }
3800 // GC completed and now we must decide whether to request a heap trim (advising pages back to the
3801 // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
3802 // a space it will hold its lock and can become a cause of jank.
3803 // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
3804 // forking.
3805
3806 // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
3807 // because that only marks object heads, so a large array looks like lots of empty space. We
3808 // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
3809 // to utilization (which is probably inversely proportional to how much benefit we can expect).
3810 // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
3811 // not how much use we're making of those pages.
3812 HeapTrimTask* added_task = nullptr;
3813 {
3814 MutexLock mu(self, *pending_task_lock_);
3815 if (pending_heap_trim_ != nullptr) {
3816 // Already have a heap trim request in task processor, ignore this request.
3817 return;
3818 }
3819 added_task = new HeapTrimTask(kHeapTrimWait);
3820 pending_heap_trim_ = added_task;
3821 }
3822 task_processor_->AddTask(self, added_task);
3823 }
3824
IncrementNumberOfBytesFreedRevoke(size_t freed_bytes_revoke)3825 void Heap::IncrementNumberOfBytesFreedRevoke(size_t freed_bytes_revoke) {
3826 size_t previous_num_bytes_freed_revoke =
3827 num_bytes_freed_revoke_.fetch_add(freed_bytes_revoke, std::memory_order_relaxed);
3828 // Check the updated value is less than the number of bytes allocated. There is a risk of
3829 // execution being suspended between the increment above and the CHECK below, leading to
3830 // the use of previous_num_bytes_freed_revoke in the comparison.
3831 CHECK_GE(num_bytes_allocated_.load(std::memory_order_relaxed),
3832 previous_num_bytes_freed_revoke + freed_bytes_revoke);
3833 }
3834
RevokeThreadLocalBuffers(Thread * thread)3835 void Heap::RevokeThreadLocalBuffers(Thread* thread) {
3836 if (rosalloc_space_ != nullptr) {
3837 size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
3838 if (freed_bytes_revoke > 0U) {
3839 IncrementNumberOfBytesFreedRevoke(freed_bytes_revoke);
3840 }
3841 }
3842 if (bump_pointer_space_ != nullptr) {
3843 CHECK_EQ(bump_pointer_space_->RevokeThreadLocalBuffers(thread), 0U);
3844 }
3845 if (region_space_ != nullptr) {
3846 CHECK_EQ(region_space_->RevokeThreadLocalBuffers(thread), 0U);
3847 }
3848 }
3849
RevokeRosAllocThreadLocalBuffers(Thread * thread)3850 void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
3851 if (rosalloc_space_ != nullptr) {
3852 size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
3853 if (freed_bytes_revoke > 0U) {
3854 IncrementNumberOfBytesFreedRevoke(freed_bytes_revoke);
3855 }
3856 }
3857 }
3858
RevokeAllThreadLocalBuffers()3859 void Heap::RevokeAllThreadLocalBuffers() {
3860 if (rosalloc_space_ != nullptr) {
3861 size_t freed_bytes_revoke = rosalloc_space_->RevokeAllThreadLocalBuffers();
3862 if (freed_bytes_revoke > 0U) {
3863 IncrementNumberOfBytesFreedRevoke(freed_bytes_revoke);
3864 }
3865 }
3866 if (bump_pointer_space_ != nullptr) {
3867 CHECK_EQ(bump_pointer_space_->RevokeAllThreadLocalBuffers(), 0U);
3868 }
3869 if (region_space_ != nullptr) {
3870 CHECK_EQ(region_space_->RevokeAllThreadLocalBuffers(), 0U);
3871 }
3872 }
3873
IsGCRequestPending() const3874 bool Heap::IsGCRequestPending() const {
3875 return concurrent_gc_pending_.load(std::memory_order_relaxed);
3876 }
3877
RunFinalization(JNIEnv * env,uint64_t timeout)3878 void Heap::RunFinalization(JNIEnv* env, uint64_t timeout) {
3879 env->CallStaticVoidMethod(WellKnownClasses::dalvik_system_VMRuntime,
3880 WellKnownClasses::dalvik_system_VMRuntime_runFinalization,
3881 static_cast<jlong>(timeout));
3882 }
3883
3884 // For GC triggering purposes, we count old (pre-last-GC) and new native allocations as
3885 // different fractions of Java allocations.
3886 // For now, we essentially do not count old native allocations at all, so that we can preserve the
3887 // existing behavior of not limiting native heap size. If we seriously considered it, we would
3888 // have to adjust collection thresholds when we encounter large amounts of old native memory,
3889 // and handle native out-of-memory situations.
3890
3891 static constexpr size_t kOldNativeDiscountFactor = 65536; // Approximately infinite for now.
3892 static constexpr size_t kNewNativeDiscountFactor = 2;
3893
3894 // If weighted java + native memory use exceeds our target by kStopForNativeFactor, and
3895 // newly allocated memory exceeds stop_for_native_allocs_, we wait for GC to complete to avoid
3896 // running out of memory.
3897 static constexpr float kStopForNativeFactor = 4.0;
3898
3899 // Return the ratio of the weighted native + java allocated bytes to its target value.
3900 // A return value > 1.0 means we should collect. Significantly larger values mean we're falling
3901 // behind.
NativeMemoryOverTarget(size_t current_native_bytes,bool is_gc_concurrent)3902 inline float Heap::NativeMemoryOverTarget(size_t current_native_bytes, bool is_gc_concurrent) {
3903 // Collection check for native allocation. Does not enforce Java heap bounds.
3904 // With adj_start_bytes defined below, effectively checks
3905 // <java bytes allocd> + c1*<old native allocd> + c2*<new native allocd) >= adj_start_bytes,
3906 // where c3 > 1, and currently c1 and c2 are 1 divided by the values defined above.
3907 size_t old_native_bytes = old_native_bytes_allocated_.load(std::memory_order_relaxed);
3908 if (old_native_bytes > current_native_bytes) {
3909 // Net decrease; skip the check, but update old value.
3910 // It's OK to lose an update if two stores race.
3911 old_native_bytes_allocated_.store(current_native_bytes, std::memory_order_relaxed);
3912 return 0.0;
3913 } else {
3914 size_t new_native_bytes = UnsignedDifference(current_native_bytes, old_native_bytes);
3915 size_t weighted_native_bytes = new_native_bytes / kNewNativeDiscountFactor
3916 + old_native_bytes / kOldNativeDiscountFactor;
3917 size_t add_bytes_allowed = static_cast<size_t>(
3918 NativeAllocationGcWatermark() * HeapGrowthMultiplier());
3919 size_t java_gc_start_bytes = is_gc_concurrent
3920 ? concurrent_start_bytes_
3921 : target_footprint_.load(std::memory_order_relaxed);
3922 size_t adj_start_bytes = UnsignedSum(java_gc_start_bytes,
3923 add_bytes_allowed / kNewNativeDiscountFactor);
3924 return static_cast<float>(GetBytesAllocated() + weighted_native_bytes)
3925 / static_cast<float>(adj_start_bytes);
3926 }
3927 }
3928
CheckGCForNative(Thread * self)3929 inline void Heap::CheckGCForNative(Thread* self) {
3930 bool is_gc_concurrent = IsGcConcurrent();
3931 size_t current_native_bytes = GetNativeBytes();
3932 float gc_urgency = NativeMemoryOverTarget(current_native_bytes, is_gc_concurrent);
3933 if (UNLIKELY(gc_urgency >= 1.0)) {
3934 if (is_gc_concurrent) {
3935 RequestConcurrentGC(self, kGcCauseForNativeAlloc, /*force_full=*/true);
3936 if (gc_urgency > kStopForNativeFactor
3937 && current_native_bytes > stop_for_native_allocs_) {
3938 // We're in danger of running out of memory due to rampant native allocation.
3939 if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
3940 LOG(INFO) << "Stopping for native allocation, urgency: " << gc_urgency;
3941 }
3942 WaitForGcToComplete(kGcCauseForNativeAlloc, self);
3943 }
3944 } else {
3945 CollectGarbageInternal(NonStickyGcType(), kGcCauseForNativeAlloc, false);
3946 }
3947 }
3948 }
3949
3950 // About kNotifyNativeInterval allocations have occurred. Check whether we should garbage collect.
NotifyNativeAllocations(JNIEnv * env)3951 void Heap::NotifyNativeAllocations(JNIEnv* env) {
3952 native_objects_notified_.fetch_add(kNotifyNativeInterval, std::memory_order_relaxed);
3953 CheckGCForNative(ThreadForEnv(env));
3954 }
3955
3956 // Register a native allocation with an explicit size.
3957 // This should only be done for large allocations of non-malloc memory, which we wouldn't
3958 // otherwise see.
RegisterNativeAllocation(JNIEnv * env,size_t bytes)3959 void Heap::RegisterNativeAllocation(JNIEnv* env, size_t bytes) {
3960 // Cautiously check for a wrapped negative bytes argument.
3961 DCHECK(sizeof(size_t) < 8 || bytes < (std::numeric_limits<size_t>::max() / 2));
3962 native_bytes_registered_.fetch_add(bytes, std::memory_order_relaxed);
3963 uint32_t objects_notified =
3964 native_objects_notified_.fetch_add(1, std::memory_order_relaxed);
3965 if (objects_notified % kNotifyNativeInterval == kNotifyNativeInterval - 1
3966 || bytes > kCheckImmediatelyThreshold) {
3967 CheckGCForNative(ThreadForEnv(env));
3968 }
3969 }
3970
RegisterNativeFree(JNIEnv *,size_t bytes)3971 void Heap::RegisterNativeFree(JNIEnv*, size_t bytes) {
3972 size_t allocated;
3973 size_t new_freed_bytes;
3974 do {
3975 allocated = native_bytes_registered_.load(std::memory_order_relaxed);
3976 new_freed_bytes = std::min(allocated, bytes);
3977 // We should not be registering more free than allocated bytes.
3978 // But correctly keep going in non-debug builds.
3979 DCHECK_EQ(new_freed_bytes, bytes);
3980 } while (!native_bytes_registered_.CompareAndSetWeakRelaxed(allocated,
3981 allocated - new_freed_bytes));
3982 }
3983
GetTotalMemory() const3984 size_t Heap::GetTotalMemory() const {
3985 return std::max(target_footprint_.load(std::memory_order_relaxed), GetBytesAllocated());
3986 }
3987
AddModUnionTable(accounting::ModUnionTable * mod_union_table)3988 void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
3989 DCHECK(mod_union_table != nullptr);
3990 mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
3991 }
3992
CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c,size_t byte_count)3993 void Heap::CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c, size_t byte_count) {
3994 // Compare rounded sizes since the allocation may have been retried after rounding the size.
3995 // See b/37885600
3996 CHECK(c == nullptr || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
3997 (c->IsVariableSize() ||
3998 RoundUp(c->GetObjectSize(), kObjectAlignment) ==
3999 RoundUp(byte_count, kObjectAlignment)))
4000 << "ClassFlags=" << c->GetClassFlags()
4001 << " IsClassClass=" << c->IsClassClass()
4002 << " byte_count=" << byte_count
4003 << " IsVariableSize=" << c->IsVariableSize()
4004 << " ObjectSize=" << c->GetObjectSize()
4005 << " sizeof(Class)=" << sizeof(mirror::Class)
4006 << " " << verification_->DumpObjectInfo(c.Ptr(), /*tag=*/ "klass");
4007 CHECK_GE(byte_count, sizeof(mirror::Object));
4008 }
4009
AddRememberedSet(accounting::RememberedSet * remembered_set)4010 void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
4011 CHECK(remembered_set != nullptr);
4012 space::Space* space = remembered_set->GetSpace();
4013 CHECK(space != nullptr);
4014 CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space;
4015 remembered_sets_.Put(space, remembered_set);
4016 CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space;
4017 }
4018
RemoveRememberedSet(space::Space * space)4019 void Heap::RemoveRememberedSet(space::Space* space) {
4020 CHECK(space != nullptr);
4021 auto it = remembered_sets_.find(space);
4022 CHECK(it != remembered_sets_.end());
4023 delete it->second;
4024 remembered_sets_.erase(it);
4025 CHECK(remembered_sets_.find(space) == remembered_sets_.end());
4026 }
4027
ClearMarkedObjects()4028 void Heap::ClearMarkedObjects() {
4029 // Clear all of the spaces' mark bitmaps.
4030 for (const auto& space : GetContinuousSpaces()) {
4031 if (space->GetLiveBitmap() != nullptr && !space->HasBoundBitmaps()) {
4032 space->GetMarkBitmap()->Clear();
4033 }
4034 }
4035 // Clear the marked objects in the discontinous space object sets.
4036 for (const auto& space : GetDiscontinuousSpaces()) {
4037 space->GetMarkBitmap()->Clear();
4038 }
4039 }
4040
SetAllocationRecords(AllocRecordObjectMap * records)4041 void Heap::SetAllocationRecords(AllocRecordObjectMap* records) {
4042 allocation_records_.reset(records);
4043 }
4044
VisitAllocationRecords(RootVisitor * visitor) const4045 void Heap::VisitAllocationRecords(RootVisitor* visitor) const {
4046 if (IsAllocTrackingEnabled()) {
4047 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4048 if (IsAllocTrackingEnabled()) {
4049 GetAllocationRecords()->VisitRoots(visitor);
4050 }
4051 }
4052 }
4053
SweepAllocationRecords(IsMarkedVisitor * visitor) const4054 void Heap::SweepAllocationRecords(IsMarkedVisitor* visitor) const {
4055 if (IsAllocTrackingEnabled()) {
4056 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4057 if (IsAllocTrackingEnabled()) {
4058 GetAllocationRecords()->SweepAllocationRecords(visitor);
4059 }
4060 }
4061 }
4062
AllowNewAllocationRecords() const4063 void Heap::AllowNewAllocationRecords() const {
4064 CHECK(!kUseReadBarrier);
4065 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4066 AllocRecordObjectMap* allocation_records = GetAllocationRecords();
4067 if (allocation_records != nullptr) {
4068 allocation_records->AllowNewAllocationRecords();
4069 }
4070 }
4071
DisallowNewAllocationRecords() const4072 void Heap::DisallowNewAllocationRecords() const {
4073 CHECK(!kUseReadBarrier);
4074 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4075 AllocRecordObjectMap* allocation_records = GetAllocationRecords();
4076 if (allocation_records != nullptr) {
4077 allocation_records->DisallowNewAllocationRecords();
4078 }
4079 }
4080
BroadcastForNewAllocationRecords() const4081 void Heap::BroadcastForNewAllocationRecords() const {
4082 // Always broadcast without checking IsAllocTrackingEnabled() because IsAllocTrackingEnabled() may
4083 // be set to false while some threads are waiting for system weak access in
4084 // AllocRecordObjectMap::RecordAllocation() and we may fail to wake them up. b/27467554.
4085 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4086 AllocRecordObjectMap* allocation_records = GetAllocationRecords();
4087 if (allocation_records != nullptr) {
4088 allocation_records->BroadcastForNewAllocationRecords();
4089 }
4090 }
4091
CheckGcStressMode(Thread * self,ObjPtr<mirror::Object> * obj)4092 void Heap::CheckGcStressMode(Thread* self, ObjPtr<mirror::Object>* obj) {
4093 DCHECK(gc_stress_mode_);
4094 auto* const runtime = Runtime::Current();
4095 if (runtime->GetClassLinker()->IsInitialized() && !runtime->IsActiveTransaction()) {
4096 // Check if we should GC.
4097 bool new_backtrace = false;
4098 {
4099 static constexpr size_t kMaxFrames = 16u;
4100 MutexLock mu(self, *backtrace_lock_);
4101 FixedSizeBacktrace<kMaxFrames> backtrace;
4102 backtrace.Collect(/* skip_count= */ 2);
4103 uint64_t hash = backtrace.Hash();
4104 new_backtrace = seen_backtraces_.find(hash) == seen_backtraces_.end();
4105 if (new_backtrace) {
4106 seen_backtraces_.insert(hash);
4107 }
4108 }
4109 if (new_backtrace) {
4110 StackHandleScope<1> hs(self);
4111 auto h = hs.NewHandleWrapper(obj);
4112 CollectGarbage(/* clear_soft_references= */ false);
4113 unique_backtrace_count_.fetch_add(1);
4114 } else {
4115 seen_backtrace_count_.fetch_add(1);
4116 }
4117 }
4118 }
4119
DisableGCForShutdown()4120 void Heap::DisableGCForShutdown() {
4121 Thread* const self = Thread::Current();
4122 CHECK(Runtime::Current()->IsShuttingDown(self));
4123 MutexLock mu(self, *gc_complete_lock_);
4124 gc_disabled_for_shutdown_ = true;
4125 }
4126
ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const4127 bool Heap::ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const {
4128 DCHECK_EQ(IsBootImageAddress(obj.Ptr()),
4129 any_of(boot_image_spaces_.begin(),
4130 boot_image_spaces_.end(),
4131 [obj](gc::space::ImageSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) {
4132 return space->HasAddress(obj.Ptr());
4133 }));
4134 return IsBootImageAddress(obj.Ptr());
4135 }
4136
IsInBootImageOatFile(const void * p) const4137 bool Heap::IsInBootImageOatFile(const void* p) const {
4138 DCHECK_EQ(IsBootImageAddress(p),
4139 any_of(boot_image_spaces_.begin(),
4140 boot_image_spaces_.end(),
4141 [p](gc::space::ImageSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) {
4142 return space->GetOatFile()->Contains(p);
4143 }));
4144 return IsBootImageAddress(p);
4145 }
4146
SetAllocationListener(AllocationListener * l)4147 void Heap::SetAllocationListener(AllocationListener* l) {
4148 AllocationListener* old = GetAndOverwriteAllocationListener(&alloc_listener_, l);
4149
4150 if (old == nullptr) {
4151 Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
4152 }
4153 }
4154
RemoveAllocationListener()4155 void Heap::RemoveAllocationListener() {
4156 AllocationListener* old = GetAndOverwriteAllocationListener(&alloc_listener_, nullptr);
4157
4158 if (old != nullptr) {
4159 Runtime::Current()->GetInstrumentation()->UninstrumentQuickAllocEntryPoints();
4160 }
4161 }
4162
SetGcPauseListener(GcPauseListener * l)4163 void Heap::SetGcPauseListener(GcPauseListener* l) {
4164 gc_pause_listener_.store(l, std::memory_order_relaxed);
4165 }
4166
RemoveGcPauseListener()4167 void Heap::RemoveGcPauseListener() {
4168 gc_pause_listener_.store(nullptr, std::memory_order_relaxed);
4169 }
4170
AllocWithNewTLAB(Thread * self,AllocatorType allocator_type,size_t alloc_size,bool grow,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated)4171 mirror::Object* Heap::AllocWithNewTLAB(Thread* self,
4172 AllocatorType allocator_type,
4173 size_t alloc_size,
4174 bool grow,
4175 size_t* bytes_allocated,
4176 size_t* usable_size,
4177 size_t* bytes_tl_bulk_allocated) {
4178 if (kUsePartialTlabs && alloc_size <= self->TlabRemainingCapacity()) {
4179 DCHECK_GT(alloc_size, self->TlabSize());
4180 // There is enough space if we grow the TLAB. Lets do that. This increases the
4181 // TLAB bytes.
4182 const size_t min_expand_size = alloc_size - self->TlabSize();
4183 const size_t expand_bytes = std::max(
4184 min_expand_size,
4185 std::min(self->TlabRemainingCapacity() - self->TlabSize(), kPartialTlabSize));
4186 if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, expand_bytes, grow))) {
4187 return nullptr;
4188 }
4189 *bytes_tl_bulk_allocated = expand_bytes;
4190 self->ExpandTlab(expand_bytes);
4191 DCHECK_LE(alloc_size, self->TlabSize());
4192 } else if (allocator_type == kAllocatorTypeTLAB) {
4193 DCHECK(bump_pointer_space_ != nullptr);
4194 const size_t new_tlab_size = alloc_size + kDefaultTLABSize;
4195 if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, new_tlab_size, grow))) {
4196 return nullptr;
4197 }
4198 // Try allocating a new thread local buffer, if the allocation fails the space must be
4199 // full so return null.
4200 if (!bump_pointer_space_->AllocNewTlab(self, new_tlab_size)) {
4201 return nullptr;
4202 }
4203 *bytes_tl_bulk_allocated = new_tlab_size;
4204 } else {
4205 DCHECK(allocator_type == kAllocatorTypeRegionTLAB);
4206 DCHECK(region_space_ != nullptr);
4207 if (space::RegionSpace::kRegionSize >= alloc_size) {
4208 // Non-large. Check OOME for a tlab.
4209 if (LIKELY(!IsOutOfMemoryOnAllocation(allocator_type,
4210 space::RegionSpace::kRegionSize,
4211 grow))) {
4212 const size_t new_tlab_size = kUsePartialTlabs
4213 ? std::max(alloc_size, kPartialTlabSize)
4214 : gc::space::RegionSpace::kRegionSize;
4215 // Try to allocate a tlab.
4216 if (!region_space_->AllocNewTlab(self, new_tlab_size, bytes_tl_bulk_allocated)) {
4217 // Failed to allocate a tlab. Try non-tlab.
4218 return region_space_->AllocNonvirtual<false>(alloc_size,
4219 bytes_allocated,
4220 usable_size,
4221 bytes_tl_bulk_allocated);
4222 }
4223 // Fall-through to using the TLAB below.
4224 } else {
4225 // Check OOME for a non-tlab allocation.
4226 if (!IsOutOfMemoryOnAllocation(allocator_type, alloc_size, grow)) {
4227 return region_space_->AllocNonvirtual<false>(alloc_size,
4228 bytes_allocated,
4229 usable_size,
4230 bytes_tl_bulk_allocated);
4231 }
4232 // Neither tlab or non-tlab works. Give up.
4233 return nullptr;
4234 }
4235 } else {
4236 // Large. Check OOME.
4237 if (LIKELY(!IsOutOfMemoryOnAllocation(allocator_type, alloc_size, grow))) {
4238 return region_space_->AllocNonvirtual<false>(alloc_size,
4239 bytes_allocated,
4240 usable_size,
4241 bytes_tl_bulk_allocated);
4242 }
4243 return nullptr;
4244 }
4245 }
4246 // Refilled TLAB, return.
4247 mirror::Object* ret = self->AllocTlab(alloc_size);
4248 DCHECK(ret != nullptr);
4249 *bytes_allocated = alloc_size;
4250 *usable_size = alloc_size;
4251 return ret;
4252 }
4253
GetVerification() const4254 const Verification* Heap::GetVerification() const {
4255 return verification_.get();
4256 }
4257
VlogHeapGrowth(size_t old_footprint,size_t new_footprint,size_t alloc_size)4258 void Heap::VlogHeapGrowth(size_t old_footprint, size_t new_footprint, size_t alloc_size) {
4259 VLOG(heap) << "Growing heap from " << PrettySize(old_footprint) << " to "
4260 << PrettySize(new_footprint) << " for a " << PrettySize(alloc_size) << " allocation";
4261 }
4262
4263 class Heap::TriggerPostForkCCGcTask : public HeapTask {
4264 public:
TriggerPostForkCCGcTask(uint64_t target_time)4265 explicit TriggerPostForkCCGcTask(uint64_t target_time) : HeapTask(target_time) {}
Run(Thread * self)4266 void Run(Thread* self) override {
4267 gc::Heap* heap = Runtime::Current()->GetHeap();
4268 // Trigger a GC, if not already done. The first GC after fork, whenever it
4269 // takes place, will adjust the thresholds to normal levels.
4270 if (heap->target_footprint_.load(std::memory_order_relaxed) == heap->growth_limit_) {
4271 heap->RequestConcurrentGC(self, kGcCauseBackground, false);
4272 }
4273 }
4274 };
4275
PostForkChildAction(Thread * self)4276 void Heap::PostForkChildAction(Thread* self) {
4277 // Temporarily increase target_footprint_ and concurrent_start_bytes_ to
4278 // max values to avoid GC during app launch.
4279 if (collector_type_ == kCollectorTypeCC && !IsLowMemoryMode()) {
4280 // Set target_footprint_ to the largest allowed value.
4281 SetIdealFootprint(growth_limit_);
4282 // Set concurrent_start_bytes_ to half of the heap size.
4283 size_t target_footprint = target_footprint_.load(std::memory_order_relaxed);
4284 concurrent_start_bytes_ = std::max(target_footprint / 2, GetBytesAllocated());
4285
4286 GetTaskProcessor()->AddTask(
4287 self, new TriggerPostForkCCGcTask(NanoTime() + MsToNs(kPostForkMaxHeapDurationMS)));
4288 }
4289 }
4290
VisitReflectiveTargets(ReflectiveValueVisitor * visit)4291 void Heap::VisitReflectiveTargets(ReflectiveValueVisitor *visit) {
4292 VisitObjectsPaused([&visit](mirror::Object* ref) NO_THREAD_SAFETY_ANALYSIS {
4293 art::ObjPtr<mirror::Class> klass(ref->GetClass());
4294 // All these classes are in the BootstrapClassLoader.
4295 if (!klass->IsBootStrapClassLoaded()) {
4296 return;
4297 }
4298 if (GetClassRoot<mirror::Method>()->IsAssignableFrom(klass) ||
4299 GetClassRoot<mirror::Constructor>()->IsAssignableFrom(klass)) {
4300 down_cast<mirror::Executable*>(ref)->VisitTarget(visit);
4301 } else if (art::GetClassRoot<art::mirror::Field>() == klass) {
4302 down_cast<mirror::Field*>(ref)->VisitTarget(visit);
4303 } else if (art::GetClassRoot<art::mirror::MethodHandle>()->IsAssignableFrom(klass)) {
4304 down_cast<mirror::MethodHandle*>(ref)->VisitTarget(visit);
4305 } else if (art::GetClassRoot<art::mirror::FieldVarHandle>()->IsAssignableFrom(klass)) {
4306 down_cast<mirror::FieldVarHandle*>(ref)->VisitTarget(visit);
4307 } else if (art::GetClassRoot<art::mirror::DexCache>()->IsAssignableFrom(klass)) {
4308 down_cast<mirror::DexCache*>(ref)->VisitReflectiveTargets(visit);
4309 }
4310 });
4311 }
4312
AddHeapTask(gc::HeapTask * task)4313 bool Heap::AddHeapTask(gc::HeapTask* task) {
4314 Thread* const self = Thread::Current();
4315 if (!CanAddHeapTask(self)) {
4316 return false;
4317 }
4318 GetTaskProcessor()->AddTask(self, task);
4319 return true;
4320 }
4321
4322 } // namespace gc
4323 } // namespace art
4324