1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <general_test/simple_heap_alloc_test.h>
18 
19 #include <cstddef>
20 
21 #include <general_test/test_names.h>
22 #include <shared/abort.h>
23 #include <shared/array_length.h>
24 #include <shared/nano_string.h>
25 #include <shared/send_message.h>
26 
27 #include <chre.h>
28 
29 using nanoapp_testing::MessageType;
30 using nanoapp_testing::sendFatalFailureToHost;
31 using nanoapp_testing::sendMessageToHost;
32 using nanoapp_testing::sendSuccessToHost;
33 
34 namespace general_test {
35 
36 // For most platforms, we expect that what the compiler toolchain claims
37 // is the maximum alignment needed for any type is accurate.  However, we
38 // do support one CHRE implementation where it is configured for a lower
39 // max alignment than what the toolchain claims.
40 // To support this, we allow for a compiler define set for building this
41 // test.  For the most part, we need to just trust the CHRE implementation
42 // that this number is correct.  However, we make a basic sanity check of
43 // this in testMaxAlignment().
44 
45 constexpr size_t kMaxAlignment =
46 #ifdef CHRE_CUSTOM_MAX_ALIGNMENT
47     CHRE_CUSTOM_MAX_ALIGNMENT;
48 #else
49     alignof(max_align_t);
50 #endif  // else CHRE_CUSTOM_MAX_ALIGNMENT
51 
52 #ifdef CHRE_CUSTOM_MAX_ALIGNMENT
53 // We only test this when a CHRE implementation claims a custom max aligment.
54 // We use an argument here to try to keep the compiler from performing any
55 // of these calculations at compile-time, so they're forced to happen at
56 // runtime.  We do a mixture of multiplication and division, to force
57 // various instructions which might have alignment constraints.
testMaxAlignment(uint32_t zero)58 static void testMaxAlignment(uint32_t zero) {
59   // It's not sufficient to use alignas(kMaxAlignment).  Say kMaxAlignment
60   // is 4.  Then alignas(4) could legally give something aligned on 32 bytes,
61   // and we wouldn't be testing what we hoped to test.  So we ask for double
62   // the alignment (alignas(8), in our example), and then offset into that
63   // to assure that we're at exactly kMaxAlignment, and no more.
64 
65 #ifdef CHRE_NO_DOUBLE_SUPPORT
66   typedef float MyFloat;
67 #define FLOAT_C(value) value##f
68 #else
69   typedef long double myFloat;
70 #define FLOAT_C(value) value
71 #endif
72 
73   alignas(kMaxAlignment * 2) uint8_t
74       myFloatMemory[sizeof(MyFloat) * 3 + kMaxAlignment];
75   MyFloat *mfArray =
76       reinterpret_cast<MyFloat*>(myFloatMemory + kMaxAlignment);
77   mfArray[0] = static_cast<MyFloat>(zero) + FLOAT_C(1.0);
78   mfArray[1] = static_cast<MyFloat>(zero) + FLOAT_C(3.0);
79   mfArray[2] = mfArray[0] / mfArray[1];
80   if ((mfArray[0] * mfArray[1] + mfArray[2]) / FLOAT_C(3.0) == FLOAT_C(1.0)) {
81     sendFatalFailureToHost("Float math is wrong");
82   }
83 
84   constexpr size_t kUllSize = sizeof(unsigned long long);
85   static_assert(kUllSize >= 8, "Size of long long violates spec");
86   alignas(kMaxAlignment * 2) uint8_t
87       longlongMemory[kUllSize * 3 + kMaxAlignment];
88   unsigned long long *ullArray =
89       reinterpret_cast<unsigned long long*>(longlongMemory + kMaxAlignment);
90   ullArray[0] = static_cast<unsigned long long>(zero) +
91       (1ULL << (kUllSize * 8 - 4));
92   ullArray[1] = static_cast<unsigned long long>(zero) + (1ULL << 3);
93   ullArray[2] = ullArray[0] * ullArray[1];
94   constexpr unsigned long long kExpected = 747134227367742ULL;
95   unsigned long long result = ullArray[2] / 12345ULL;
96   if (((kUllSize == 8) && (result != kExpected)) ||
97       ((kUllSize > 8) && (result <= kExpected))) {
98     sendFatalFailureToHost("Long long math is wrong");
99   }
100 }
101 #endif  // CHRE_CUSTOM_MAX_ALIGNMENT
102 
103 
SimpleHeapAllocTest()104 SimpleHeapAllocTest::SimpleHeapAllocTest()
105   : Test(CHRE_API_VERSION_1_0), mHasFreed(false) {
106 }
107 
setUp(uint32_t messageSize,const void *)108 void SimpleHeapAllocTest::setUp(uint32_t messageSize,
109                                 const void * /* message */) {
110   nanoapp_testing::memset(mPtrs, 0, sizeof(mPtrs));
111 
112   if (messageSize != 0) {
113     sendFatalFailureToHost(
114         "SimpleHeapAlloc message expects 0 additional bytes, got ",
115         &messageSize);
116   }
117 
118   // Allocate random small-ish sizes.
119   static constexpr size_t kSizes[5] = {
120     16, 53, 2, 32, 40 };
121 
122   mPtrs[0] = chreHeapAlloc(kSizes[0]);
123   mPtrs[1] = chreHeapAlloc(kSizes[1]);
124   // For mPtrs[2] we do _not_ use kSizes[2], because we're going to free
125   // this in a moment, and intentionally want a different size.
126   mPtrs[2] = chreHeapAlloc(23);
127   mPtrs[3] = chreHeapAlloc(kSizes[3]);
128   // We want to mix in a free among the allocs, just to make sure there
129   // isn't some issue there.
130   if (mPtrs[2] == nullptr) {
131     sendFatalFailureToHost("Failed first allocation of mPtrs[2]");
132   } else {
133     chreHeapFree(mPtrs[2]);
134   }
135   mPtrs[4] = chreHeapAlloc(kSizes[4]);
136   mPtrs[2] = chreHeapAlloc(kSizes[2]);
137 
138   for (uint32_t i = 0; i < arrayLength(mPtrs); i++) {
139     if (mPtrs[i] == nullptr) {
140       // If we're getting this failure, but convinced the CHRE is
141       // correct, make sure that we're actually performing an allocation
142       // for each element of mPtrs.
143       sendFatalFailureToHost("Failed to allocate index ", &i);
144     }
145     const uintptr_t ptrValue = reinterpret_cast<uintptr_t>(mPtrs[i]);
146     if ((ptrValue & (kMaxAlignment - 1)) != 0) {
147       sendFatalFailureToHost("Misaligned allocation at index ", &i);
148     }
149     // Make sure all of the bytes are addressable.  Our assumption
150     // is we'll crash here if that's not the case.  Not the most
151     // friendly test, but it's better than allowing a bad CHRE.
152     // TODO: If we convince ourselves that chreLog() should be
153     //     safe enough to use here, we could log an 'info' message
154     //     prior to each memset attempt.
155     nanoapp_testing::memset(mPtrs[i], 0xFF, kSizes[i]);
156   }
157 #ifdef CHRE_CUSTOM_MAX_ALIGNMENT
158   testMaxAlignment(messageSize);
159 #endif  // CHRE_CUSTOM_MAX_ALIGNMENT
160   sendMessageToHost(MessageType::kContinue);
161 }
162 
handleEvent(uint32_t senderInstanceId,uint16_t eventType,const void * eventData)163 void SimpleHeapAllocTest::handleEvent(uint32_t senderInstanceId,
164                                       uint16_t eventType,
165                                       const void* eventData) {
166   // We ignore the return value, since we expect no data.
167   getMessageDataFromHostEvent(senderInstanceId, eventType, eventData,
168                               MessageType::kContinue, 0);
169   if (mHasFreed) {
170     sendFatalFailureToHost("Multiple kContinue messages sent");
171   }
172 
173   chreHeapFree(mPtrs[3]);
174   chreHeapFree(mPtrs[1]);
175   chreHeapFree(mPtrs[2]);
176   chreHeapFree(mPtrs[0]);
177   chreHeapFree(mPtrs[4]);
178   mHasFreed = true;
179 
180   sendSuccessToHost();
181 }
182 
183 }  // namespace general_test
184