1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "reference_type_propagation.h"
18
19 #include "art_field-inl.h"
20 #include "art_method-inl.h"
21 #include "base/scoped_arena_allocator.h"
22 #include "base/scoped_arena_containers.h"
23 #include "base/enums.h"
24 #include "class_linker-inl.h"
25 #include "class_root-inl.h"
26 #include "handle_scope-inl.h"
27 #include "mirror/class-inl.h"
28 #include "mirror/dex_cache.h"
29 #include "scoped_thread_state_change-inl.h"
30
31 namespace art {
32
FindDexCacheWithHint(Thread * self,const DexFile & dex_file,Handle<mirror::DexCache> hint_dex_cache)33 static inline ObjPtr<mirror::DexCache> FindDexCacheWithHint(
34 Thread* self, const DexFile& dex_file, Handle<mirror::DexCache> hint_dex_cache)
35 REQUIRES_SHARED(Locks::mutator_lock_) {
36 if (LIKELY(hint_dex_cache->GetDexFile() == &dex_file)) {
37 return hint_dex_cache.Get();
38 } else {
39 return Runtime::Current()->GetClassLinker()->FindDexCache(self, dex_file);
40 }
41 }
42
43 class ReferenceTypePropagation::RTPVisitor : public HGraphDelegateVisitor {
44 public:
RTPVisitor(HGraph * graph,Handle<mirror::ClassLoader> class_loader,Handle<mirror::DexCache> hint_dex_cache,bool is_first_run)45 RTPVisitor(HGraph* graph,
46 Handle<mirror::ClassLoader> class_loader,
47 Handle<mirror::DexCache> hint_dex_cache,
48 bool is_first_run)
49 : HGraphDelegateVisitor(graph),
50 class_loader_(class_loader),
51 hint_dex_cache_(hint_dex_cache),
52 allocator_(graph->GetArenaStack()),
53 worklist_(allocator_.Adapter(kArenaAllocReferenceTypePropagation)),
54 is_first_run_(is_first_run) {
55 worklist_.reserve(kDefaultWorklistSize);
56 }
57
58 void VisitDeoptimize(HDeoptimize* deopt) override;
59 void VisitNewInstance(HNewInstance* new_instance) override;
60 void VisitLoadClass(HLoadClass* load_class) override;
61 void VisitInstanceOf(HInstanceOf* load_class) override;
62 void VisitClinitCheck(HClinitCheck* clinit_check) override;
63 void VisitLoadMethodHandle(HLoadMethodHandle* instr) override;
64 void VisitLoadMethodType(HLoadMethodType* instr) override;
65 void VisitLoadString(HLoadString* instr) override;
66 void VisitLoadException(HLoadException* instr) override;
67 void VisitNewArray(HNewArray* instr) override;
68 void VisitParameterValue(HParameterValue* instr) override;
69 void VisitInstanceFieldGet(HInstanceFieldGet* instr) override;
70 void VisitStaticFieldGet(HStaticFieldGet* instr) override;
71 void VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet* instr) override;
72 void VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet* instr) override;
73 void VisitInvoke(HInvoke* instr) override;
74 void VisitArrayGet(HArrayGet* instr) override;
75 void VisitCheckCast(HCheckCast* instr) override;
76 void VisitBoundType(HBoundType* instr) override;
77 void VisitNullCheck(HNullCheck* instr) override;
78 void VisitPhi(HPhi* phi) override;
79
80 void VisitBasicBlock(HBasicBlock* block) override;
81 void ProcessWorklist();
82
83 private:
84 void UpdateFieldAccessTypeInfo(HInstruction* instr, const FieldInfo& info);
85 void SetClassAsTypeInfo(HInstruction* instr, ObjPtr<mirror::Class> klass, bool is_exact)
86 REQUIRES_SHARED(Locks::mutator_lock_);
87 void BoundTypeForIfNotNull(HBasicBlock* block);
88 static void BoundTypeForIfInstanceOf(HBasicBlock* block);
89 static bool UpdateNullability(HInstruction* instr);
90 static void UpdateBoundType(HBoundType* bound_type) REQUIRES_SHARED(Locks::mutator_lock_);
91 void UpdateArrayGet(HArrayGet* instr) REQUIRES_SHARED(Locks::mutator_lock_);
92 void UpdatePhi(HPhi* phi) REQUIRES_SHARED(Locks::mutator_lock_);
93 bool UpdateReferenceTypeInfo(HInstruction* instr);
94 void UpdateReferenceTypeInfo(HInstruction* instr,
95 dex::TypeIndex type_idx,
96 const DexFile& dex_file,
97 bool is_exact);
98
99 void AddToWorklist(HInstruction* instruction);
100 void AddDependentInstructionsToWorklist(HInstruction* instruction);
101
GetHandleCache()102 HandleCache* GetHandleCache() {
103 return GetGraph()->GetHandleCache();
104 }
105
106 static constexpr size_t kDefaultWorklistSize = 8;
107
108 Handle<mirror::ClassLoader> class_loader_;
109 Handle<mirror::DexCache> hint_dex_cache_;
110
111 // Use local allocator for allocating memory.
112 ScopedArenaAllocator allocator_;
113 ScopedArenaVector<HInstruction*> worklist_;
114 const bool is_first_run_;
115 };
116
ReferenceTypePropagation(HGraph * graph,Handle<mirror::ClassLoader> class_loader,Handle<mirror::DexCache> hint_dex_cache,bool is_first_run,const char * name)117 ReferenceTypePropagation::ReferenceTypePropagation(HGraph* graph,
118 Handle<mirror::ClassLoader> class_loader,
119 Handle<mirror::DexCache> hint_dex_cache,
120 bool is_first_run,
121 const char* name)
122 : HOptimization(graph, name),
123 class_loader_(class_loader),
124 hint_dex_cache_(hint_dex_cache),
125 is_first_run_(is_first_run) {
126 }
127
ValidateTypes()128 void ReferenceTypePropagation::ValidateTypes() {
129 // TODO: move this to the graph checker. Note: There may be no Thread for gtests.
130 if (kIsDebugBuild && Thread::Current() != nullptr) {
131 ScopedObjectAccess soa(Thread::Current());
132 for (HBasicBlock* block : graph_->GetReversePostOrder()) {
133 for (HInstructionIterator iti(block->GetInstructions()); !iti.Done(); iti.Advance()) {
134 HInstruction* instr = iti.Current();
135 if (instr->GetType() == DataType::Type::kReference) {
136 DCHECK(instr->GetReferenceTypeInfo().IsValid())
137 << "Invalid RTI for instruction: " << instr->DebugName();
138 if (instr->IsBoundType()) {
139 DCHECK(instr->AsBoundType()->GetUpperBound().IsValid());
140 } else if (instr->IsLoadClass()) {
141 HLoadClass* cls = instr->AsLoadClass();
142 DCHECK(cls->GetReferenceTypeInfo().IsExact());
143 DCHECK(!cls->GetLoadedClassRTI().IsValid() || cls->GetLoadedClassRTI().IsExact());
144 } else if (instr->IsNullCheck()) {
145 DCHECK(instr->GetReferenceTypeInfo().IsEqual(instr->InputAt(0)->GetReferenceTypeInfo()))
146 << "NullCheck " << instr->GetReferenceTypeInfo()
147 << "Input(0) " << instr->InputAt(0)->GetReferenceTypeInfo();
148 }
149 } else if (instr->IsInstanceOf()) {
150 HInstanceOf* iof = instr->AsInstanceOf();
151 DCHECK(!iof->GetTargetClassRTI().IsValid() || iof->GetTargetClassRTI().IsExact());
152 } else if (instr->IsCheckCast()) {
153 HCheckCast* check = instr->AsCheckCast();
154 DCHECK(!check->GetTargetClassRTI().IsValid() || check->GetTargetClassRTI().IsExact());
155 }
156 }
157 }
158 }
159 }
160
Visit(HInstruction * instruction)161 void ReferenceTypePropagation::Visit(HInstruction* instruction) {
162 RTPVisitor visitor(graph_,
163 class_loader_,
164 hint_dex_cache_,
165 is_first_run_);
166 instruction->Accept(&visitor);
167 }
168
169 // Check if we should create a bound type for the given object at the specified
170 // position. Because of inlining and the fact we run RTP more than once and we
171 // might have a HBoundType already. If we do, we should not create a new one.
172 // In this case we also assert that there are no other uses of the object (except
173 // the bound type) dominated by the specified dominator_instr or dominator_block.
ShouldCreateBoundType(HInstruction * position,HInstruction * obj,ReferenceTypeInfo upper_bound,HInstruction * dominator_instr,HBasicBlock * dominator_block)174 static bool ShouldCreateBoundType(HInstruction* position,
175 HInstruction* obj,
176 ReferenceTypeInfo upper_bound,
177 HInstruction* dominator_instr,
178 HBasicBlock* dominator_block)
179 REQUIRES_SHARED(Locks::mutator_lock_) {
180 // If the position where we should insert the bound type is not already a
181 // a bound type then we need to create one.
182 if (position == nullptr || !position->IsBoundType()) {
183 return true;
184 }
185
186 HBoundType* existing_bound_type = position->AsBoundType();
187 if (existing_bound_type->GetUpperBound().IsSupertypeOf(upper_bound)) {
188 if (kIsDebugBuild) {
189 // Check that the existing HBoundType dominates all the uses.
190 for (const HUseListNode<HInstruction*>& use : obj->GetUses()) {
191 HInstruction* user = use.GetUser();
192 if (dominator_instr != nullptr) {
193 DCHECK(!dominator_instr->StrictlyDominates(user)
194 || user == existing_bound_type
195 || existing_bound_type->StrictlyDominates(user));
196 } else if (dominator_block != nullptr) {
197 DCHECK(!dominator_block->Dominates(user->GetBlock())
198 || user == existing_bound_type
199 || existing_bound_type->StrictlyDominates(user));
200 }
201 }
202 }
203 } else {
204 // TODO: if the current bound type is a refinement we could update the
205 // existing_bound_type with the a new upper limit. However, we also need to
206 // update its users and have access to the work list.
207 }
208 return false;
209 }
210
211 // Helper method to bound the type of `receiver` for all instructions dominated
212 // by `start_block`, or `start_instruction` if `start_block` is null. The new
213 // bound type will have its upper bound be `class_rti`.
BoundTypeIn(HInstruction * receiver,HBasicBlock * start_block,HInstruction * start_instruction,const ReferenceTypeInfo & class_rti)214 static void BoundTypeIn(HInstruction* receiver,
215 HBasicBlock* start_block,
216 HInstruction* start_instruction,
217 const ReferenceTypeInfo& class_rti) {
218 // We only need to bound the type if we have uses in the relevant block.
219 // So start with null and create the HBoundType lazily, only if it's needed.
220 HBoundType* bound_type = nullptr;
221 DCHECK(!receiver->IsLoadClass()) << "We should not replace HLoadClass instructions";
222 const HUseList<HInstruction*>& uses = receiver->GetUses();
223 for (auto it = uses.begin(), end = uses.end(); it != end; /* ++it below */) {
224 HInstruction* user = it->GetUser();
225 size_t index = it->GetIndex();
226 // Increment `it` now because `*it` may disappear thanks to user->ReplaceInput().
227 ++it;
228 bool dominates = (start_instruction != nullptr)
229 ? start_instruction->StrictlyDominates(user)
230 : start_block->Dominates(user->GetBlock());
231 if (!dominates) {
232 continue;
233 }
234 if (bound_type == nullptr) {
235 ScopedObjectAccess soa(Thread::Current());
236 HInstruction* insert_point = (start_instruction != nullptr)
237 ? start_instruction->GetNext()
238 : start_block->GetFirstInstruction();
239 if (ShouldCreateBoundType(
240 insert_point, receiver, class_rti, start_instruction, start_block)) {
241 bound_type = new (receiver->GetBlock()->GetGraph()->GetAllocator()) HBoundType(receiver);
242 bound_type->SetUpperBound(class_rti, /* can_be_null= */ false);
243 start_block->InsertInstructionBefore(bound_type, insert_point);
244 // To comply with the RTP algorithm, don't type the bound type just yet, it will
245 // be handled in RTPVisitor::VisitBoundType.
246 } else {
247 // We already have a bound type on the position we would need to insert
248 // the new one. The existing bound type should dominate all the users
249 // (dchecked) so there's no need to continue.
250 break;
251 }
252 }
253 user->ReplaceInput(bound_type, index);
254 }
255 // If the receiver is a null check, also bound the type of the actual
256 // receiver.
257 if (receiver->IsNullCheck()) {
258 BoundTypeIn(receiver->InputAt(0), start_block, start_instruction, class_rti);
259 }
260 }
261
262 // Recognize the patterns:
263 // if (obj.shadow$_klass_ == Foo.class) ...
264 // deoptimize if (obj.shadow$_klass_ == Foo.class)
BoundTypeForClassCheck(HInstruction * check)265 static void BoundTypeForClassCheck(HInstruction* check) {
266 if (!check->IsIf() && !check->IsDeoptimize()) {
267 return;
268 }
269 HInstruction* compare = check->InputAt(0);
270 if (!compare->IsEqual() && !compare->IsNotEqual()) {
271 return;
272 }
273 HInstruction* input_one = compare->InputAt(0);
274 HInstruction* input_two = compare->InputAt(1);
275 HLoadClass* load_class = input_one->IsLoadClass()
276 ? input_one->AsLoadClass()
277 : input_two->AsLoadClass();
278 if (load_class == nullptr) {
279 return;
280 }
281
282 ReferenceTypeInfo class_rti = load_class->GetLoadedClassRTI();
283 if (!class_rti.IsValid()) {
284 // We have loaded an unresolved class. Don't bother bounding the type.
285 return;
286 }
287
288 HInstanceFieldGet* field_get = (load_class == input_one)
289 ? input_two->AsInstanceFieldGet()
290 : input_one->AsInstanceFieldGet();
291 if (field_get == nullptr) {
292 return;
293 }
294 HInstruction* receiver = field_get->InputAt(0);
295 ReferenceTypeInfo receiver_type = receiver->GetReferenceTypeInfo();
296 if (receiver_type.IsExact()) {
297 // If we already know the receiver type, don't bother updating its users.
298 return;
299 }
300
301 {
302 ScopedObjectAccess soa(Thread::Current());
303 ArtField* field = GetClassRoot<mirror::Object>()->GetInstanceField(0);
304 DCHECK_EQ(std::string(field->GetName()), "shadow$_klass_");
305 if (field_get->GetFieldInfo().GetField() != field) {
306 return;
307 }
308 }
309
310 if (check->IsIf()) {
311 HBasicBlock* trueBlock = compare->IsEqual()
312 ? check->AsIf()->IfTrueSuccessor()
313 : check->AsIf()->IfFalseSuccessor();
314 BoundTypeIn(receiver, trueBlock, /* start_instruction= */ nullptr, class_rti);
315 } else {
316 DCHECK(check->IsDeoptimize());
317 if (compare->IsEqual() && check->AsDeoptimize()->GuardsAnInput()) {
318 check->SetReferenceTypeInfo(class_rti);
319 }
320 }
321 }
322
Run()323 bool ReferenceTypePropagation::Run() {
324 RTPVisitor visitor(graph_, class_loader_, hint_dex_cache_, is_first_run_);
325
326 // To properly propagate type info we need to visit in the dominator-based order.
327 // Reverse post order guarantees a node's dominators are visited first.
328 // We take advantage of this order in `VisitBasicBlock`.
329 for (HBasicBlock* block : graph_->GetReversePostOrder()) {
330 visitor.VisitBasicBlock(block);
331 }
332
333 visitor.ProcessWorklist();
334 ValidateTypes();
335 return true;
336 }
337
VisitBasicBlock(HBasicBlock * block)338 void ReferenceTypePropagation::RTPVisitor::VisitBasicBlock(HBasicBlock* block) {
339 // Handle Phis first as there might be instructions in the same block who depend on them.
340 for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
341 VisitPhi(it.Current()->AsPhi());
342 }
343
344 // Handle instructions. Since RTP may add HBoundType instructions just after the
345 // last visited instruction, use `HInstructionIteratorHandleChanges` iterator.
346 for (HInstructionIteratorHandleChanges it(block->GetInstructions()); !it.Done(); it.Advance()) {
347 HInstruction* instr = it.Current();
348 instr->Accept(this);
349 }
350
351 // Add extra nodes to bound types.
352 BoundTypeForIfNotNull(block);
353 BoundTypeForIfInstanceOf(block);
354 BoundTypeForClassCheck(block->GetLastInstruction());
355 }
356
BoundTypeForIfNotNull(HBasicBlock * block)357 void ReferenceTypePropagation::RTPVisitor::BoundTypeForIfNotNull(HBasicBlock* block) {
358 HIf* ifInstruction = block->GetLastInstruction()->AsIf();
359 if (ifInstruction == nullptr) {
360 return;
361 }
362 HInstruction* ifInput = ifInstruction->InputAt(0);
363 if (!ifInput->IsNotEqual() && !ifInput->IsEqual()) {
364 return;
365 }
366 HInstruction* input0 = ifInput->InputAt(0);
367 HInstruction* input1 = ifInput->InputAt(1);
368 HInstruction* obj = nullptr;
369
370 if (input1->IsNullConstant()) {
371 obj = input0;
372 } else if (input0->IsNullConstant()) {
373 obj = input1;
374 } else {
375 return;
376 }
377
378 if (!obj->CanBeNull() || obj->IsNullConstant()) {
379 // Null check is dead code and will be removed by DCE.
380 return;
381 }
382 DCHECK(!obj->IsLoadClass()) << "We should not replace HLoadClass instructions";
383
384 // We only need to bound the type if we have uses in the relevant block.
385 // So start with null and create the HBoundType lazily, only if it's needed.
386 HBasicBlock* notNullBlock = ifInput->IsNotEqual()
387 ? ifInstruction->IfTrueSuccessor()
388 : ifInstruction->IfFalseSuccessor();
389
390 ReferenceTypeInfo object_rti =
391 ReferenceTypeInfo::Create(GetHandleCache()->GetObjectClassHandle(), /* is_exact= */ false);
392
393 BoundTypeIn(obj, notNullBlock, /* start_instruction= */ nullptr, object_rti);
394 }
395
396 // Returns true if one of the patterns below has been recognized. If so, the
397 // InstanceOf instruction together with the true branch of `ifInstruction` will
398 // be returned using the out parameters.
399 // Recognized patterns:
400 // (1) patterns equivalent to `if (obj instanceof X)`
401 // (a) InstanceOf -> Equal to 1 -> If
402 // (b) InstanceOf -> NotEqual to 0 -> If
403 // (c) InstanceOf -> If
404 // (2) patterns equivalent to `if (!(obj instanceof X))`
405 // (a) InstanceOf -> Equal to 0 -> If
406 // (b) InstanceOf -> NotEqual to 1 -> If
407 // (c) InstanceOf -> BooleanNot -> If
MatchIfInstanceOf(HIf * ifInstruction,HInstanceOf ** instanceOf,HBasicBlock ** trueBranch)408 static bool MatchIfInstanceOf(HIf* ifInstruction,
409 /* out */ HInstanceOf** instanceOf,
410 /* out */ HBasicBlock** trueBranch) {
411 HInstruction* input = ifInstruction->InputAt(0);
412
413 if (input->IsEqual()) {
414 HInstruction* rhs = input->AsEqual()->GetConstantRight();
415 if (rhs != nullptr) {
416 HInstruction* lhs = input->AsEqual()->GetLeastConstantLeft();
417 if (lhs->IsInstanceOf() && rhs->IsIntConstant()) {
418 if (rhs->AsIntConstant()->IsTrue()) {
419 // Case (1a)
420 *trueBranch = ifInstruction->IfTrueSuccessor();
421 } else {
422 // Case (2a)
423 DCHECK(rhs->AsIntConstant()->IsFalse()) << rhs->AsIntConstant()->GetValue();
424 *trueBranch = ifInstruction->IfFalseSuccessor();
425 }
426 *instanceOf = lhs->AsInstanceOf();
427 return true;
428 }
429 }
430 } else if (input->IsNotEqual()) {
431 HInstruction* rhs = input->AsNotEqual()->GetConstantRight();
432 if (rhs != nullptr) {
433 HInstruction* lhs = input->AsNotEqual()->GetLeastConstantLeft();
434 if (lhs->IsInstanceOf() && rhs->IsIntConstant()) {
435 if (rhs->AsIntConstant()->IsFalse()) {
436 // Case (1b)
437 *trueBranch = ifInstruction->IfTrueSuccessor();
438 } else {
439 // Case (2b)
440 DCHECK(rhs->AsIntConstant()->IsTrue()) << rhs->AsIntConstant()->GetValue();
441 *trueBranch = ifInstruction->IfFalseSuccessor();
442 }
443 *instanceOf = lhs->AsInstanceOf();
444 return true;
445 }
446 }
447 } else if (input->IsInstanceOf()) {
448 // Case (1c)
449 *instanceOf = input->AsInstanceOf();
450 *trueBranch = ifInstruction->IfTrueSuccessor();
451 return true;
452 } else if (input->IsBooleanNot()) {
453 HInstruction* not_input = input->InputAt(0);
454 if (not_input->IsInstanceOf()) {
455 // Case (2c)
456 *instanceOf = not_input->AsInstanceOf();
457 *trueBranch = ifInstruction->IfFalseSuccessor();
458 return true;
459 }
460 }
461
462 return false;
463 }
464
465 // Detects if `block` is the True block for the pattern
466 // `if (x instanceof ClassX) { }`
467 // If that's the case insert an HBoundType instruction to bound the type of `x`
468 // to `ClassX` in the scope of the dominated blocks.
BoundTypeForIfInstanceOf(HBasicBlock * block)469 void ReferenceTypePropagation::RTPVisitor::BoundTypeForIfInstanceOf(HBasicBlock* block) {
470 HIf* ifInstruction = block->GetLastInstruction()->AsIf();
471 if (ifInstruction == nullptr) {
472 return;
473 }
474
475 // Try to recognize common `if (instanceof)` and `if (!instanceof)` patterns.
476 HInstanceOf* instanceOf = nullptr;
477 HBasicBlock* instanceOfTrueBlock = nullptr;
478 if (!MatchIfInstanceOf(ifInstruction, &instanceOf, &instanceOfTrueBlock)) {
479 return;
480 }
481
482 ReferenceTypeInfo class_rti = instanceOf->GetTargetClassRTI();
483 if (!class_rti.IsValid()) {
484 // We have loaded an unresolved class. Don't bother bounding the type.
485 return;
486 }
487
488 HInstruction* obj = instanceOf->InputAt(0);
489 if (obj->GetReferenceTypeInfo().IsExact() && !obj->IsPhi()) {
490 // This method is being called while doing a fixed-point calculation
491 // over phis. Non-phis instruction whose type is already known do
492 // not need to be bound to another type.
493 // Not that this also prevents replacing `HLoadClass` with a `HBoundType`.
494 // `HCheckCast` and `HInstanceOf` expect a `HLoadClass` as a second
495 // input.
496 return;
497 }
498
499 {
500 ScopedObjectAccess soa(Thread::Current());
501 if (!class_rti.GetTypeHandle()->CannotBeAssignedFromOtherTypes()) {
502 class_rti = ReferenceTypeInfo::Create(class_rti.GetTypeHandle(), /* is_exact= */ false);
503 }
504 }
505 BoundTypeIn(obj, instanceOfTrueBlock, /* start_instruction= */ nullptr, class_rti);
506 }
507
SetClassAsTypeInfo(HInstruction * instr,ObjPtr<mirror::Class> klass,bool is_exact)508 void ReferenceTypePropagation::RTPVisitor::SetClassAsTypeInfo(HInstruction* instr,
509 ObjPtr<mirror::Class> klass,
510 bool is_exact) {
511 if (instr->IsInvokeStaticOrDirect() && instr->AsInvokeStaticOrDirect()->IsStringInit()) {
512 // Calls to String.<init> are replaced with a StringFactory.
513 if (kIsDebugBuild) {
514 HInvokeStaticOrDirect* invoke = instr->AsInvokeStaticOrDirect();
515 ClassLinker* cl = Runtime::Current()->GetClassLinker();
516 Thread* self = Thread::Current();
517 StackHandleScope<2> hs(self);
518 const DexFile& dex_file = *invoke->GetTargetMethod().dex_file;
519 uint32_t dex_method_index = invoke->GetTargetMethod().index;
520 Handle<mirror::DexCache> dex_cache(
521 hs.NewHandle(FindDexCacheWithHint(self, dex_file, hint_dex_cache_)));
522 // Use a null loader, the target method is in a boot classpath dex file.
523 Handle<mirror::ClassLoader> loader(hs.NewHandle<mirror::ClassLoader>(nullptr));
524 ArtMethod* method = cl->ResolveMethod<ClassLinker::ResolveMode::kNoChecks>(
525 dex_method_index, dex_cache, loader, /* referrer= */ nullptr, kDirect);
526 DCHECK(method != nullptr);
527 ObjPtr<mirror::Class> declaring_class = method->GetDeclaringClass();
528 DCHECK(declaring_class != nullptr);
529 DCHECK(declaring_class->IsStringClass())
530 << "Expected String class: " << declaring_class->PrettyDescriptor();
531 DCHECK(method->IsConstructor())
532 << "Expected String.<init>: " << method->PrettyMethod();
533 }
534 instr->SetReferenceTypeInfo(
535 ReferenceTypeInfo::Create(GetHandleCache()->GetStringClassHandle(), /* is_exact= */ true));
536 } else if (IsAdmissible(klass)) {
537 ReferenceTypeInfo::TypeHandle handle = GetHandleCache()->NewHandle(klass);
538 is_exact = is_exact || handle->CannotBeAssignedFromOtherTypes();
539 instr->SetReferenceTypeInfo(ReferenceTypeInfo::Create(handle, is_exact));
540 } else {
541 instr->SetReferenceTypeInfo(GetGraph()->GetInexactObjectRti());
542 }
543 }
544
VisitDeoptimize(HDeoptimize * instr)545 void ReferenceTypePropagation::RTPVisitor::VisitDeoptimize(HDeoptimize* instr) {
546 BoundTypeForClassCheck(instr);
547 }
548
UpdateReferenceTypeInfo(HInstruction * instr,dex::TypeIndex type_idx,const DexFile & dex_file,bool is_exact)549 void ReferenceTypePropagation::RTPVisitor::UpdateReferenceTypeInfo(HInstruction* instr,
550 dex::TypeIndex type_idx,
551 const DexFile& dex_file,
552 bool is_exact) {
553 DCHECK_EQ(instr->GetType(), DataType::Type::kReference);
554
555 ScopedObjectAccess soa(Thread::Current());
556 ObjPtr<mirror::DexCache> dex_cache = FindDexCacheWithHint(soa.Self(), dex_file, hint_dex_cache_);
557 ObjPtr<mirror::Class> klass = Runtime::Current()->GetClassLinker()->LookupResolvedType(
558 type_idx, dex_cache, class_loader_.Get());
559 SetClassAsTypeInfo(instr, klass, is_exact);
560 }
561
VisitNewInstance(HNewInstance * instr)562 void ReferenceTypePropagation::RTPVisitor::VisitNewInstance(HNewInstance* instr) {
563 ScopedObjectAccess soa(Thread::Current());
564 SetClassAsTypeInfo(instr, instr->GetLoadClass()->GetClass().Get(), /* is_exact= */ true);
565 }
566
VisitNewArray(HNewArray * instr)567 void ReferenceTypePropagation::RTPVisitor::VisitNewArray(HNewArray* instr) {
568 ScopedObjectAccess soa(Thread::Current());
569 SetClassAsTypeInfo(instr, instr->GetLoadClass()->GetClass().Get(), /* is_exact= */ true);
570 }
571
VisitParameterValue(HParameterValue * instr)572 void ReferenceTypePropagation::RTPVisitor::VisitParameterValue(HParameterValue* instr) {
573 // We check if the existing type is valid: the inliner may have set it.
574 if (instr->GetType() == DataType::Type::kReference && !instr->GetReferenceTypeInfo().IsValid()) {
575 UpdateReferenceTypeInfo(instr,
576 instr->GetTypeIndex(),
577 instr->GetDexFile(),
578 /* is_exact= */ false);
579 }
580 }
581
UpdateFieldAccessTypeInfo(HInstruction * instr,const FieldInfo & info)582 void ReferenceTypePropagation::RTPVisitor::UpdateFieldAccessTypeInfo(HInstruction* instr,
583 const FieldInfo& info) {
584 if (instr->GetType() != DataType::Type::kReference) {
585 return;
586 }
587
588 ScopedObjectAccess soa(Thread::Current());
589 ObjPtr<mirror::Class> klass;
590
591 // The field is unknown only during tests.
592 if (info.GetField() != nullptr) {
593 klass = info.GetField()->LookupResolvedType();
594 }
595
596 SetClassAsTypeInfo(instr, klass, /* is_exact= */ false);
597 }
598
VisitInstanceFieldGet(HInstanceFieldGet * instr)599 void ReferenceTypePropagation::RTPVisitor::VisitInstanceFieldGet(HInstanceFieldGet* instr) {
600 UpdateFieldAccessTypeInfo(instr, instr->GetFieldInfo());
601 }
602
VisitStaticFieldGet(HStaticFieldGet * instr)603 void ReferenceTypePropagation::RTPVisitor::VisitStaticFieldGet(HStaticFieldGet* instr) {
604 UpdateFieldAccessTypeInfo(instr, instr->GetFieldInfo());
605 }
606
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instr)607 void ReferenceTypePropagation::RTPVisitor::VisitUnresolvedInstanceFieldGet(
608 HUnresolvedInstanceFieldGet* instr) {
609 // TODO: Use descriptor to get the actual type.
610 if (instr->GetFieldType() == DataType::Type::kReference) {
611 instr->SetReferenceTypeInfo(GetGraph()->GetInexactObjectRti());
612 }
613 }
614
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instr)615 void ReferenceTypePropagation::RTPVisitor::VisitUnresolvedStaticFieldGet(
616 HUnresolvedStaticFieldGet* instr) {
617 // TODO: Use descriptor to get the actual type.
618 if (instr->GetFieldType() == DataType::Type::kReference) {
619 instr->SetReferenceTypeInfo(GetGraph()->GetInexactObjectRti());
620 }
621 }
622
VisitLoadClass(HLoadClass * instr)623 void ReferenceTypePropagation::RTPVisitor::VisitLoadClass(HLoadClass* instr) {
624 ScopedObjectAccess soa(Thread::Current());
625 if (IsAdmissible(instr->GetClass().Get())) {
626 instr->SetValidLoadedClassRTI();
627 }
628 instr->SetReferenceTypeInfo(
629 ReferenceTypeInfo::Create(GetHandleCache()->GetClassClassHandle(), /* is_exact= */ true));
630 }
631
VisitInstanceOf(HInstanceOf * instr)632 void ReferenceTypePropagation::RTPVisitor::VisitInstanceOf(HInstanceOf* instr) {
633 ScopedObjectAccess soa(Thread::Current());
634 if (IsAdmissible(instr->GetClass().Get())) {
635 instr->SetValidTargetClassRTI();
636 }
637 }
638
VisitClinitCheck(HClinitCheck * instr)639 void ReferenceTypePropagation::RTPVisitor::VisitClinitCheck(HClinitCheck* instr) {
640 instr->SetReferenceTypeInfo(instr->InputAt(0)->GetReferenceTypeInfo());
641 }
642
VisitLoadMethodHandle(HLoadMethodHandle * instr)643 void ReferenceTypePropagation::RTPVisitor::VisitLoadMethodHandle(HLoadMethodHandle* instr) {
644 instr->SetReferenceTypeInfo(ReferenceTypeInfo::Create(
645 GetHandleCache()->GetMethodHandleClassHandle(), /* is_exact= */ true));
646 }
647
VisitLoadMethodType(HLoadMethodType * instr)648 void ReferenceTypePropagation::RTPVisitor::VisitLoadMethodType(HLoadMethodType* instr) {
649 instr->SetReferenceTypeInfo(ReferenceTypeInfo::Create(
650 GetHandleCache()->GetMethodTypeClassHandle(), /* is_exact= */ true));
651 }
652
VisitLoadString(HLoadString * instr)653 void ReferenceTypePropagation::RTPVisitor::VisitLoadString(HLoadString* instr) {
654 instr->SetReferenceTypeInfo(
655 ReferenceTypeInfo::Create(GetHandleCache()->GetStringClassHandle(), /* is_exact= */ true));
656 }
657
VisitLoadException(HLoadException * instr)658 void ReferenceTypePropagation::RTPVisitor::VisitLoadException(HLoadException* instr) {
659 DCHECK(instr->GetBlock()->IsCatchBlock());
660 TryCatchInformation* catch_info = instr->GetBlock()->GetTryCatchInformation();
661
662 if (catch_info->IsValidTypeIndex()) {
663 UpdateReferenceTypeInfo(instr,
664 catch_info->GetCatchTypeIndex(),
665 catch_info->GetCatchDexFile(),
666 /* is_exact= */ false);
667 } else {
668 instr->SetReferenceTypeInfo(ReferenceTypeInfo::Create(
669 GetHandleCache()->GetThrowableClassHandle(), /* is_exact= */ false));
670 }
671 }
672
VisitNullCheck(HNullCheck * instr)673 void ReferenceTypePropagation::RTPVisitor::VisitNullCheck(HNullCheck* instr) {
674 ReferenceTypeInfo parent_rti = instr->InputAt(0)->GetReferenceTypeInfo();
675 if (parent_rti.IsValid()) {
676 instr->SetReferenceTypeInfo(parent_rti);
677 }
678 }
679
VisitBoundType(HBoundType * instr)680 void ReferenceTypePropagation::RTPVisitor::VisitBoundType(HBoundType* instr) {
681 ReferenceTypeInfo class_rti = instr->GetUpperBound();
682 if (class_rti.IsValid()) {
683 ScopedObjectAccess soa(Thread::Current());
684 // Narrow the type as much as possible.
685 HInstruction* obj = instr->InputAt(0);
686 ReferenceTypeInfo obj_rti = obj->GetReferenceTypeInfo();
687 if (class_rti.IsExact()) {
688 instr->SetReferenceTypeInfo(class_rti);
689 } else if (obj_rti.IsValid()) {
690 if (class_rti.IsSupertypeOf(obj_rti)) {
691 // Object type is more specific.
692 instr->SetReferenceTypeInfo(obj_rti);
693 } else {
694 // Upper bound is more specific, or unrelated to the object's type.
695 // Note that the object might then be exact, and we know the code dominated by this
696 // bound type is dead. To not confuse potential other optimizations, we mark
697 // the bound as non-exact.
698 instr->SetReferenceTypeInfo(
699 ReferenceTypeInfo::Create(class_rti.GetTypeHandle(), /* is_exact= */ false));
700 }
701 } else {
702 // Object not typed yet. Leave BoundType untyped for now rather than
703 // assign the type conservatively.
704 }
705 instr->SetCanBeNull(obj->CanBeNull() && instr->GetUpperCanBeNull());
706 } else {
707 // The owner of the BoundType was already visited. If the class is unresolved,
708 // the BoundType should have been removed from the data flow and this method
709 // should remove it from the graph.
710 DCHECK(!instr->HasUses());
711 instr->GetBlock()->RemoveInstruction(instr);
712 }
713 }
714
VisitCheckCast(HCheckCast * check_cast)715 void ReferenceTypePropagation::RTPVisitor::VisitCheckCast(HCheckCast* check_cast) {
716 HBoundType* bound_type = check_cast->GetNext()->AsBoundType();
717 if (bound_type == nullptr || bound_type->GetUpperBound().IsValid()) {
718 // The next instruction is not an uninitialized BoundType. This must be
719 // an RTP pass after SsaBuilder and we do not need to do anything.
720 return;
721 }
722 DCHECK_EQ(bound_type->InputAt(0), check_cast->InputAt(0));
723
724 ScopedObjectAccess soa(Thread::Current());
725 Handle<mirror::Class> klass = check_cast->GetClass();
726 if (IsAdmissible(klass.Get())) {
727 DCHECK(is_first_run_);
728 check_cast->SetValidTargetClassRTI();
729 // This is the first run of RTP and class is resolved.
730 bool is_exact = klass->CannotBeAssignedFromOtherTypes();
731 bound_type->SetUpperBound(ReferenceTypeInfo::Create(klass, is_exact),
732 /* CheckCast succeeds for nulls. */ true);
733 } else {
734 // This is the first run of RTP and class is unresolved. Remove the binding.
735 // The instruction itself is removed in VisitBoundType so as to not
736 // invalidate HInstructionIterator.
737 bound_type->ReplaceWith(bound_type->InputAt(0));
738 }
739 }
740
VisitPhi(HPhi * phi)741 void ReferenceTypePropagation::RTPVisitor::VisitPhi(HPhi* phi) {
742 if (phi->IsDead() || phi->GetType() != DataType::Type::kReference) {
743 return;
744 }
745
746 if (phi->GetBlock()->IsLoopHeader()) {
747 // Set the initial type for the phi. Use the non back edge input for reaching
748 // a fixed point faster.
749 HInstruction* first_input = phi->InputAt(0);
750 ReferenceTypeInfo first_input_rti = first_input->GetReferenceTypeInfo();
751 if (first_input_rti.IsValid() && !first_input->IsNullConstant()) {
752 phi->SetCanBeNull(first_input->CanBeNull());
753 phi->SetReferenceTypeInfo(first_input_rti);
754 }
755 AddToWorklist(phi);
756 } else {
757 // Eagerly compute the type of the phi, for quicker convergence. Note
758 // that we don't need to add users to the worklist because we are
759 // doing a reverse post-order visit, therefore either the phi users are
760 // non-loop phi and will be visited later in the visit, or are loop-phis,
761 // and they are already in the work list.
762 UpdateNullability(phi);
763 UpdateReferenceTypeInfo(phi);
764 }
765 }
766
FixUpInstructionType(HInstruction * instruction,HandleCache * handle_cache)767 void ReferenceTypePropagation::FixUpInstructionType(HInstruction* instruction,
768 HandleCache* handle_cache) {
769 if (instruction->IsSelect()) {
770 ScopedObjectAccess soa(Thread::Current());
771 HSelect* select = instruction->AsSelect();
772 ReferenceTypeInfo false_rti = select->GetFalseValue()->GetReferenceTypeInfo();
773 ReferenceTypeInfo true_rti = select->GetTrueValue()->GetReferenceTypeInfo();
774 select->SetReferenceTypeInfo(MergeTypes(false_rti, true_rti, handle_cache));
775 } else {
776 LOG(FATAL) << "Invalid instruction in FixUpInstructionType";
777 }
778 }
779
MergeTypes(const ReferenceTypeInfo & a,const ReferenceTypeInfo & b,HandleCache * handle_cache)780 ReferenceTypeInfo ReferenceTypePropagation::MergeTypes(const ReferenceTypeInfo& a,
781 const ReferenceTypeInfo& b,
782 HandleCache* handle_cache) {
783 if (!b.IsValid()) {
784 return a;
785 }
786 if (!a.IsValid()) {
787 return b;
788 }
789
790 bool is_exact = a.IsExact() && b.IsExact();
791 ReferenceTypeInfo::TypeHandle result_type_handle;
792 ReferenceTypeInfo::TypeHandle a_type_handle = a.GetTypeHandle();
793 ReferenceTypeInfo::TypeHandle b_type_handle = b.GetTypeHandle();
794 bool a_is_interface = a_type_handle->IsInterface();
795 bool b_is_interface = b_type_handle->IsInterface();
796
797 if (a.GetTypeHandle().Get() == b.GetTypeHandle().Get()) {
798 result_type_handle = a_type_handle;
799 } else if (a.IsSupertypeOf(b)) {
800 result_type_handle = a_type_handle;
801 is_exact = false;
802 } else if (b.IsSupertypeOf(a)) {
803 result_type_handle = b_type_handle;
804 is_exact = false;
805 } else if (!a_is_interface && !b_is_interface) {
806 result_type_handle =
807 handle_cache->NewHandle(a_type_handle->GetCommonSuperClass(b_type_handle));
808 is_exact = false;
809 } else {
810 // This can happen if:
811 // - both types are interfaces. TODO(calin): implement
812 // - one is an interface, the other a class, and the type does not implement the interface
813 // e.g:
814 // void foo(Interface i, boolean cond) {
815 // Object o = cond ? i : new Object();
816 // }
817 result_type_handle = handle_cache->GetObjectClassHandle();
818 is_exact = false;
819 }
820
821 return ReferenceTypeInfo::Create(result_type_handle, is_exact);
822 }
823
UpdateArrayGet(HArrayGet * instr)824 void ReferenceTypePropagation::RTPVisitor::UpdateArrayGet(HArrayGet* instr) {
825 DCHECK_EQ(DataType::Type::kReference, instr->GetType());
826
827 ReferenceTypeInfo parent_rti = instr->InputAt(0)->GetReferenceTypeInfo();
828 if (!parent_rti.IsValid()) {
829 return;
830 }
831
832 Handle<mirror::Class> handle = parent_rti.GetTypeHandle();
833 if (handle->IsObjectArrayClass() && IsAdmissible(handle->GetComponentType())) {
834 ReferenceTypeInfo::TypeHandle component_handle =
835 GetHandleCache()->NewHandle(handle->GetComponentType());
836 bool is_exact = component_handle->CannotBeAssignedFromOtherTypes();
837 instr->SetReferenceTypeInfo(ReferenceTypeInfo::Create(component_handle, is_exact));
838 } else {
839 // We don't know what the parent actually is, so we fallback to object.
840 instr->SetReferenceTypeInfo(GetGraph()->GetInexactObjectRti());
841 }
842 }
843
UpdateReferenceTypeInfo(HInstruction * instr)844 bool ReferenceTypePropagation::RTPVisitor::UpdateReferenceTypeInfo(HInstruction* instr) {
845 ScopedObjectAccess soa(Thread::Current());
846
847 ReferenceTypeInfo previous_rti = instr->GetReferenceTypeInfo();
848 if (instr->IsBoundType()) {
849 UpdateBoundType(instr->AsBoundType());
850 } else if (instr->IsPhi()) {
851 UpdatePhi(instr->AsPhi());
852 } else if (instr->IsNullCheck()) {
853 ReferenceTypeInfo parent_rti = instr->InputAt(0)->GetReferenceTypeInfo();
854 if (parent_rti.IsValid()) {
855 instr->SetReferenceTypeInfo(parent_rti);
856 }
857 } else if (instr->IsArrayGet()) {
858 // TODO: consider if it's worth "looking back" and binding the input object
859 // to an array type.
860 UpdateArrayGet(instr->AsArrayGet());
861 } else {
862 LOG(FATAL) << "Invalid instruction (should not get here)";
863 }
864
865 return !previous_rti.IsEqual(instr->GetReferenceTypeInfo());
866 }
867
VisitInvoke(HInvoke * instr)868 void ReferenceTypePropagation::RTPVisitor::VisitInvoke(HInvoke* instr) {
869 if (instr->GetType() != DataType::Type::kReference) {
870 return;
871 }
872
873 ScopedObjectAccess soa(Thread::Current());
874 ArtMethod* method = instr->GetResolvedMethod();
875 ObjPtr<mirror::Class> klass = (method == nullptr) ? nullptr : method->LookupResolvedReturnType();
876 SetClassAsTypeInfo(instr, klass, /* is_exact= */ false);
877 }
878
VisitArrayGet(HArrayGet * instr)879 void ReferenceTypePropagation::RTPVisitor::VisitArrayGet(HArrayGet* instr) {
880 if (instr->GetType() != DataType::Type::kReference) {
881 return;
882 }
883
884 ScopedObjectAccess soa(Thread::Current());
885 UpdateArrayGet(instr);
886 if (!instr->GetReferenceTypeInfo().IsValid()) {
887 worklist_.push_back(instr);
888 }
889 }
890
UpdateBoundType(HBoundType * instr)891 void ReferenceTypePropagation::RTPVisitor::UpdateBoundType(HBoundType* instr) {
892 ReferenceTypeInfo input_rti = instr->InputAt(0)->GetReferenceTypeInfo();
893 if (!input_rti.IsValid()) {
894 return; // No new info yet.
895 }
896
897 ReferenceTypeInfo upper_bound_rti = instr->GetUpperBound();
898 if (upper_bound_rti.IsExact()) {
899 instr->SetReferenceTypeInfo(upper_bound_rti);
900 } else if (upper_bound_rti.IsSupertypeOf(input_rti)) {
901 // input is more specific.
902 instr->SetReferenceTypeInfo(input_rti);
903 } else {
904 // upper_bound is more specific or unrelated.
905 // Note that the object might then be exact, and we know the code dominated by this
906 // bound type is dead. To not confuse potential other optimizations, we mark
907 // the bound as non-exact.
908 instr->SetReferenceTypeInfo(
909 ReferenceTypeInfo::Create(upper_bound_rti.GetTypeHandle(), /* is_exact= */ false));
910 }
911 }
912
913 // NullConstant inputs are ignored during merging as they do not provide any useful information.
914 // If all the inputs are NullConstants then the type of the phi will be set to Object.
UpdatePhi(HPhi * instr)915 void ReferenceTypePropagation::RTPVisitor::UpdatePhi(HPhi* instr) {
916 DCHECK(instr->IsLive());
917
918 HInputsRef inputs = instr->GetInputs();
919 size_t first_input_index_not_null = 0;
920 while (first_input_index_not_null < inputs.size() &&
921 inputs[first_input_index_not_null]->IsNullConstant()) {
922 first_input_index_not_null++;
923 }
924 if (first_input_index_not_null == inputs.size()) {
925 // All inputs are NullConstants, set the type to object.
926 // This may happen in the presence of inlining.
927 instr->SetReferenceTypeInfo(instr->GetBlock()->GetGraph()->GetInexactObjectRti());
928 return;
929 }
930
931 ReferenceTypeInfo new_rti = instr->InputAt(first_input_index_not_null)->GetReferenceTypeInfo();
932
933 if (new_rti.IsValid() && new_rti.IsObjectClass() && !new_rti.IsExact()) {
934 // Early return if we are Object and inexact.
935 instr->SetReferenceTypeInfo(new_rti);
936 return;
937 }
938
939 for (size_t i = first_input_index_not_null + 1; i < inputs.size(); i++) {
940 if (inputs[i]->IsNullConstant()) {
941 continue;
942 }
943 new_rti = MergeTypes(new_rti, inputs[i]->GetReferenceTypeInfo(), GetHandleCache());
944 if (new_rti.IsValid() && new_rti.IsObjectClass()) {
945 if (!new_rti.IsExact()) {
946 break;
947 } else {
948 continue;
949 }
950 }
951 }
952
953 if (new_rti.IsValid()) {
954 instr->SetReferenceTypeInfo(new_rti);
955 }
956 }
957
958 // Re-computes and updates the nullability of the instruction. Returns whether or
959 // not the nullability was changed.
UpdateNullability(HInstruction * instr)960 bool ReferenceTypePropagation::RTPVisitor::UpdateNullability(HInstruction* instr) {
961 DCHECK((instr->IsPhi() && instr->AsPhi()->IsLive())
962 || instr->IsBoundType()
963 || instr->IsNullCheck()
964 || instr->IsArrayGet());
965
966 if (!instr->IsPhi() && !instr->IsBoundType()) {
967 return false;
968 }
969
970 bool existing_can_be_null = instr->CanBeNull();
971 if (instr->IsPhi()) {
972 HPhi* phi = instr->AsPhi();
973 bool new_can_be_null = false;
974 for (HInstruction* input : phi->GetInputs()) {
975 if (input->CanBeNull()) {
976 new_can_be_null = true;
977 break;
978 }
979 }
980 phi->SetCanBeNull(new_can_be_null);
981 } else if (instr->IsBoundType()) {
982 HBoundType* bound_type = instr->AsBoundType();
983 bound_type->SetCanBeNull(instr->InputAt(0)->CanBeNull() && bound_type->GetUpperCanBeNull());
984 }
985 return existing_can_be_null != instr->CanBeNull();
986 }
987
ProcessWorklist()988 void ReferenceTypePropagation::RTPVisitor::ProcessWorklist() {
989 while (!worklist_.empty()) {
990 HInstruction* instruction = worklist_.back();
991 worklist_.pop_back();
992 bool updated_nullability = UpdateNullability(instruction);
993 bool updated_reference_type = UpdateReferenceTypeInfo(instruction);
994 if (updated_nullability || updated_reference_type) {
995 AddDependentInstructionsToWorklist(instruction);
996 }
997 }
998 }
999
AddToWorklist(HInstruction * instruction)1000 void ReferenceTypePropagation::RTPVisitor::AddToWorklist(HInstruction* instruction) {
1001 DCHECK_EQ(instruction->GetType(), DataType::Type::kReference)
1002 << instruction->DebugName() << ":" << instruction->GetType();
1003 worklist_.push_back(instruction);
1004 }
1005
AddDependentInstructionsToWorklist(HInstruction * instruction)1006 void ReferenceTypePropagation::RTPVisitor::AddDependentInstructionsToWorklist(
1007 HInstruction* instruction) {
1008 for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
1009 HInstruction* user = use.GetUser();
1010 if ((user->IsPhi() && user->AsPhi()->IsLive())
1011 || user->IsBoundType()
1012 || user->IsNullCheck()
1013 || (user->IsArrayGet() && (user->GetType() == DataType::Type::kReference))) {
1014 AddToWorklist(user);
1015 }
1016 }
1017 }
1018
1019 } // namespace art
1020