1 /* 2 * Copyright (C) 2017 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 package com.android.dialer.common.backoff; 18 19 import com.android.dialer.common.Assert; 20 21 /** 22 * Given an initial delay, D, a maximum total backoff time, T, and a maximum number of backoffs, N, 23 * this class calculates a base multiplier, b, and a scaling factor, g, such that the initial 24 * backoff is g*b = D and the sum of the scaled backoffs is T = g*b + g*b^2 + g*b^3 + ... g*b^N 25 * 26 * <p>T/D = (1 - b^N)/(1 - b) but this cannot be written as a simple equation for b in terms of T, N 27 * and D so instead use Newton's method (https://en.wikipedia.org/wiki/Newton%27s_method) to find an 28 * approximate value for b. 29 * 30 * <p>Example usage using the {@code ExponentialBackoff} would be: 31 * 32 * <pre> 33 * // Retry with exponential backoff for up to 2 minutes, with an initial delay of 100 millis 34 * // and a maximum of 10 retries 35 * long initialDelayMillis = 100; 36 * int maxTries = 10; 37 * double base = ExponentialBaseCalculator.findBase( 38 * initialDelayMillis, 39 * TimeUnit.MINUTES.toMillis(2), 40 * maxTries); 41 * ExponentialBackoff backoff = new ExponentialBackoff(initialDelayMillis, base, maxTries); 42 * while (backoff.isInRange()) { 43 * ... 44 * long delay = backoff.getNextBackoff(); 45 * // Wait for the indicated time... 46 * } 47 * </pre> 48 */ 49 public final class ExponentialBaseCalculator { 50 private static final int MAX_STEPS = 1000; 51 private static final double DEFAULT_TOLERANCE_MILLIS = 1; 52 53 /** 54 * Calculate an exponential backoff base multiplier such that the first backoff delay will be as 55 * specified and the sum of the delays after doing the indicated maximum number of backoffs will 56 * be as specified. 57 * 58 * @throws IllegalArgumentException if the initial delay is greater than the total backoff time 59 * @throws IllegalArgumentException if the maximum number of backoffs is not greater than 1 60 * @throws IllegalStateException if it fails to find an acceptable base multiplier 61 */ findBase( long initialDelayMillis, long totalBackoffTimeMillis, int maximumBackoffs)62 public static double findBase( 63 long initialDelayMillis, long totalBackoffTimeMillis, int maximumBackoffs) { 64 Assert.checkArgument(initialDelayMillis < totalBackoffTimeMillis); 65 Assert.checkArgument(maximumBackoffs > 1); 66 long scaledTotalTime = Math.round(((double) totalBackoffTimeMillis) / initialDelayMillis); 67 double scaledTolerance = DEFAULT_TOLERANCE_MILLIS / initialDelayMillis; 68 return getBaseImpl(scaledTotalTime, maximumBackoffs, scaledTolerance); 69 } 70 71 /** 72 * T/D = (1 - b^N)/(1 - b) but this cannot be written as a simple equation for b in terms of T, D 73 * and N so instead we use Newtons method to find an approximate value for b. 74 * 75 * <p>Let f(b) = (1 - b^N)/(1 - b) - T/D then we want to find b* such that f(b*) = 0, or more 76 * precisely |f(b*)| < tolerance 77 * 78 * <p>Using Newton's method we can interatively find b* as follows: b1 = b0 - f(b0)/f'(b0), where 79 * b0 is the current best guess for b* and b1 is the next best guess. 80 * 81 * <p>f'(b) = (f(b) + T/D - N*b^(N - 1))/(1 - b) 82 * 83 * <p>so 84 * 85 * <p>b1 = b0 - f(b0)(1 - b0)/(f(b0) + T/D - N*b0^(N - 1)) 86 */ getBaseImpl(long t, int n, double tolerance)87 private static double getBaseImpl(long t, int n, double tolerance) { 88 double b0 = 2; // Initial guess for b* 89 double b0n = Math.pow(b0, n); 90 double fb0 = f(b0, t, b0n); 91 if (Math.abs(fb0) < tolerance) { 92 // Initial guess was pretty good 93 return b0; 94 } 95 96 for (int i = 0; i < MAX_STEPS; i++) { 97 double fpb0 = fp(b0, t, n, fb0, b0n); 98 double b1 = b0 - fb0 / fpb0; 99 double b1n = Math.pow(b1, n); 100 double fb1 = f(b1, t, b1n); 101 102 if (Math.abs(fb1) < tolerance) { 103 // Found an acceptable value 104 return b1; 105 } 106 107 b0 = b1; 108 b0n = b1n; 109 fb0 = fb1; 110 } 111 112 throw new IllegalStateException("Failed to find base. Too many iterations."); 113 } 114 115 // Evaluate f(b), the function we are trying to find the zero for. 116 // Note: passing b^N as a parameter so it only has to be calculated once f(double b, long t, double bn)117 private static double f(double b, long t, double bn) { 118 return (1 - bn) / (1 - b) - t; 119 } 120 121 // Evaluate f'(b), the derivative of the function we are trying to find the zero for. 122 // Note: passing f(b) and b^N as parameters for efficiency fp(double b, long t, int n, double fb, double bn)123 private static double fp(double b, long t, int n, double fb, double bn) { 124 return (fb + t - n * bn / b) / (1 - b); 125 } 126 } 127