1 /* libs/pixelflinger/trap.cpp
2 **
3 ** Copyright 2006, The Android Open Source Project
4 **
5 ** Licensed under the Apache License, Version 2.0 (the "License");
6 ** you may not use this file except in compliance with the License.
7 ** You may obtain a copy of the License at
8 **
9 **     http://www.apache.org/licenses/LICENSE-2.0
10 **
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 */
17 
18 #define LOG_TAG "pixelflinger-trap"
19 
20 #include <assert.h>
21 #include <stdio.h>
22 #include <stdlib.h>
23 
24 #include <cutils/memory.h>
25 #include <log/log.h>
26 
27 #include "trap.h"
28 #include "picker.h"
29 
30 namespace android {
31 
32 // ----------------------------------------------------------------------------
33 
34 // enable to see triangles edges
35 #define DEBUG_TRANGLES  0
36 
37 // ----------------------------------------------------------------------------
38 
39 static void pointx_validate(void *con, const GGLcoord* c, GGLcoord r);
40 static void pointx(void *con, const GGLcoord* c, GGLcoord r);
41 static void aa_pointx(void *con, const GGLcoord* c, GGLcoord r);
42 static void aa_nice_pointx(void *con, const GGLcoord* c, GGLcoord r);
43 
44 static void linex_validate(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord w);
45 static void linex(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord w);
46 static void aa_linex(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord w);
47 
48 static void recti_validate(void* c, GGLint l, GGLint t, GGLint r, GGLint b);
49 static void recti(void* c, GGLint l, GGLint t, GGLint r, GGLint b);
50 
51 static void trianglex_validate(void*,
52         const GGLcoord*, const GGLcoord*, const GGLcoord*);
53 static void trianglex_small(void*,
54         const GGLcoord*, const GGLcoord*, const GGLcoord*);
55 static void trianglex_big(void*,
56         const GGLcoord*, const GGLcoord*, const GGLcoord*);
57 static void aa_trianglex(void*,
58         const GGLcoord*, const GGLcoord*, const GGLcoord*);
59 static void trianglex_debug(void* con,
60         const GGLcoord*, const GGLcoord*, const GGLcoord*);
61 
62 static void aapolyx(void* con,
63         const GGLcoord* pts, int count);
64 
65 static inline int min(int a, int b) CONST;
66 static inline int max(int a, int b) CONST;
67 static inline int min(int a, int b, int c) CONST;
68 static inline int max(int a, int b, int c) CONST;
69 
70 // ----------------------------------------------------------------------------
71 #if 0
72 #pragma mark -
73 #pragma mark Tools
74 #endif
75 
min(int a,int b)76 inline int min(int a, int b) {
77     return a<b ? a : b;
78 }
max(int a,int b)79 inline int max(int a, int b) {
80     return a<b ? b : a;
81 }
min(int a,int b,int c)82 inline int min(int a, int b, int c) {
83     return min(a,min(b,c));
84 }
max(int a,int b,int c)85 inline int max(int a, int b, int c) {
86     return max(a,max(b,c));
87 }
88 
89 template <typename T>
swap(T & a,T & b)90 static inline void swap(T& a, T& b) {
91     T t(a);
92     a = b;
93     b = t;
94 }
95 
96 static void
triangle_dump_points(const GGLcoord * v0,const GGLcoord * v1,const GGLcoord * v2)97 triangle_dump_points( const GGLcoord*  v0,
98                       const GGLcoord*  v1,
99                       const GGLcoord*  v2 )
100 {
101     float tri = 1.0f / TRI_ONE;
102     ALOGD("  P0=(%.3f, %.3f)  [%08x, %08x]\n"
103           "  P1=(%.3f, %.3f)  [%08x, %08x]\n"
104           "  P2=(%.3f, %.3f)  [%08x, %08x]\n",
105           v0[0]*tri, v0[1]*tri, v0[0], v0[1],
106           v1[0]*tri, v1[1]*tri, v1[0], v1[1],
107           v2[0]*tri, v2[1]*tri, v2[0], v2[1] );
108 }
109 
110 // ----------------------------------------------------------------------------
111 #if 0
112 #pragma mark -
113 #pragma mark Misc
114 #endif
115 
ggl_init_trap(context_t * c)116 void ggl_init_trap(context_t* c)
117 {
118     ggl_state_changed(c, GGL_PIXEL_PIPELINE_STATE|GGL_TMU_STATE|GGL_CB_STATE);
119 }
120 
ggl_state_changed(context_t * c,int flags)121 void ggl_state_changed(context_t* c, int flags)
122 {
123     if (ggl_likely(!c->dirty)) {
124         c->procs.pointx     = pointx_validate;
125         c->procs.linex      = linex_validate;
126         c->procs.recti      = recti_validate;
127         c->procs.trianglex  = trianglex_validate;
128     }
129     c->dirty |= uint32_t(flags);
130 }
131 
132 // ----------------------------------------------------------------------------
133 #if 0
134 #pragma mark -
135 #pragma mark Point
136 #endif
137 
pointx_validate(void * con,const GGLcoord * v,GGLcoord rad)138 void pointx_validate(void *con, const GGLcoord* v, GGLcoord rad)
139 {
140     GGL_CONTEXT(c, con);
141     ggl_pick(c);
142     if (c->state.needs.p & GGL_NEED_MASK(P_AA)) {
143         if (c->state.enables & GGL_ENABLE_POINT_AA_NICE) {
144             c->procs.pointx = aa_nice_pointx;
145         } else {
146             c->procs.pointx = aa_pointx;
147         }
148     } else {
149         c->procs.pointx = pointx;
150     }
151     c->procs.pointx(con, v, rad);
152 }
153 
pointx(void * con,const GGLcoord * v,GGLcoord rad)154 void pointx(void *con, const GGLcoord* v, GGLcoord rad)
155 {
156     GGL_CONTEXT(c, con);
157     GGLcoord halfSize = TRI_ROUND(rad) >> 1;
158     if (halfSize == 0)
159         halfSize = TRI_HALF;
160     GGLcoord xc = v[0];
161     GGLcoord yc = v[1];
162     if (halfSize & TRI_HALF) { // size odd
163         xc = TRI_FLOOR(xc) + TRI_HALF;
164         yc = TRI_FLOOR(yc) + TRI_HALF;
165     } else { // size even
166         xc = TRI_ROUND(xc);
167         yc = TRI_ROUND(yc);
168     }
169     GGLint l = (xc - halfSize) >> TRI_FRACTION_BITS;
170     GGLint t = (yc - halfSize) >> TRI_FRACTION_BITS;
171     GGLint r = (xc + halfSize) >> TRI_FRACTION_BITS;
172     GGLint b = (yc + halfSize) >> TRI_FRACTION_BITS;
173     recti(c, l, t, r, b);
174 }
175 
176 // This way of computing the coverage factor, is more accurate and gives
177 // better results for small circles, but it is also a lot slower.
178 // Here we use super-sampling.
coverageNice(GGLcoord x,GGLcoord y,GGLcoord rmin,GGLcoord rmax,GGLcoord rr)179 static int32_t coverageNice(GGLcoord x, GGLcoord y,
180         GGLcoord rmin, GGLcoord rmax, GGLcoord rr)
181 {
182     const GGLcoord d2 = x*x + y*y;
183     if (d2 >= rmax) return 0;
184     if (d2 < rmin)  return 0x7FFF;
185 
186     const int kSamples              =  4;
187     const int kInc                  =  4;    // 1/4 = 0.25
188     const int kCoverageUnit         =  1;    // 1/(4^2) = 0.0625
189     const GGLcoord kCoordOffset     = -6;    // -0.375
190 
191     int hits = 0;
192     int x_sample = x + kCoordOffset;
193     for (int i=0 ; i<kSamples ; i++, x_sample += kInc) {
194         const int xval = rr - (x_sample * x_sample);
195         int y_sample = y + kCoordOffset;
196         for (int j=0 ; j<kSamples ; j++, y_sample += kInc) {
197             if (xval - (y_sample * y_sample) > 0)
198                 hits += kCoverageUnit;
199         }
200     }
201     return min(0x7FFF, hits << (15 - kSamples));
202 }
203 
204 
aa_nice_pointx(void * con,const GGLcoord * v,GGLcoord size)205 void aa_nice_pointx(void *con, const GGLcoord* v, GGLcoord size)
206 {
207     GGL_CONTEXT(c, con);
208 
209     GGLcoord rad = ((size + 1)>>1);
210     GGLint l = (v[0] - rad) >> TRI_FRACTION_BITS;
211     GGLint t = (v[1] - rad) >> TRI_FRACTION_BITS;
212     GGLint r = (v[0] + rad + (TRI_ONE-1)) >> TRI_FRACTION_BITS;
213     GGLint b = (v[1] + rad + (TRI_ONE-1)) >> TRI_FRACTION_BITS;
214     GGLcoord xstart = TRI_FROM_INT(l) - v[0] + TRI_HALF;
215     GGLcoord ystart = TRI_FROM_INT(t) - v[1] + TRI_HALF;
216 
217     // scissor...
218     if (l < GGLint(c->state.scissor.left)) {
219         xstart += TRI_FROM_INT(c->state.scissor.left-l);
220         l = GGLint(c->state.scissor.left);
221     }
222     if (t < GGLint(c->state.scissor.top)) {
223         ystart += TRI_FROM_INT(c->state.scissor.top-t);
224         t = GGLint(c->state.scissor.top);
225     }
226     if (r > GGLint(c->state.scissor.right)) {
227         r = GGLint(c->state.scissor.right);
228     }
229     if (b > GGLint(c->state.scissor.bottom)) {
230         b = GGLint(c->state.scissor.bottom);
231     }
232 
233     int xc = r - l;
234     int yc = b - t;
235     if (xc>0 && yc>0) {
236         int16_t* covPtr = c->state.buffers.coverage;
237         const int32_t sqr2Over2 = 0xC; // rounded up
238         GGLcoord rr = rad*rad;
239         GGLcoord rmin = (rad - sqr2Over2)*(rad - sqr2Over2);
240         GGLcoord rmax = (rad + sqr2Over2)*(rad + sqr2Over2);
241         GGLcoord y = ystart;
242         c->iterators.xl = l;
243         c->iterators.xr = r;
244         c->init_y(c, t);
245         do {
246             // compute coverage factors for each pixel
247             GGLcoord x = xstart;
248             for (int i=l ; i<r ; i++) {
249                 covPtr[i] = coverageNice(x, y, rmin, rmax, rr);
250                 x += TRI_ONE;
251             }
252             y += TRI_ONE;
253             c->scanline(c);
254             c->step_y(c);
255         } while (--yc);
256     }
257 }
258 
259 // This is a cheap way of computing the coverage factor for a circle.
260 // We just lerp between the circles of radii r-sqrt(2)/2 and r+sqrt(2)/2
coverageFast(GGLcoord x,GGLcoord y,GGLcoord rmin,GGLcoord rmax,GGLcoord scale)261 static inline int32_t coverageFast(GGLcoord x, GGLcoord y,
262         GGLcoord rmin, GGLcoord rmax, GGLcoord scale)
263 {
264     const GGLcoord d2 = x*x + y*y;
265     if (d2 >= rmax) return 0;
266     if (d2 < rmin)  return 0x7FFF;
267     return 0x7FFF - (d2-rmin)*scale;
268 }
269 
aa_pointx(void * con,const GGLcoord * v,GGLcoord size)270 void aa_pointx(void *con, const GGLcoord* v, GGLcoord size)
271 {
272     GGL_CONTEXT(c, con);
273 
274     GGLcoord rad = ((size + 1)>>1);
275     GGLint l = (v[0] - rad) >> TRI_FRACTION_BITS;
276     GGLint t = (v[1] - rad) >> TRI_FRACTION_BITS;
277     GGLint r = (v[0] + rad + (TRI_ONE-1)) >> TRI_FRACTION_BITS;
278     GGLint b = (v[1] + rad + (TRI_ONE-1)) >> TRI_FRACTION_BITS;
279     GGLcoord xstart = TRI_FROM_INT(l) - v[0] + TRI_HALF;
280     GGLcoord ystart = TRI_FROM_INT(t) - v[1] + TRI_HALF;
281 
282     // scissor...
283     if (l < GGLint(c->state.scissor.left)) {
284         xstart += TRI_FROM_INT(c->state.scissor.left-l);
285         l = GGLint(c->state.scissor.left);
286     }
287     if (t < GGLint(c->state.scissor.top)) {
288         ystart += TRI_FROM_INT(c->state.scissor.top-t);
289         t = GGLint(c->state.scissor.top);
290     }
291     if (r > GGLint(c->state.scissor.right)) {
292         r = GGLint(c->state.scissor.right);
293     }
294     if (b > GGLint(c->state.scissor.bottom)) {
295         b = GGLint(c->state.scissor.bottom);
296     }
297 
298     int xc = r - l;
299     int yc = b - t;
300     if (xc>0 && yc>0) {
301         int16_t* covPtr = c->state.buffers.coverage;
302         rad <<= 4;
303         const int32_t sqr2Over2 = 0xB5;    // fixed-point 24.8
304         GGLcoord rmin = rad - sqr2Over2;
305         GGLcoord rmax = rad + sqr2Over2;
306         GGLcoord scale;
307         rmin *= rmin;
308         rmax *= rmax;
309         scale = 0x800000 / (rmax - rmin);
310         rmin >>= 8;
311         rmax >>= 8;
312 
313         GGLcoord y = ystart;
314         c->iterators.xl = l;
315         c->iterators.xr = r;
316         c->init_y(c, t);
317 
318         do {
319             // compute coverage factors for each pixel
320             GGLcoord x = xstart;
321             for (int i=l ; i<r ; i++) {
322                 covPtr[i] = coverageFast(x, y, rmin, rmax, scale);
323                 x += TRI_ONE;
324             }
325             y += TRI_ONE;
326             c->scanline(c);
327             c->step_y(c);
328         } while (--yc);
329     }
330 }
331 
332 // ----------------------------------------------------------------------------
333 #if 0
334 #pragma mark -
335 #pragma mark Line
336 #endif
337 
linex_validate(void * con,const GGLcoord * v0,const GGLcoord * v1,GGLcoord w)338 void linex_validate(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord w)
339 {
340     GGL_CONTEXT(c, con);
341     ggl_pick(c);
342     if (c->state.needs.p & GGL_NEED_MASK(P_AA)) {
343         c->procs.linex = aa_linex;
344     } else {
345         c->procs.linex = linex;
346     }
347     c->procs.linex(con, v0, v1, w);
348 }
349 
linex(void * con,const GGLcoord * v0,const GGLcoord * v1,GGLcoord width)350 static void linex(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord width)
351 {
352     GGLcoord v[4][2];
353     v[0][0] = v0[0];    v[0][1] = v0[1];
354     v[1][0] = v1[0];    v[1][1] = v1[1];
355     v0 = v[0];
356     v1 = v[1];
357     const GGLcoord dx = abs(v0[0] - v1[0]);
358     const GGLcoord dy = abs(v0[1] - v1[1]);
359     GGLcoord nx, ny;
360     nx = ny = 0;
361 
362     GGLcoord halfWidth = TRI_ROUND(width) >> 1;
363     if (halfWidth == 0)
364         halfWidth = TRI_HALF;
365 
366     ((dx > dy) ? ny : nx) = halfWidth;
367     v[2][0] = v1[0];    v[2][1] = v1[1];
368     v[3][0] = v0[0];    v[3][1] = v0[1];
369     v[0][0] += nx;      v[0][1] += ny;
370     v[1][0] += nx;      v[1][1] += ny;
371     v[2][0] -= nx;      v[2][1] -= ny;
372     v[3][0] -= nx;      v[3][1] -= ny;
373     trianglex_big(con, v[0], v[1], v[2]);
374     trianglex_big(con, v[0], v[2], v[3]);
375 }
376 
aa_linex(void * con,const GGLcoord * v0,const GGLcoord * v1,GGLcoord width)377 static void aa_linex(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord width)
378 {
379     GGLcoord v[4][2];
380     v[0][0] = v0[0];    v[0][1] = v0[1];
381     v[1][0] = v1[0];    v[1][1] = v1[1];
382     v0 = v[0];
383     v1 = v[1];
384 
385     const GGLcoord dx = v0[0] - v1[0];
386     const GGLcoord dy = v0[1] - v1[1];
387     GGLcoord nx = -dy;
388     GGLcoord ny =  dx;
389 
390     // generally, this will be well below 1.0
391     const GGLfixed norm = gglMulx(width, gglSqrtRecipx(nx*nx+ny*ny), 4);
392     nx = gglMulx(nx, norm, 21);
393     ny = gglMulx(ny, norm, 21);
394 
395     v[2][0] = v1[0];    v[2][1] = v1[1];
396     v[3][0] = v0[0];    v[3][1] = v0[1];
397     v[0][0] += nx;      v[0][1] += ny;
398     v[1][0] += nx;      v[1][1] += ny;
399     v[2][0] -= nx;      v[2][1] -= ny;
400     v[3][0] -= nx;      v[3][1] -= ny;
401     aapolyx(con, v[0], 4);
402 }
403 
404 
405 // ----------------------------------------------------------------------------
406 #if 0
407 #pragma mark -
408 #pragma mark Rect
409 #endif
410 
recti_validate(void * con,GGLint l,GGLint t,GGLint r,GGLint b)411 void recti_validate(void *con, GGLint l, GGLint t, GGLint r, GGLint b)
412 {
413     GGL_CONTEXT(c, con);
414     ggl_pick(c);
415     c->procs.recti = recti;
416     c->procs.recti(con, l, t, r, b);
417 }
418 
recti(void * con,GGLint l,GGLint t,GGLint r,GGLint b)419 void recti(void* con, GGLint l, GGLint t, GGLint r, GGLint b)
420 {
421     GGL_CONTEXT(c, con);
422 
423     // scissor...
424     if (l < GGLint(c->state.scissor.left))
425         l = GGLint(c->state.scissor.left);
426     if (t < GGLint(c->state.scissor.top))
427         t = GGLint(c->state.scissor.top);
428     if (r > GGLint(c->state.scissor.right))
429         r = GGLint(c->state.scissor.right);
430     if (b > GGLint(c->state.scissor.bottom))
431         b = GGLint(c->state.scissor.bottom);
432 
433     int xc = r - l;
434     int yc = b - t;
435     if (xc>0 && yc>0) {
436         c->iterators.xl = l;
437         c->iterators.xr = r;
438         c->init_y(c, t);
439         c->rect(c, yc);
440     }
441 }
442 
443 // ----------------------------------------------------------------------------
444 #if 0
445 #pragma mark -
446 #pragma mark Triangle / Debugging
447 #endif
448 
scanline_set(context_t * c)449 static void scanline_set(context_t* c)
450 {
451     int32_t x = c->iterators.xl;
452     size_t ct = c->iterators.xr - x;
453     int32_t y = c->iterators.y;
454     surface_t* cb = &(c->state.buffers.color);
455     const GGLFormat* fp = &(c->formats[cb->format]);
456     uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
457                             (x + (cb->stride * y)) * fp->size;
458     const size_t size = ct * fp->size;
459     memset(dst, 0xFF, size);
460 }
461 
trianglex_debug(void * con,const GGLcoord * v0,const GGLcoord * v1,const GGLcoord * v2)462 static void trianglex_debug(void* con,
463         const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2)
464 {
465     GGL_CONTEXT(c, con);
466     if (c->state.needs.p & GGL_NEED_MASK(P_AA)) {
467         aa_trianglex(con,v0,v1,v2);
468     } else {
469         trianglex_big(con,v0,v1,v2);
470     }
471 	void (*save_scanline)(context_t*)  = c->scanline;
472     c->scanline = scanline_set;
473     linex(con, v0, v1, TRI_ONE);
474     linex(con, v1, v2, TRI_ONE);
475     linex(con, v2, v0, TRI_ONE);
476     c->scanline = save_scanline;
477 }
478 
trianglex_xor(void * con,const GGLcoord * v0,const GGLcoord * v1,const GGLcoord * v2)479 static void trianglex_xor(void* con,
480         const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2)
481 {
482     trianglex_big(con,v0,v1,v2);
483     trianglex_small(con,v0,v1,v2);
484 }
485 
486 // ----------------------------------------------------------------------------
487 #if 0
488 #pragma mark -
489 #pragma mark Triangle
490 #endif
491 
trianglex_validate(void * con,const GGLcoord * v0,const GGLcoord * v1,const GGLcoord * v2)492 void trianglex_validate(void *con,
493         const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2)
494 {
495     GGL_CONTEXT(c, con);
496     ggl_pick(c);
497     if (c->state.needs.p & GGL_NEED_MASK(P_AA)) {
498         c->procs.trianglex = DEBUG_TRANGLES ? trianglex_debug : aa_trianglex;
499     } else {
500         c->procs.trianglex = DEBUG_TRANGLES ? trianglex_debug : trianglex_big;
501     }
502     c->procs.trianglex(con, v0, v1, v2);
503 }
504 
505 // ----------------------------------------------------------------------------
506 
trianglex_small(void * con,const GGLcoord * v0,const GGLcoord * v1,const GGLcoord * v2)507 void trianglex_small(void* con,
508         const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2)
509 {
510     GGL_CONTEXT(c, con);
511 
512     // vertices are in 28.4 fixed point, which allows
513     // us to use 32 bits multiplies below.
514     int32_t x0 = v0[0];
515     int32_t y0 = v0[1];
516     int32_t x1 = v1[0];
517     int32_t y1 = v1[1];
518     int32_t x2 = v2[0];
519     int32_t y2 = v2[1];
520 
521     int32_t dx01 = x0 - x1;
522     int32_t dy20 = y2 - y0;
523     int32_t dy01 = y0 - y1;
524     int32_t dx20 = x2 - x0;
525 
526     // The code below works only with CCW triangles
527     // so if we get a CW triangle, we need to swap two of its vertices
528     if (dx01*dy20 < dy01*dx20) {
529         swap(x0, x1);
530         swap(y0, y1);
531         dx01 = x0 - x1;
532         dy01 = y0 - y1;
533         dx20 = x2 - x0;
534         dy20 = y2 - y0;
535     }
536     int32_t dx12 = x1 - x2;
537     int32_t dy12 = y1 - y2;
538 
539     // bounding box & scissor
540     const int32_t bminx = TRI_FLOOR(min(x0, x1, x2)) >> TRI_FRACTION_BITS;
541     const int32_t bminy = TRI_FLOOR(min(y0, y1, y2)) >> TRI_FRACTION_BITS;
542     const int32_t bmaxx = TRI_CEIL( max(x0, x1, x2)) >> TRI_FRACTION_BITS;
543     const int32_t bmaxy = TRI_CEIL( max(y0, y1, y2)) >> TRI_FRACTION_BITS;
544     const int32_t minx = max(bminx, c->state.scissor.left);
545     const int32_t miny = max(bminy, c->state.scissor.top);
546     const int32_t maxx = min(bmaxx, c->state.scissor.right);
547     const int32_t maxy = min(bmaxy, c->state.scissor.bottom);
548     if ((minx >= maxx) || (miny >= maxy))
549         return; // too small or clipped out...
550 
551     // step equations to the bounding box and snap to pixel center
552     const int32_t my = (miny << TRI_FRACTION_BITS) + TRI_HALF;
553     const int32_t mx = (minx << TRI_FRACTION_BITS) + TRI_HALF;
554     int32_t ey0 = dy01 * (x0 - mx) - dx01 * (y0 - my);
555     int32_t ey1 = dy12 * (x1 - mx) - dx12 * (y1 - my);
556     int32_t ey2 = dy20 * (x2 - mx) - dx20 * (y2 - my);
557 
558     // right-exclusive fill rule, to avoid rare cases
559     // of over drawing
560     if (dy01<0 || (dy01 == 0 && dx01>0)) ey0++;
561     if (dy12<0 || (dy12 == 0 && dx12>0)) ey1++;
562     if (dy20<0 || (dy20 == 0 && dx20>0)) ey2++;
563 
564     c->init_y(c, miny);
565     for (int32_t y = miny; y < maxy; y++) {
566         int32_t ex0 = ey0;
567         int32_t ex1 = ey1;
568         int32_t ex2 = ey2;
569         int32_t xl, xr;
570         for (xl=minx ; xl<maxx ; xl++) {
571             if (ex0>0 && ex1>0 && ex2>0)
572                 break; // all strictly positive
573             ex0 -= dy01 << TRI_FRACTION_BITS;
574             ex1 -= dy12 << TRI_FRACTION_BITS;
575             ex2 -= dy20 << TRI_FRACTION_BITS;
576         }
577         xr = xl;
578         for ( ; xr<maxx ; xr++) {
579             if (!(ex0>0 && ex1>0 && ex2>0))
580                 break; // not all strictly positive
581             ex0 -= dy01 << TRI_FRACTION_BITS;
582             ex1 -= dy12 << TRI_FRACTION_BITS;
583             ex2 -= dy20 << TRI_FRACTION_BITS;
584         }
585 
586         if (xl < xr) {
587             c->iterators.xl = xl;
588             c->iterators.xr = xr;
589             c->scanline(c);
590         }
591         c->step_y(c);
592 
593         ey0 += dx01 << TRI_FRACTION_BITS;
594         ey1 += dx12 << TRI_FRACTION_BITS;
595         ey2 += dx20 << TRI_FRACTION_BITS;
596     }
597 }
598 
599 // ----------------------------------------------------------------------------
600 #if 0
601 #pragma mark -
602 #endif
603 
604 // the following routine fills a triangle via edge stepping, which
605 // unfortunately requires divisions in the setup phase to get right,
606 // it should probably only be used for relatively large trianges
607 
608 
609 // x = y*DX/DY    (ou DX and DY are constants, DY > 0, et y >= 0)
610 //
611 // for an equation of the type:
612 //      x' = y*K/2^p     (with K and p constants "carefully chosen")
613 //
614 // We can now do a DDA without precision loss. We define 'e' by:
615 //      x' - x = y*(DX/DY - K/2^p) = y*e
616 //
617 // If we choose K = round(DX*2^p/DY) then,
618 //      abs(e) <= 1/2^(p+1) by construction
619 //
620 // therefore abs(x'-x) = y*abs(e) <= y/2^(p+1) <= DY/2^(p+1) <= DMAX/2^(p+1)
621 //
622 // which means that if DMAX <= 2^p, therefore abs(x-x') <= 1/2, including
623 // at the last line. In fact, it's even a strict inequality except in one
624 // extrem case (DY == DMAX et e = +/- 1/2)
625 //
626 // Applying that to our coordinates, we need 2^p >= 4096*16 = 65536
627 // so p = 16 is enough, we're so lucky!
628 
629 const int TRI_ITERATORS_BITS = 16;
630 
631 struct Edge
632 {
633   int32_t  x;      // edge position in 16.16 coordinates
634   int32_t  x_incr; // on each step, increment x by that amount
635   int32_t  y_top;  // starting scanline, 16.4 format
636   int32_t  y_bot;
637 };
638 
639 static void
edge_dump(Edge * edge)640 edge_dump( Edge*  edge )
641 {
642   ALOGI( "  top=%d (%.3f)  bot=%d (%.3f)  x=%d (%.3f)  ix=%d (%.3f)",
643         edge->y_top, edge->y_top/float(TRI_ONE),
644 		edge->y_bot, edge->y_bot/float(TRI_ONE),
645 		edge->x, edge->x/float(FIXED_ONE),
646 		edge->x_incr, edge->x_incr/float(FIXED_ONE) );
647 }
648 
649 static void
triangle_dump_edges(Edge * edges,int count)650 triangle_dump_edges( Edge*  edges,
651                      int            count )
652 {
653     ALOGI( "%d edge%s:\n", count, count == 1 ? "" : "s" );
654 	for ( ; count > 0; count--, edges++ )
655 	  edge_dump( edges );
656 }
657 
658 // the following function sets up an edge, it assumes
659 // that ymin and ymax are in already in the 'reduced'
660 // format
661 static __attribute__((noinline))
edge_setup(Edge * edges,int * pcount,const GGLcoord * p1,const GGLcoord * p2,int32_t ymin,int32_t ymax)662 void edge_setup(
663         Edge*           edges,
664         int*            pcount,
665         const GGLcoord* p1,
666         const GGLcoord* p2,
667         int32_t         ymin,
668         int32_t         ymax )
669 {
670 	const GGLfixed*  top = p1;
671 	const GGLfixed*  bot = p2;
672 	Edge*    edge = edges + *pcount;
673 
674 	if (top[1] > bot[1]) {
675         swap(top, bot);
676 	}
677 
678 	int  y1 = top[1] | 1;
679 	int  y2 = bot[1] | 1;
680 	int  dy = y2 - y1;
681 
682 	if ( dy == 0 || y1 > ymax || y2 < ymin )
683 		return;
684 
685 	if ( y1 > ymin )
686 		ymin = TRI_SNAP_NEXT_HALF(y1);
687 
688 	if ( y2 < ymax )
689 		ymax = TRI_SNAP_PREV_HALF(y2);
690 
691 	if ( ymin > ymax )  // when the edge doesn't cross any scanline
692 	  return;
693 
694 	const int x1 = top[0];
695 	const int dx = bot[0] - x1;
696     const int shift = TRI_ITERATORS_BITS - TRI_FRACTION_BITS;
697 
698 	// setup edge fields
699     // We add 0.5 to edge->x here because it simplifies the rounding
700     // in triangle_sweep_edges() -- this doesn't change the ordering of 'x'
701 	edge->x      = (x1 << shift) + (1LU << (TRI_ITERATORS_BITS-1));
702 	edge->x_incr = 0;
703 	edge->y_top  = ymin;
704 	edge->y_bot  = ymax;
705 
706 	if (ggl_likely(ymin <= ymax && dx)) {
707         edge->x_incr = gglDivQ16(dx, dy);
708     }
709     if (ggl_likely(y1 < ymin)) {
710         int32_t xadjust = (edge->x_incr * (ymin-y1)) >> TRI_FRACTION_BITS;
711         edge->x += xadjust;
712     }
713 
714 	++*pcount;
715 }
716 
717 
718 static void
triangle_sweep_edges(Edge * left,Edge * right,int ytop,int ybot,context_t * c)719 triangle_sweep_edges( Edge*  left,
720                       Edge*  right,
721 					  int            ytop,
722 					  int            ybot,
723 					  context_t*     c )
724 {
725     int count = ((ybot - ytop)>>TRI_FRACTION_BITS) + 1;
726     if (count<=0) return;
727 
728     // sort the edges horizontally
729     if ((left->x > right->x) ||
730         ((left->x == right->x) && (left->x_incr > right->x_incr))) {
731         swap(left, right);
732     }
733 
734     int left_x = left->x;
735     int right_x = right->x;
736     const int left_xi = left->x_incr;
737     const int right_xi  = right->x_incr;
738     left->x  += left_xi * count;
739     right->x += right_xi * count;
740 
741 	const int xmin = c->state.scissor.left;
742 	const int xmax = c->state.scissor.right;
743     do {
744         // horizontal scissoring
745         const int32_t xl = max(left_x  >> TRI_ITERATORS_BITS, xmin);
746         const int32_t xr = min(right_x >> TRI_ITERATORS_BITS, xmax);
747         left_x  += left_xi;
748         right_x += right_xi;
749         // invoke the scanline rasterizer
750         if (ggl_likely(xl < xr)) {
751             c->iterators.xl = xl;
752             c->iterators.xr = xr;
753             c->scanline(c);
754         }
755 		c->step_y(c);
756 	} while (--count);
757 }
758 
759 
trianglex_big(void * con,const GGLcoord * v0,const GGLcoord * v1,const GGLcoord * v2)760 void trianglex_big(void* con,
761         const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2)
762 {
763     GGL_CONTEXT(c, con);
764 
765     Edge edges[3];
766 	int num_edges = 0;
767 	int32_t ymin = TRI_FROM_INT(c->state.scissor.top)    + TRI_HALF;
768 	int32_t ymax = TRI_FROM_INT(c->state.scissor.bottom) - TRI_HALF;
769 
770 	edge_setup( edges, &num_edges, v0, v1, ymin, ymax );
771 	edge_setup( edges, &num_edges, v0, v2, ymin, ymax );
772 	edge_setup( edges, &num_edges, v1, v2, ymin, ymax );
773 
774     if (ggl_unlikely(num_edges<2))  // for really tiny triangles that don't
775 		return;                     // cross any scanline centers
776 
777     Edge* left  = &edges[0];
778     Edge* right = &edges[1];
779     Edge* other = &edges[2];
780     int32_t y_top = min(left->y_top, right->y_top);
781     int32_t y_bot = max(left->y_bot, right->y_bot);
782 
783 	if (ggl_likely(num_edges==3)) {
784         y_top = min(y_top, edges[2].y_top);
785         y_bot = max(y_bot, edges[2].y_bot);
786 		if (edges[0].y_top > y_top) {
787             other = &edges[0];
788             left  = &edges[2];
789 		} else if (edges[1].y_top > y_top) {
790             other = &edges[1];
791             right = &edges[2];
792 		}
793     }
794 
795     c->init_y(c, y_top >> TRI_FRACTION_BITS);
796 
797     int32_t y_mid = min(left->y_bot, right->y_bot);
798     triangle_sweep_edges( left, right, y_top, y_mid, c );
799 
800     // second scanline sweep loop, if necessary
801     y_mid += TRI_ONE;
802     if (y_mid <= y_bot) {
803         ((left->y_bot == y_bot) ? right : left) = other;
804         if (other->y_top < y_mid) {
805             other->x += other->x_incr;
806         }
807         triangle_sweep_edges( left, right, y_mid, y_bot, c );
808     }
809 }
810 
aa_trianglex(void * con,const GGLcoord * a,const GGLcoord * b,const GGLcoord * c)811 void aa_trianglex(void* con,
812         const GGLcoord* a, const GGLcoord* b, const GGLcoord* c)
813 {
814     GGLcoord pts[6] = { a[0], a[1], b[0], b[1], c[0], c[1] };
815     aapolyx(con, pts, 3);
816 }
817 
818 // ----------------------------------------------------------------------------
819 #if 0
820 #pragma mark -
821 #endif
822 
823 struct AAEdge
824 {
825     GGLfixed x;         // edge position in 12.16 coordinates
826     GGLfixed x_incr;    // on each y step, increment x by that amount
827     GGLfixed y_incr;    // on each x step, increment y by that amount
828     int16_t y_top;      // starting scanline, 12.4 format
829     int16_t y_bot;      // starting scanline, 12.4 format
830     void dump();
831 };
832 
dump()833 void AAEdge::dump()
834 {
835     float tri  = 1.0f / TRI_ONE;
836     float iter = 1.0f / (1<<TRI_ITERATORS_BITS);
837     float fix  = 1.0f / FIXED_ONE;
838     ALOGD(   "x=%08x (%.3f), "
839             "x_incr=%08x (%.3f), y_incr=%08x (%.3f), "
840             "y_top=%08x (%.3f), y_bot=%08x (%.3f) ",
841         x, x*fix,
842         x_incr, x_incr*iter,
843         y_incr, y_incr*iter,
844         y_top, y_top*tri,
845         y_bot, y_bot*tri );
846 }
847 
848 // the following function sets up an edge, it assumes
849 // that ymin and ymax are in already in the 'reduced'
850 // format
851 static __attribute__((noinline))
aa_edge_setup(AAEdge * edges,int * pcount,const GGLcoord * p1,const GGLcoord * p2,int32_t ymin,int32_t ymax)852 void aa_edge_setup(
853         AAEdge*         edges,
854         int*            pcount,
855         const GGLcoord* p1,
856         const GGLcoord* p2,
857         int32_t         ymin,
858         int32_t         ymax )
859 {
860     const GGLfixed*  top = p1;
861     const GGLfixed*  bot = p2;
862     AAEdge* edge = edges + *pcount;
863 
864     if (top[1] > bot[1])
865         swap(top, bot);
866 
867     int  y1 = top[1];
868     int  y2 = bot[1];
869     int  dy = y2 - y1;
870 
871     if (dy==0 || y1>ymax || y2<ymin)
872         return;
873 
874     if (y1 > ymin)
875         ymin = y1;
876 
877     if (y2 < ymax)
878         ymax = y2;
879 
880     const int x1 = top[0];
881     const int dx = bot[0] - x1;
882     const int shift = FIXED_BITS - TRI_FRACTION_BITS;
883 
884     // setup edge fields
885     edge->x      = x1 << shift;
886     edge->x_incr = 0;
887     edge->y_top  = ymin;
888     edge->y_bot  = ymax;
889     edge->y_incr = 0x7FFFFFFF;
890 
891     if (ggl_likely(ymin <= ymax && dx)) {
892         edge->x_incr = gglDivQ16(dx, dy);
893         if (dx != 0) {
894             edge->y_incr = abs(gglDivQ16(dy, dx));
895         }
896     }
897     if (ggl_likely(y1 < ymin)) {
898         int32_t xadjust = (edge->x_incr * (ymin-y1))
899                 >> (TRI_FRACTION_BITS + TRI_ITERATORS_BITS - FIXED_BITS);
900         edge->x += xadjust;
901     }
902 
903     ++*pcount;
904 }
905 
906 
907 typedef int (*compar_t)(const void*, const void*);
compare_edges(const AAEdge * e0,const AAEdge * e1)908 static int compare_edges(const AAEdge *e0, const AAEdge *e1) {
909     if (e0->y_top > e1->y_top)      return 1;
910     if (e0->y_top < e1->y_top)      return -1;
911     if (e0->x > e1->x)              return 1;
912     if (e0->x < e1->x)              return -1;
913     if (e0->x_incr > e1->x_incr)    return 1;
914     if (e0->x_incr < e1->x_incr)    return -1;
915     return 0; // same edges, should never happen
916 }
917 
918 static inline
SET_COVERAGE(int16_t * & p,int32_t value,ssize_t n)919 void SET_COVERAGE(int16_t*& p, int32_t value, ssize_t n)
920 {
921     android_memset16((uint16_t*)p, value, n*2);
922     p += n;
923 }
924 
925 static inline
ADD_COVERAGE(int16_t * & p,int32_t value)926 void ADD_COVERAGE(int16_t*& p, int32_t value)
927 {
928     value = *p + value;
929     if (value >= 0x8000)
930         value = 0x7FFF;
931     *p++ = value;
932 }
933 
934 static inline
SUB_COVERAGE(int16_t * & p,int32_t value)935 void SUB_COVERAGE(int16_t*& p, int32_t value)
936 {
937     value = *p - value;
938     value &= ~(value>>31);
939     *p++ = value;
940 }
941 
aapolyx(void * con,const GGLcoord * pts,int count)942 void aapolyx(void* con,
943         const GGLcoord* pts, int count)
944 {
945     /*
946      * NOTE: This routine assumes that the polygon has been clipped to the
947      * viewport already, that is, no vertex lies outside of the framebuffer.
948      * If this happens, the code below won't corrupt memory but the
949      * coverage values may not be correct.
950      */
951 
952     GGL_CONTEXT(c, con);
953 
954     // we do only quads for now (it's used for thick lines)
955     if ((count>4) || (count<2)) return;
956 
957     // take scissor into account
958     const int xmin = c->state.scissor.left;
959     const int xmax = c->state.scissor.right;
960     if (xmin >= xmax) return;
961 
962     // generate edges from the vertices
963     int32_t ymin = TRI_FROM_INT(c->state.scissor.top);
964     int32_t ymax = TRI_FROM_INT(c->state.scissor.bottom);
965     if (ymin >= ymax) return;
966 
967     AAEdge edges[4];
968     int num_edges = 0;
969     GGLcoord const * p = pts;
970     for (int i=0 ; i<count-1 ; i++, p+=2) {
971         aa_edge_setup(edges, &num_edges, p, p+2, ymin, ymax);
972     }
973     aa_edge_setup(edges, &num_edges, p, pts, ymin, ymax );
974     if (ggl_unlikely(num_edges<2))
975         return;
976 
977     // sort the edge list top to bottom, left to right.
978     qsort(edges, num_edges, sizeof(AAEdge), (compar_t)compare_edges);
979 
980     int16_t* const covPtr = c->state.buffers.coverage;
981     memset(covPtr+xmin, 0, (xmax-xmin)*sizeof(*covPtr));
982 
983     // now, sweep all edges in order
984     // start with the 2 first edges. We know that they share their top
985     // vertex, by construction.
986     int i = 2;
987     AAEdge* left  = &edges[0];
988     AAEdge* right = &edges[1];
989     int32_t yt = left->y_top;
990     GGLfixed l = left->x;
991     GGLfixed r = right->x;
992     int retire = 0;
993     int16_t* coverage;
994 
995     // at this point we can initialize the rasterizer
996     c->init_y(c, yt>>TRI_FRACTION_BITS);
997     c->iterators.xl = xmax;
998     c->iterators.xr = xmin;
999 
1000     do {
1001         int32_t y = min(min(left->y_bot, right->y_bot), TRI_FLOOR(yt + TRI_ONE));
1002         const int32_t shift = TRI_FRACTION_BITS + TRI_ITERATORS_BITS - FIXED_BITS;
1003         const int cf_shift = (1 + TRI_FRACTION_BITS*2 + TRI_ITERATORS_BITS - 15);
1004 
1005         // compute xmin and xmax for the left edge
1006         GGLfixed l_min = gglMulAddx(left->x_incr, y - left->y_top, left->x, shift);
1007         GGLfixed l_max = l;
1008         l = l_min;
1009         if (l_min > l_max)
1010             swap(l_min, l_max);
1011 
1012         // compute xmin and xmax for the right edge
1013         GGLfixed r_min = gglMulAddx(right->x_incr, y - right->y_top, right->x, shift);
1014         GGLfixed r_max = r;
1015         r = r_min;
1016         if (r_min > r_max)
1017             swap(r_min, r_max);
1018 
1019         // make sure we're not touching coverage values outside of the
1020         // framebuffer
1021         l_min &= ~(l_min>>31);
1022         r_min &= ~(r_min>>31);
1023         l_max &= ~(l_max>>31);
1024         r_max &= ~(r_max>>31);
1025         if (gglFixedToIntFloor(l_min) >= xmax) l_min = gglIntToFixed(xmax)-1;
1026         if (gglFixedToIntFloor(r_min) >= xmax) r_min = gglIntToFixed(xmax)-1;
1027         if (gglFixedToIntCeil(l_max) >= xmax)  l_max = gglIntToFixed(xmax)-1;
1028         if (gglFixedToIntCeil(r_max) >= xmax)  r_max = gglIntToFixed(xmax)-1;
1029 
1030         // compute the integer versions of the above
1031         const GGLfixed l_min_i = gglFloorx(l_min);
1032         const GGLfixed l_max_i = gglCeilx (l_max);
1033         const GGLfixed r_min_i = gglFloorx(r_min);
1034         const GGLfixed r_max_i = gglCeilx (r_max);
1035 
1036         // clip horizontally using the scissor
1037         const int xml = max(xmin, gglFixedToIntFloor(l_min_i));
1038         const int xmr = min(xmax, gglFixedToIntFloor(r_max_i));
1039 
1040         // if we just stepped to a new scanline, render the previous one.
1041         // and clear the coverage buffer
1042         if (retire) {
1043             if (c->iterators.xl < c->iterators.xr)
1044                 c->scanline(c);
1045             c->step_y(c);
1046             memset(covPtr+xmin, 0, (xmax-xmin)*sizeof(*covPtr));
1047             c->iterators.xl = xml;
1048             c->iterators.xr = xmr;
1049         } else {
1050             // update the horizontal range of this scanline
1051             c->iterators.xl = min(c->iterators.xl, xml);
1052             c->iterators.xr = max(c->iterators.xr, xmr);
1053         }
1054 
1055         coverage = covPtr + gglFixedToIntFloor(l_min_i);
1056         if (l_min_i == gglFloorx(l_max)) {
1057 
1058             /*
1059              *  fully traverse this pixel vertically
1060              *       l_max
1061              *  +-----/--+  yt
1062              *  |    /   |
1063              *  |   /    |
1064              *  |  /     |
1065              *  +-/------+  y
1066              *   l_min  (l_min_i + TRI_ONE)
1067              */
1068 
1069             GGLfixed dx = l_max - l_min;
1070             int32_t dy = y - yt;
1071             int cf = gglMulx((dx >> 1) + (l_min_i + FIXED_ONE - l_max), dy,
1072                 FIXED_BITS + TRI_FRACTION_BITS - 15);
1073             ADD_COVERAGE(coverage, cf);
1074             // all pixels on the right have cf = 1.0
1075         } else {
1076             /*
1077              *  spans several pixels in one scanline
1078              *            l_max
1079              *  +--------+--/-----+  yt
1080              *  |        |/       |
1081              *  |       /|        |
1082              *  |     /  |        |
1083              *  +---/----+--------+  y
1084              *   l_min (l_min_i + TRI_ONE)
1085              */
1086 
1087             // handle the first pixel separately...
1088             const int32_t y_incr = left->y_incr;
1089             int32_t dx = TRI_FROM_FIXED(l_min_i - l_min) + TRI_ONE;
1090             int32_t cf = (dx * dx * y_incr) >> cf_shift;
1091             ADD_COVERAGE(coverage, cf);
1092 
1093             // following pixels get covered by y_incr, but we need
1094             // to fix-up the cf to account for previous partial pixel
1095             dx = TRI_FROM_FIXED(l_min - l_min_i);
1096             cf -= (dx * dx * y_incr) >> cf_shift;
1097             for (int x = l_min_i+FIXED_ONE ; x < l_max_i-FIXED_ONE ; x += FIXED_ONE) {
1098                 cf += y_incr >> (TRI_ITERATORS_BITS-15);
1099                 ADD_COVERAGE(coverage, cf);
1100             }
1101 
1102             // and the last pixel
1103             dx = TRI_FROM_FIXED(l_max - l_max_i) - TRI_ONE;
1104             cf += (dx * dx * y_incr) >> cf_shift;
1105             ADD_COVERAGE(coverage, cf);
1106         }
1107 
1108         // now, fill up all fully covered pixels
1109         coverage = covPtr + gglFixedToIntFloor(l_max_i);
1110         int cf = ((y - yt) << (15 - TRI_FRACTION_BITS));
1111         if (ggl_likely(cf >= 0x8000)) {
1112             SET_COVERAGE(coverage, 0x7FFF, ((r_max - l_max_i)>>FIXED_BITS)+1);
1113         } else {
1114             for (int x=l_max_i ; x<r_max ; x+=FIXED_ONE) {
1115                 ADD_COVERAGE(coverage, cf);
1116             }
1117         }
1118 
1119         // subtract the coverage of the right edge
1120         coverage = covPtr + gglFixedToIntFloor(r_min_i);
1121         if (r_min_i == gglFloorx(r_max)) {
1122             GGLfixed dx = r_max - r_min;
1123             int32_t dy = y - yt;
1124             int cf = gglMulx((dx >> 1) + (r_min_i + FIXED_ONE - r_max), dy,
1125                 FIXED_BITS + TRI_FRACTION_BITS - 15);
1126             SUB_COVERAGE(coverage, cf);
1127             // all pixels on the right have cf = 1.0
1128         } else {
1129             // handle the first pixel separately...
1130             const int32_t y_incr = right->y_incr;
1131             int32_t dx = TRI_FROM_FIXED(r_min_i - r_min) + TRI_ONE;
1132             int32_t cf = (dx * dx * y_incr) >> cf_shift;
1133             SUB_COVERAGE(coverage, cf);
1134 
1135             // following pixels get covered by y_incr, but we need
1136             // to fix-up the cf to account for previous partial pixel
1137             dx = TRI_FROM_FIXED(r_min - r_min_i);
1138             cf -= (dx * dx * y_incr) >> cf_shift;
1139             for (int x = r_min_i+FIXED_ONE ; x < r_max_i-FIXED_ONE ; x += FIXED_ONE) {
1140                 cf += y_incr >> (TRI_ITERATORS_BITS-15);
1141                 SUB_COVERAGE(coverage, cf);
1142             }
1143 
1144             // and the last pixel
1145             dx = TRI_FROM_FIXED(r_max - r_max_i) - TRI_ONE;
1146             cf += (dx * dx * y_incr) >> cf_shift;
1147             SUB_COVERAGE(coverage, cf);
1148         }
1149 
1150         // did we reach the end of an edge? if so, get a new one.
1151         if (y == left->y_bot || y == right->y_bot) {
1152             // bail out if we're done
1153             if (i>=num_edges)
1154                 break;
1155             if (y == left->y_bot)
1156                 left = &edges[i++];
1157             if (y == right->y_bot)
1158                 right = &edges[i++];
1159         }
1160 
1161         // next scanline
1162         yt = y;
1163 
1164         // did we just finish a scanline?
1165         retire = (y << (32-TRI_FRACTION_BITS)) == 0;
1166     } while (true);
1167 
1168     // render the last scanline
1169     if (c->iterators.xl < c->iterators.xr)
1170         c->scanline(c);
1171 }
1172 
1173 }; // namespace android
1174