1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in
12 * the documentation and/or other materials provided with the
13 * distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #define LOG_TAG "resolv"
30
31 #include "resolv_cache.h"
32
33 #include <resolv.h>
34 #include <stdarg.h>
35 #include <stdlib.h>
36 #include <string.h>
37 #include <time.h>
38 #include <algorithm>
39 #include <mutex>
40 #include <set>
41 #include <string>
42 #include <unordered_map>
43 #include <vector>
44
45 #include <arpa/inet.h>
46 #include <arpa/nameser.h>
47 #include <errno.h>
48 #include <linux/if.h>
49 #include <net/if.h>
50 #include <netdb.h>
51
52 #include <aidl/android/net/IDnsResolver.h>
53 #include <android-base/logging.h>
54 #include <android-base/parseint.h>
55 #include <android-base/stringprintf.h>
56 #include <android-base/strings.h>
57 #include <android-base/thread_annotations.h>
58 #include <android/multinetwork.h> // ResNsendFlags
59
60 #include <server_configurable_flags/get_flags.h>
61
62 #include "DnsStats.h"
63 #include "Experiments.h"
64 #include "res_comp.h"
65 #include "res_debug.h"
66 #include "resolv_private.h"
67 #include "util.h"
68
69 using aidl::android::net::IDnsResolver;
70 using android::base::StringAppendF;
71 using android::net::DnsQueryEvent;
72 using android::net::DnsStats;
73 using android::net::Experiments;
74 using android::net::PROTO_DOT;
75 using android::net::PROTO_TCP;
76 using android::net::PROTO_UDP;
77 using android::netdutils::DumpWriter;
78 using android::netdutils::IPSockAddr;
79
80 /* This code implements a small and *simple* DNS resolver cache.
81 *
82 * It is only used to cache DNS answers for a time defined by the smallest TTL
83 * among the answer records in order to reduce DNS traffic. It is not supposed
84 * to be a full DNS cache, since we plan to implement that in the future in a
85 * dedicated process running on the system.
86 *
87 * Note that its design is kept simple very intentionally, i.e.:
88 *
89 * - it takes raw DNS query packet data as input, and returns raw DNS
90 * answer packet data as output
91 *
92 * (this means that two similar queries that encode the DNS name
93 * differently will be treated distinctly).
94 *
95 * the smallest TTL value among the answer records are used as the time
96 * to keep an answer in the cache.
97 *
98 * this is bad, but we absolutely want to avoid parsing the answer packets
99 * (and should be solved by the later full DNS cache process).
100 *
101 * - the implementation is just a (query-data) => (answer-data) hash table
102 * with a trivial least-recently-used expiration policy.
103 *
104 * Doing this keeps the code simple and avoids to deal with a lot of things
105 * that a full DNS cache is expected to do.
106 *
107 * The API is also very simple:
108 *
109 * - the client calls resolv_cache_lookup() before performing a query
110 *
111 * If the function returns RESOLV_CACHE_FOUND, a copy of the answer data
112 * has been copied into the client-provided answer buffer.
113 *
114 * If the function returns RESOLV_CACHE_NOTFOUND, the client should perform
115 * a request normally, *then* call resolv_cache_add() to add the received
116 * answer to the cache.
117 *
118 * If the function returns RESOLV_CACHE_UNSUPPORTED, the client should
119 * perform a request normally, and *not* call resolv_cache_add()
120 *
121 * Note that RESOLV_CACHE_UNSUPPORTED is also returned if the answer buffer
122 * is too short to accomodate the cached result.
123 */
124
125 /* Default number of entries kept in the cache. This value has been
126 * determined by browsing through various sites and counting the number
127 * of corresponding requests. Keep in mind that our framework is currently
128 * performing two requests per name lookup (one for IPv4, the other for IPv6)
129 *
130 * www.google.com 4
131 * www.ysearch.com 6
132 * www.amazon.com 8
133 * www.nytimes.com 22
134 * www.espn.com 28
135 * www.msn.com 28
136 * www.lemonde.fr 35
137 *
138 * (determined in 2009-2-17 from Paris, France, results may vary depending
139 * on location)
140 *
141 * most high-level websites use lots of media/ad servers with different names
142 * but these are generally reused when browsing through the site.
143 *
144 * As such, a value of 64 should be relatively comfortable at the moment.
145 *
146 * ******************************************
147 * * NOTE - this has changed.
148 * * 1) we've added IPv6 support so each dns query results in 2 responses
149 * * 2) we've made this a system-wide cache, so the cost is less (it's not
150 * * duplicated in each process) and the need is greater (more processes
151 * * making different requests).
152 * * Upping by 2x for IPv6
153 * * Upping by another 5x for the centralized nature
154 * *****************************************
155 */
156 const int CONFIG_MAX_ENTRIES = 64 * 2 * 5;
157 constexpr int DNSEVENT_SUBSAMPLING_MAP_DEFAULT_KEY = -1;
158
_time_now(void)159 static time_t _time_now(void) {
160 struct timeval tv;
161
162 gettimeofday(&tv, NULL);
163 return tv.tv_sec;
164 }
165
166 /* reminder: the general format of a DNS packet is the following:
167 *
168 * HEADER (12 bytes)
169 * QUESTION (variable)
170 * ANSWER (variable)
171 * AUTHORITY (variable)
172 * ADDITIONNAL (variable)
173 *
174 * the HEADER is made of:
175 *
176 * ID : 16 : 16-bit unique query identification field
177 *
178 * QR : 1 : set to 0 for queries, and 1 for responses
179 * Opcode : 4 : set to 0 for queries
180 * AA : 1 : set to 0 for queries
181 * TC : 1 : truncation flag, will be set to 0 in queries
182 * RD : 1 : recursion desired
183 *
184 * RA : 1 : recursion available (0 in queries)
185 * Z : 3 : three reserved zero bits
186 * RCODE : 4 : response code (always 0=NOERROR in queries)
187 *
188 * QDCount: 16 : question count
189 * ANCount: 16 : Answer count (0 in queries)
190 * NSCount: 16: Authority Record count (0 in queries)
191 * ARCount: 16: Additionnal Record count (0 in queries)
192 *
193 * the QUESTION is made of QDCount Question Record (QRs)
194 * the ANSWER is made of ANCount RRs
195 * the AUTHORITY is made of NSCount RRs
196 * the ADDITIONNAL is made of ARCount RRs
197 *
198 * Each Question Record (QR) is made of:
199 *
200 * QNAME : variable : Query DNS NAME
201 * TYPE : 16 : type of query (A=1, PTR=12, MX=15, AAAA=28, ALL=255)
202 * CLASS : 16 : class of query (IN=1)
203 *
204 * Each Resource Record (RR) is made of:
205 *
206 * NAME : variable : DNS NAME
207 * TYPE : 16 : type of query (A=1, PTR=12, MX=15, AAAA=28, ALL=255)
208 * CLASS : 16 : class of query (IN=1)
209 * TTL : 32 : seconds to cache this RR (0=none)
210 * RDLENGTH: 16 : size of RDDATA in bytes
211 * RDDATA : variable : RR data (depends on TYPE)
212 *
213 * Each QNAME contains a domain name encoded as a sequence of 'labels'
214 * terminated by a zero. Each label has the following format:
215 *
216 * LEN : 8 : lenght of label (MUST be < 64)
217 * NAME : 8*LEN : label length (must exclude dots)
218 *
219 * A value of 0 in the encoding is interpreted as the 'root' domain and
220 * terminates the encoding. So 'www.android.com' will be encoded as:
221 *
222 * <3>www<7>android<3>com<0>
223 *
224 * Where <n> represents the byte with value 'n'
225 *
226 * Each NAME reflects the QNAME of the question, but has a slightly more
227 * complex encoding in order to provide message compression. This is achieved
228 * by using a 2-byte pointer, with format:
229 *
230 * TYPE : 2 : 0b11 to indicate a pointer, 0b01 and 0b10 are reserved
231 * OFFSET : 14 : offset to another part of the DNS packet
232 *
233 * The offset is relative to the start of the DNS packet and must point
234 * A pointer terminates the encoding.
235 *
236 * The NAME can be encoded in one of the following formats:
237 *
238 * - a sequence of simple labels terminated by 0 (like QNAMEs)
239 * - a single pointer
240 * - a sequence of simple labels terminated by a pointer
241 *
242 * A pointer shall always point to either a pointer of a sequence of
243 * labels (which can themselves be terminated by either a 0 or a pointer)
244 *
245 * The expanded length of a given domain name should not exceed 255 bytes.
246 *
247 * NOTE: we don't parse the answer packets, so don't need to deal with NAME
248 * records, only QNAMEs.
249 */
250
251 #define DNS_HEADER_SIZE 12
252
253 #define DNS_TYPE_A "\00\01" /* big-endian decimal 1 */
254 #define DNS_TYPE_PTR "\00\014" /* big-endian decimal 12 */
255 #define DNS_TYPE_MX "\00\017" /* big-endian decimal 15 */
256 #define DNS_TYPE_AAAA "\00\034" /* big-endian decimal 28 */
257 #define DNS_TYPE_ALL "\00\0377" /* big-endian decimal 255 */
258
259 #define DNS_CLASS_IN "\00\01" /* big-endian decimal 1 */
260
261 struct DnsPacket {
262 const uint8_t* base;
263 const uint8_t* end;
264 const uint8_t* cursor;
265 };
266
_dnsPacket_init(DnsPacket * packet,const uint8_t * buff,int bufflen)267 static void _dnsPacket_init(DnsPacket* packet, const uint8_t* buff, int bufflen) {
268 packet->base = buff;
269 packet->end = buff + bufflen;
270 packet->cursor = buff;
271 }
272
_dnsPacket_rewind(DnsPacket * packet)273 static void _dnsPacket_rewind(DnsPacket* packet) {
274 packet->cursor = packet->base;
275 }
276
_dnsPacket_skip(DnsPacket * packet,int count)277 static void _dnsPacket_skip(DnsPacket* packet, int count) {
278 const uint8_t* p = packet->cursor + count;
279
280 if (p > packet->end) p = packet->end;
281
282 packet->cursor = p;
283 }
284
_dnsPacket_readInt16(DnsPacket * packet)285 static int _dnsPacket_readInt16(DnsPacket* packet) {
286 const uint8_t* p = packet->cursor;
287
288 if (p + 2 > packet->end) return -1;
289
290 packet->cursor = p + 2;
291 return (p[0] << 8) | p[1];
292 }
293
294 /** QUERY CHECKING **/
295
296 /* check bytes in a dns packet. returns 1 on success, 0 on failure.
297 * the cursor is only advanced in the case of success
298 */
_dnsPacket_checkBytes(DnsPacket * packet,int numBytes,const void * bytes)299 static int _dnsPacket_checkBytes(DnsPacket* packet, int numBytes, const void* bytes) {
300 const uint8_t* p = packet->cursor;
301
302 if (p + numBytes > packet->end) return 0;
303
304 if (memcmp(p, bytes, numBytes) != 0) return 0;
305
306 packet->cursor = p + numBytes;
307 return 1;
308 }
309
310 /* parse and skip a given QNAME stored in a query packet,
311 * from the current cursor position. returns 1 on success,
312 * or 0 for malformed data.
313 */
_dnsPacket_checkQName(DnsPacket * packet)314 static int _dnsPacket_checkQName(DnsPacket* packet) {
315 const uint8_t* p = packet->cursor;
316 const uint8_t* end = packet->end;
317
318 for (;;) {
319 int c;
320
321 if (p >= end) break;
322
323 c = *p++;
324
325 if (c == 0) {
326 packet->cursor = p;
327 return 1;
328 }
329
330 /* we don't expect label compression in QNAMEs */
331 if (c >= 64) break;
332
333 p += c;
334 /* we rely on the bound check at the start
335 * of the loop here */
336 }
337 /* malformed data */
338 LOG(INFO) << __func__ << ": malformed QNAME";
339 return 0;
340 }
341
342 /* parse and skip a given QR stored in a packet.
343 * returns 1 on success, and 0 on failure
344 */
_dnsPacket_checkQR(DnsPacket * packet)345 static int _dnsPacket_checkQR(DnsPacket* packet) {
346 if (!_dnsPacket_checkQName(packet)) return 0;
347
348 /* TYPE must be one of the things we support */
349 if (!_dnsPacket_checkBytes(packet, 2, DNS_TYPE_A) &&
350 !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_PTR) &&
351 !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_MX) &&
352 !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_AAAA) &&
353 !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_ALL)) {
354 LOG(INFO) << __func__ << ": unsupported TYPE";
355 return 0;
356 }
357 /* CLASS must be IN */
358 if (!_dnsPacket_checkBytes(packet, 2, DNS_CLASS_IN)) {
359 LOG(INFO) << __func__ << ": unsupported CLASS";
360 return 0;
361 }
362
363 return 1;
364 }
365
366 /* check the header of a DNS Query packet, return 1 if it is one
367 * type of query we can cache, or 0 otherwise
368 */
_dnsPacket_checkQuery(DnsPacket * packet)369 static int _dnsPacket_checkQuery(DnsPacket* packet) {
370 const uint8_t* p = packet->base;
371 int qdCount, anCount, dnCount, arCount;
372
373 if (p + DNS_HEADER_SIZE > packet->end) {
374 LOG(INFO) << __func__ << ": query packet too small";
375 return 0;
376 }
377
378 /* QR must be set to 0, opcode must be 0 and AA must be 0 */
379 /* RA, Z, and RCODE must be 0 */
380 if ((p[2] & 0xFC) != 0 || (p[3] & 0xCF) != 0) {
381 LOG(INFO) << __func__ << ": query packet flags unsupported";
382 return 0;
383 }
384
385 /* Note that we ignore the TC, RD, CD, and AD bits here for the
386 * following reasons:
387 *
388 * - there is no point for a query packet sent to a server
389 * to have the TC bit set, but the implementation might
390 * set the bit in the query buffer for its own needs
391 * between a resolv_cache_lookup and a resolv_cache_add.
392 * We should not freak out if this is the case.
393 *
394 * - we consider that the result from a query might depend on
395 * the RD, AD, and CD bits, so these bits
396 * should be used to differentiate cached result.
397 *
398 * this implies that these bits are checked when hashing or
399 * comparing query packets, but not TC
400 */
401
402 /* ANCOUNT, DNCOUNT and ARCOUNT must be 0 */
403 qdCount = (p[4] << 8) | p[5];
404 anCount = (p[6] << 8) | p[7];
405 dnCount = (p[8] << 8) | p[9];
406 arCount = (p[10] << 8) | p[11];
407
408 if (anCount != 0 || dnCount != 0 || arCount > 1) {
409 LOG(INFO) << __func__ << ": query packet contains non-query records";
410 return 0;
411 }
412
413 if (qdCount == 0) {
414 LOG(INFO) << __func__ << ": query packet doesn't contain query record";
415 return 0;
416 }
417
418 /* Check QDCOUNT QRs */
419 packet->cursor = p + DNS_HEADER_SIZE;
420
421 for (; qdCount > 0; qdCount--)
422 if (!_dnsPacket_checkQR(packet)) return 0;
423
424 return 1;
425 }
426
427 /** QUERY HASHING SUPPORT
428 **
429 ** THE FOLLOWING CODE ASSUMES THAT THE INPUT PACKET HAS ALREADY
430 ** BEEN SUCCESFULLY CHECKED.
431 **/
432
433 /* use 32-bit FNV hash function */
434 #define FNV_MULT 16777619U
435 #define FNV_BASIS 2166136261U
436
_dnsPacket_hashBytes(DnsPacket * packet,int numBytes,unsigned hash)437 static unsigned _dnsPacket_hashBytes(DnsPacket* packet, int numBytes, unsigned hash) {
438 const uint8_t* p = packet->cursor;
439 const uint8_t* end = packet->end;
440
441 while (numBytes > 0 && p < end) {
442 hash = hash * FNV_MULT ^ *p++;
443 numBytes--;
444 }
445 packet->cursor = p;
446 return hash;
447 }
448
_dnsPacket_hashQName(DnsPacket * packet,unsigned hash)449 static unsigned _dnsPacket_hashQName(DnsPacket* packet, unsigned hash) {
450 const uint8_t* p = packet->cursor;
451 const uint8_t* end = packet->end;
452
453 for (;;) {
454 int c;
455
456 if (p >= end) { /* should not happen */
457 LOG(INFO) << __func__ << ": INTERNAL_ERROR: read-overflow";
458 break;
459 }
460
461 c = *p++;
462
463 if (c == 0) break;
464
465 if (c >= 64) {
466 LOG(INFO) << __func__ << ": INTERNAL_ERROR: malformed domain";
467 break;
468 }
469 if (p + c >= end) {
470 LOG(INFO) << __func__ << ": INTERNAL_ERROR: simple label read-overflow";
471 break;
472 }
473 while (c > 0) {
474 hash = hash * FNV_MULT ^ *p++;
475 c -= 1;
476 }
477 }
478 packet->cursor = p;
479 return hash;
480 }
481
_dnsPacket_hashQR(DnsPacket * packet,unsigned hash)482 static unsigned _dnsPacket_hashQR(DnsPacket* packet, unsigned hash) {
483 hash = _dnsPacket_hashQName(packet, hash);
484 hash = _dnsPacket_hashBytes(packet, 4, hash); /* TYPE and CLASS */
485 return hash;
486 }
487
_dnsPacket_hashRR(DnsPacket * packet,unsigned hash)488 static unsigned _dnsPacket_hashRR(DnsPacket* packet, unsigned hash) {
489 int rdlength;
490 hash = _dnsPacket_hashQR(packet, hash);
491 hash = _dnsPacket_hashBytes(packet, 4, hash); /* TTL */
492 rdlength = _dnsPacket_readInt16(packet);
493 hash = _dnsPacket_hashBytes(packet, rdlength, hash); /* RDATA */
494 return hash;
495 }
496
_dnsPacket_hashQuery(DnsPacket * packet)497 static unsigned _dnsPacket_hashQuery(DnsPacket* packet) {
498 unsigned hash = FNV_BASIS;
499 int count, arcount;
500 _dnsPacket_rewind(packet);
501
502 /* ignore the ID */
503 _dnsPacket_skip(packet, 2);
504
505 /* we ignore the TC bit for reasons explained in
506 * _dnsPacket_checkQuery().
507 *
508 * however we hash the RD bit to differentiate
509 * between answers for recursive and non-recursive
510 * queries.
511 */
512 hash = hash * FNV_MULT ^ (packet->base[2] & 1);
513
514 /* mark the first header byte as processed */
515 _dnsPacket_skip(packet, 1);
516
517 /* process the second header byte */
518 hash = _dnsPacket_hashBytes(packet, 1, hash);
519
520 /* read QDCOUNT */
521 count = _dnsPacket_readInt16(packet);
522
523 /* assume: ANcount and NScount are 0 */
524 _dnsPacket_skip(packet, 4);
525
526 /* read ARCOUNT */
527 arcount = _dnsPacket_readInt16(packet);
528
529 /* hash QDCOUNT QRs */
530 for (; count > 0; count--) hash = _dnsPacket_hashQR(packet, hash);
531
532 /* hash ARCOUNT RRs */
533 for (; arcount > 0; arcount--) hash = _dnsPacket_hashRR(packet, hash);
534
535 return hash;
536 }
537
538 /** QUERY COMPARISON
539 **
540 ** THE FOLLOWING CODE ASSUMES THAT THE INPUT PACKETS HAVE ALREADY
541 ** BEEN SUCCESSFULLY CHECKED.
542 **/
543
_dnsPacket_isEqualDomainName(DnsPacket * pack1,DnsPacket * pack2)544 static int _dnsPacket_isEqualDomainName(DnsPacket* pack1, DnsPacket* pack2) {
545 const uint8_t* p1 = pack1->cursor;
546 const uint8_t* end1 = pack1->end;
547 const uint8_t* p2 = pack2->cursor;
548 const uint8_t* end2 = pack2->end;
549
550 for (;;) {
551 int c1, c2;
552
553 if (p1 >= end1 || p2 >= end2) {
554 LOG(INFO) << __func__ << ": INTERNAL_ERROR: read-overflow";
555 break;
556 }
557 c1 = *p1++;
558 c2 = *p2++;
559 if (c1 != c2) break;
560
561 if (c1 == 0) {
562 pack1->cursor = p1;
563 pack2->cursor = p2;
564 return 1;
565 }
566 if (c1 >= 64) {
567 LOG(INFO) << __func__ << ": INTERNAL_ERROR: malformed domain";
568 break;
569 }
570 if ((p1 + c1 > end1) || (p2 + c1 > end2)) {
571 LOG(INFO) << __func__ << ": INTERNAL_ERROR: simple label read-overflow";
572 break;
573 }
574 if (memcmp(p1, p2, c1) != 0) break;
575 p1 += c1;
576 p2 += c1;
577 /* we rely on the bound checks at the start of the loop */
578 }
579 /* not the same, or one is malformed */
580 LOG(INFO) << __func__ << ": different DN";
581 return 0;
582 }
583
_dnsPacket_isEqualBytes(DnsPacket * pack1,DnsPacket * pack2,int numBytes)584 static int _dnsPacket_isEqualBytes(DnsPacket* pack1, DnsPacket* pack2, int numBytes) {
585 const uint8_t* p1 = pack1->cursor;
586 const uint8_t* p2 = pack2->cursor;
587
588 if (p1 + numBytes > pack1->end || p2 + numBytes > pack2->end) return 0;
589
590 if (memcmp(p1, p2, numBytes) != 0) return 0;
591
592 pack1->cursor += numBytes;
593 pack2->cursor += numBytes;
594 return 1;
595 }
596
_dnsPacket_isEqualQR(DnsPacket * pack1,DnsPacket * pack2)597 static int _dnsPacket_isEqualQR(DnsPacket* pack1, DnsPacket* pack2) {
598 /* compare domain name encoding + TYPE + CLASS */
599 if (!_dnsPacket_isEqualDomainName(pack1, pack2) ||
600 !_dnsPacket_isEqualBytes(pack1, pack2, 2 + 2))
601 return 0;
602
603 return 1;
604 }
605
_dnsPacket_isEqualRR(DnsPacket * pack1,DnsPacket * pack2)606 static int _dnsPacket_isEqualRR(DnsPacket* pack1, DnsPacket* pack2) {
607 int rdlength1, rdlength2;
608 /* compare query + TTL */
609 if (!_dnsPacket_isEqualQR(pack1, pack2) || !_dnsPacket_isEqualBytes(pack1, pack2, 4)) return 0;
610
611 /* compare RDATA */
612 rdlength1 = _dnsPacket_readInt16(pack1);
613 rdlength2 = _dnsPacket_readInt16(pack2);
614 if (rdlength1 != rdlength2 || !_dnsPacket_isEqualBytes(pack1, pack2, rdlength1)) return 0;
615
616 return 1;
617 }
618
_dnsPacket_isEqualQuery(DnsPacket * pack1,DnsPacket * pack2)619 static int _dnsPacket_isEqualQuery(DnsPacket* pack1, DnsPacket* pack2) {
620 int count1, count2, arcount1, arcount2;
621
622 /* compare the headers, ignore most fields */
623 _dnsPacket_rewind(pack1);
624 _dnsPacket_rewind(pack2);
625
626 /* compare RD, ignore TC, see comment in _dnsPacket_checkQuery */
627 if ((pack1->base[2] & 1) != (pack2->base[2] & 1)) {
628 LOG(INFO) << __func__ << ": different RD";
629 return 0;
630 }
631
632 if (pack1->base[3] != pack2->base[3]) {
633 LOG(INFO) << __func__ << ": different CD or AD";
634 return 0;
635 }
636
637 /* mark ID and header bytes as compared */
638 _dnsPacket_skip(pack1, 4);
639 _dnsPacket_skip(pack2, 4);
640
641 /* compare QDCOUNT */
642 count1 = _dnsPacket_readInt16(pack1);
643 count2 = _dnsPacket_readInt16(pack2);
644 if (count1 != count2 || count1 < 0) {
645 LOG(INFO) << __func__ << ": different QDCOUNT";
646 return 0;
647 }
648
649 /* assume: ANcount and NScount are 0 */
650 _dnsPacket_skip(pack1, 4);
651 _dnsPacket_skip(pack2, 4);
652
653 /* compare ARCOUNT */
654 arcount1 = _dnsPacket_readInt16(pack1);
655 arcount2 = _dnsPacket_readInt16(pack2);
656 if (arcount1 != arcount2 || arcount1 < 0) {
657 LOG(INFO) << __func__ << ": different ARCOUNT";
658 return 0;
659 }
660
661 /* compare the QDCOUNT QRs */
662 for (; count1 > 0; count1--) {
663 if (!_dnsPacket_isEqualQR(pack1, pack2)) {
664 LOG(INFO) << __func__ << ": different QR";
665 return 0;
666 }
667 }
668
669 /* compare the ARCOUNT RRs */
670 for (; arcount1 > 0; arcount1--) {
671 if (!_dnsPacket_isEqualRR(pack1, pack2)) {
672 LOG(INFO) << __func__ << ": different additional RR";
673 return 0;
674 }
675 }
676 return 1;
677 }
678
679 /* cache entry. for simplicity, 'hash' and 'hlink' are inlined in this
680 * structure though they are conceptually part of the hash table.
681 *
682 * similarly, mru_next and mru_prev are part of the global MRU list
683 */
684 struct Entry {
685 unsigned int hash; /* hash value */
686 struct Entry* hlink; /* next in collision chain */
687 struct Entry* mru_prev;
688 struct Entry* mru_next;
689
690 const uint8_t* query;
691 int querylen;
692 const uint8_t* answer;
693 int answerlen;
694 time_t expires; /* time_t when the entry isn't valid any more */
695 int id; /* for debugging purpose */
696 };
697
698 /*
699 * Find the TTL for a negative DNS result. This is defined as the minimum
700 * of the SOA records TTL and the MINIMUM-TTL field (RFC-2308).
701 *
702 * Return 0 if not found.
703 */
answer_getNegativeTTL(ns_msg handle)704 static uint32_t answer_getNegativeTTL(ns_msg handle) {
705 int n, nscount;
706 uint32_t result = 0;
707 ns_rr rr;
708
709 nscount = ns_msg_count(handle, ns_s_ns);
710 for (n = 0; n < nscount; n++) {
711 if ((ns_parserr(&handle, ns_s_ns, n, &rr) == 0) && (ns_rr_type(rr) == ns_t_soa)) {
712 const uint8_t* rdata = ns_rr_rdata(rr); // find the data
713 const uint8_t* edata = rdata + ns_rr_rdlen(rr); // add the len to find the end
714 int len;
715 uint32_t ttl, rec_result = rr.ttl;
716
717 // find the MINIMUM-TTL field from the blob of binary data for this record
718 // skip the server name
719 len = dn_skipname(rdata, edata);
720 if (len == -1) continue; // error skipping
721 rdata += len;
722
723 // skip the admin name
724 len = dn_skipname(rdata, edata);
725 if (len == -1) continue; // error skipping
726 rdata += len;
727
728 if (edata - rdata != 5 * NS_INT32SZ) continue;
729 // skip: serial number + refresh interval + retry interval + expiry
730 rdata += NS_INT32SZ * 4;
731 // finally read the MINIMUM TTL
732 ttl = ntohl(*reinterpret_cast<const uint32_t*>(rdata));
733 if (ttl < rec_result) {
734 rec_result = ttl;
735 }
736 // Now that the record is read successfully, apply the new min TTL
737 if (n == 0 || rec_result < result) {
738 result = rec_result;
739 }
740 }
741 }
742 return result;
743 }
744
745 /*
746 * Parse the answer records and find the appropriate
747 * smallest TTL among the records. This might be from
748 * the answer records if found or from the SOA record
749 * if it's a negative result.
750 *
751 * The returned TTL is the number of seconds to
752 * keep the answer in the cache.
753 *
754 * In case of parse error zero (0) is returned which
755 * indicates that the answer shall not be cached.
756 */
answer_getTTL(const void * answer,int answerlen)757 static uint32_t answer_getTTL(const void* answer, int answerlen) {
758 ns_msg handle;
759 int ancount, n;
760 uint32_t result, ttl;
761 ns_rr rr;
762
763 result = 0;
764 if (ns_initparse((const uint8_t*) answer, answerlen, &handle) >= 0) {
765 // get number of answer records
766 ancount = ns_msg_count(handle, ns_s_an);
767
768 if (ancount == 0) {
769 // a response with no answers? Cache this negative result.
770 result = answer_getNegativeTTL(handle);
771 } else {
772 for (n = 0; n < ancount; n++) {
773 if (ns_parserr(&handle, ns_s_an, n, &rr) == 0) {
774 ttl = rr.ttl;
775 if (n == 0 || ttl < result) {
776 result = ttl;
777 }
778 } else {
779 PLOG(INFO) << __func__ << ": ns_parserr failed ancount no = " << n;
780 }
781 }
782 }
783 } else {
784 PLOG(INFO) << __func__ << ": ns_initparse failed";
785 }
786
787 LOG(INFO) << __func__ << ": TTL = " << result;
788 return result;
789 }
790
entry_free(Entry * e)791 static void entry_free(Entry* e) {
792 /* everything is allocated in a single memory block */
793 if (e) {
794 free(e);
795 }
796 }
797
entry_mru_remove(Entry * e)798 static void entry_mru_remove(Entry* e) {
799 e->mru_prev->mru_next = e->mru_next;
800 e->mru_next->mru_prev = e->mru_prev;
801 }
802
entry_mru_add(Entry * e,Entry * list)803 static void entry_mru_add(Entry* e, Entry* list) {
804 Entry* first = list->mru_next;
805
806 e->mru_next = first;
807 e->mru_prev = list;
808
809 list->mru_next = e;
810 first->mru_prev = e;
811 }
812
813 /* compute the hash of a given entry, this is a hash of most
814 * data in the query (key) */
entry_hash(const Entry * e)815 static unsigned entry_hash(const Entry* e) {
816 DnsPacket pack[1];
817
818 _dnsPacket_init(pack, e->query, e->querylen);
819 return _dnsPacket_hashQuery(pack);
820 }
821
822 /* initialize an Entry as a search key, this also checks the input query packet
823 * returns 1 on success, or 0 in case of unsupported/malformed data */
entry_init_key(Entry * e,const void * query,int querylen)824 static int entry_init_key(Entry* e, const void* query, int querylen) {
825 DnsPacket pack[1];
826
827 memset(e, 0, sizeof(*e));
828
829 e->query = (const uint8_t*) query;
830 e->querylen = querylen;
831 e->hash = entry_hash(e);
832
833 _dnsPacket_init(pack, e->query, e->querylen);
834
835 return _dnsPacket_checkQuery(pack);
836 }
837
838 /* allocate a new entry as a cache node */
entry_alloc(const Entry * init,const void * answer,int answerlen)839 static Entry* entry_alloc(const Entry* init, const void* answer, int answerlen) {
840 Entry* e;
841 int size;
842
843 size = sizeof(*e) + init->querylen + answerlen;
844 e = (Entry*) calloc(size, 1);
845 if (e == NULL) return e;
846
847 e->hash = init->hash;
848 e->query = (const uint8_t*) (e + 1);
849 e->querylen = init->querylen;
850
851 memcpy((char*) e->query, init->query, e->querylen);
852
853 e->answer = e->query + e->querylen;
854 e->answerlen = answerlen;
855
856 memcpy((char*) e->answer, answer, e->answerlen);
857
858 return e;
859 }
860
entry_equals(const Entry * e1,const Entry * e2)861 static int entry_equals(const Entry* e1, const Entry* e2) {
862 DnsPacket pack1[1], pack2[1];
863
864 if (e1->querylen != e2->querylen) {
865 return 0;
866 }
867 _dnsPacket_init(pack1, e1->query, e1->querylen);
868 _dnsPacket_init(pack2, e2->query, e2->querylen);
869
870 return _dnsPacket_isEqualQuery(pack1, pack2);
871 }
872
873 /* We use a simple hash table with external collision lists
874 * for simplicity, the hash-table fields 'hash' and 'hlink' are
875 * inlined in the Entry structure.
876 */
877
878 /* Maximum time for a thread to wait for an pending request */
879 constexpr int PENDING_REQUEST_TIMEOUT = 20;
880
881 // lock protecting everything in NetConfig.
882 static std::mutex cache_mutex;
883 static std::condition_variable cv;
884
885 namespace {
886
887 // Map format: ReturnCode:rate_denom
888 // if the ReturnCode is not associated with any rate_denom, use default
889 // Sampling rate varies by return code; events to log are chosen randomly, with a
890 // probability proportional to the sampling rate.
891 constexpr const char DEFAULT_SUBSAMPLING_MAP[] = "default:1 0:100 7:10";
892
resolv_get_dns_event_subsampling_map()893 std::unordered_map<int, uint32_t> resolv_get_dns_event_subsampling_map() {
894 using android::base::ParseInt;
895 using android::base::ParseUint;
896 using android::base::Split;
897 using server_configurable_flags::GetServerConfigurableFlag;
898 std::unordered_map<int, uint32_t> sampling_rate_map{};
899 std::vector<std::string> subsampling_vector =
900 Split(GetServerConfigurableFlag("netd_native", "dns_event_subsample_map",
901 DEFAULT_SUBSAMPLING_MAP),
902 " ");
903 for (const auto& pair : subsampling_vector) {
904 std::vector<std::string> rate_denom = Split(pair, ":");
905 int return_code;
906 uint32_t denom;
907 if (rate_denom.size() != 2) {
908 LOG(ERROR) << __func__ << ": invalid subsampling_pair = " << pair;
909 continue;
910 }
911 if (rate_denom[0] == "default") {
912 return_code = DNSEVENT_SUBSAMPLING_MAP_DEFAULT_KEY;
913 } else if (!ParseInt(rate_denom[0], &return_code)) {
914 LOG(ERROR) << __func__ << ": parse subsampling_pair failed = " << pair;
915 continue;
916 }
917 if (!ParseUint(rate_denom[1], &denom)) {
918 LOG(ERROR) << __func__ << ": parse subsampling_pair failed = " << pair;
919 continue;
920 }
921 sampling_rate_map[return_code] = denom;
922 }
923 return sampling_rate_map;
924 }
925
926 } // namespace
927
928 // Note that Cache is not thread-safe per se, access to its members must be protected
929 // by an external mutex.
930 //
931 // TODO: move all cache manipulation code here and make data members private.
932 struct Cache {
CacheCache933 Cache() {
934 entries.resize(CONFIG_MAX_ENTRIES);
935 mru_list.mru_prev = mru_list.mru_next = &mru_list;
936 }
~CacheCache937 ~Cache() { flush(); }
938
flushCache939 void flush() {
940 for (int nn = 0; nn < CONFIG_MAX_ENTRIES; nn++) {
941 Entry** pnode = (Entry**)&entries[nn];
942
943 while (*pnode) {
944 Entry* node = *pnode;
945 *pnode = node->hlink;
946 entry_free(node);
947 }
948 }
949
950 flushPendingRequests();
951
952 mru_list.mru_next = mru_list.mru_prev = &mru_list;
953 num_entries = 0;
954 last_id = 0;
955
956 LOG(INFO) << "DNS cache flushed";
957 }
958
flushPendingRequestsCache959 void flushPendingRequests() {
960 pending_req_info* ri = pending_requests.next;
961 while (ri) {
962 pending_req_info* tmp = ri;
963 ri = ri->next;
964 free(tmp);
965 }
966
967 pending_requests.next = nullptr;
968 cv.notify_all();
969 }
970
971 int num_entries = 0;
972
973 // TODO: convert to std::list
974 Entry mru_list;
975 int last_id = 0;
976 std::vector<Entry> entries;
977
978 // TODO: convert to std::vector
979 struct pending_req_info {
980 unsigned int hash;
981 struct pending_req_info* next;
982 } pending_requests{};
983 };
984
985 struct NetConfig {
NetConfigNetConfig986 explicit NetConfig(unsigned netId) : netid(netId) {
987 cache = std::make_unique<Cache>();
988 dns_event_subsampling_map = resolv_get_dns_event_subsampling_map();
989 }
nameserverCountNetConfig990 int nameserverCount() { return nameserverSockAddrs.size(); }
991
992 const unsigned netid;
993 std::unique_ptr<Cache> cache;
994 std::vector<std::string> nameservers;
995 std::vector<IPSockAddr> nameserverSockAddrs;
996 int revision_id = 0; // # times the nameservers have been replaced
997 res_params params{};
998 res_stats nsstats[MAXNS]{};
999 std::vector<std::string> search_domains;
1000 int wait_for_pending_req_timeout_count = 0;
1001 // Map format: ReturnCode:rate_denom
1002 std::unordered_map<int, uint32_t> dns_event_subsampling_map;
1003 DnsStats dnsStats;
1004 // Customized hostname/address table will be stored in customizedTable.
1005 // If resolverParams.hosts is empty, the existing customized table will be erased.
1006 HostMapping customizedTable = {};
1007 int tc_mode = aidl::android::net::IDnsResolver::TC_MODE_DEFAULT;
1008 bool enforceDnsUid = false;
1009 std::vector<int32_t> transportTypes;
1010 };
1011
1012 /* gets cache associated with a network, or NULL if none exists */
1013 static Cache* find_named_cache_locked(unsigned netid) REQUIRES(cache_mutex);
1014
1015 // Return true - if there is a pending request in |cache| matching |key|.
1016 // Return false - if no pending request is found matching the key. Optionally
1017 // link a new one if parameter append_if_not_found is true.
cache_has_pending_request_locked(Cache * cache,const Entry * key,bool append_if_not_found)1018 static bool cache_has_pending_request_locked(Cache* cache, const Entry* key,
1019 bool append_if_not_found) {
1020 if (!cache || !key) return false;
1021
1022 Cache::pending_req_info* ri = cache->pending_requests.next;
1023 Cache::pending_req_info* prev = &cache->pending_requests;
1024 while (ri) {
1025 if (ri->hash == key->hash) {
1026 return true;
1027 }
1028 prev = ri;
1029 ri = ri->next;
1030 }
1031
1032 if (append_if_not_found) {
1033 ri = (Cache::pending_req_info*)calloc(1, sizeof(Cache::pending_req_info));
1034 if (ri) {
1035 ri->hash = key->hash;
1036 prev->next = ri;
1037 }
1038 }
1039 return false;
1040 }
1041
1042 // Notify all threads that the cache entry |key| has become available
cache_notify_waiting_tid_locked(struct Cache * cache,const Entry * key)1043 static void cache_notify_waiting_tid_locked(struct Cache* cache, const Entry* key) {
1044 if (!cache || !key) return;
1045
1046 Cache::pending_req_info* ri = cache->pending_requests.next;
1047 Cache::pending_req_info* prev = &cache->pending_requests;
1048 while (ri) {
1049 if (ri->hash == key->hash) {
1050 // remove item from list and destroy
1051 prev->next = ri->next;
1052 free(ri);
1053 cv.notify_all();
1054 return;
1055 }
1056 prev = ri;
1057 ri = ri->next;
1058 }
1059 }
1060
_resolv_cache_query_failed(unsigned netid,const void * query,int querylen,uint32_t flags)1061 void _resolv_cache_query_failed(unsigned netid, const void* query, int querylen, uint32_t flags) {
1062 // We should not notify with these flags.
1063 if (flags & (ANDROID_RESOLV_NO_CACHE_STORE | ANDROID_RESOLV_NO_CACHE_LOOKUP)) {
1064 return;
1065 }
1066 Entry key[1];
1067
1068 if (!entry_init_key(key, query, querylen)) return;
1069
1070 std::lock_guard guard(cache_mutex);
1071
1072 Cache* cache = find_named_cache_locked(netid);
1073
1074 if (cache) {
1075 cache_notify_waiting_tid_locked(cache, key);
1076 }
1077 }
1078
cache_dump_mru_locked(Cache * cache)1079 static void cache_dump_mru_locked(Cache* cache) {
1080 std::string buf;
1081
1082 StringAppendF(&buf, "MRU LIST (%2d): ", cache->num_entries);
1083 for (Entry* e = cache->mru_list.mru_next; e != &cache->mru_list; e = e->mru_next) {
1084 StringAppendF(&buf, " %d", e->id);
1085 }
1086
1087 LOG(INFO) << __func__ << ": " << buf;
1088 }
1089
1090 /* This function tries to find a key within the hash table
1091 * In case of success, it will return a *pointer* to the hashed key.
1092 * In case of failure, it will return a *pointer* to NULL
1093 *
1094 * So, the caller must check '*result' to check for success/failure.
1095 *
1096 * The main idea is that the result can later be used directly in
1097 * calls to resolv_cache_add or _resolv_cache_remove as the 'lookup'
1098 * parameter. This makes the code simpler and avoids re-searching
1099 * for the key position in the htable.
1100 *
1101 * The result of a lookup_p is only valid until you alter the hash
1102 * table.
1103 */
_cache_lookup_p(Cache * cache,Entry * key)1104 static Entry** _cache_lookup_p(Cache* cache, Entry* key) {
1105 int index = key->hash % CONFIG_MAX_ENTRIES;
1106 Entry** pnode = (Entry**) &cache->entries[index];
1107
1108 while (*pnode != NULL) {
1109 Entry* node = *pnode;
1110
1111 if (node == NULL) break;
1112
1113 if (node->hash == key->hash && entry_equals(node, key)) break;
1114
1115 pnode = &node->hlink;
1116 }
1117 return pnode;
1118 }
1119
1120 /* Add a new entry to the hash table. 'lookup' must be the
1121 * result of an immediate previous failed _lookup_p() call
1122 * (i.e. with *lookup == NULL), and 'e' is the pointer to the
1123 * newly created entry
1124 */
_cache_add_p(Cache * cache,Entry ** lookup,Entry * e)1125 static void _cache_add_p(Cache* cache, Entry** lookup, Entry* e) {
1126 *lookup = e;
1127 e->id = ++cache->last_id;
1128 entry_mru_add(e, &cache->mru_list);
1129 cache->num_entries += 1;
1130
1131 LOG(INFO) << __func__ << ": entry " << e->id << " added (count=" << cache->num_entries << ")";
1132 }
1133
1134 /* Remove an existing entry from the hash table,
1135 * 'lookup' must be the result of an immediate previous
1136 * and succesful _lookup_p() call.
1137 */
_cache_remove_p(Cache * cache,Entry ** lookup)1138 static void _cache_remove_p(Cache* cache, Entry** lookup) {
1139 Entry* e = *lookup;
1140
1141 LOG(INFO) << __func__ << ": entry " << e->id << " removed (count=" << cache->num_entries - 1
1142 << ")";
1143
1144 entry_mru_remove(e);
1145 *lookup = e->hlink;
1146 entry_free(e);
1147 cache->num_entries -= 1;
1148 }
1149
1150 /* Remove the oldest entry from the hash table.
1151 */
_cache_remove_oldest(Cache * cache)1152 static void _cache_remove_oldest(Cache* cache) {
1153 Entry* oldest = cache->mru_list.mru_prev;
1154 Entry** lookup = _cache_lookup_p(cache, oldest);
1155
1156 if (*lookup == NULL) { /* should not happen */
1157 LOG(INFO) << __func__ << ": OLDEST NOT IN HTABLE ?";
1158 return;
1159 }
1160 LOG(INFO) << __func__ << ": Cache full - removing oldest";
1161 res_pquery(oldest->query, oldest->querylen);
1162 _cache_remove_p(cache, lookup);
1163 }
1164
1165 /* Remove all expired entries from the hash table.
1166 */
_cache_remove_expired(Cache * cache)1167 static void _cache_remove_expired(Cache* cache) {
1168 Entry* e;
1169 time_t now = _time_now();
1170
1171 for (e = cache->mru_list.mru_next; e != &cache->mru_list;) {
1172 // Entry is old, remove
1173 if (now >= e->expires) {
1174 Entry** lookup = _cache_lookup_p(cache, e);
1175 if (*lookup == NULL) { /* should not happen */
1176 LOG(INFO) << __func__ << ": ENTRY NOT IN HTABLE ?";
1177 return;
1178 }
1179 e = e->mru_next;
1180 _cache_remove_p(cache, lookup);
1181 } else {
1182 e = e->mru_next;
1183 }
1184 }
1185 }
1186
1187 // Get a NetConfig associated with a network, or nullptr if not found.
1188 static NetConfig* find_netconfig_locked(unsigned netid) REQUIRES(cache_mutex);
1189
resolv_cache_lookup(unsigned netid,const void * query,int querylen,void * answer,int answersize,int * answerlen,uint32_t flags)1190 ResolvCacheStatus resolv_cache_lookup(unsigned netid, const void* query, int querylen, void* answer,
1191 int answersize, int* answerlen, uint32_t flags) {
1192 // Skip cache lookup, return RESOLV_CACHE_NOTFOUND directly so that it is
1193 // possible to cache the answer of this query.
1194 // If ANDROID_RESOLV_NO_CACHE_STORE is set, return RESOLV_CACHE_SKIP to skip possible cache
1195 // storing.
1196 // (b/150371903): ANDROID_RESOLV_NO_CACHE_STORE should imply ANDROID_RESOLV_NO_CACHE_LOOKUP
1197 // to avoid side channel attack.
1198 if (flags & (ANDROID_RESOLV_NO_CACHE_LOOKUP | ANDROID_RESOLV_NO_CACHE_STORE)) {
1199 return flags & ANDROID_RESOLV_NO_CACHE_STORE ? RESOLV_CACHE_SKIP : RESOLV_CACHE_NOTFOUND;
1200 }
1201 Entry key;
1202 Entry** lookup;
1203 Entry* e;
1204 time_t now;
1205
1206 LOG(INFO) << __func__ << ": lookup";
1207
1208 /* we don't cache malformed queries */
1209 if (!entry_init_key(&key, query, querylen)) {
1210 LOG(INFO) << __func__ << ": unsupported query";
1211 return RESOLV_CACHE_UNSUPPORTED;
1212 }
1213 /* lookup cache */
1214 std::unique_lock lock(cache_mutex);
1215 android::base::ScopedLockAssertion assume_lock(cache_mutex);
1216 Cache* cache = find_named_cache_locked(netid);
1217 if (cache == nullptr) {
1218 return RESOLV_CACHE_UNSUPPORTED;
1219 }
1220
1221 /* see the description of _lookup_p to understand this.
1222 * the function always return a non-NULL pointer.
1223 */
1224 lookup = _cache_lookup_p(cache, &key);
1225 e = *lookup;
1226
1227 if (e == NULL) {
1228 LOG(INFO) << __func__ << ": NOT IN CACHE";
1229
1230 if (!cache_has_pending_request_locked(cache, &key, true)) {
1231 return RESOLV_CACHE_NOTFOUND;
1232
1233 } else {
1234 LOG(INFO) << __func__ << ": Waiting for previous request";
1235 // wait until (1) timeout OR
1236 // (2) cv is notified AND no pending request matching the |key|
1237 // (cv notifier should delete pending request before sending notification.)
1238 bool ret = cv.wait_for(lock, std::chrono::seconds(PENDING_REQUEST_TIMEOUT),
1239 [netid, &cache, &key]() REQUIRES(cache_mutex) {
1240 // Must update cache as it could have been deleted
1241 cache = find_named_cache_locked(netid);
1242 return !cache_has_pending_request_locked(cache, &key, false);
1243 });
1244 if (!cache) {
1245 return RESOLV_CACHE_NOTFOUND;
1246 }
1247 if (ret == false) {
1248 NetConfig* info = find_netconfig_locked(netid);
1249 if (info != NULL) {
1250 info->wait_for_pending_req_timeout_count++;
1251 }
1252 }
1253 lookup = _cache_lookup_p(cache, &key);
1254 e = *lookup;
1255 if (e == NULL) {
1256 return RESOLV_CACHE_NOTFOUND;
1257 }
1258 }
1259 }
1260
1261 now = _time_now();
1262
1263 /* remove stale entries here */
1264 if (now >= e->expires) {
1265 LOG(INFO) << __func__ << ": NOT IN CACHE (STALE ENTRY " << *lookup << "DISCARDED)";
1266 res_pquery(e->query, e->querylen);
1267 _cache_remove_p(cache, lookup);
1268 return RESOLV_CACHE_NOTFOUND;
1269 }
1270
1271 *answerlen = e->answerlen;
1272 if (e->answerlen > answersize) {
1273 /* NOTE: we return UNSUPPORTED if the answer buffer is too short */
1274 LOG(INFO) << __func__ << ": ANSWER TOO LONG";
1275 return RESOLV_CACHE_UNSUPPORTED;
1276 }
1277
1278 memcpy(answer, e->answer, e->answerlen);
1279
1280 /* bump up this entry to the top of the MRU list */
1281 if (e != cache->mru_list.mru_next) {
1282 entry_mru_remove(e);
1283 entry_mru_add(e, &cache->mru_list);
1284 }
1285
1286 LOG(INFO) << __func__ << ": FOUND IN CACHE entry=" << e;
1287 return RESOLV_CACHE_FOUND;
1288 }
1289
resolv_cache_add(unsigned netid,const void * query,int querylen,const void * answer,int answerlen)1290 int resolv_cache_add(unsigned netid, const void* query, int querylen, const void* answer,
1291 int answerlen) {
1292 Entry key[1];
1293 Entry* e;
1294 Entry** lookup;
1295 uint32_t ttl;
1296 Cache* cache = NULL;
1297
1298 /* don't assume that the query has already been cached
1299 */
1300 if (!entry_init_key(key, query, querylen)) {
1301 LOG(INFO) << __func__ << ": passed invalid query?";
1302 return -EINVAL;
1303 }
1304
1305 std::lock_guard guard(cache_mutex);
1306
1307 cache = find_named_cache_locked(netid);
1308 if (cache == nullptr) {
1309 return -ENONET;
1310 }
1311
1312 lookup = _cache_lookup_p(cache, key);
1313 e = *lookup;
1314
1315 // Should only happen on ANDROID_RESOLV_NO_CACHE_LOOKUP
1316 if (e != NULL) {
1317 LOG(INFO) << __func__ << ": ALREADY IN CACHE (" << e << ") ? IGNORING ADD";
1318 cache_notify_waiting_tid_locked(cache, key);
1319 return -EEXIST;
1320 }
1321
1322 if (cache->num_entries >= CONFIG_MAX_ENTRIES) {
1323 _cache_remove_expired(cache);
1324 if (cache->num_entries >= CONFIG_MAX_ENTRIES) {
1325 _cache_remove_oldest(cache);
1326 }
1327 // TODO: It looks useless, remove below code after having test to prove it.
1328 lookup = _cache_lookup_p(cache, key);
1329 e = *lookup;
1330 if (e != NULL) {
1331 LOG(INFO) << __func__ << ": ALREADY IN CACHE (" << e << ") ? IGNORING ADD";
1332 cache_notify_waiting_tid_locked(cache, key);
1333 return -EEXIST;
1334 }
1335 }
1336
1337 ttl = answer_getTTL(answer, answerlen);
1338 if (ttl > 0) {
1339 e = entry_alloc(key, answer, answerlen);
1340 if (e != NULL) {
1341 e->expires = ttl + _time_now();
1342 _cache_add_p(cache, lookup, e);
1343 }
1344 }
1345
1346 cache_dump_mru_locked(cache);
1347 cache_notify_waiting_tid_locked(cache, key);
1348
1349 return 0;
1350 }
1351
resolv_gethostbyaddr_from_cache(unsigned netid,char domain_name[],size_t domain_name_size,const char * ip_address,int af)1352 bool resolv_gethostbyaddr_from_cache(unsigned netid, char domain_name[], size_t domain_name_size,
1353 const char* ip_address, int af) {
1354 if (domain_name_size > NS_MAXDNAME) {
1355 LOG(WARNING) << __func__ << ": invalid domain_name_size " << domain_name_size;
1356 return false;
1357 } else if (ip_address == nullptr || ip_address[0] == '\0') {
1358 LOG(WARNING) << __func__ << ": invalid ip_address";
1359 return false;
1360 } else if (af != AF_INET && af != AF_INET6) {
1361 LOG(WARNING) << __func__ << ": unsupported AF";
1362 return false;
1363 }
1364
1365 Cache* cache = nullptr;
1366 Entry* node = nullptr;
1367
1368 ns_rr rr;
1369 ns_msg handle;
1370 ns_rr rr_query;
1371
1372 struct sockaddr_in sa;
1373 struct sockaddr_in6 sa6;
1374 char* addr_buf = nullptr;
1375
1376 std::lock_guard guard(cache_mutex);
1377
1378 cache = find_named_cache_locked(netid);
1379 if (cache == nullptr) {
1380 return false;
1381 }
1382
1383 for (node = cache->mru_list.mru_next; node != nullptr && node != &cache->mru_list;
1384 node = node->mru_next) {
1385 if (node->answer == nullptr) {
1386 continue;
1387 }
1388
1389 memset(&handle, 0, sizeof(handle));
1390
1391 if (ns_initparse(node->answer, node->answerlen, &handle) < 0) {
1392 continue;
1393 }
1394
1395 for (int n = 0; n < ns_msg_count(handle, ns_s_an); n++) {
1396 memset(&rr, 0, sizeof(rr));
1397
1398 if (ns_parserr(&handle, ns_s_an, n, &rr)) {
1399 continue;
1400 }
1401
1402 if (ns_rr_type(rr) == ns_t_a && af == AF_INET) {
1403 addr_buf = (char*)&(sa.sin_addr);
1404 } else if (ns_rr_type(rr) == ns_t_aaaa && af == AF_INET6) {
1405 addr_buf = (char*)&(sa6.sin6_addr);
1406 } else {
1407 continue;
1408 }
1409
1410 if (inet_pton(af, ip_address, addr_buf) != 1) {
1411 LOG(WARNING) << __func__ << ": inet_pton() fail";
1412 return false;
1413 }
1414
1415 if (memcmp(ns_rr_rdata(rr), addr_buf, ns_rr_rdlen(rr)) == 0) {
1416 int query_count = ns_msg_count(handle, ns_s_qd);
1417 for (int i = 0; i < query_count; i++) {
1418 memset(&rr_query, 0, sizeof(rr_query));
1419 if (ns_parserr(&handle, ns_s_qd, i, &rr_query)) {
1420 continue;
1421 }
1422 strlcpy(domain_name, ns_rr_name(rr_query), domain_name_size);
1423 if (domain_name[0] != '\0') {
1424 return true;
1425 }
1426 }
1427 }
1428 }
1429 }
1430
1431 return false;
1432 }
1433
1434 static std::unordered_map<unsigned, std::unique_ptr<NetConfig>> sNetConfigMap
1435 GUARDED_BY(cache_mutex);
1436
1437 // Clears nameservers set for |netconfig| and clears the stats
1438 static void free_nameservers_locked(NetConfig* netconfig);
1439 // Order-insensitive comparison for the two set of servers.
1440 static bool resolv_is_nameservers_equal(const std::vector<std::string>& oldServers,
1441 const std::vector<std::string>& newServers);
1442 // clears the stats samples contained withing the given netconfig.
1443 static void res_cache_clear_stats_locked(NetConfig* netconfig);
1444
1445 // public API for netd to query if name server is set on specific netid
resolv_has_nameservers(unsigned netid)1446 bool resolv_has_nameservers(unsigned netid) {
1447 std::lock_guard guard(cache_mutex);
1448 NetConfig* info = find_netconfig_locked(netid);
1449 return (info != nullptr) && (info->nameserverCount() > 0);
1450 }
1451
resolv_create_cache_for_net(unsigned netid)1452 int resolv_create_cache_for_net(unsigned netid) {
1453 std::lock_guard guard(cache_mutex);
1454 if (sNetConfigMap.find(netid) != sNetConfigMap.end()) {
1455 LOG(ERROR) << __func__ << ": Cache is already created, netId: " << netid;
1456 return -EEXIST;
1457 }
1458
1459 sNetConfigMap[netid] = std::make_unique<NetConfig>(netid);
1460 return 0;
1461 }
1462
resolv_delete_cache_for_net(unsigned netid)1463 void resolv_delete_cache_for_net(unsigned netid) {
1464 std::lock_guard guard(cache_mutex);
1465 sNetConfigMap.erase(netid);
1466 }
1467
resolv_flush_cache_for_net(unsigned netid)1468 int resolv_flush_cache_for_net(unsigned netid) {
1469 std::lock_guard guard(cache_mutex);
1470
1471 NetConfig* netconfig = find_netconfig_locked(netid);
1472 if (netconfig == nullptr) {
1473 return -ENONET;
1474 }
1475 netconfig->cache->flush();
1476
1477 // Also clear the NS statistics.
1478 res_cache_clear_stats_locked(netconfig);
1479 return 0;
1480 }
1481
resolv_list_caches()1482 std::vector<unsigned> resolv_list_caches() {
1483 std::lock_guard guard(cache_mutex);
1484 std::vector<unsigned> result;
1485 result.reserve(sNetConfigMap.size());
1486 for (const auto& [netId, _] : sNetConfigMap) {
1487 result.push_back(netId);
1488 }
1489 return result;
1490 }
1491
find_named_cache_locked(unsigned netid)1492 static Cache* find_named_cache_locked(unsigned netid) {
1493 NetConfig* info = find_netconfig_locked(netid);
1494 if (info != nullptr) return info->cache.get();
1495 return nullptr;
1496 }
1497
find_netconfig_locked(unsigned netid)1498 static NetConfig* find_netconfig_locked(unsigned netid) {
1499 if (auto it = sNetConfigMap.find(netid); it != sNetConfigMap.end()) {
1500 return it->second.get();
1501 }
1502 return nullptr;
1503 }
1504
resolv_set_experiment_params(res_params * params)1505 static void resolv_set_experiment_params(res_params* params) {
1506 if (params->retry_count == 0) {
1507 params->retry_count = getExperimentFlagInt("retry_count", RES_DFLRETRY);
1508 }
1509
1510 if (params->base_timeout_msec == 0) {
1511 params->base_timeout_msec =
1512 getExperimentFlagInt("retransmission_time_interval", RES_TIMEOUT);
1513 }
1514 }
1515
resolv_get_network_types_for_net(unsigned netid)1516 android::net::NetworkType resolv_get_network_types_for_net(unsigned netid) {
1517 std::lock_guard guard(cache_mutex);
1518 NetConfig* netconfig = find_netconfig_locked(netid);
1519 if (netconfig == nullptr) return android::net::NT_UNKNOWN;
1520 return convert_network_type(netconfig->transportTypes);
1521 }
1522
1523 namespace {
1524
1525 // Returns valid domains without duplicates which are limited to max size |MAXDNSRCH|.
filter_domains(const std::vector<std::string> & domains)1526 std::vector<std::string> filter_domains(const std::vector<std::string>& domains) {
1527 std::set<std::string> tmp_set;
1528 std::vector<std::string> res;
1529
1530 std::copy_if(domains.begin(), domains.end(), std::back_inserter(res),
1531 [&tmp_set](const std::string& str) {
1532 return !(str.size() > MAXDNSRCHPATH - 1) && (tmp_set.insert(str).second);
1533 });
1534 if (res.size() > MAXDNSRCH) {
1535 LOG(WARNING) << __func__ << ": valid domains=" << res.size()
1536 << ", but MAXDNSRCH=" << MAXDNSRCH;
1537 res.resize(MAXDNSRCH);
1538 }
1539 return res;
1540 }
1541
filter_nameservers(const std::vector<std::string> & servers)1542 std::vector<std::string> filter_nameservers(const std::vector<std::string>& servers) {
1543 std::vector<std::string> res = servers;
1544 if (res.size() > MAXNS) {
1545 LOG(WARNING) << __func__ << ": too many servers: " << res.size();
1546 res.resize(MAXNS);
1547 }
1548 return res;
1549 }
1550
isValidServer(const std::string & server)1551 bool isValidServer(const std::string& server) {
1552 const addrinfo hints = {
1553 .ai_family = AF_UNSPEC,
1554 .ai_socktype = SOCK_DGRAM,
1555 };
1556 addrinfo* result = nullptr;
1557 if (int err = getaddrinfo_numeric(server.c_str(), "53", hints, &result); err != 0) {
1558 LOG(WARNING) << __func__ << ": getaddrinfo_numeric(" << server
1559 << ") = " << gai_strerror(err);
1560 return false;
1561 }
1562 freeaddrinfo(result);
1563 return true;
1564 }
1565
1566 } // namespace
1567
getCustomizedTableByName(const size_t netid,const char * hostname)1568 std::vector<std::string> getCustomizedTableByName(const size_t netid, const char* hostname) {
1569 std::lock_guard guard(cache_mutex);
1570 NetConfig* netconfig = find_netconfig_locked(netid);
1571
1572 std::vector<std::string> result;
1573 if (netconfig != nullptr) {
1574 const auto& hosts = netconfig->customizedTable.equal_range(hostname);
1575 for (auto i = hosts.first; i != hosts.second; ++i) {
1576 result.push_back(i->second);
1577 }
1578 }
1579 return result;
1580 }
1581
resolv_set_nameservers(unsigned netid,const std::vector<std::string> & servers,const std::vector<std::string> & domains,const res_params & params,const aidl::android::net::ResolverOptionsParcel & resolverOptions,const std::vector<int32_t> & transportTypes)1582 int resolv_set_nameservers(unsigned netid, const std::vector<std::string>& servers,
1583 const std::vector<std::string>& domains, const res_params& params,
1584 const aidl::android::net::ResolverOptionsParcel& resolverOptions,
1585 const std::vector<int32_t>& transportTypes) {
1586 std::vector<std::string> nameservers = filter_nameservers(servers);
1587 const int numservers = static_cast<int>(nameservers.size());
1588
1589 LOG(INFO) << __func__ << ": netId = " << netid << ", numservers = " << numservers;
1590
1591 // Parse the addresses before actually locking or changing any state, in case there is an error.
1592 // As a side effect this also reduces the time the lock is kept.
1593 std::vector<IPSockAddr> ipSockAddrs;
1594 ipSockAddrs.reserve(nameservers.size());
1595 for (const auto& server : nameservers) {
1596 if (!isValidServer(server)) return -EINVAL;
1597 ipSockAddrs.push_back(IPSockAddr::toIPSockAddr(server, 53));
1598 }
1599
1600 std::lock_guard guard(cache_mutex);
1601 NetConfig* netconfig = find_netconfig_locked(netid);
1602
1603 if (netconfig == nullptr) return -ENONET;
1604
1605 uint8_t old_max_samples = netconfig->params.max_samples;
1606 netconfig->params = params;
1607 resolv_set_experiment_params(&netconfig->params);
1608 if (!resolv_is_nameservers_equal(netconfig->nameservers, nameservers)) {
1609 // free current before adding new
1610 free_nameservers_locked(netconfig);
1611 netconfig->nameservers = std::move(nameservers);
1612 for (int i = 0; i < numservers; i++) {
1613 LOG(INFO) << __func__ << ": netid = " << netid
1614 << ", addr = " << netconfig->nameservers[i];
1615 }
1616 netconfig->nameserverSockAddrs = std::move(ipSockAddrs);
1617 } else {
1618 if (netconfig->params.max_samples != old_max_samples) {
1619 // If the maximum number of samples changes, the overhead of keeping the most recent
1620 // samples around is not considered worth the effort, so they are cleared instead.
1621 // All other parameters do not affect shared state: Changing these parameters does
1622 // not invalidate the samples, as they only affect aggregation and the conditions
1623 // under which servers are considered usable.
1624 res_cache_clear_stats_locked(netconfig);
1625 }
1626 }
1627
1628 // Always update the search paths. Cache-flushing however is not necessary,
1629 // since the stored cache entries do contain the domain, not just the host name.
1630 netconfig->search_domains = filter_domains(domains);
1631
1632 // Setup stats for cleartext dns servers.
1633 if (!netconfig->dnsStats.setServers(netconfig->nameserverSockAddrs, PROTO_TCP) ||
1634 !netconfig->dnsStats.setServers(netconfig->nameserverSockAddrs, PROTO_UDP)) {
1635 LOG(WARNING) << __func__ << ": netid = " << netid << ", failed to set dns stats";
1636 return -EINVAL;
1637 }
1638 netconfig->customizedTable.clear();
1639 for (const auto& host : resolverOptions.hosts) {
1640 if (!host.hostName.empty() && !host.ipAddr.empty())
1641 netconfig->customizedTable.emplace(host.hostName, host.ipAddr);
1642 }
1643
1644 if (resolverOptions.tcMode < aidl::android::net::IDnsResolver::TC_MODE_DEFAULT ||
1645 resolverOptions.tcMode > aidl::android::net::IDnsResolver::TC_MODE_UDP_TCP) {
1646 LOG(WARNING) << __func__ << ": netid = " << netid
1647 << ", invalid TC mode: " << resolverOptions.tcMode;
1648 return -EINVAL;
1649 }
1650 netconfig->tc_mode = resolverOptions.tcMode;
1651 netconfig->enforceDnsUid = resolverOptions.enforceDnsUid;
1652
1653 netconfig->transportTypes = transportTypes;
1654
1655 return 0;
1656 }
1657
resolv_is_nameservers_equal(const std::vector<std::string> & oldServers,const std::vector<std::string> & newServers)1658 static bool resolv_is_nameservers_equal(const std::vector<std::string>& oldServers,
1659 const std::vector<std::string>& newServers) {
1660 const std::set<std::string> olds(oldServers.begin(), oldServers.end());
1661 const std::set<std::string> news(newServers.begin(), newServers.end());
1662
1663 // TODO: this is incorrect if the list of current or previous nameservers
1664 // contains duplicates. This does not really matter because the framework
1665 // filters out duplicates, but we should probably fix it. It's also
1666 // insensitive to the order of the nameservers; we should probably fix that
1667 // too.
1668 return olds == news;
1669 }
1670
free_nameservers_locked(NetConfig * netconfig)1671 static void free_nameservers_locked(NetConfig* netconfig) {
1672 netconfig->nameservers.clear();
1673 netconfig->nameserverSockAddrs.clear();
1674 res_cache_clear_stats_locked(netconfig);
1675 }
1676
resolv_populate_res_for_net(ResState * statp)1677 void resolv_populate_res_for_net(ResState* statp) {
1678 if (statp == nullptr) {
1679 return;
1680 }
1681 LOG(INFO) << __func__ << ": netid=" << statp->netid;
1682
1683 std::lock_guard guard(cache_mutex);
1684 NetConfig* info = find_netconfig_locked(statp->netid);
1685 if (info == nullptr) return;
1686
1687 const bool sortNameservers = Experiments::getInstance()->getFlag("sort_nameservers", 0);
1688 statp->sort_nameservers = sortNameservers;
1689 statp->nsaddrs = sortNameservers ? info->dnsStats.getSortedServers(PROTO_UDP)
1690 : info->nameserverSockAddrs;
1691 statp->search_domains = info->search_domains;
1692 statp->tc_mode = info->tc_mode;
1693 statp->enforce_dns_uid = info->enforceDnsUid;
1694 }
1695
1696 /* Resolver reachability statistics. */
1697
res_cache_add_stats_sample_locked(res_stats * stats,const res_sample & sample,int max_samples)1698 static void res_cache_add_stats_sample_locked(res_stats* stats, const res_sample& sample,
1699 int max_samples) {
1700 // Note: This function expects max_samples > 0, otherwise a (harmless) modification of the
1701 // allocated but supposedly unused memory for samples[0] will happen
1702 LOG(INFO) << __func__ << ": adding sample to stats, next = " << unsigned(stats->sample_next)
1703 << ", count = " << unsigned(stats->sample_count);
1704 stats->samples[stats->sample_next] = sample;
1705 if (stats->sample_count < max_samples) {
1706 ++stats->sample_count;
1707 }
1708 if (++stats->sample_next >= max_samples) {
1709 stats->sample_next = 0;
1710 }
1711 }
1712
res_cache_clear_stats_locked(NetConfig * netconfig)1713 static void res_cache_clear_stats_locked(NetConfig* netconfig) {
1714 for (int i = 0; i < MAXNS; ++i) {
1715 netconfig->nsstats[i].sample_count = 0;
1716 netconfig->nsstats[i].sample_next = 0;
1717 }
1718
1719 // Increment the revision id to ensure that sample state is not written back if the
1720 // servers change; in theory it would suffice to do so only if the servers or
1721 // max_samples actually change, in practice the overhead of checking is higher than the
1722 // cost, and overflows are unlikely.
1723 ++netconfig->revision_id;
1724 }
1725
android_net_res_stats_get_info_for_net(unsigned netid,int * nscount,struct sockaddr_storage servers[MAXNS],int * dcount,char domains[MAXDNSRCH][MAXDNSRCHPATH],res_params * params,struct res_stats stats[MAXNS],int * wait_for_pending_req_timeout_count)1726 int android_net_res_stats_get_info_for_net(unsigned netid, int* nscount,
1727 struct sockaddr_storage servers[MAXNS], int* dcount,
1728 char domains[MAXDNSRCH][MAXDNSRCHPATH],
1729 res_params* params, struct res_stats stats[MAXNS],
1730 int* wait_for_pending_req_timeout_count) {
1731 std::lock_guard guard(cache_mutex);
1732 NetConfig* info = find_netconfig_locked(netid);
1733 if (!info) return -1;
1734
1735 const int num = info->nameserverCount();
1736 if (num > MAXNS) {
1737 LOG(INFO) << __func__ << ": nscount " << num << " > MAXNS " << MAXNS;
1738 errno = EFAULT;
1739 return -1;
1740 }
1741
1742 for (int i = 0; i < num; i++) {
1743 servers[i] = info->nameserverSockAddrs[i];
1744 stats[i] = info->nsstats[i];
1745 }
1746
1747 for (size_t i = 0; i < info->search_domains.size(); i++) {
1748 strlcpy(domains[i], info->search_domains[i].c_str(), MAXDNSRCHPATH);
1749 }
1750
1751 *nscount = num;
1752 *dcount = static_cast<int>(info->search_domains.size());
1753 *params = info->params;
1754 *wait_for_pending_req_timeout_count = info->wait_for_pending_req_timeout_count;
1755
1756 return info->revision_id;
1757 }
1758
resolv_cache_dump_subsampling_map(unsigned netid)1759 std::vector<std::string> resolv_cache_dump_subsampling_map(unsigned netid) {
1760 using android::base::StringPrintf;
1761 std::lock_guard guard(cache_mutex);
1762 NetConfig* netconfig = find_netconfig_locked(netid);
1763 if (netconfig == nullptr) return {};
1764 std::vector<std::string> result;
1765 for (const auto& pair : netconfig->dns_event_subsampling_map) {
1766 result.push_back(StringPrintf("%s:%d",
1767 (pair.first == DNSEVENT_SUBSAMPLING_MAP_DEFAULT_KEY)
1768 ? "default"
1769 : std::to_string(pair.first).c_str(),
1770 pair.second));
1771 }
1772 return result;
1773 }
1774
1775 // Decides whether an event should be sampled using a random number generator and
1776 // a sampling factor derived from the netid and the return code.
1777 //
1778 // Returns the subsampling rate if the event should be sampled, or 0 if it should be discarded.
resolv_cache_get_subsampling_denom(unsigned netid,int return_code)1779 uint32_t resolv_cache_get_subsampling_denom(unsigned netid, int return_code) {
1780 std::lock_guard guard(cache_mutex);
1781 NetConfig* netconfig = find_netconfig_locked(netid);
1782 if (netconfig == nullptr) return 0; // Don't log anything at all.
1783 const auto& subsampling_map = netconfig->dns_event_subsampling_map;
1784 auto search_returnCode = subsampling_map.find(return_code);
1785 uint32_t denom;
1786 if (search_returnCode != subsampling_map.end()) {
1787 denom = search_returnCode->second;
1788 } else {
1789 auto search_default = subsampling_map.find(DNSEVENT_SUBSAMPLING_MAP_DEFAULT_KEY);
1790 denom = (search_default == subsampling_map.end()) ? 0 : search_default->second;
1791 }
1792 return denom;
1793 }
1794
resolv_cache_get_resolver_stats(unsigned netid,res_params * params,res_stats stats[MAXNS],const std::vector<IPSockAddr> & serverSockAddrs)1795 int resolv_cache_get_resolver_stats(unsigned netid, res_params* params, res_stats stats[MAXNS],
1796 const std::vector<IPSockAddr>& serverSockAddrs) {
1797 std::lock_guard guard(cache_mutex);
1798 NetConfig* info = find_netconfig_locked(netid);
1799 if (!info) return -1;
1800
1801 for (size_t i = 0; i < serverSockAddrs.size(); i++) {
1802 for (size_t j = 0; j < info->nameserverSockAddrs.size(); j++) {
1803 // Should never happen. Just in case because of the fix-sized array |stats|.
1804 if (j >= MAXNS) {
1805 LOG(WARNING) << __func__ << ": unexpected size " << j;
1806 return -1;
1807 }
1808
1809 // It's possible that the server is not found, e.g. when a new list of nameservers
1810 // is updated to the NetConfig just after this look up thread being populated.
1811 // Keep the server valid as-is (by means of keeping stats[i] unset), but we should
1812 // think about if there's a better way.
1813 if (info->nameserverSockAddrs[j] == serverSockAddrs[i]) {
1814 stats[i] = info->nsstats[j];
1815 break;
1816 }
1817 }
1818 }
1819
1820 *params = info->params;
1821 return info->revision_id;
1822 }
1823
resolv_cache_add_resolver_stats_sample(unsigned netid,int revision_id,const IPSockAddr & serverSockAddr,const res_sample & sample,int max_samples)1824 void resolv_cache_add_resolver_stats_sample(unsigned netid, int revision_id,
1825 const IPSockAddr& serverSockAddr,
1826 const res_sample& sample, int max_samples) {
1827 if (max_samples <= 0) return;
1828
1829 std::lock_guard guard(cache_mutex);
1830 NetConfig* info = find_netconfig_locked(netid);
1831
1832 if (info && info->revision_id == revision_id) {
1833 const int serverNum = std::min(MAXNS, static_cast<int>(info->nameserverSockAddrs.size()));
1834 for (int ns = 0; ns < serverNum; ns++) {
1835 if (serverSockAddr == info->nameserverSockAddrs[ns]) {
1836 res_cache_add_stats_sample_locked(&info->nsstats[ns], sample, max_samples);
1837 return;
1838 }
1839 }
1840 }
1841 }
1842
has_named_cache(unsigned netid)1843 bool has_named_cache(unsigned netid) {
1844 std::lock_guard guard(cache_mutex);
1845 return find_named_cache_locked(netid) != nullptr;
1846 }
1847
resolv_cache_get_expiration(unsigned netid,const std::vector<char> & query,time_t * expiration)1848 int resolv_cache_get_expiration(unsigned netid, const std::vector<char>& query,
1849 time_t* expiration) {
1850 Entry key;
1851 *expiration = -1;
1852
1853 // A malformed query is not allowed.
1854 if (!entry_init_key(&key, query.data(), query.size())) {
1855 LOG(WARNING) << __func__ << ": unsupported query";
1856 return -EINVAL;
1857 }
1858
1859 // lookup cache.
1860 Cache* cache;
1861 std::lock_guard guard(cache_mutex);
1862 if (cache = find_named_cache_locked(netid); cache == nullptr) {
1863 LOG(WARNING) << __func__ << ": cache not created in the network " << netid;
1864 return -ENONET;
1865 }
1866 Entry** lookup = _cache_lookup_p(cache, &key);
1867 Entry* e = *lookup;
1868 if (e == NULL) {
1869 LOG(WARNING) << __func__ << ": not in cache";
1870 return -ENODATA;
1871 }
1872
1873 if (_time_now() >= e->expires) {
1874 LOG(WARNING) << __func__ << ": entry expired";
1875 return -ENODATA;
1876 }
1877
1878 *expiration = e->expires;
1879 return 0;
1880 }
1881
resolv_stats_set_servers_for_dot(unsigned netid,const std::vector<std::string> & servers)1882 int resolv_stats_set_servers_for_dot(unsigned netid, const std::vector<std::string>& servers) {
1883 std::lock_guard guard(cache_mutex);
1884 const auto info = find_netconfig_locked(netid);
1885
1886 if (info == nullptr) return -ENONET;
1887
1888 std::vector<IPSockAddr> serverSockAddrs;
1889 serverSockAddrs.reserve(servers.size());
1890 for (const auto& server : servers) {
1891 serverSockAddrs.push_back(IPSockAddr::toIPSockAddr(server, 853));
1892 }
1893
1894 if (!info->dnsStats.setServers(serverSockAddrs, android::net::PROTO_DOT)) {
1895 LOG(WARNING) << __func__ << ": netid = " << netid << ", failed to set dns stats";
1896 return -EINVAL;
1897 }
1898
1899 return 0;
1900 }
1901
resolv_stats_add(unsigned netid,const android::netdutils::IPSockAddr & server,const DnsQueryEvent * record)1902 bool resolv_stats_add(unsigned netid, const android::netdutils::IPSockAddr& server,
1903 const DnsQueryEvent* record) {
1904 if (record == nullptr) return false;
1905
1906 std::lock_guard guard(cache_mutex);
1907 if (const auto info = find_netconfig_locked(netid); info != nullptr) {
1908 return info->dnsStats.addStats(server, *record);
1909 }
1910 return false;
1911 }
1912
tc_mode_to_str(const int mode)1913 static const char* tc_mode_to_str(const int mode) {
1914 switch (mode) {
1915 case aidl::android::net::IDnsResolver::TC_MODE_DEFAULT:
1916 return "default";
1917 case aidl::android::net::IDnsResolver::TC_MODE_UDP_TCP:
1918 return "UDP_TCP";
1919 default:
1920 return "unknown";
1921 }
1922 }
1923
to_stats_network_type(int32_t mainType,bool withVpn)1924 static android::net::NetworkType to_stats_network_type(int32_t mainType, bool withVpn) {
1925 switch (mainType) {
1926 case IDnsResolver::TRANSPORT_CELLULAR:
1927 return withVpn ? android::net::NT_CELLULAR_VPN : android::net::NT_CELLULAR;
1928 case IDnsResolver::TRANSPORT_WIFI:
1929 return withVpn ? android::net::NT_WIFI_VPN : android::net::NT_WIFI;
1930 case IDnsResolver::TRANSPORT_BLUETOOTH:
1931 return withVpn ? android::net::NT_BLUETOOTH_VPN : android::net::NT_BLUETOOTH;
1932 case IDnsResolver::TRANSPORT_ETHERNET:
1933 return withVpn ? android::net::NT_ETHERNET_VPN : android::net::NT_ETHERNET;
1934 case IDnsResolver::TRANSPORT_VPN:
1935 return withVpn ? android::net::NT_UNKNOWN : android::net::NT_VPN;
1936 case IDnsResolver::TRANSPORT_WIFI_AWARE:
1937 return withVpn ? android::net::NT_UNKNOWN : android::net::NT_WIFI_AWARE;
1938 case IDnsResolver::TRANSPORT_LOWPAN:
1939 return withVpn ? android::net::NT_UNKNOWN : android::net::NT_LOWPAN;
1940 default:
1941 return android::net::NT_UNKNOWN;
1942 }
1943 }
1944
convert_network_type(const std::vector<int32_t> & transportTypes)1945 android::net::NetworkType convert_network_type(const std::vector<int32_t>& transportTypes) {
1946 // The valid transportTypes size is 1 to 3.
1947 if (transportTypes.size() > 3 || transportTypes.size() == 0) return android::net::NT_UNKNOWN;
1948 // TransportTypes size == 1, map the type to stats network type directly.
1949 if (transportTypes.size() == 1) return to_stats_network_type(transportTypes[0], false);
1950 // TransportTypes size == 3, only cellular + wifi + vpn is valid.
1951 if (transportTypes.size() == 3) {
1952 std::vector<int32_t> sortedTransTypes = transportTypes;
1953 std::sort(sortedTransTypes.begin(), sortedTransTypes.end());
1954 if (sortedTransTypes != std::vector<int32_t>{IDnsResolver::TRANSPORT_CELLULAR,
1955 IDnsResolver::TRANSPORT_WIFI,
1956 IDnsResolver::TRANSPORT_VPN}) {
1957 return android::net::NT_UNKNOWN;
1958 }
1959 return android::net::NT_WIFI_CELLULAR_VPN;
1960 }
1961 // TransportTypes size == 2, it shoud be 1 main type + vpn type.
1962 // Otherwise, consider it as UNKNOWN.
1963 bool hasVpn = false;
1964 int32_t mainType = IDnsResolver::TRANSPORT_UNKNOWN;
1965 for (const auto& transportType : transportTypes) {
1966 if (transportType == IDnsResolver::TRANSPORT_VPN) {
1967 hasVpn = true;
1968 continue;
1969 }
1970 mainType = transportType;
1971 }
1972 return hasVpn ? to_stats_network_type(mainType, true) : android::net::NT_UNKNOWN;
1973 }
1974
transport_type_to_str(const std::vector<int32_t> & transportTypes)1975 static const char* transport_type_to_str(const std::vector<int32_t>& transportTypes) {
1976 switch (convert_network_type(transportTypes)) {
1977 case android::net::NT_CELLULAR:
1978 return "CELLULAR";
1979 case android::net::NT_WIFI:
1980 return "WIFI";
1981 case android::net::NT_BLUETOOTH:
1982 return "BLUETOOTH";
1983 case android::net::NT_ETHERNET:
1984 return "ETHERNET";
1985 case android::net::NT_VPN:
1986 return "VPN";
1987 case android::net::NT_WIFI_AWARE:
1988 return "WIFI_AWARE";
1989 case android::net::NT_LOWPAN:
1990 return "LOWPAN";
1991 case android::net::NT_CELLULAR_VPN:
1992 return "CELLULAR_VPN";
1993 case android::net::NT_WIFI_VPN:
1994 return "WIFI_VPN";
1995 case android::net::NT_BLUETOOTH_VPN:
1996 return "BLUETOOTH_VPN";
1997 case android::net::NT_ETHERNET_VPN:
1998 return "ETHERNET_VPN";
1999 case android::net::NT_WIFI_CELLULAR_VPN:
2000 return "WIFI_CELLULAR_VPN";
2001 default:
2002 return "UNKNOWN";
2003 }
2004 }
2005
resolv_netconfig_dump(DumpWriter & dw,unsigned netid)2006 void resolv_netconfig_dump(DumpWriter& dw, unsigned netid) {
2007 std::lock_guard guard(cache_mutex);
2008 if (const auto info = find_netconfig_locked(netid); info != nullptr) {
2009 info->dnsStats.dump(dw);
2010 // TODO: dump info->hosts
2011 dw.println("TC mode: %s", tc_mode_to_str(info->tc_mode));
2012 dw.println("TransportType: %s", transport_type_to_str(info->transportTypes));
2013 }
2014 }
2015