1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "ueventd.h"
18 
19 #include <ctype.h>
20 #include <dirent.h>
21 #include <fcntl.h>
22 #include <signal.h>
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/stat.h>
27 #include <sys/wait.h>
28 #include <unistd.h>
29 
30 #include <set>
31 #include <thread>
32 
33 #include <android-base/chrono_utils.h>
34 #include <android-base/logging.h>
35 #include <android-base/properties.h>
36 #include <fstab/fstab.h>
37 #include <selinux/android.h>
38 #include <selinux/selinux.h>
39 
40 #include "devices.h"
41 #include "firmware_handler.h"
42 #include "modalias_handler.h"
43 #include "selabel.h"
44 #include "selinux.h"
45 #include "uevent_handler.h"
46 #include "uevent_listener.h"
47 #include "ueventd_parser.h"
48 #include "util.h"
49 
50 // At a high level, ueventd listens for uevent messages generated by the kernel through a netlink
51 // socket.  When ueventd receives such a message it handles it by taking appropriate actions,
52 // which can typically be creating a device node in /dev, setting file permissions, setting selinux
53 // labels, etc.
54 // Ueventd also handles loading of firmware that the kernel requests, and creates symlinks for block
55 // and character devices.
56 
57 // When ueventd starts, it regenerates uevents for all currently registered devices by traversing
58 // /sys and writing 'add' to each 'uevent' file that it finds.  This causes the kernel to generate
59 // and resend uevent messages for all of the currently registered devices.  This is done, because
60 // ueventd would not have been running when these devices were registered and therefore was unable
61 // to receive their uevent messages and handle them appropriately.  This process is known as
62 // 'cold boot'.
63 
64 // 'init' currently waits synchronously on the cold boot process of ueventd before it continues
65 // its boot process.  For this reason, cold boot should be as quick as possible.  One way to achieve
66 // a speed up here is to parallelize the handling of ueventd messages, which consume the bulk of the
67 // time during cold boot.
68 
69 // Handling of uevent messages has two unique properties:
70 // 1) It can be done in isolation; it doesn't need to read or write any status once it is started.
71 // 2) It uses setegid() and setfscreatecon() so either care (aka locking) must be taken to ensure
72 //    that no file system operations are done while the uevent process has an abnormal egid or
73 //    fscreatecon or this handling must happen in a separate process.
74 // Given the above two properties, it is best to fork() subprocesses to handle the uevents.  This
75 // reduces the overhead and complexity that would be required in a solution with threads and locks.
76 // In testing, a racy multithreaded solution has the same performance as the fork() solution, so
77 // there is no reason to deal with the complexity of the former.
78 
79 // One other important caveat during the boot process is the handling of SELinux restorecon.
80 // Since many devices have child devices, calling selinux_android_restorecon() recursively for each
81 // device when its uevent is handled, results in multiple restorecon operations being done on a
82 // given file.  It is more efficient to simply do restorecon recursively on /sys during cold boot,
83 // than to do restorecon on each device as its uevent is handled.  This only applies to cold boot;
84 // once that has completed, restorecon is done for each device as its uevent is handled.
85 
86 // With all of the above considered, the cold boot process has the below steps:
87 // 1) ueventd regenerates uevents by doing the /sys traversal and listens to the netlink socket for
88 //    the generated uevents.  It writes these uevents into a queue represented by a vector.
89 //
90 // 2) ueventd forks 'n' separate uevent handler subprocesses and has each of them to handle the
91 //    uevents in the queue based on a starting offset (their process number) and a stride (the total
92 //    number of processes).  Note that no IPC happens at this point and only const functions from
93 //    DeviceHandler should be called from this context.
94 //
95 // 3) In parallel to the subprocesses handling the uevents, the main thread of ueventd calls
96 //    selinux_android_restorecon() recursively on /sys/class, /sys/block, and /sys/devices.
97 //
98 // 4) Once the restorecon operation finishes, the main thread calls waitpid() to wait for all
99 //    subprocess handlers to complete and exit.  Once this happens, it marks coldboot as having
100 //    completed.
101 //
102 // At this point, ueventd is single threaded, poll()'s and then handles any future uevents.
103 
104 // Lastly, it should be noted that uevents that occur during the coldboot process are handled
105 // without issue after the coldboot process completes.  This is because the uevent listener is
106 // paused while the uevent handler and restorecon actions take place.  Once coldboot completes,
107 // the uevent listener resumes in polling mode and will handle the uevents that occurred during
108 // coldboot.
109 
110 namespace android {
111 namespace init {
112 
113 class ColdBoot {
114   public:
ColdBoot(UeventListener & uevent_listener,std::vector<std::unique_ptr<UeventHandler>> & uevent_handlers,bool enable_parallel_restorecon)115     ColdBoot(UeventListener& uevent_listener,
116              std::vector<std::unique_ptr<UeventHandler>>& uevent_handlers,
117              bool enable_parallel_restorecon)
118         : uevent_listener_(uevent_listener),
119           uevent_handlers_(uevent_handlers),
120           num_handler_subprocesses_(std::thread::hardware_concurrency() ?: 4),
121           enable_parallel_restorecon_(enable_parallel_restorecon) {}
122 
123     void Run();
124 
125   private:
126     void UeventHandlerMain(unsigned int process_num, unsigned int total_processes);
127     void RegenerateUevents();
128     void ForkSubProcesses();
129     void WaitForSubProcesses();
130     void RestoreConHandler(unsigned int process_num, unsigned int total_processes);
131     void GenerateRestoreCon(const std::string& directory);
132 
133     UeventListener& uevent_listener_;
134     std::vector<std::unique_ptr<UeventHandler>>& uevent_handlers_;
135 
136     unsigned int num_handler_subprocesses_;
137     bool enable_parallel_restorecon_;
138 
139     std::vector<Uevent> uevent_queue_;
140 
141     std::set<pid_t> subprocess_pids_;
142 
143     std::vector<std::string> restorecon_queue_;
144 };
145 
UeventHandlerMain(unsigned int process_num,unsigned int total_processes)146 void ColdBoot::UeventHandlerMain(unsigned int process_num, unsigned int total_processes) {
147     for (unsigned int i = process_num; i < uevent_queue_.size(); i += total_processes) {
148         auto& uevent = uevent_queue_[i];
149 
150         for (auto& uevent_handler : uevent_handlers_) {
151             uevent_handler->HandleUevent(uevent);
152         }
153     }
154 }
155 
RestoreConHandler(unsigned int process_num,unsigned int total_processes)156 void ColdBoot::RestoreConHandler(unsigned int process_num, unsigned int total_processes) {
157     for (unsigned int i = process_num; i < restorecon_queue_.size(); i += total_processes) {
158         auto& dir = restorecon_queue_[i];
159 
160         selinux_android_restorecon(dir.c_str(), SELINUX_ANDROID_RESTORECON_RECURSE);
161     }
162 }
163 
GenerateRestoreCon(const std::string & directory)164 void ColdBoot::GenerateRestoreCon(const std::string& directory) {
165     std::unique_ptr<DIR, decltype(&closedir)> dir(opendir(directory.c_str()), &closedir);
166 
167     if (!dir) return;
168 
169     struct dirent* dent;
170     while ((dent = readdir(dir.get())) != NULL) {
171         if (strcmp(dent->d_name, ".") == 0 || strcmp(dent->d_name, "..") == 0) continue;
172 
173         struct stat st;
174         if (fstatat(dirfd(dir.get()), dent->d_name, &st, 0) == -1) continue;
175 
176         if (S_ISDIR(st.st_mode)) {
177             std::string fullpath = directory + "/" + dent->d_name;
178             if (fullpath != "/sys/devices") {
179                 restorecon_queue_.emplace_back(fullpath);
180             }
181         }
182     }
183 }
184 
RegenerateUevents()185 void ColdBoot::RegenerateUevents() {
186     uevent_listener_.RegenerateUevents([this](const Uevent& uevent) {
187         uevent_queue_.emplace_back(uevent);
188         return ListenerAction::kContinue;
189     });
190 }
191 
ForkSubProcesses()192 void ColdBoot::ForkSubProcesses() {
193     for (unsigned int i = 0; i < num_handler_subprocesses_; ++i) {
194         auto pid = fork();
195         if (pid < 0) {
196             PLOG(FATAL) << "fork() failed!";
197         }
198 
199         if (pid == 0) {
200             UeventHandlerMain(i, num_handler_subprocesses_);
201             if (enable_parallel_restorecon_) {
202                 RestoreConHandler(i, num_handler_subprocesses_);
203             }
204             _exit(EXIT_SUCCESS);
205         }
206 
207         subprocess_pids_.emplace(pid);
208     }
209 }
210 
WaitForSubProcesses()211 void ColdBoot::WaitForSubProcesses() {
212     // Treat subprocesses that crash or get stuck the same as if ueventd itself has crashed or gets
213     // stuck.
214     //
215     // When a subprocess crashes, we fatally abort from ueventd.  init will restart ueventd when
216     // init reaps it, and the cold boot process will start again.  If this continues to fail, then
217     // since ueventd is marked as a critical service, init will reboot to bootloader.
218     //
219     // When a subprocess gets stuck, keep ueventd spinning waiting for it.  init has a timeout for
220     // cold boot and will reboot to the bootloader if ueventd does not complete in time.
221     while (!subprocess_pids_.empty()) {
222         int status;
223         pid_t pid = TEMP_FAILURE_RETRY(waitpid(-1, &status, 0));
224         if (pid == -1) {
225             PLOG(ERROR) << "waitpid() failed";
226             continue;
227         }
228 
229         auto it = std::find(subprocess_pids_.begin(), subprocess_pids_.end(), pid);
230         if (it == subprocess_pids_.end()) continue;
231 
232         if (WIFEXITED(status)) {
233             if (WEXITSTATUS(status) == EXIT_SUCCESS) {
234                 subprocess_pids_.erase(it);
235             } else {
236                 LOG(FATAL) << "subprocess exited with status " << WEXITSTATUS(status);
237             }
238         } else if (WIFSIGNALED(status)) {
239             LOG(FATAL) << "subprocess killed by signal " << WTERMSIG(status);
240         }
241     }
242 }
243 
Run()244 void ColdBoot::Run() {
245     android::base::Timer cold_boot_timer;
246 
247     RegenerateUevents();
248 
249     if (enable_parallel_restorecon_) {
250         selinux_android_restorecon("/sys", 0);
251         selinux_android_restorecon("/sys/devices", 0);
252         GenerateRestoreCon("/sys");
253         // takes long time for /sys/devices, parallelize it
254         GenerateRestoreCon("/sys/devices");
255     }
256 
257     ForkSubProcesses();
258 
259     if (!enable_parallel_restorecon_) {
260         selinux_android_restorecon("/sys", SELINUX_ANDROID_RESTORECON_RECURSE);
261     }
262 
263     WaitForSubProcesses();
264 
265     android::base::SetProperty(kColdBootDoneProp, "true");
266     LOG(INFO) << "Coldboot took " << cold_boot_timer.duration().count() / 1000.0f << " seconds";
267 }
268 
ueventd_main(int argc,char ** argv)269 int ueventd_main(int argc, char** argv) {
270     /*
271      * init sets the umask to 077 for forked processes. We need to
272      * create files with exact permissions, without modification by
273      * the umask.
274      */
275     umask(000);
276 
277     android::base::InitLogging(argv, &android::base::KernelLogger);
278 
279     LOG(INFO) << "ueventd started!";
280 
281     SelinuxSetupKernelLogging();
282     SelabelInitialize();
283 
284     std::vector<std::unique_ptr<UeventHandler>> uevent_handlers;
285 
286     // Keep the current product name base configuration so we remain backwards compatible and
287     // allow it to override everything.
288     auto hardware = android::base::GetProperty("ro.hardware", "");
289 
290     auto ueventd_configuration = ParseConfig({"/system/etc/ueventd.rc", "/vendor/ueventd.rc",
291                                               "/odm/ueventd.rc", "/ueventd." + hardware + ".rc"});
292 
293     uevent_handlers.emplace_back(std::make_unique<DeviceHandler>(
294             std::move(ueventd_configuration.dev_permissions),
295             std::move(ueventd_configuration.sysfs_permissions),
296             std::move(ueventd_configuration.subsystems), android::fs_mgr::GetBootDevices(), true));
297     uevent_handlers.emplace_back(std::make_unique<FirmwareHandler>(
298             std::move(ueventd_configuration.firmware_directories),
299             std::move(ueventd_configuration.external_firmware_handlers)));
300 
301     if (ueventd_configuration.enable_modalias_handling) {
302         std::vector<std::string> base_paths = {"/odm/lib/modules", "/vendor/lib/modules"};
303         uevent_handlers.emplace_back(std::make_unique<ModaliasHandler>(base_paths));
304     }
305     UeventListener uevent_listener(ueventd_configuration.uevent_socket_rcvbuf_size);
306 
307     if (!android::base::GetBoolProperty(kColdBootDoneProp, false)) {
308         ColdBoot cold_boot(uevent_listener, uevent_handlers,
309                            ueventd_configuration.enable_parallel_restorecon);
310         cold_boot.Run();
311     }
312 
313     for (auto& uevent_handler : uevent_handlers) {
314         uevent_handler->ColdbootDone();
315     }
316 
317     // We use waitpid() in ColdBoot, so we can't ignore SIGCHLD until now.
318     signal(SIGCHLD, SIG_IGN);
319     // Reap and pending children that exited between the last call to waitpid() and setting SIG_IGN
320     // for SIGCHLD above.
321     while (waitpid(-1, nullptr, WNOHANG) > 0) {
322     }
323 
324     // Restore prio before main loop
325     setpriority(PRIO_PROCESS, 0, 0);
326     uevent_listener.Poll([&uevent_handlers](const Uevent& uevent) {
327         for (auto& uevent_handler : uevent_handlers) {
328             uevent_handler->HandleUevent(uevent);
329         }
330         return ListenerAction::kContinue;
331     });
332 
333     return 0;
334 }
335 
336 }  // namespace init
337 }  // namespace android
338