1 /*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "ueventd.h"
18
19 #include <ctype.h>
20 #include <dirent.h>
21 #include <fcntl.h>
22 #include <signal.h>
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/stat.h>
27 #include <sys/wait.h>
28 #include <unistd.h>
29
30 #include <set>
31 #include <thread>
32
33 #include <android-base/chrono_utils.h>
34 #include <android-base/logging.h>
35 #include <android-base/properties.h>
36 #include <fstab/fstab.h>
37 #include <selinux/android.h>
38 #include <selinux/selinux.h>
39
40 #include "devices.h"
41 #include "firmware_handler.h"
42 #include "modalias_handler.h"
43 #include "selabel.h"
44 #include "selinux.h"
45 #include "uevent_handler.h"
46 #include "uevent_listener.h"
47 #include "ueventd_parser.h"
48 #include "util.h"
49
50 // At a high level, ueventd listens for uevent messages generated by the kernel through a netlink
51 // socket. When ueventd receives such a message it handles it by taking appropriate actions,
52 // which can typically be creating a device node in /dev, setting file permissions, setting selinux
53 // labels, etc.
54 // Ueventd also handles loading of firmware that the kernel requests, and creates symlinks for block
55 // and character devices.
56
57 // When ueventd starts, it regenerates uevents for all currently registered devices by traversing
58 // /sys and writing 'add' to each 'uevent' file that it finds. This causes the kernel to generate
59 // and resend uevent messages for all of the currently registered devices. This is done, because
60 // ueventd would not have been running when these devices were registered and therefore was unable
61 // to receive their uevent messages and handle them appropriately. This process is known as
62 // 'cold boot'.
63
64 // 'init' currently waits synchronously on the cold boot process of ueventd before it continues
65 // its boot process. For this reason, cold boot should be as quick as possible. One way to achieve
66 // a speed up here is to parallelize the handling of ueventd messages, which consume the bulk of the
67 // time during cold boot.
68
69 // Handling of uevent messages has two unique properties:
70 // 1) It can be done in isolation; it doesn't need to read or write any status once it is started.
71 // 2) It uses setegid() and setfscreatecon() so either care (aka locking) must be taken to ensure
72 // that no file system operations are done while the uevent process has an abnormal egid or
73 // fscreatecon or this handling must happen in a separate process.
74 // Given the above two properties, it is best to fork() subprocesses to handle the uevents. This
75 // reduces the overhead and complexity that would be required in a solution with threads and locks.
76 // In testing, a racy multithreaded solution has the same performance as the fork() solution, so
77 // there is no reason to deal with the complexity of the former.
78
79 // One other important caveat during the boot process is the handling of SELinux restorecon.
80 // Since many devices have child devices, calling selinux_android_restorecon() recursively for each
81 // device when its uevent is handled, results in multiple restorecon operations being done on a
82 // given file. It is more efficient to simply do restorecon recursively on /sys during cold boot,
83 // than to do restorecon on each device as its uevent is handled. This only applies to cold boot;
84 // once that has completed, restorecon is done for each device as its uevent is handled.
85
86 // With all of the above considered, the cold boot process has the below steps:
87 // 1) ueventd regenerates uevents by doing the /sys traversal and listens to the netlink socket for
88 // the generated uevents. It writes these uevents into a queue represented by a vector.
89 //
90 // 2) ueventd forks 'n' separate uevent handler subprocesses and has each of them to handle the
91 // uevents in the queue based on a starting offset (their process number) and a stride (the total
92 // number of processes). Note that no IPC happens at this point and only const functions from
93 // DeviceHandler should be called from this context.
94 //
95 // 3) In parallel to the subprocesses handling the uevents, the main thread of ueventd calls
96 // selinux_android_restorecon() recursively on /sys/class, /sys/block, and /sys/devices.
97 //
98 // 4) Once the restorecon operation finishes, the main thread calls waitpid() to wait for all
99 // subprocess handlers to complete and exit. Once this happens, it marks coldboot as having
100 // completed.
101 //
102 // At this point, ueventd is single threaded, poll()'s and then handles any future uevents.
103
104 // Lastly, it should be noted that uevents that occur during the coldboot process are handled
105 // without issue after the coldboot process completes. This is because the uevent listener is
106 // paused while the uevent handler and restorecon actions take place. Once coldboot completes,
107 // the uevent listener resumes in polling mode and will handle the uevents that occurred during
108 // coldboot.
109
110 namespace android {
111 namespace init {
112
113 class ColdBoot {
114 public:
ColdBoot(UeventListener & uevent_listener,std::vector<std::unique_ptr<UeventHandler>> & uevent_handlers,bool enable_parallel_restorecon)115 ColdBoot(UeventListener& uevent_listener,
116 std::vector<std::unique_ptr<UeventHandler>>& uevent_handlers,
117 bool enable_parallel_restorecon)
118 : uevent_listener_(uevent_listener),
119 uevent_handlers_(uevent_handlers),
120 num_handler_subprocesses_(std::thread::hardware_concurrency() ?: 4),
121 enable_parallel_restorecon_(enable_parallel_restorecon) {}
122
123 void Run();
124
125 private:
126 void UeventHandlerMain(unsigned int process_num, unsigned int total_processes);
127 void RegenerateUevents();
128 void ForkSubProcesses();
129 void WaitForSubProcesses();
130 void RestoreConHandler(unsigned int process_num, unsigned int total_processes);
131 void GenerateRestoreCon(const std::string& directory);
132
133 UeventListener& uevent_listener_;
134 std::vector<std::unique_ptr<UeventHandler>>& uevent_handlers_;
135
136 unsigned int num_handler_subprocesses_;
137 bool enable_parallel_restorecon_;
138
139 std::vector<Uevent> uevent_queue_;
140
141 std::set<pid_t> subprocess_pids_;
142
143 std::vector<std::string> restorecon_queue_;
144 };
145
UeventHandlerMain(unsigned int process_num,unsigned int total_processes)146 void ColdBoot::UeventHandlerMain(unsigned int process_num, unsigned int total_processes) {
147 for (unsigned int i = process_num; i < uevent_queue_.size(); i += total_processes) {
148 auto& uevent = uevent_queue_[i];
149
150 for (auto& uevent_handler : uevent_handlers_) {
151 uevent_handler->HandleUevent(uevent);
152 }
153 }
154 }
155
RestoreConHandler(unsigned int process_num,unsigned int total_processes)156 void ColdBoot::RestoreConHandler(unsigned int process_num, unsigned int total_processes) {
157 for (unsigned int i = process_num; i < restorecon_queue_.size(); i += total_processes) {
158 auto& dir = restorecon_queue_[i];
159
160 selinux_android_restorecon(dir.c_str(), SELINUX_ANDROID_RESTORECON_RECURSE);
161 }
162 }
163
GenerateRestoreCon(const std::string & directory)164 void ColdBoot::GenerateRestoreCon(const std::string& directory) {
165 std::unique_ptr<DIR, decltype(&closedir)> dir(opendir(directory.c_str()), &closedir);
166
167 if (!dir) return;
168
169 struct dirent* dent;
170 while ((dent = readdir(dir.get())) != NULL) {
171 if (strcmp(dent->d_name, ".") == 0 || strcmp(dent->d_name, "..") == 0) continue;
172
173 struct stat st;
174 if (fstatat(dirfd(dir.get()), dent->d_name, &st, 0) == -1) continue;
175
176 if (S_ISDIR(st.st_mode)) {
177 std::string fullpath = directory + "/" + dent->d_name;
178 if (fullpath != "/sys/devices") {
179 restorecon_queue_.emplace_back(fullpath);
180 }
181 }
182 }
183 }
184
RegenerateUevents()185 void ColdBoot::RegenerateUevents() {
186 uevent_listener_.RegenerateUevents([this](const Uevent& uevent) {
187 uevent_queue_.emplace_back(uevent);
188 return ListenerAction::kContinue;
189 });
190 }
191
ForkSubProcesses()192 void ColdBoot::ForkSubProcesses() {
193 for (unsigned int i = 0; i < num_handler_subprocesses_; ++i) {
194 auto pid = fork();
195 if (pid < 0) {
196 PLOG(FATAL) << "fork() failed!";
197 }
198
199 if (pid == 0) {
200 UeventHandlerMain(i, num_handler_subprocesses_);
201 if (enable_parallel_restorecon_) {
202 RestoreConHandler(i, num_handler_subprocesses_);
203 }
204 _exit(EXIT_SUCCESS);
205 }
206
207 subprocess_pids_.emplace(pid);
208 }
209 }
210
WaitForSubProcesses()211 void ColdBoot::WaitForSubProcesses() {
212 // Treat subprocesses that crash or get stuck the same as if ueventd itself has crashed or gets
213 // stuck.
214 //
215 // When a subprocess crashes, we fatally abort from ueventd. init will restart ueventd when
216 // init reaps it, and the cold boot process will start again. If this continues to fail, then
217 // since ueventd is marked as a critical service, init will reboot to bootloader.
218 //
219 // When a subprocess gets stuck, keep ueventd spinning waiting for it. init has a timeout for
220 // cold boot and will reboot to the bootloader if ueventd does not complete in time.
221 while (!subprocess_pids_.empty()) {
222 int status;
223 pid_t pid = TEMP_FAILURE_RETRY(waitpid(-1, &status, 0));
224 if (pid == -1) {
225 PLOG(ERROR) << "waitpid() failed";
226 continue;
227 }
228
229 auto it = std::find(subprocess_pids_.begin(), subprocess_pids_.end(), pid);
230 if (it == subprocess_pids_.end()) continue;
231
232 if (WIFEXITED(status)) {
233 if (WEXITSTATUS(status) == EXIT_SUCCESS) {
234 subprocess_pids_.erase(it);
235 } else {
236 LOG(FATAL) << "subprocess exited with status " << WEXITSTATUS(status);
237 }
238 } else if (WIFSIGNALED(status)) {
239 LOG(FATAL) << "subprocess killed by signal " << WTERMSIG(status);
240 }
241 }
242 }
243
Run()244 void ColdBoot::Run() {
245 android::base::Timer cold_boot_timer;
246
247 RegenerateUevents();
248
249 if (enable_parallel_restorecon_) {
250 selinux_android_restorecon("/sys", 0);
251 selinux_android_restorecon("/sys/devices", 0);
252 GenerateRestoreCon("/sys");
253 // takes long time for /sys/devices, parallelize it
254 GenerateRestoreCon("/sys/devices");
255 }
256
257 ForkSubProcesses();
258
259 if (!enable_parallel_restorecon_) {
260 selinux_android_restorecon("/sys", SELINUX_ANDROID_RESTORECON_RECURSE);
261 }
262
263 WaitForSubProcesses();
264
265 android::base::SetProperty(kColdBootDoneProp, "true");
266 LOG(INFO) << "Coldboot took " << cold_boot_timer.duration().count() / 1000.0f << " seconds";
267 }
268
ueventd_main(int argc,char ** argv)269 int ueventd_main(int argc, char** argv) {
270 /*
271 * init sets the umask to 077 for forked processes. We need to
272 * create files with exact permissions, without modification by
273 * the umask.
274 */
275 umask(000);
276
277 android::base::InitLogging(argv, &android::base::KernelLogger);
278
279 LOG(INFO) << "ueventd started!";
280
281 SelinuxSetupKernelLogging();
282 SelabelInitialize();
283
284 std::vector<std::unique_ptr<UeventHandler>> uevent_handlers;
285
286 // Keep the current product name base configuration so we remain backwards compatible and
287 // allow it to override everything.
288 auto hardware = android::base::GetProperty("ro.hardware", "");
289
290 auto ueventd_configuration = ParseConfig({"/system/etc/ueventd.rc", "/vendor/ueventd.rc",
291 "/odm/ueventd.rc", "/ueventd." + hardware + ".rc"});
292
293 uevent_handlers.emplace_back(std::make_unique<DeviceHandler>(
294 std::move(ueventd_configuration.dev_permissions),
295 std::move(ueventd_configuration.sysfs_permissions),
296 std::move(ueventd_configuration.subsystems), android::fs_mgr::GetBootDevices(), true));
297 uevent_handlers.emplace_back(std::make_unique<FirmwareHandler>(
298 std::move(ueventd_configuration.firmware_directories),
299 std::move(ueventd_configuration.external_firmware_handlers)));
300
301 if (ueventd_configuration.enable_modalias_handling) {
302 std::vector<std::string> base_paths = {"/odm/lib/modules", "/vendor/lib/modules"};
303 uevent_handlers.emplace_back(std::make_unique<ModaliasHandler>(base_paths));
304 }
305 UeventListener uevent_listener(ueventd_configuration.uevent_socket_rcvbuf_size);
306
307 if (!android::base::GetBoolProperty(kColdBootDoneProp, false)) {
308 ColdBoot cold_boot(uevent_listener, uevent_handlers,
309 ueventd_configuration.enable_parallel_restorecon);
310 cold_boot.Run();
311 }
312
313 for (auto& uevent_handler : uevent_handlers) {
314 uevent_handler->ColdbootDone();
315 }
316
317 // We use waitpid() in ColdBoot, so we can't ignore SIGCHLD until now.
318 signal(SIGCHLD, SIG_IGN);
319 // Reap and pending children that exited between the last call to waitpid() and setting SIG_IGN
320 // for SIGCHLD above.
321 while (waitpid(-1, nullptr, WNOHANG) > 0) {
322 }
323
324 // Restore prio before main loop
325 setpriority(PRIO_PROCESS, 0, 0);
326 uevent_listener.Poll([&uevent_handlers](const Uevent& uevent) {
327 for (auto& uevent_handler : uevent_handlers) {
328 uevent_handler->HandleUevent(uevent);
329 }
330 return ListenerAction::kContinue;
331 });
332
333 return 0;
334 }
335
336 } // namespace init
337 } // namespace android
338