1 /*
2  * Copyright (C) 2007 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 // #define LOG_NDEBUG 0
18 #define LOG_TAG "libutils.threads"
19 
20 #include <assert.h>
21 #include <utils/AndroidThreads.h>
22 #include <utils/Thread.h>
23 
24 #if !defined(_WIN32)
25 # include <sys/resource.h>
26 #else
27 # include <windows.h>
28 # include <stdint.h>
29 # include <process.h>
30 # define HAVE_CREATETHREAD  // Cygwin, vs. HAVE__BEGINTHREADEX for MinGW
31 #endif
32 
33 #if defined(__linux__)
34 #include <sys/prctl.h>
35 #endif
36 
37 #include <utils/Log.h>
38 
39 #if defined(__ANDROID__)
40 #include <processgroup/processgroup.h>
41 #include <processgroup/sched_policy.h>
42 #endif
43 
44 #if defined(__ANDROID__)
45 # define __android_unused
46 #else
47 # define __android_unused __attribute__((__unused__))
48 #endif
49 
50 /*
51  * ===========================================================================
52  *      Thread wrappers
53  * ===========================================================================
54  */
55 
56 using namespace android;
57 
58 // ----------------------------------------------------------------------------
59 #if !defined(_WIN32)
60 // ----------------------------------------------------------------------------
61 
62 /*
63  * Create and run a new thread.
64  *
65  * We create it "detached", so it cleans up after itself.
66  */
67 
68 typedef void* (*android_pthread_entry)(void*);
69 
70 #if defined(__ANDROID__)
71 struct thread_data_t {
72     thread_func_t   entryFunction;
73     void*           userData;
74     int             priority;
75     char *          threadName;
76 
77     // we use this trampoline when we need to set the priority with
78     // nice/setpriority, and name with prctl.
trampolinethread_data_t79     static int trampoline(const thread_data_t* t) {
80         thread_func_t f = t->entryFunction;
81         void* u = t->userData;
82         int prio = t->priority;
83         char * name = t->threadName;
84         delete t;
85         setpriority(PRIO_PROCESS, 0, prio);
86 
87         // A new thread will be in its parent's sched group by default,
88         // so we just need to handle the background case.
89         if (prio >= ANDROID_PRIORITY_BACKGROUND) {
90             SetTaskProfiles(0, {"SCHED_SP_BACKGROUND"}, true);
91         }
92 
93         if (name) {
94             androidSetThreadName(name);
95             free(name);
96         }
97         return f(u);
98     }
99 };
100 #endif
101 
androidSetThreadName(const char * name)102 void androidSetThreadName(const char* name) {
103 #if defined(__linux__)
104     // Mac OS doesn't have this, and we build libutil for the host too
105     int hasAt = 0;
106     int hasDot = 0;
107     const char *s = name;
108     while (*s) {
109         if (*s == '.') hasDot = 1;
110         else if (*s == '@') hasAt = 1;
111         s++;
112     }
113     int len = s - name;
114     if (len < 15 || hasAt || !hasDot) {
115         s = name;
116     } else {
117         s = name + len - 15;
118     }
119     prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0);
120 #endif
121 }
122 
androidCreateRawThreadEtc(android_thread_func_t entryFunction,void * userData,const char * threadName __android_unused,int32_t threadPriority,size_t threadStackSize,android_thread_id_t * threadId)123 int androidCreateRawThreadEtc(android_thread_func_t entryFunction,
124                                void *userData,
125                                const char* threadName __android_unused,
126                                int32_t threadPriority,
127                                size_t threadStackSize,
128                                android_thread_id_t *threadId)
129 {
130     pthread_attr_t attr;
131     pthread_attr_init(&attr);
132     pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
133 
134 #if defined(__ANDROID__)  /* valgrind is rejecting RT-priority create reqs */
135     if (threadPriority != PRIORITY_DEFAULT || threadName != NULL) {
136         // Now that the pthread_t has a method to find the associated
137         // android_thread_id_t (pid) from pthread_t, it would be possible to avoid
138         // this trampoline in some cases as the parent could set the properties
139         // for the child.  However, there would be a race condition because the
140         // child becomes ready immediately, and it doesn't work for the name.
141         // prctl(PR_SET_NAME) only works for self; prctl(PR_SET_THREAD_NAME) was
142         // proposed but not yet accepted.
143         thread_data_t* t = new thread_data_t;
144         t->priority = threadPriority;
145         t->threadName = threadName ? strdup(threadName) : NULL;
146         t->entryFunction = entryFunction;
147         t->userData = userData;
148         entryFunction = (android_thread_func_t)&thread_data_t::trampoline;
149         userData = t;
150     }
151 #endif
152 
153     if (threadStackSize) {
154         pthread_attr_setstacksize(&attr, threadStackSize);
155     }
156 
157     errno = 0;
158     pthread_t thread;
159     int result = pthread_create(&thread, &attr,
160                     (android_pthread_entry)entryFunction, userData);
161     pthread_attr_destroy(&attr);
162     if (result != 0) {
163         ALOGE("androidCreateRawThreadEtc failed (entry=%p, res=%d, %s)\n"
164              "(android threadPriority=%d)",
165             entryFunction, result, strerror(errno), threadPriority);
166         return 0;
167     }
168 
169     // Note that *threadID is directly available to the parent only, as it is
170     // assigned after the child starts.  Use memory barrier / lock if the child
171     // or other threads also need access.
172     if (threadId != nullptr) {
173         *threadId = (android_thread_id_t)thread; // XXX: this is not portable
174     }
175     return 1;
176 }
177 
178 #if defined(__ANDROID__)
android_thread_id_t_to_pthread(android_thread_id_t thread)179 static pthread_t android_thread_id_t_to_pthread(android_thread_id_t thread)
180 {
181     return (pthread_t) thread;
182 }
183 #endif
184 
androidGetThreadId()185 android_thread_id_t androidGetThreadId()
186 {
187     return (android_thread_id_t)pthread_self();
188 }
189 
190 // ----------------------------------------------------------------------------
191 #else // !defined(_WIN32)
192 // ----------------------------------------------------------------------------
193 
194 /*
195  * Trampoline to make us __stdcall-compliant.
196  *
197  * We're expected to delete "vDetails" when we're done.
198  */
199 struct threadDetails {
200     int (*func)(void*);
201     void* arg;
202 };
threadIntermediary(void * vDetails)203 static __stdcall unsigned int threadIntermediary(void* vDetails)
204 {
205     struct threadDetails* pDetails = (struct threadDetails*) vDetails;
206     int result;
207 
208     result = (*(pDetails->func))(pDetails->arg);
209 
210     delete pDetails;
211 
212     ALOG(LOG_VERBOSE, "thread", "thread exiting\n");
213     return (unsigned int) result;
214 }
215 
216 /*
217  * Create and run a new thread.
218  */
doCreateThread(android_thread_func_t fn,void * arg,android_thread_id_t * id)219 static bool doCreateThread(android_thread_func_t fn, void* arg, android_thread_id_t *id)
220 {
221     HANDLE hThread;
222     struct threadDetails* pDetails = new threadDetails; // must be on heap
223     unsigned int thrdaddr;
224 
225     pDetails->func = fn;
226     pDetails->arg = arg;
227 
228 #if defined(HAVE__BEGINTHREADEX)
229     hThread = (HANDLE) _beginthreadex(NULL, 0, threadIntermediary, pDetails, 0,
230                     &thrdaddr);
231     if (hThread == 0)
232 #elif defined(HAVE_CREATETHREAD)
233     hThread = CreateThread(NULL, 0,
234                     (LPTHREAD_START_ROUTINE) threadIntermediary,
235                     (void*) pDetails, 0, (DWORD*) &thrdaddr);
236     if (hThread == NULL)
237 #endif
238     {
239         ALOG(LOG_WARN, "thread", "WARNING: thread create failed\n");
240         return false;
241     }
242 
243 #if defined(HAVE_CREATETHREAD)
244     /* close the management handle */
245     CloseHandle(hThread);
246 #endif
247 
248     if (id != NULL) {
249       	*id = (android_thread_id_t)thrdaddr;
250     }
251 
252     return true;
253 }
254 
androidCreateRawThreadEtc(android_thread_func_t fn,void * userData,const char *,int32_t,size_t,android_thread_id_t * threadId)255 int androidCreateRawThreadEtc(android_thread_func_t fn,
256                                void *userData,
257                                const char* /*threadName*/,
258                                int32_t /*threadPriority*/,
259                                size_t /*threadStackSize*/,
260                                android_thread_id_t *threadId)
261 {
262     return doCreateThread(  fn, userData, threadId);
263 }
264 
androidGetThreadId()265 android_thread_id_t androidGetThreadId()
266 {
267     return (android_thread_id_t)GetCurrentThreadId();
268 }
269 
270 // ----------------------------------------------------------------------------
271 #endif // !defined(_WIN32)
272 
273 // ----------------------------------------------------------------------------
274 
androidCreateThread(android_thread_func_t fn,void * arg)275 int androidCreateThread(android_thread_func_t fn, void* arg)
276 {
277     return createThreadEtc(fn, arg);
278 }
279 
androidCreateThreadGetID(android_thread_func_t fn,void * arg,android_thread_id_t * id)280 int androidCreateThreadGetID(android_thread_func_t fn, void *arg, android_thread_id_t *id)
281 {
282     return createThreadEtc(fn, arg, "android:unnamed_thread",
283                            PRIORITY_DEFAULT, 0, id);
284 }
285 
286 static android_create_thread_fn gCreateThreadFn = androidCreateRawThreadEtc;
287 
androidCreateThreadEtc(android_thread_func_t entryFunction,void * userData,const char * threadName,int32_t threadPriority,size_t threadStackSize,android_thread_id_t * threadId)288 int androidCreateThreadEtc(android_thread_func_t entryFunction,
289                             void *userData,
290                             const char* threadName,
291                             int32_t threadPriority,
292                             size_t threadStackSize,
293                             android_thread_id_t *threadId)
294 {
295     return gCreateThreadFn(entryFunction, userData, threadName,
296         threadPriority, threadStackSize, threadId);
297 }
298 
androidSetCreateThreadFunc(android_create_thread_fn func)299 void androidSetCreateThreadFunc(android_create_thread_fn func)
300 {
301     gCreateThreadFn = func;
302 }
303 
304 #if defined(__ANDROID__)
androidSetThreadPriority(pid_t tid,int pri,bool change_policy)305 int androidSetThreadPriority(pid_t tid, int pri, bool change_policy) {
306     int rc = 0;
307     int lasterr = 0;
308     int curr_pri = getpriority(PRIO_PROCESS, tid);
309 
310     if (curr_pri == pri) {
311         return rc;
312     }
313 
314     if (change_policy) {
315         if (pri >= ANDROID_PRIORITY_BACKGROUND) {
316             rc = SetTaskProfiles(tid, {"SCHED_SP_BACKGROUND"}, true) ? 0 : -1;
317         } else if (curr_pri >= ANDROID_PRIORITY_BACKGROUND) {
318             SchedPolicy policy = SP_FOREGROUND;
319             // Change to the sched policy group of the process.
320             get_sched_policy(getpid(), &policy);
321             rc = SetTaskProfiles(tid, {get_sched_policy_profile_name(policy)}, true) ? 0 : -1;
322         }
323 
324         if (rc) {
325             lasterr = errno;
326         }
327     }
328 
329     if (setpriority(PRIO_PROCESS, tid, pri) < 0) {
330         rc = INVALID_OPERATION;
331     } else {
332         errno = lasterr;
333     }
334 
335     return rc;
336 }
337 
androidGetThreadPriority(pid_t tid)338 int androidGetThreadPriority(pid_t tid) {
339     return getpriority(PRIO_PROCESS, tid);
340 }
341 
342 #endif
343 
344 namespace android {
345 
346 /*
347  * ===========================================================================
348  *      Mutex class
349  * ===========================================================================
350  */
351 
352 #if !defined(_WIN32)
353 // implemented as inlines in threads.h
354 #else
355 
356 Mutex::Mutex()
357 {
358     HANDLE hMutex;
359 
360     assert(sizeof(hMutex) == sizeof(mState));
361 
362     hMutex = CreateMutex(NULL, FALSE, NULL);
363     mState = (void*) hMutex;
364 }
365 
366 Mutex::Mutex(const char* /*name*/)
367 {
368     // XXX: name not used for now
369     HANDLE hMutex;
370 
371     assert(sizeof(hMutex) == sizeof(mState));
372 
373     hMutex = CreateMutex(NULL, FALSE, NULL);
374     mState = (void*) hMutex;
375 }
376 
377 Mutex::Mutex(int /*type*/, const char* /*name*/)
378 {
379     // XXX: type and name not used for now
380     HANDLE hMutex;
381 
382     assert(sizeof(hMutex) == sizeof(mState));
383 
384     hMutex = CreateMutex(NULL, FALSE, NULL);
385     mState = (void*) hMutex;
386 }
387 
388 Mutex::~Mutex()
389 {
390     CloseHandle((HANDLE) mState);
391 }
392 
393 status_t Mutex::lock()
394 {
395     DWORD dwWaitResult;
396     dwWaitResult = WaitForSingleObject((HANDLE) mState, INFINITE);
397     return dwWaitResult != WAIT_OBJECT_0 ? -1 : OK;
398 }
399 
400 void Mutex::unlock()
401 {
402     if (!ReleaseMutex((HANDLE) mState))
403         ALOG(LOG_WARN, "thread", "WARNING: bad result from unlocking mutex\n");
404 }
405 
406 status_t Mutex::tryLock()
407 {
408     DWORD dwWaitResult;
409 
410     dwWaitResult = WaitForSingleObject((HANDLE) mState, 0);
411     if (dwWaitResult != WAIT_OBJECT_0 && dwWaitResult != WAIT_TIMEOUT)
412         ALOG(LOG_WARN, "thread", "WARNING: bad result from try-locking mutex\n");
413     return (dwWaitResult == WAIT_OBJECT_0) ? 0 : -1;
414 }
415 
416 #endif // !defined(_WIN32)
417 
418 
419 /*
420  * ===========================================================================
421  *      Condition class
422  * ===========================================================================
423  */
424 
425 #if !defined(_WIN32)
426 // implemented as inlines in threads.h
427 #else
428 
429 /*
430  * Windows doesn't have a condition variable solution.  It's possible
431  * to create one, but it's easy to get it wrong.  For a discussion, and
432  * the origin of this implementation, see:
433  *
434  *  http://www.cs.wustl.edu/~schmidt/win32-cv-1.html
435  *
436  * The implementation shown on the page does NOT follow POSIX semantics.
437  * As an optimization they require acquiring the external mutex before
438  * calling signal() and broadcast(), whereas POSIX only requires grabbing
439  * it before calling wait().  The implementation here has been un-optimized
440  * to have the correct behavior.
441  */
442 typedef struct WinCondition {
443     // Number of waiting threads.
444     int                 waitersCount;
445 
446     // Serialize access to waitersCount.
447     CRITICAL_SECTION    waitersCountLock;
448 
449     // Semaphore used to queue up threads waiting for the condition to
450     // become signaled.
451     HANDLE              sema;
452 
453     // An auto-reset event used by the broadcast/signal thread to wait
454     // for all the waiting thread(s) to wake up and be released from
455     // the semaphore.
456     HANDLE              waitersDone;
457 
458     // This mutex wouldn't be necessary if we required that the caller
459     // lock the external mutex before calling signal() and broadcast().
460     // I'm trying to mimic pthread semantics though.
461     HANDLE              internalMutex;
462 
463     // Keeps track of whether we were broadcasting or signaling.  This
464     // allows us to optimize the code if we're just signaling.
465     bool                wasBroadcast;
466 
467     status_t wait(WinCondition* condState, HANDLE hMutex, nsecs_t* abstime)
468     {
469         // Increment the wait count, avoiding race conditions.
470         EnterCriticalSection(&condState->waitersCountLock);
471         condState->waitersCount++;
472         //printf("+++ wait: incr waitersCount to %d (tid=%ld)\n",
473         //    condState->waitersCount, getThreadId());
474         LeaveCriticalSection(&condState->waitersCountLock);
475 
476         DWORD timeout = INFINITE;
477         if (abstime) {
478             nsecs_t reltime = *abstime - systemTime();
479             if (reltime < 0)
480                 reltime = 0;
481             timeout = reltime/1000000;
482         }
483 
484         // Atomically release the external mutex and wait on the semaphore.
485         DWORD res =
486             SignalObjectAndWait(hMutex, condState->sema, timeout, FALSE);
487 
488         //printf("+++ wait: awake (tid=%ld)\n", getThreadId());
489 
490         // Reacquire lock to avoid race conditions.
491         EnterCriticalSection(&condState->waitersCountLock);
492 
493         // No longer waiting.
494         condState->waitersCount--;
495 
496         // Check to see if we're the last waiter after a broadcast.
497         bool lastWaiter = (condState->wasBroadcast && condState->waitersCount == 0);
498 
499         //printf("+++ wait: lastWaiter=%d (wasBc=%d wc=%d)\n",
500         //    lastWaiter, condState->wasBroadcast, condState->waitersCount);
501 
502         LeaveCriticalSection(&condState->waitersCountLock);
503 
504         // If we're the last waiter thread during this particular broadcast
505         // then signal broadcast() that we're all awake.  It'll drop the
506         // internal mutex.
507         if (lastWaiter) {
508             // Atomically signal the "waitersDone" event and wait until we
509             // can acquire the internal mutex.  We want to do this in one step
510             // because it ensures that everybody is in the mutex FIFO before
511             // any thread has a chance to run.  Without it, another thread
512             // could wake up, do work, and hop back in ahead of us.
513             SignalObjectAndWait(condState->waitersDone, condState->internalMutex,
514                 INFINITE, FALSE);
515         } else {
516             // Grab the internal mutex.
517             WaitForSingleObject(condState->internalMutex, INFINITE);
518         }
519 
520         // Release the internal and grab the external.
521         ReleaseMutex(condState->internalMutex);
522         WaitForSingleObject(hMutex, INFINITE);
523 
524         return res == WAIT_OBJECT_0 ? OK : -1;
525     }
526 } WinCondition;
527 
528 /*
529  * Constructor.  Set up the WinCondition stuff.
530  */
531 Condition::Condition()
532 {
533     WinCondition* condState = new WinCondition;
534 
535     condState->waitersCount = 0;
536     condState->wasBroadcast = false;
537     // semaphore: no security, initial value of 0
538     condState->sema = CreateSemaphore(NULL, 0, 0x7fffffff, NULL);
539     InitializeCriticalSection(&condState->waitersCountLock);
540     // auto-reset event, not signaled initially
541     condState->waitersDone = CreateEvent(NULL, FALSE, FALSE, NULL);
542     // used so we don't have to lock external mutex on signal/broadcast
543     condState->internalMutex = CreateMutex(NULL, FALSE, NULL);
544 
545     mState = condState;
546 }
547 
548 /*
549  * Destructor.  Free Windows resources as well as our allocated storage.
550  */
551 Condition::~Condition()
552 {
553     WinCondition* condState = (WinCondition*) mState;
554     if (condState != NULL) {
555         CloseHandle(condState->sema);
556         CloseHandle(condState->waitersDone);
557         delete condState;
558     }
559 }
560 
561 
562 status_t Condition::wait(Mutex& mutex)
563 {
564     WinCondition* condState = (WinCondition*) mState;
565     HANDLE hMutex = (HANDLE) mutex.mState;
566 
567     return ((WinCondition*)mState)->wait(condState, hMutex, NULL);
568 }
569 
570 status_t Condition::waitRelative(Mutex& mutex, nsecs_t reltime)
571 {
572     WinCondition* condState = (WinCondition*) mState;
573     HANDLE hMutex = (HANDLE) mutex.mState;
574     nsecs_t absTime = systemTime()+reltime;
575 
576     return ((WinCondition*)mState)->wait(condState, hMutex, &absTime);
577 }
578 
579 /*
580  * Signal the condition variable, allowing one thread to continue.
581  */
582 void Condition::signal()
583 {
584     WinCondition* condState = (WinCondition*) mState;
585 
586     // Lock the internal mutex.  This ensures that we don't clash with
587     // broadcast().
588     WaitForSingleObject(condState->internalMutex, INFINITE);
589 
590     EnterCriticalSection(&condState->waitersCountLock);
591     bool haveWaiters = (condState->waitersCount > 0);
592     LeaveCriticalSection(&condState->waitersCountLock);
593 
594     // If no waiters, then this is a no-op.  Otherwise, knock the semaphore
595     // down a notch.
596     if (haveWaiters)
597         ReleaseSemaphore(condState->sema, 1, 0);
598 
599     // Release internal mutex.
600     ReleaseMutex(condState->internalMutex);
601 }
602 
603 /*
604  * Signal the condition variable, allowing all threads to continue.
605  *
606  * First we have to wake up all threads waiting on the semaphore, then
607  * we wait until all of the threads have actually been woken before
608  * releasing the internal mutex.  This ensures that all threads are woken.
609  */
610 void Condition::broadcast()
611 {
612     WinCondition* condState = (WinCondition*) mState;
613 
614     // Lock the internal mutex.  This keeps the guys we're waking up
615     // from getting too far.
616     WaitForSingleObject(condState->internalMutex, INFINITE);
617 
618     EnterCriticalSection(&condState->waitersCountLock);
619     bool haveWaiters = false;
620 
621     if (condState->waitersCount > 0) {
622         haveWaiters = true;
623         condState->wasBroadcast = true;
624     }
625 
626     if (haveWaiters) {
627         // Wake up all the waiters.
628         ReleaseSemaphore(condState->sema, condState->waitersCount, 0);
629 
630         LeaveCriticalSection(&condState->waitersCountLock);
631 
632         // Wait for all awakened threads to acquire the counting semaphore.
633         // The last guy who was waiting sets this.
634         WaitForSingleObject(condState->waitersDone, INFINITE);
635 
636         // Reset wasBroadcast.  (No crit section needed because nobody
637         // else can wake up to poke at it.)
638         condState->wasBroadcast = 0;
639     } else {
640         // nothing to do
641         LeaveCriticalSection(&condState->waitersCountLock);
642     }
643 
644     // Release internal mutex.
645     ReleaseMutex(condState->internalMutex);
646 }
647 
648 #endif // !defined(_WIN32)
649 
650 // ----------------------------------------------------------------------------
651 
652 /*
653  * This is our thread object!
654  */
655 
Thread(bool canCallJava)656 Thread::Thread(bool canCallJava)
657     : mCanCallJava(canCallJava),
658       mThread(thread_id_t(-1)),
659       mLock("Thread::mLock"),
660       mStatus(OK),
661       mExitPending(false),
662       mRunning(false)
663 #if defined(__ANDROID__)
664       ,
665       mTid(-1)
666 #endif
667 {
668 }
669 
~Thread()670 Thread::~Thread()
671 {
672 }
673 
readyToRun()674 status_t Thread::readyToRun()
675 {
676     return OK;
677 }
678 
run(const char * name,int32_t priority,size_t stack)679 status_t Thread::run(const char* name, int32_t priority, size_t stack)
680 {
681     LOG_ALWAYS_FATAL_IF(name == nullptr, "thread name not provided to Thread::run");
682 
683     Mutex::Autolock _l(mLock);
684 
685     if (mRunning) {
686         // thread already started
687         return INVALID_OPERATION;
688     }
689 
690     // reset status and exitPending to their default value, so we can
691     // try again after an error happened (either below, or in readyToRun())
692     mStatus = OK;
693     mExitPending = false;
694     mThread = thread_id_t(-1);
695 
696     // hold a strong reference on ourself
697     mHoldSelf = this;
698 
699     mRunning = true;
700 
701     bool res;
702     if (mCanCallJava) {
703         res = createThreadEtc(_threadLoop,
704                 this, name, priority, stack, &mThread);
705     } else {
706         res = androidCreateRawThreadEtc(_threadLoop,
707                 this, name, priority, stack, &mThread);
708     }
709 
710     if (res == false) {
711         mStatus = UNKNOWN_ERROR;   // something happened!
712         mRunning = false;
713         mThread = thread_id_t(-1);
714         mHoldSelf.clear();  // "this" may have gone away after this.
715 
716         return UNKNOWN_ERROR;
717     }
718 
719     // Do not refer to mStatus here: The thread is already running (may, in fact
720     // already have exited with a valid mStatus result). The OK indication
721     // here merely indicates successfully starting the thread and does not
722     // imply successful termination/execution.
723     return OK;
724 
725     // Exiting scope of mLock is a memory barrier and allows new thread to run
726 }
727 
_threadLoop(void * user)728 int Thread::_threadLoop(void* user)
729 {
730     Thread* const self = static_cast<Thread*>(user);
731 
732     sp<Thread> strong(self->mHoldSelf);
733     wp<Thread> weak(strong);
734     self->mHoldSelf.clear();
735 
736 #if defined(__ANDROID__)
737     // this is very useful for debugging with gdb
738     self->mTid = gettid();
739 #endif
740 
741     bool first = true;
742 
743     do {
744         bool result;
745         if (first) {
746             first = false;
747             self->mStatus = self->readyToRun();
748             result = (self->mStatus == OK);
749 
750             if (result && !self->exitPending()) {
751                 // Binder threads (and maybe others) rely on threadLoop
752                 // running at least once after a successful ::readyToRun()
753                 // (unless, of course, the thread has already been asked to exit
754                 // at that point).
755                 // This is because threads are essentially used like this:
756                 //   (new ThreadSubclass())->run();
757                 // The caller therefore does not retain a strong reference to
758                 // the thread and the thread would simply disappear after the
759                 // successful ::readyToRun() call instead of entering the
760                 // threadLoop at least once.
761                 result = self->threadLoop();
762             }
763         } else {
764             result = self->threadLoop();
765         }
766 
767         // establish a scope for mLock
768         {
769         Mutex::Autolock _l(self->mLock);
770         if (result == false || self->mExitPending) {
771             self->mExitPending = true;
772             self->mRunning = false;
773             // clear thread ID so that requestExitAndWait() does not exit if
774             // called by a new thread using the same thread ID as this one.
775             self->mThread = thread_id_t(-1);
776             // note that interested observers blocked in requestExitAndWait are
777             // awoken by broadcast, but blocked on mLock until break exits scope
778             self->mThreadExitedCondition.broadcast();
779             break;
780         }
781         }
782 
783         // Release our strong reference, to let a chance to the thread
784         // to die a peaceful death.
785         strong.clear();
786         // And immediately, re-acquire a strong reference for the next loop
787         strong = weak.promote();
788     } while(strong != nullptr);
789 
790     return 0;
791 }
792 
requestExit()793 void Thread::requestExit()
794 {
795     Mutex::Autolock _l(mLock);
796     mExitPending = true;
797 }
798 
requestExitAndWait()799 status_t Thread::requestExitAndWait()
800 {
801     Mutex::Autolock _l(mLock);
802     if (mThread == getThreadId()) {
803         ALOGW(
804         "Thread (this=%p): don't call waitForExit() from this "
805         "Thread object's thread. It's a guaranteed deadlock!",
806         this);
807 
808         return WOULD_BLOCK;
809     }
810 
811     mExitPending = true;
812 
813     while (mRunning == true) {
814         mThreadExitedCondition.wait(mLock);
815     }
816     // This next line is probably not needed any more, but is being left for
817     // historical reference. Note that each interested party will clear flag.
818     mExitPending = false;
819 
820     return mStatus;
821 }
822 
join()823 status_t Thread::join()
824 {
825     Mutex::Autolock _l(mLock);
826     if (mThread == getThreadId()) {
827         ALOGW(
828         "Thread (this=%p): don't call join() from this "
829         "Thread object's thread. It's a guaranteed deadlock!",
830         this);
831 
832         return WOULD_BLOCK;
833     }
834 
835     while (mRunning == true) {
836         mThreadExitedCondition.wait(mLock);
837     }
838 
839     return mStatus;
840 }
841 
isRunning() const842 bool Thread::isRunning() const {
843     Mutex::Autolock _l(mLock);
844     return mRunning;
845 }
846 
847 #if defined(__ANDROID__)
getTid() const848 pid_t Thread::getTid() const
849 {
850     // mTid is not defined until the child initializes it, and the caller may need it earlier
851     Mutex::Autolock _l(mLock);
852     pid_t tid;
853     if (mRunning) {
854         pthread_t pthread = android_thread_id_t_to_pthread(mThread);
855         tid = pthread_gettid_np(pthread);
856     } else {
857         ALOGW("Thread (this=%p): getTid() is undefined before run()", this);
858         tid = -1;
859     }
860     return tid;
861 }
862 #endif
863 
exitPending() const864 bool Thread::exitPending() const
865 {
866     Mutex::Autolock _l(mLock);
867     return mExitPending;
868 }
869 
870 
871 
872 };  // namespace android
873