1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <algos/time_sync.h>
18 #include <atomic.h>
19 #include <common/math/macros.h>
20 #include <cpu/cpuMath.h>
21 #include <errno.h>
22 #include <gpio.h>
23 #include <heap.h>
24 #include <halIntf.h>
25 #include <hostIntf.h>
26 #include <i2c.h>
27 #include <isr.h>
28 #include <nanohub_math.h>
29 #include <nanohubPacket.h>
30 #include <printf.h>
31 #include <plat/exti.h>
32 #include <plat/gpio.h>
33 #include <plat/syscfg.h>
34 #include <plat/rtc.h>
35 #include <sensors.h>
36 #include <seos.h>
37 #include <slab.h>
38 #include <spi.h>
39 #include <timer.h>
40 #include <variant/sensType.h>
41 #include <variant/variant.h>
42
43 #ifdef MAG_SLAVE_PRESENT
44 #include <calibration/magnetometer/mag_cal/mag_cal.h>
45 #endif
46
47 #ifdef ACCEL_CAL_ENABLED
48 #include <calibration/accelerometer/accel_cal.h>
49 #endif
50
51 #if defined(OVERTEMPCAL_ENABLED) && !defined(GYRO_CAL_ENABLED)
52 #undef OVERTEMPCAL_ENABLED
53 #endif
54
55 #if defined(GYRO_CAL_DBG_ENABLED) && !defined(GYRO_CAL_ENABLED)
56 #undef GYRO_CAL_DBG_ENABLED
57 #endif
58
59 #if defined(OVERTEMPCAL_DBG_ENABLED) && !defined(OVERTEMPCAL_ENABLED)
60 #undef OVERTEMPCAL_DBG_ENABLED
61 #endif
62
63 #ifdef GYRO_CAL_ENABLED
64 #include <calibration/gyroscope/gyro_cal.h>
65 #endif // GYRO_CAL_ENABLED
66
67 #ifdef OVERTEMPCAL_ENABLED
68 #include <calibration/over_temp/over_temp_cal.h>
69 #endif // OVERTEMPCAL_ENABLED
70
71 #include <limits.h>
72 #include <stdlib.h>
73 #include <string.h>
74
75 #define VERBOSE_PRINT(fmt, ...) do { \
76 osLog(LOG_VERBOSE, "%s " fmt, "[BMI160]", ##__VA_ARGS__); \
77 } while (0);
78
79 #define INFO_PRINT(fmt, ...) do { \
80 osLog(LOG_INFO, "%s " fmt, "[BMI160]", ##__VA_ARGS__); \
81 } while (0);
82
83 #define ERROR_PRINT(fmt, ...) do { \
84 osLog(LOG_ERROR, "%s " fmt, "[BMI160] ERROR:", ##__VA_ARGS__); \
85 } while (0);
86
87 #define DEBUG_PRINT(fmt, ...) do { \
88 if (DBG_ENABLE) { \
89 osLog(LOG_DEBUG, "%s " fmt, "[BMI160]", ##__VA_ARGS__); \
90 } \
91 } while (0);
92
93 #define DEBUG_PRINT_IF(cond, fmt, ...) do { \
94 if ((cond) && DBG_ENABLE) { \
95 osLog(LOG_DEBUG, "%s " fmt, "[BMI160]", ##__VA_ARGS__); \
96 } \
97 } while (0);
98
99 #define DBG_ENABLE 0
100 #define DBG_CHUNKED 0
101 #define DBG_INT 0
102 #define DBG_SHALLOW_PARSE 0
103 #define DBG_STATE 0
104 #define DBG_WM_CALC 0
105 #define TIMESTAMP_DBG 0
106
107 #define BMI160_APP_VERSION 20
108
109 // fixme: to list required definitions for a slave mag
110 #ifdef USE_BMM150
111 #include "bosch_bmm150_slave.h"
112 #elif USE_AK09915
113 #include "akm_ak09915_slave.h"
114 #endif
115
116 #define BMI160_APP_ID APP_ID_MAKE(NANOHUB_VENDOR_GOOGLE, 2)
117
118 #ifdef BMI160_I2C_BUS_ID
119 #define BMI160_USE_I2C
120
121 #ifndef BMI160_I2C_SPEED
122 #define BMI160_I2C_SPEED 400000
123 #endif
124 #ifndef BMI160_I2C_ADDR
125 #define BMI160_I2C_ADDR 0x68
126 #endif
127 #endif
128
129 #define BMI160_SPI_WRITE 0x00
130 #define BMI160_SPI_READ 0x80
131
132 #ifndef BMI160_SPI_BUS_ID
133 #define BMI160_SPI_BUS_ID 1
134 #endif
135 #ifndef BMI160_SPI_SPEED_HZ
136 #define BMI160_SPI_SPEED_HZ 8000000
137 #endif
138 #define BMI160_SPI_MODE 3
139 #ifndef BMI160_SPI_CS_PIN
140 #define BMI160_SPI_CS_PIN GPIO_PB(12)
141 #endif
142
143 #ifndef BMI160_INT1_IRQ
144 #define BMI160_INT1_IRQ EXTI9_5_IRQn
145 #endif
146 #ifndef BMI160_INT1_PIN
147 #define BMI160_INT1_PIN GPIO_PB(6)
148 #endif
149 #ifndef BMI160_INT2_IRQ
150 #define BMI160_INT2_IRQ EXTI9_5_IRQn
151 #endif
152 #ifndef BMI160_INT2_PIN
153 #define BMI160_INT2_PIN GPIO_PB(7)
154 #endif
155
156 #define BMI160_ID 0xd1
157
158 #define BMI160_REG_ID 0x00
159 #define BMI160_REG_ERR 0x02
160 #define BMI160_REG_PMU_STATUS 0x03
161 #define BMI160_REG_DATA_0 0x04
162 #define BMI160_REG_DATA_1 0x05
163 #define BMI160_REG_DATA_14 0x12
164 #define BMI160_REG_SENSORTIME_0 0x18
165 #define BMI160_REG_STATUS 0x1b
166 #define BMI160_REG_INT_STATUS_0 0x1c
167 #define BMI160_REG_INT_STATUS_1 0x1d
168 #define BMI160_REG_TEMPERATURE_0 0x20
169 #define BMI160_REG_TEMPERATURE_1 0x21
170 #define BMI160_REG_FIFO_LENGTH_0 0x22
171 #define BMI160_REG_FIFO_DATA 0x24
172 #define BMI160_REG_ACC_CONF 0x40
173 #define BMI160_REG_ACC_RANGE 0x41
174 #define BMI160_REG_GYR_CONF 0x42
175 #define BMI160_REG_GYR_RANGE 0x43
176 #define BMI160_REG_MAG_CONF 0x44
177 #define BMI160_REG_FIFO_DOWNS 0x45
178 #define BMI160_REG_FIFO_CONFIG_0 0x46
179 #define BMI160_REG_FIFO_CONFIG_1 0x47
180 #define BMI160_REG_MAG_IF_0 0x4b
181 #define BMI160_REG_MAG_IF_1 0x4c
182 #define BMI160_REG_MAG_IF_2 0x4d
183 #define BMI160_REG_MAG_IF_3 0x4e
184 #define BMI160_REG_MAG_IF_4 0x4f
185 #define BMI160_REG_INT_EN_0 0x50
186 #define BMI160_REG_INT_EN_1 0x51
187 #define BMI160_REG_INT_EN_2 0x52
188 #define BMI160_REG_INT_OUT_CTRL 0x53
189 #define BMI160_REG_INT_LATCH 0x54
190 #define BMI160_REG_INT_MAP_0 0x55
191 #define BMI160_REG_INT_MAP_1 0x56
192 #define BMI160_REG_INT_MAP_2 0x57
193 #define BMI160_REG_INT_DATA_0 0x58
194 #define BMI160_REG_INT_MOTION_0 0x5f
195 #define BMI160_REG_INT_MOTION_1 0x60
196 #define BMI160_REG_INT_MOTION_2 0x61
197 #define BMI160_REG_INT_MOTION_3 0x62
198 #define BMI160_REG_INT_TAP_0 0x63
199 #define BMI160_REG_INT_TAP_1 0x64
200 #define BMI160_REG_INT_FLAT_0 0x67
201 #define BMI160_REG_INT_FLAT_1 0x68
202 #define BMI160_REG_PMU_TRIGGER 0x6C
203 #define BMI160_REG_FOC_CONF 0x69
204 #define BMI160_REG_CONF 0x6a
205 #define BMI160_REG_IF_CONF 0x6b
206 #define BMI160_REG_SELF_TEST 0x6d
207 #define BMI160_REG_OFFSET_0 0x71
208 #define BMI160_REG_OFFSET_3 0x74
209 #define BMI160_REG_OFFSET_6 0x77
210 #define BMI160_REG_STEP_CNT_0 0x78
211 #define BMI160_REG_STEP_CONF_0 0x7a
212 #define BMI160_REG_STEP_CONF_1 0x7b
213 #define BMI160_REG_CMD 0x7e
214 #define BMI160_REG_MAGIC 0x7f
215
216 #define INT_STEP 0x01
217 #define INT_ANY_MOTION 0x04
218 #define INT_DOUBLE_TAP 0x10
219 #define INT_SINGLE_TAP 0x20
220 #define INT_ORIENT 0x40
221 #define INT_FLAT 0x80
222 #define INT_HIGH_G_Z 0x04
223 #define INT_LOW_G 0x08
224 #define INT_DATA_RDY 0x10
225 #define INT_FIFO_FULL 0x20
226 #define INT_FIFO_WM 0x40
227 #define INT_NO_MOTION 0x80
228
229 #define BMI160_FRAME_HEADER_INVALID 0x80 // mark the end of valid data
230 #define BMI160_FRAME_HEADER_SKIP 0x81 // not defined by hw, used for skip a byte in buffer
231
232 #define WATERMARK_MIN 1
233 #define WATERMARK_MAX 200 // must <= 255 (0xff)
234
235 #define WATERMARK_MAX_SENSOR_RATE 400 // Accel and gyro are 400 Hz max
236 #define WATERMARK_TIME_UNIT_NS (1000000000ULL/(WATERMARK_MAX_SENSOR_RATE))
237
238 #define gSPI BMI160_SPI_BUS_ID
239
240 #define ACCL_INT_LINE EXTI_LINE_P6
241 #define GYR_INT_LINE EXTI_LINE_P7
242
243 #define SPI_WRITE_0(addr, data) spiQueueWrite(addr, data, 2)
244 #define SPI_WRITE_1(addr, data, delay) spiQueueWrite(addr, data, delay)
245 #define GET_SPI_WRITE_MACRO(_1,_2,_3,NAME,...) NAME
246 #define SPI_WRITE(...) GET_SPI_WRITE_MACRO(__VA_ARGS__, SPI_WRITE_1, SPI_WRITE_0)(__VA_ARGS__)
247
248 #define SPI_READ_0(addr, size, buf) spiQueueRead(addr, size, buf, 0)
249 #define SPI_READ_1(addr, size, buf, delay) spiQueueRead(addr, size, buf, delay)
250 #define GET_SPI_READ_MACRO(_1,_2,_3,_4,NAME,...) NAME
251 #define SPI_READ(...) GET_SPI_READ_MACRO(__VA_ARGS__, SPI_READ_1, SPI_READ_0)(__VA_ARGS__)
252
253 #define EVT_SENSOR_ACC_DATA_RDY sensorGetMyEventType(SENS_TYPE_ACCEL)
254 #define EVT_SENSOR_GYR_DATA_RDY sensorGetMyEventType(SENS_TYPE_GYRO)
255 #define EVT_SENSOR_MAG_DATA_RDY sensorGetMyEventType(SENS_TYPE_MAG)
256 #define EVT_SENSOR_STEP sensorGetMyEventType(SENS_TYPE_STEP_DETECT)
257 #define EVT_SENSOR_NO_MOTION sensorGetMyEventType(SENS_TYPE_NO_MOTION)
258 #define EVT_SENSOR_ANY_MOTION sensorGetMyEventType(SENS_TYPE_ANY_MOTION)
259 #define EVT_SENSOR_FLAT sensorGetMyEventType(SENS_TYPE_FLAT)
260 #define EVT_SENSOR_DOUBLE_TAP sensorGetMyEventType(SENS_TYPE_DOUBLE_TAP)
261 #define EVT_SENSOR_STEP_COUNTER sensorGetMyEventType(SENS_TYPE_STEP_COUNT)
262
263 #define MAX_NUM_COMMS_EVENT_SAMPLES 15
264
265 #ifndef BMI160_ACC_SAMPLES
266 #define BMI160_ACC_SAMPLES 3000
267 #endif
268
269 #ifndef BMI160_GYRO_SAMPLES
270 #define BMI160_GYRO_SAMPLES 20
271 #endif
272
273 #ifndef BMI160_MAG_SAMPLES
274 #define BMI160_MAG_SAMPLES 600
275 #endif
276
277 // Default accel range is 8g
278 #ifndef BMI160_ACC_RANGE_G
279 #define BMI160_ACC_RANGE_G 8
280 #endif
281
282 #if BMI160_ACC_RANGE_G == 16
283 #define ACC_RANGE_SETTING 0x0c
284 #elif BMI160_ACC_RANGE_G == 8
285 #define ACC_RANGE_SETTING 0x08
286 #else
287 #error "Invalid BMI160_ACC_RANGE_G setting: valid values are 8, 16"
288 #endif
289
290 #define kScale_acc (9.81f * BMI160_ACC_RANGE_G / 32768.0f)
291 #define kScale_gyr 0.00053263221f // GYR_range * M_PI / (180.0f * 32768.0f);
292 #define kScale_temp 0.001953125f // temperature in deg C
293 #define kTempInvalid -1000.0f
294
295 #define kTimeSyncPeriodNs 100000000ull // sync sensor and RTC time every 100ms
296 #define kSensorTimerIntervalUs 39ull // bmi160 clock increaments every 39000ns
297
298 #define kMinRTCTimeIncrementNs 1250000ull // forced min rtc time increment, 1.25ms for 400Hz
299 #define kMinSensorTimeIncrement 64 // forced min sensortime increment,
300 // 64 = 2.5 msec for 400Hz
301
302 #define ACC_MIN_RATE 5
303 #define GYR_MIN_RATE 6
304 #define ACC_MAX_RATE 12
305 #define GYR_MAX_RATE 13
306 #define MAG_MAX_RATE 11
307 #define ACC_MAX_OSR 3
308 #define GYR_MAX_OSR 4
309 #define ODR_100HZ 8
310 #define ODR_200HZ 9
311
312 #define MOTION_ODR 7
313
314 #define RETRY_CNT_CALIBRATION 10
315 #define RETRY_CNT_ID 5
316 #define RETRY_CNT_MAG 30
317
318 #define SPI_PACKET_SIZE 30
319 #define FIFO_READ_SIZE (1024+4)
320 #define CHUNKED_READ_SIZE (64)
321 #define BUF_MARGIN 32 // some extra buffer for additional reg RW when a FIFO read happens
322 #define SPI_BUF_SIZE (FIFO_READ_SIZE + CHUNKED_READ_SIZE + BUF_MARGIN)
323
324 #ifndef ABS
325 #define ABS(x) (((x) > 0) ? (x) : -(x))
326 #endif
327
328 enum SensorIndex {
329 FIRST_CONT_SENSOR = 0,
330 ACC = FIRST_CONT_SENSOR,
331 GYR,
332 #ifdef MAG_SLAVE_PRESENT
333 MAG,
334 #endif
335 NUM_CONT_SENSOR,
336 FIRST_ONESHOT_SENSOR = NUM_CONT_SENSOR,
337 STEP = FIRST_ONESHOT_SENSOR,
338 DTAP,
339 FLAT,
340 ANYMO,
341 NOMO,
342 STEPCNT,
343 NUM_OF_SENSOR,
344 };
345
346 enum SensorEvents {
347 NO_EVT = -1,
348 EVT_SPI_DONE = EVT_APP_START + 1,
349 EVT_SENSOR_INTERRUPT_1,
350 EVT_SENSOR_INTERRUPT_2,
351 EVT_TIME_SYNC,
352 };
353
354 enum InitState {
355 RESET_BMI160,
356 INIT_BMI160,
357 INIT_MAG,
358 INIT_ON_CHANGE_SENSORS,
359 INIT_DONE,
360 };
361
362 enum CalibrationState {
363 CALIBRATION_START,
364 CALIBRATION_FOC,
365 CALIBRATION_WAIT_FOC_DONE,
366 CALIBRATION_SET_OFFSET,
367 CALIBRATION_DONE,
368 CALIBRATION_TIMEOUT,
369 };
370
371 enum AccTestState {
372 ACC_TEST_START,
373 ACC_TEST_CONFIG,
374 ACC_TEST_RUN_0,
375 ACC_TEST_RUN_1,
376 ACC_TEST_VERIFY,
377 ACC_TEST_DONE
378 };
379
380 enum GyroTestState {
381 GYRO_TEST_START,
382 GYRO_TEST_RUN,
383 GYRO_TEST_VERIFY,
384 GYRO_TEST_DONE
385 };
386
387 enum SensorState {
388 // keep this in sync with getStateName
389 SENSOR_BOOT,
390 SENSOR_VERIFY_ID,
391 SENSOR_INITIALIZING,
392 SENSOR_IDLE,
393 SENSOR_POWERING_UP,
394 SENSOR_POWERING_DOWN,
395 SENSOR_CONFIG_CHANGING,
396 SENSOR_INT_1_HANDLING,
397 SENSOR_INT_2_HANDLING,
398 SENSOR_CALIBRATING,
399 SENSOR_TESTING,
400 SENSOR_STEP_CNT,
401 SENSOR_TIME_SYNC,
402 SENSOR_SAVE_CALIBRATION,
403 SENSOR_NUM_OF_STATE
404 };
405 #if DBG_STATE
406 #define PRI_STATE "s"
getStateName(int32_t s)407 static const char * getStateName(int32_t s) {
408 // keep this in sync with SensorState
409 static const char* const l[] = {"BOOT", "VERIFY_ID", "INIT", "IDLE", "PWR_UP",
410 "PWR-DN", "CFG_CHANGE", "INT1", "INT2", "CALIB", "TEST", "STEP_CNT", "SYNC", "SAVE_CALIB"};
411 if (s >= 0 && s < SENSOR_NUM_OF_STATE) {
412 return l[s];
413 }
414 return "???";
415 #else
416 #define PRI_STATE PRIi32
417 static int32_t getStateName(int32_t s) {
418 return s;
419 #endif
420 }
421
422 enum MagConfigState {
423 MAG_SET_START,
424 MAG_SET_IF,
425
426 // BMM150 only
427 MAG_SET_REPXY,
428 MAG_SET_REPZ,
429 MAG_GET_DIG_X,
430 MAG_GET_DIG_Y,
431 MAG_GET_DIG_Z,
432 MAG_SET_SAVE_DIG,
433
434 MAG_SET_FORCE,
435 MAG_SET_ADDR,
436 MAG_SET_DATA,
437 MAG_SET_DONE,
438
439 MAG_INIT_FAILED
440 };
441
442 struct ConfigStat {
443 uint64_t latency;
444 uint32_t rate;
445 bool enable;
446 };
447
448 struct CalibrationData {
449 struct HostHubRawPacket header;
450 struct SensorAppEventHeader data_header;
451 int32_t xBias;
452 int32_t yBias;
453 int32_t zBias;
454 } __attribute__((packed));
455
456 struct TestResultData {
457 struct HostHubRawPacket header;
458 struct SensorAppEventHeader data_header;
459 } __attribute__((packed));
460
461 struct BMI160Sensor {
462 struct ConfigStat pConfig; // pending config status request
463 struct TripleAxisDataEvent *data_evt;
464 uint32_t handle;
465 uint32_t rate;
466 uint64_t latency;
467 uint64_t prev_rtc_time;
468 uint32_t offset[3];
469 bool powered; // activate status
470 bool configed; // configure status
471 bool offset_enable;
472 uint8_t flush;
473 enum SensorIndex idx;
474 };
475
476 struct OtcGyroUpdateBuffer {
477 struct AppToSensorHalDataBuffer head;
478 struct GyroOtcData data;
479 volatile uint8_t lock; // lock for static object
480 bool sendToHostRequest;
481 } __attribute__((packed));
482
483 struct BMI160Task {
484 uint32_t tid;
485 struct BMI160Sensor sensors[NUM_OF_SENSOR];
486
487 #ifdef GYRO_CAL_ENABLED
488 // Gyro Cal -- Declaration.
489 struct GyroCal gyro_cal;
490 #endif // GYRO_CAL_ENABLED
491
492 #ifdef OVERTEMPCAL_ENABLED
493 // Over-temp gyro calibration object.
494 struct OverTempCal over_temp_gyro_cal;
495 struct OtcGyroUpdateBuffer otcGyroUpdateBuffer;
496 #endif // OVERTEMPCAL_ENABLED
497
498 // time keeping.
499 uint64_t last_sensortime;
500 uint64_t frame_sensortime;
501 uint64_t prev_frame_time[NUM_CONT_SENSOR];
502 uint64_t time_delta[NUM_CONT_SENSOR];
503 uint64_t next_delta[NUM_CONT_SENSOR];
504 uint64_t tempTime;
505 uint64_t timesync_rtc_time;
506
507 // spi and interrupt
508 spi_cs_t cs;
509 struct SpiMode mode;
510 struct SpiPacket packets[SPI_PACKET_SIZE];
511 struct SpiDevice *spiDev;
512 struct Gpio *Int1;
513 struct Gpio *Int2;
514 IRQn_Type Irq1;
515 IRQn_Type Irq2;
516 struct ChainedIsr Isr1;
517 struct ChainedIsr Isr2;
518 #ifdef ACCEL_CAL_ENABLED
519 struct AccelCal acc;
520 #endif
521 #ifdef MAG_SLAVE_PRESENT
522 struct MagCal moc;
523 #endif
524 time_sync_t gSensorTime2RTC;
525
526 float tempCelsius;
527 float last_charging_bias_x;
528 uint32_t total_step_cnt;
529 uint32_t last_step_cnt;
530 uint32_t poll_generation;
531 uint32_t active_poll_generation;
532 uint8_t active_oneshot_sensor_cnt;
533 uint8_t interrupt_enable_0;
534 uint8_t interrupt_enable_2;
535 uint8_t acc_downsample;
536 uint8_t gyr_downsample;
537 bool magBiasPosted;
538 bool magBiasCurrent;
539 bool fifo_enabled[NUM_CONT_SENSOR];
540
541 // for step count
542 uint32_t stepCntSamplingTimerHandle;
543 bool step_cnt_changed;
544
545 // spi buffers
546 int xferCnt;
547 uint8_t *dataBuffer;
548 uint8_t *statusBuffer;
549 uint8_t *sensorTimeBuffer;
550 uint8_t *temperatureBuffer;
551 uint8_t txrxBuffer[SPI_BUF_SIZE];
552
553 // states
554 volatile uint8_t state; //task state, type enum SensorState, do NOT change this directly
555 enum InitState init_state;
556 enum MagConfigState mag_state;
557 enum CalibrationState calibration_state;
558 enum AccTestState acc_test_state;
559 enum GyroTestState gyro_test_state;
560
561 // for self-test
562 int16_t accTestX, accTestY, accTestZ;
563
564 // pending configs
565 bool pending_int[2];
566 bool pending_step_cnt;
567 bool pending_config[NUM_OF_SENSOR];
568 bool pending_calibration_save;
569 bool pending_time_sync;
570 bool pending_delta[NUM_CONT_SENSOR];
571 bool pending_dispatch;
572 bool frame_sensortime_valid;
573
574 // FIFO setting
575 uint16_t chunkReadSize;
576 uint8_t watermark;
577
578 // spi rw
579 struct SlabAllocator *mDataSlab;
580 uint16_t mWbufCnt;
581 uint8_t mRegCnt;
582 #ifdef BMI160_USE_I2C
583 uint8_t cReg;
584 SpiCbkF sCallback;
585 #endif
586
587 uint8_t mRetryLeft;
588 bool spiInUse;
589 };
590
591 static uint32_t AccRates[] = {
592 SENSOR_HZ(25.0f/8.0f),
593 SENSOR_HZ(25.0f/4.0f),
594 SENSOR_HZ(25.0f/2.0f),
595 SENSOR_HZ(25.0f),
596 SENSOR_HZ(50.0f),
597 SENSOR_HZ(100.0f),
598 SENSOR_HZ(200.0f),
599 SENSOR_HZ(400.0f),
600 0,
601 };
602
603 static uint32_t GyrRates[] = {
604 SENSOR_HZ(25.0f/8.0f),
605 SENSOR_HZ(25.0f/4.0f),
606 SENSOR_HZ(25.0f/2.0f),
607 SENSOR_HZ(25.0f),
608 SENSOR_HZ(50.0f),
609 SENSOR_HZ(100.0f),
610 SENSOR_HZ(200.0f),
611 SENSOR_HZ(400.0f),
612 0,
613 };
614
615 #ifdef MAG_SLAVE_PRESENT
616 static uint32_t MagRates[] = {
617 SENSOR_HZ(25.0f/8.0f),
618 SENSOR_HZ(25.0f/4.0f),
619 SENSOR_HZ(25.0f/2.0f),
620 SENSOR_HZ(25.0f),
621 SENSOR_HZ(50.0f),
622 SENSOR_HZ(100.0f),
623 0,
624 };
625 #endif
626
627 static uint32_t StepCntRates[] = {
628 SENSOR_HZ(1.0f/300.0f),
629 SENSOR_HZ(1.0f/240.0f),
630 SENSOR_HZ(1.0f/180.0f),
631 SENSOR_HZ(1.0f/120.0f),
632 SENSOR_HZ(1.0f/90.0f),
633 SENSOR_HZ(1.0f/60.0f),
634 SENSOR_HZ(1.0f/45.0f),
635 SENSOR_HZ(1.0f/30.0f),
636 SENSOR_HZ(1.0f/15.0f),
637 SENSOR_HZ(1.0f/10.0f),
638 SENSOR_HZ(1.0f/5.0f),
639 SENSOR_RATE_ONCHANGE,
640 0
641 };
642
643 static const uint64_t stepCntRateTimerVals[] = // should match StepCntRates and be the timer length for that rate in nanosecs
644 {
645 300 * 1000000000ULL,
646 240 * 1000000000ULL,
647 180 * 1000000000ULL,
648 120 * 1000000000ULL,
649 90 * 1000000000ULL,
650 60 * 1000000000ULL,
651 45 * 1000000000ULL,
652 30 * 1000000000ULL,
653 15 * 1000000000ULL,
654 10 * 1000000000ULL,
655 5 * 1000000000ULL,
656 };
657
658 static struct BMI160Task mTask;
659
660 #ifdef MAG_SLAVE_PRESENT
661 static struct MagTask magTask;
662 #endif
663
664 #define MAG_WRITE(addr, data) \
665 do { \
666 SPI_WRITE(BMI160_REG_MAG_IF_4, data); \
667 SPI_WRITE(BMI160_REG_MAG_IF_3, addr); \
668 } while (0)
669
670 #define MAG_READ(addr, size) \
671 do { \
672 SPI_WRITE(BMI160_REG_MAG_IF_2, addr, 5000); \
673 SPI_READ(BMI160_REG_DATA_0, size, &mTask.dataBuffer); \
674 } while (0)
675
676 #define DEC_INFO(name, type, axis, inter, samples) \
677 .sensorName = name, \
678 .sensorType = type, \
679 .numAxis = axis, \
680 .interrupt = inter, \
681 .minSamples = samples
682
683 #define DEC_INFO_RATE(name, rates, type, axis, inter, samples) \
684 DEC_INFO(name, type, axis, inter, samples), \
685 .supportedRates = rates
686
687 #define DEC_INFO_RATE_RAW(name, rates, type, axis, inter, samples, raw, scale) \
688 DEC_INFO(name, type, axis, inter, samples), \
689 .supportedRates = rates, \
690 .flags1 = SENSOR_INFO_FLAGS1_RAW, \
691 .rawType = raw, \
692 .rawScale = scale
693
694 #define DEC_INFO_RATE_BIAS(name, rates, type, axis, inter, samples, bias) \
695 DEC_INFO(name, type, axis, inter, samples), \
696 .supportedRates = rates, \
697 .flags1 = SENSOR_INFO_FLAGS1_BIAS, \
698 .biasType = bias
699
700 #define DEC_INFO_RATE_RAW_BIAS(name, rates, type, axis, inter, samples, raw, scale, bias) \
701 DEC_INFO_RATE_RAW(name, rates, type, axis, inter, samples, raw, scale), \
702 .flags1 = SENSOR_INFO_FLAGS1_RAW | SENSOR_INFO_FLAGS1_BIAS, \
703 .biasType = bias
704
705 typedef struct BMI160Task _Task;
706 #define TASK _Task* const _task
707
708 // To get rid of static variables all task functions should have a task structure pointer input.
709 // This is an intermediate step.
710 #define TDECL() TASK = &mTask; (void)_task
711
712 // Access task variables without explicitly specify the task structure pointer.
713 #define T(v) (_task->v)
714
715 // Atomic get state
716 #define GET_STATE() (atomicReadByte(&(_task->state)))
717
718 // Atomic set state, this set the state to arbitrary value, use with caution
719 #define SET_STATE(s) do{\
720 DEBUG_PRINT_IF(DBG_STATE, "set state %" PRI_STATE "\n", getStateName(s));\
721 atomicWriteByte(&(_task->state), (s));\
722 }while(0)
723
724 // Atomic switch state from IDLE to desired state.
725 static bool trySwitchState_(TASK, enum SensorState newState) {
726 #if DBG_STATE
727 bool ret = atomicCmpXchgByte(&T(state), SENSOR_IDLE, newState);
728 uint8_t prevState = ret ? SENSOR_IDLE : GET_STATE();
729 DEBUG_PRINT("switch state %" PRI_STATE "->%" PRI_STATE ", %s\n",
730 getStateName(prevState), getStateName(newState), ret ? "ok" : "failed");
731 return ret;
732 #else
733 return atomicCmpXchgByte(&T(state), SENSOR_IDLE, newState);
734 #endif
735 }
736 // Short-hand
737 #define trySwitchState(s) trySwitchState_(_task, (s))
738
739 // Chunked FIFO read functions
740 static void chunkedReadInit_(TASK, int index, int size);
741 #define chunkedReadInit(a,b) chunkedReadInit_(_task, (a), (b))
742 static void chunkedReadSpiCallback(void *cookie, int error);
743 static void initiateFifoRead_(TASK, bool isInterruptContext);
744 #define initiateFifoRead(a) initiateFifoRead_(_task, (a))
745 static uint8_t* shallowParseFrame(uint8_t * buf, int size);
746
747 #ifdef OVERTEMPCAL_ENABLED
748 // otc gyro cal save restore functions
749 static void handleOtcGyroConfig_(TASK, const struct AppToSensorHalDataPayload *data);
750 #define handleOtcGyroConfig(a) handleOtcGyroConfig_(_task, (a))
751 static bool sendOtcGyroUpdate_();
752 #define sendOtcGyroUpdate() sendOtcGyroUpdate_(_task)
753 static void unlockOtcGyroUpdateBuffer();
754 #endif // OVERTEMPCAL_ENABLED
755
756 // Binary dump to osLog
757 static void dumpBinary(void* buf, unsigned int address, size_t size);
758
759 // Watermark calculation
760 static uint8_t calcWatermark2_(TASK);
761 #define calcWatermark2() calcWatermark2_(_task)
762
763 static const struct SensorInfo mSensorInfo[NUM_OF_SENSOR] =
764 {
765 #ifdef ACCEL_CAL_ENABLED
766 { DEC_INFO_RATE_RAW_BIAS("Accelerometer", AccRates, SENS_TYPE_ACCEL, NUM_AXIS_THREE,
767 NANOHUB_INT_NONWAKEUP, BMI160_ACC_SAMPLES, SENS_TYPE_ACCEL_RAW,
768 1.0/kScale_acc, SENS_TYPE_ACCEL_BIAS) },
769 #else
770 { DEC_INFO_RATE_RAW("Accelerometer", AccRates, SENS_TYPE_ACCEL, NUM_AXIS_THREE,
771 NANOHUB_INT_NONWAKEUP, BMI160_ACC_SAMPLES, SENS_TYPE_ACCEL_RAW,
772 1.0/kScale_acc) },
773 #endif
774 { DEC_INFO_RATE_BIAS("Gyroscope", GyrRates, SENS_TYPE_GYRO, NUM_AXIS_THREE,
775 NANOHUB_INT_NONWAKEUP, BMI160_GYRO_SAMPLES, SENS_TYPE_GYRO_BIAS) },
776 #ifdef MAG_SLAVE_PRESENT
777 { DEC_INFO_RATE_RAW_BIAS("Magnetometer", MagRates, SENS_TYPE_MAG, NUM_AXIS_THREE,
778 NANOHUB_INT_NONWAKEUP, BMI160_MAG_SAMPLES, SENS_TYPE_MAG_RAW,
779 1.0/kScale_mag, SENS_TYPE_MAG_BIAS) },
780 #endif
781 { DEC_INFO("Step Detector", SENS_TYPE_STEP_DETECT, NUM_AXIS_EMBEDDED,
782 NANOHUB_INT_NONWAKEUP, 100) },
783 { DEC_INFO("Double Tap", SENS_TYPE_DOUBLE_TAP, NUM_AXIS_EMBEDDED,
784 NANOHUB_INT_NONWAKEUP, 20) },
785 { DEC_INFO("Flat", SENS_TYPE_FLAT, NUM_AXIS_EMBEDDED, NANOHUB_INT_NONWAKEUP, 20) },
786 { DEC_INFO("Any Motion", SENS_TYPE_ANY_MOTION, NUM_AXIS_EMBEDDED, NANOHUB_INT_NONWAKEUP, 20) },
787 { DEC_INFO("No Motion", SENS_TYPE_NO_MOTION, NUM_AXIS_EMBEDDED, NANOHUB_INT_NONWAKEUP, 20) },
788 { DEC_INFO_RATE("Step Counter", StepCntRates, SENS_TYPE_STEP_COUNT, NUM_AXIS_EMBEDDED,
789 NANOHUB_INT_NONWAKEUP, 20) },
790 };
791
792 static void time_init(void) {
793 time_sync_init(&mTask.gSensorTime2RTC);
794 }
795
796 static bool sensortime_to_rtc_time(uint64_t sensor_time, uint64_t *rtc_time_ns) {
797 // fixme: nsec?
798 return time_sync_estimate_time1(
799 &mTask.gSensorTime2RTC, sensor_time * 39ull, rtc_time_ns);
800 }
801
802 static void map_sensortime_to_rtc_time(uint64_t sensor_time, uint64_t rtc_time_ns) {
803 // fixme: nsec?
804 time_sync_add(&mTask.gSensorTime2RTC, rtc_time_ns, sensor_time * 39ull);
805 }
806
807 static void invalidate_sensortime_to_rtc_time(void) {
808 time_sync_reset(&mTask.gSensorTime2RTC);
809 }
810
811 static void minimize_sensortime_history(void) {
812 // truncate datapoints to the latest two to maintain valid sensortime to rtc
813 // mapping and minimize the inflence of the past mapping
814 time_sync_truncate(&mTask.gSensorTime2RTC, 2);
815
816 // drop the oldest datapoint when a new one arrives for two times to
817 // completely shift out the influence of the past mapping
818 time_sync_hold(&mTask.gSensorTime2RTC, 2);
819 }
820
821 static void dataEvtFree(void *ptr)
822 {
823 TDECL();
824 struct TripleAxisDataEvent *ev = (struct TripleAxisDataEvent *)ptr;
825 slabAllocatorFree(T(mDataSlab), ev);
826 }
827
828 static void spiQueueWrite(uint8_t addr, uint8_t data, uint32_t delay)
829 {
830 TDECL();
831 if (T(spiInUse)) {
832 ERROR_PRINT("SPI in use, cannot queue write\n");
833 return;
834 }
835 T(packets[T(mRegCnt)]).size = 2;
836 T(packets[T(mRegCnt)]).txBuf = &T(txrxBuffer[T(mWbufCnt)]);
837 T(packets[T(mRegCnt)]).rxBuf = &T(txrxBuffer[T(mWbufCnt)]);
838 T(packets[T(mRegCnt)]).delay = delay * 1000;
839 T(txrxBuffer[T(mWbufCnt++)]) = BMI160_SPI_WRITE | addr;
840 T(txrxBuffer[T(mWbufCnt++)]) = data;
841 T(mRegCnt)++;
842 }
843
844 /*
845 * need to be sure size of buf is larger than read size
846 */
847 static void spiQueueRead(uint8_t addr, size_t size, uint8_t **buf, uint32_t delay)
848 {
849 TDECL();
850 if (T(spiInUse)) {
851 ERROR_PRINT("SPI in use, cannot queue read %d %d\n", (int)addr, (int)size);
852 return;
853 }
854
855 *buf = &T(txrxBuffer[T(mWbufCnt)]);
856 T(packets[T(mRegCnt)]).size = size + 1; // first byte will not contain valid data
857 T(packets[T(mRegCnt)]).txBuf = &T(txrxBuffer[T(mWbufCnt)]);
858 T(packets[T(mRegCnt)]).rxBuf = *buf;
859 T(packets[T(mRegCnt)]).delay = delay * 1000;
860 T(txrxBuffer[T(mWbufCnt)++]) = BMI160_SPI_READ | addr;
861 T(mWbufCnt) += size;
862 T(mRegCnt)++;
863 }
864
865 #ifdef BMI160_USE_I2C
866 static void i2cBatchTxRx(void *evtData, int err);
867 #endif
868
869 static void spiBatchTxRx(struct SpiMode *mode,
870 SpiCbkF callback, void *cookie, const char * src)
871 {
872 TDECL();
873 if (T(mWbufCnt) > SPI_BUF_SIZE) {
874 ERROR_PRINT("NO enough SPI buffer space, dropping transaction.\n");
875 return;
876 }
877 if (T(mRegCnt) > SPI_PACKET_SIZE) {
878 ERROR_PRINT("spiBatchTxRx too many packets!\n");
879 return;
880 }
881
882 T(spiInUse) = true;
883 T(mWbufCnt) = 0;
884
885 #ifdef BMI160_USE_I2C
886 T(cReg) = 0;
887 T(sCallback) = callback;
888 i2cBatchTxRx(cookie, 0);
889 #else
890 // Reset variables before issuing SPI transaction.
891 // SPI may finish before spiMasterRxTx finish
892 uint8_t regCount = T(mRegCnt);
893 T(mRegCnt) = 0;
894
895 if (spiMasterRxTx(T(spiDev), T(cs), T(packets), regCount, mode, callback, cookie) < 0) {
896 ERROR_PRINT("spiMasterRxTx failed!\n");
897 }
898 #endif
899 }
900
901
902 static bool bmi160Isr1(struct ChainedIsr *isr)
903 {
904 TASK = container_of(isr, struct BMI160Task, Isr1);
905
906 if (!extiIsPendingGpio(T(Int1))) {
907 return false;
908 }
909 DEBUG_PRINT_IF(DBG_INT, "i1\n");
910 initiateFifoRead(true /*isInterruptContext*/);
911 extiClearPendingGpio(T(Int1));
912 return true;
913 }
914
915
916 static bool bmi160Isr2(struct ChainedIsr *isr)
917 {
918 TASK = container_of(isr, struct BMI160Task, Isr2);
919
920 if (!extiIsPendingGpio(T(Int2)))
921 return false;
922
923 DEBUG_PRINT_IF(DBG_INT, "i2\n");
924 if (!osEnqueuePrivateEvt(EVT_SENSOR_INTERRUPT_2, _task, NULL, T(tid)))
925 ERROR_PRINT("bmi160Isr2: osEnqueuePrivateEvt() failed\n");
926 extiClearPendingGpio(T(Int2));
927 return true;
928 }
929
930 static void sensorSpiCallback(void *cookie, int err)
931 {
932 mTask.spiInUse = false;
933
934 if (!osEnqueuePrivateEvt(EVT_SPI_DONE, cookie, NULL, mTask.tid))
935 ERROR_PRINT("sensorSpiCallback: osEnqueuePrivateEvt() failed\n");
936 }
937
938 static void sensorTimerCallback(uint32_t timerId, void *data)
939 {
940 if (!osEnqueuePrivateEvt(EVT_SPI_DONE, data, NULL, mTask.tid))
941 ERROR_PRINT("sensorTimerCallback: osEnqueuePrivateEvt() failed\n")
942 }
943
944 static void timeSyncCallback(uint32_t timerId, void *data)
945 {
946 if (!osEnqueuePrivateEvt(EVT_TIME_SYNC, data, NULL, mTask.tid))
947 ERROR_PRINT("timeSyncCallback: osEnqueuePrivateEvt() failed\n");
948 }
949
950 static void stepCntSamplingCallback(uint32_t timerId, void *data)
951 {
952 union EmbeddedDataPoint step_cnt;
953
954 if (mTask.sensors[STEPCNT].powered && mTask.step_cnt_changed) {
955 mTask.step_cnt_changed = false;
956 step_cnt.idata = mTask.total_step_cnt;
957 osEnqueueEvt(EVT_SENSOR_STEP_COUNTER, step_cnt.vptr, NULL);
958 }
959 }
960
961 static bool accFirmwareUpload(void *cookie)
962 {
963 sensorSignalInternalEvt(mTask.sensors[ACC].handle,
964 SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0);
965 return true;
966 }
967
968 static bool gyrFirmwareUpload(void *cookie)
969 {
970 sensorSignalInternalEvt(mTask.sensors[GYR].handle,
971 SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0);
972 return true;
973 }
974
975 #ifdef MAG_SLAVE_PRESENT
976 static bool magFirmwareUpload(void *cookie)
977 {
978 sensorSignalInternalEvt(mTask.sensors[MAG].handle,
979 SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0);
980 return true;
981 }
982 #endif
983
984 static bool stepFirmwareUpload(void *cookie)
985 {
986 sensorSignalInternalEvt(mTask.sensors[STEP].handle,
987 SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0);
988 return true;
989 }
990
991 static bool doubleTapFirmwareUpload(void *cookie)
992 {
993 sensorSignalInternalEvt(mTask.sensors[DTAP].handle,
994 SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0);
995 return true;
996 }
997
998 static bool noMotionFirmwareUpload(void *cookie)
999 {
1000 sensorSignalInternalEvt(mTask.sensors[NOMO].handle,
1001 SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0);
1002 return true;
1003 }
1004
1005 static bool anyMotionFirmwareUpload(void *cookie)
1006 {
1007 sensorSignalInternalEvt(mTask.sensors[ANYMO].handle,
1008 SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0);
1009 return true;
1010 }
1011
1012 static bool flatFirmwareUpload(void *cookie)
1013 {
1014 sensorSignalInternalEvt(mTask.sensors[FLAT].handle,
1015 SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0);
1016 return true;
1017 }
1018
1019 static bool stepCntFirmwareUpload(void *cookie)
1020 {
1021 sensorSignalInternalEvt(mTask.sensors[STEPCNT].handle,
1022 SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0);
1023 return true;
1024 }
1025
1026 static bool enableInterrupt(struct Gpio *pin, IRQn_Type irq, struct ChainedIsr *isr)
1027 {
1028 gpioConfigInput(pin, GPIO_SPEED_LOW, GPIO_PULL_NONE);
1029 syscfgSetExtiPort(pin);
1030 extiEnableIntGpio(pin, EXTI_TRIGGER_RISING);
1031 extiChainIsr(irq, isr);
1032 return true;
1033 }
1034
1035 static bool disableInterrupt(struct Gpio *pin, IRQn_Type irq, struct ChainedIsr *isr)
1036 {
1037 extiUnchainIsr(irq, isr);
1038 extiDisableIntGpio(pin);
1039 return true;
1040 }
1041
1042 static void magConfigMagic(void)
1043 {
1044 // set the MAG power to NORMAL mode
1045 SPI_WRITE(BMI160_REG_CMD, 0x19, 10000);
1046
1047 // Magic register sequence to shift register page table to access hidden
1048 // register
1049 SPI_WRITE(BMI160_REG_CMD, 0x37);
1050 SPI_WRITE(BMI160_REG_CMD, 0x9a);
1051 SPI_WRITE(BMI160_REG_CMD, 0xc0);
1052 SPI_WRITE(BMI160_REG_MAGIC, 0x90);
1053 SPI_READ(BMI160_REG_DATA_1, 1, &mTask.dataBuffer);
1054 }
1055
1056 static void magConfigIf(void)
1057 {
1058 // Set the on-chip I2C pull-up register settings and shift the register
1059 // table back down (magic)
1060 SPI_WRITE(BMI160_REG_DATA_1, mTask.dataBuffer[1] | 0x30);
1061 SPI_WRITE(BMI160_REG_MAGIC, 0x80);
1062
1063 // Config the MAG I2C device address
1064 #ifdef MAG_SLAVE_PRESENT
1065 SPI_WRITE(BMI160_REG_MAG_IF_0, (MAG_I2C_ADDR << 1));
1066 #endif
1067
1068 // set mag_manual_enable, mag_offset=0, mag_rd_burst='8 bytes'
1069 SPI_WRITE(BMI160_REG_MAG_IF_1, 0x83);
1070
1071 // primary interface: autoconfig, secondary: magnetometer.
1072 SPI_WRITE(BMI160_REG_IF_CONF, 0x20);
1073
1074 // fixme: move to mag-specific function
1075 #ifdef USE_BMM150
1076 // set mag to SLEEP mode
1077 MAG_WRITE(BMM150_REG_CTRL_1, 0x01);
1078 #elif USE_AK09915
1079 // Disable Noise Suppression Filter (NSF) settings
1080 MAG_WRITE(AKM_AK09915_REG_CNTL1, 0x00);
1081 #endif
1082 }
1083
1084 // fixme: break this up to master/slave-specific, so it'll be eventually slave-agnostic,
1085 // and slave provides its own stateless config function
1086 // fixme: not all async_elem_t is supported
1087 static void magConfig(void)
1088 {
1089 switch (mTask.mag_state) {
1090 case MAG_SET_START:
1091 magConfigMagic();
1092 mTask.mag_state = MAG_SET_IF;
1093 break;
1094 case MAG_SET_IF:
1095 magConfigIf();
1096 #ifdef USE_AK09915
1097 mTask.mag_state = MAG_SET_FORCE;
1098 #elif USE_BMM150
1099 mTask.mag_state = MAG_SET_REPXY;
1100 #endif
1101 break;
1102
1103 #ifdef USE_BMM150
1104 case MAG_SET_REPXY:
1105 // MAG_SET_REPXY and MAG_SET_REPZ case set:
1106 // regular preset, f_max,ODR ~ 102 Hz
1107 MAG_WRITE(BMM150_REG_REPXY, 9);
1108 mTask.mag_state = MAG_SET_REPZ;
1109 break;
1110 case MAG_SET_REPZ:
1111 MAG_WRITE(BMM150_REG_REPZ, 15);
1112 mTask.mag_state = MAG_GET_DIG_X;
1113 break;
1114 case MAG_GET_DIG_X:
1115 // MAG_GET_DIG_X, MAG_GET_DIG_Y and MAG_GET_DIG_Z cases:
1116 // save parameters for temperature compensation.
1117 MAG_READ(BMM150_REG_DIG_X1, 8);
1118 mTask.mag_state = MAG_GET_DIG_Y;
1119 break;
1120 case MAG_GET_DIG_Y:
1121 bmm150SaveDigData(&magTask, &mTask.dataBuffer[1], 0);
1122 MAG_READ(BMM150_REG_DIG_X1 + 8, 8);
1123 mTask.mag_state = MAG_GET_DIG_Z;
1124 break;
1125 case MAG_GET_DIG_Z:
1126 bmm150SaveDigData(&magTask, &mTask.dataBuffer[1], 8);
1127 MAG_READ(BMM150_REG_DIG_X1 + 16, 8);
1128 mTask.mag_state = MAG_SET_SAVE_DIG;
1129 break;
1130 case MAG_SET_SAVE_DIG:
1131 bmm150SaveDigData(&magTask, &mTask.dataBuffer[1], 16);
1132 // fall through, no break;
1133 mTask.mag_state = MAG_SET_FORCE;
1134 #endif
1135
1136 case MAG_SET_FORCE:
1137 // set MAG mode to "forced". ready to pull data
1138 #ifdef USE_AK09915
1139 MAG_WRITE(AKM_AK09915_REG_CNTL2, 0x01);
1140 #elif USE_BMM150
1141 MAG_WRITE(BMM150_REG_CTRL_2, 0x02);
1142 #endif
1143 mTask.mag_state = MAG_SET_ADDR;
1144 break;
1145 case MAG_SET_ADDR:
1146 // config MAG read data address to the first data register
1147 #ifdef MAG_SLAVE_PRESENT
1148 SPI_WRITE(BMI160_REG_MAG_IF_2, MAG_REG_DATA);
1149 #endif
1150 mTask.mag_state = MAG_SET_DATA;
1151 break;
1152 case MAG_SET_DATA:
1153 // clear mag_manual_en.
1154 SPI_WRITE(BMI160_REG_MAG_IF_1, 0x03, 1000);
1155 // set the MAG power to SUSPEND mode
1156 SPI_WRITE(BMI160_REG_CMD, 0x18, 10000);
1157 mTask.mag_state = MAG_SET_DONE;
1158 mTask.init_state = INIT_ON_CHANGE_SENSORS;
1159 break;
1160 default:
1161 break;
1162 }
1163 SPI_READ(BMI160_REG_STATUS, 1, &mTask.statusBuffer, 1000);
1164 }
1165
1166 static bool flushData(struct BMI160Sensor *sensor, uint32_t eventId)
1167 {
1168 bool success = false;
1169
1170 if (sensor->data_evt) {
1171 success = osEnqueueEvtOrFree(eventId, sensor->data_evt, dataEvtFree);
1172 sensor->data_evt = NULL;
1173 }
1174
1175 return success;
1176 }
1177
1178 static void flushAllData(void)
1179 {
1180 int i;
1181 for (i = FIRST_CONT_SENSOR; i < NUM_CONT_SENSOR; i++) {
1182 flushData(&mTask.sensors[i],
1183 EVENT_TYPE_BIT_DISCARDABLE | sensorGetMyEventType(mSensorInfo[i].sensorType));
1184 }
1185 }
1186
1187 static bool allocateDataEvt(struct BMI160Sensor *mSensor, uint64_t rtc_time)
1188 {
1189 TDECL();
1190 mSensor->data_evt = slabAllocatorAlloc(T(mDataSlab));
1191 if (mSensor->data_evt == NULL) {
1192 // slab allocation failed
1193 ERROR_PRINT("slabAllocatorAlloc() failed\n");
1194 return false;
1195 }
1196
1197 // delta time for the first sample is sample count
1198 memset(&mSensor->data_evt->samples[0].firstSample, 0x00, sizeof(struct SensorFirstSample));
1199 mSensor->data_evt->referenceTime = rtc_time;
1200 mSensor->prev_rtc_time = rtc_time;
1201
1202 return true;
1203 }
1204
1205 static inline bool anyFifoEnabled(void)
1206 {
1207 bool anyFifoEnabled = mTask.fifo_enabled[ACC] || mTask.fifo_enabled[GYR];
1208 #ifdef MAG_SLAVE_PRESENT
1209 anyFifoEnabled = anyFifoEnabled || mTask.fifo_enabled[MAG];
1210 #endif
1211 return anyFifoEnabled;
1212 }
1213
1214 static void configFifo(void)
1215 {
1216 TDECL();
1217 int i;
1218 uint8_t val = 0x12;
1219 bool any_fifo_enabled_prev = anyFifoEnabled();
1220
1221 // if ACC is configed, enable ACC bit in fifo_config reg.
1222 if (mTask.sensors[ACC].configed && mTask.sensors[ACC].latency != SENSOR_LATENCY_NODATA) {
1223 val |= 0x40;
1224 mTask.fifo_enabled[ACC] = true;
1225 } else {
1226 mTask.fifo_enabled[ACC] = false;
1227 }
1228
1229 // if GYR is configed, enable GYR bit in fifo_config reg.
1230 if (mTask.sensors[GYR].configed && mTask.sensors[GYR].latency != SENSOR_LATENCY_NODATA) {
1231 val |= 0x80;
1232 mTask.fifo_enabled[GYR] = true;
1233 } else {
1234 mTask.fifo_enabled[GYR] = false;
1235 }
1236
1237 #ifdef MAG_SLAVE_PRESENT
1238 // if MAG is configed, enable MAG bit in fifo_config reg.
1239 if (mTask.sensors[MAG].configed && mTask.sensors[MAG].latency != SENSOR_LATENCY_NODATA) {
1240 val |= 0x20;
1241 mTask.fifo_enabled[MAG] = true;
1242 } else {
1243 mTask.fifo_enabled[MAG] = false;
1244 }
1245 #endif
1246
1247 // if this is the first data sensor fifo to enable, start to
1248 // sync the sensor time and rtc time
1249 if (!any_fifo_enabled_prev && anyFifoEnabled()) {
1250 invalidate_sensortime_to_rtc_time();
1251
1252 // start a new poll generation and attach the generation number to event
1253 if (!osEnqueuePrivateEvt(EVT_TIME_SYNC, (void *)mTask.poll_generation, NULL, mTask.tid))
1254 ERROR_PRINT("configFifo: osEnqueuePrivateEvt() failed\n");
1255 }
1256
1257 // cancel current poll generation
1258 if (any_fifo_enabled_prev && !anyFifoEnabled()) {
1259 ++mTask.poll_generation;
1260 }
1261
1262 // if this is not the first fifo enabled or last fifo disabled, flush all fifo data;
1263 if (any_fifo_enabled_prev && anyFifoEnabled()) {
1264 mTask.pending_dispatch = true;
1265 mTask.xferCnt = FIFO_READ_SIZE;
1266 SPI_READ(BMI160_REG_FIFO_DATA, mTask.xferCnt, &mTask.dataBuffer);
1267 }
1268
1269 // calculate the new watermark level
1270 if (anyFifoEnabled()) {
1271 mTask.watermark = calcWatermark2_(_task);
1272 DEBUG_PRINT("wm=%d", mTask.watermark);
1273 SPI_WRITE(BMI160_REG_FIFO_CONFIG_0, mTask.watermark);
1274 }
1275
1276 // config the fifo register
1277 SPI_WRITE(BMI160_REG_FIFO_CONFIG_1, val);
1278
1279 // if no more fifo enabled, we need to cleanup the fifo and invalidate time
1280 if (!anyFifoEnabled()) {
1281 SPI_WRITE(BMI160_REG_CMD, 0xb0);
1282 mTask.frame_sensortime_valid = false;
1283 for (i = FIRST_CONT_SENSOR; i < NUM_CONT_SENSOR; i++) {
1284 mTask.pending_delta[i] = false;
1285 mTask.prev_frame_time[i] = ULONG_LONG_MAX;
1286 }
1287 }
1288 }
1289
1290 static bool accPower(bool on, void *cookie)
1291 {
1292 TDECL();
1293
1294 VERBOSE_PRINT("accPower: on=%d, state=%" PRI_STATE "\n", on, getStateName(GET_STATE()));
1295 if (trySwitchState(on ? SENSOR_POWERING_UP : SENSOR_POWERING_DOWN)) {
1296 if (on) {
1297 // set ACC power mode to NORMAL
1298 SPI_WRITE(BMI160_REG_CMD, 0x11, 50000);
1299 } else {
1300 // set ACC power mode to SUSPEND
1301 mTask.sensors[ACC].configed = false;
1302 configFifo();
1303 SPI_WRITE(BMI160_REG_CMD, 0x10, 5000);
1304 }
1305 mTask.sensors[ACC].powered = on;
1306 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask.sensors[ACC], __FUNCTION__);
1307 } else {
1308 mTask.pending_config[ACC] = true;
1309 mTask.sensors[ACC].pConfig.enable = on;
1310 }
1311 return true;
1312 }
1313
1314 static bool gyrPower(bool on, void *cookie)
1315 {
1316 TDECL();
1317 VERBOSE_PRINT("gyrPower: on=%d, state=%" PRI_STATE "\n", on, getStateName(GET_STATE()));
1318
1319 if (trySwitchState(on ? SENSOR_POWERING_UP : SENSOR_POWERING_DOWN)) {
1320 if (on) {
1321 // set GYR power mode to NORMAL
1322 SPI_WRITE(BMI160_REG_CMD, 0x15, 50000);
1323 } else {
1324 // set GYR power mode to SUSPEND
1325 mTask.sensors[GYR].configed = false;
1326 configFifo();
1327 SPI_WRITE(BMI160_REG_CMD, 0x14, 5000);
1328 }
1329
1330 if (anyFifoEnabled() && on != mTask.sensors[GYR].powered) {
1331 #if TIMESTAMP_DBG
1332 DEBUG_PRINT("minimize_sensortime_history()\n");
1333 #endif
1334 minimize_sensortime_history();
1335 }
1336
1337 mTask.sensors[GYR].powered = on;
1338 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask.sensors[GYR], __FUNCTION__);
1339 } else {
1340 mTask.pending_config[GYR] = true;
1341 mTask.sensors[GYR].pConfig.enable = on;
1342 }
1343 return true;
1344 }
1345
1346 #ifdef MAG_SLAVE_PRESENT
1347 static bool magPower(bool on, void *cookie)
1348 {
1349 TDECL();
1350 VERBOSE_PRINT("magPower: on=%d, state=%" PRI_STATE "\n", on, getStateName(GET_STATE()));
1351 if (trySwitchState(on ? SENSOR_POWERING_UP : SENSOR_POWERING_DOWN)) {
1352 if (on) {
1353 // set MAG power mode to NORMAL
1354 SPI_WRITE(BMI160_REG_CMD, 0x19, 10000);
1355 } else {
1356 // set MAG power mode to SUSPEND
1357 mTask.sensors[MAG].configed = false;
1358 configFifo();
1359 SPI_WRITE(BMI160_REG_CMD, 0x18, 5000);
1360 }
1361 mTask.sensors[MAG].powered = on;
1362 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask.sensors[MAG], __FUNCTION__);
1363 } else {
1364 mTask.pending_config[MAG] = true;
1365 mTask.sensors[MAG].pConfig.enable = on;
1366 }
1367 return true;
1368 }
1369 #endif
1370
1371 static bool stepPower(bool on, void *cookie)
1372 {
1373 TDECL();
1374 if (trySwitchState(on ? SENSOR_POWERING_UP : SENSOR_POWERING_DOWN)) {
1375 // if step counter is powered, no need to change actual config of step
1376 // detector.
1377 // But we choose to perform one SPI_WRITE anyway to go down the code path
1378 // to state SENSOR_POWERING_UP/DOWN to update sensor manager.
1379 if (on) {
1380 mTask.interrupt_enable_2 |= 0x08;
1381 } else {
1382 if (!mTask.sensors[STEPCNT].powered)
1383 mTask.interrupt_enable_2 &= ~0x08;
1384 mTask.sensors[STEP].configed = false;
1385 }
1386 mTask.sensors[STEP].powered = on;
1387 SPI_WRITE(BMI160_REG_INT_EN_2, mTask.interrupt_enable_2, 450);
1388 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask.sensors[STEP], __FUNCTION__);
1389 } else {
1390 mTask.pending_config[STEP] = true;
1391 mTask.sensors[STEP].pConfig.enable = on;
1392 }
1393 return true;
1394 }
1395
1396 static bool flatPower(bool on, void *cookie)
1397 {
1398 TDECL();
1399 if (trySwitchState(on ? SENSOR_POWERING_UP : SENSOR_POWERING_DOWN)) {
1400 if (on) {
1401 mTask.interrupt_enable_0 |= 0x80;
1402 } else {
1403 mTask.interrupt_enable_0 &= ~0x80;
1404 mTask.sensors[FLAT].configed = false;
1405 }
1406 mTask.sensors[FLAT].powered = on;
1407 SPI_WRITE(BMI160_REG_INT_EN_0, mTask.interrupt_enable_0, 450);
1408 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask.sensors[FLAT], __FUNCTION__);
1409 } else {
1410 mTask.pending_config[FLAT] = true;
1411 mTask.sensors[FLAT].pConfig.enable = on;
1412 }
1413 return true;
1414 }
1415
1416 static bool doubleTapPower(bool on, void *cookie)
1417 {
1418 TDECL();
1419 if (trySwitchState(on ? SENSOR_POWERING_UP : SENSOR_POWERING_DOWN)) {
1420 if (on) {
1421 mTask.interrupt_enable_0 |= 0x10;
1422 } else {
1423 mTask.interrupt_enable_0 &= ~0x10;
1424 mTask.sensors[DTAP].configed = false;
1425 }
1426 mTask.sensors[DTAP].powered = on;
1427 SPI_WRITE(BMI160_REG_INT_EN_0, mTask.interrupt_enable_0, 450);
1428 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask.sensors[DTAP], __FUNCTION__);
1429 } else {
1430 mTask.pending_config[DTAP] = true;
1431 mTask.sensors[DTAP].pConfig.enable = on;
1432 }
1433 return true;
1434 }
1435
1436 static bool anyMotionPower(bool on, void *cookie)
1437 {
1438 TDECL();
1439 DEBUG_PRINT("anyMotionPower: on=%d, oneshot_cnt %d, state=%" PRI_STATE "\n",
1440 on, mTask.active_oneshot_sensor_cnt, getStateName(GET_STATE()));
1441
1442 if (trySwitchState(on ? SENSOR_POWERING_UP : SENSOR_POWERING_DOWN)) {
1443 if (on) {
1444 mTask.interrupt_enable_0 |= 0x07;
1445 } else {
1446 mTask.interrupt_enable_0 &= ~0x07;
1447 mTask.sensors[ANYMO].configed = false;
1448 }
1449 mTask.sensors[ANYMO].powered = on;
1450 SPI_WRITE(BMI160_REG_INT_EN_0, mTask.interrupt_enable_0, 450);
1451 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask.sensors[ANYMO], __FUNCTION__);
1452 } else {
1453 mTask.pending_config[ANYMO] = true;
1454 mTask.sensors[ANYMO].pConfig.enable = on;
1455 }
1456 return true;
1457 }
1458
1459 static bool noMotionPower(bool on, void *cookie)
1460 {
1461 TDECL();
1462 DEBUG_PRINT("noMotionPower: on=%d, oneshot_cnt %d, state=%" PRI_STATE "\n",
1463 on, mTask.active_oneshot_sensor_cnt, getStateName(GET_STATE()));
1464 if (trySwitchState(on ? SENSOR_POWERING_UP : SENSOR_POWERING_DOWN)) {
1465 if (on) {
1466 mTask.interrupt_enable_2 |= 0x07;
1467 } else {
1468 mTask.interrupt_enable_2 &= ~0x07;
1469 mTask.sensors[NOMO].configed = false;
1470 }
1471 mTask.sensors[NOMO].powered = on;
1472 SPI_WRITE(BMI160_REG_INT_EN_2, mTask.interrupt_enable_2, 450);
1473 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask.sensors[NOMO], __FUNCTION__);
1474 } else {
1475 mTask.pending_config[NOMO] = true;
1476 mTask.sensors[NOMO].pConfig.enable = on;
1477 }
1478 return true;
1479 }
1480
1481 static bool stepCntPower(bool on, void *cookie)
1482 {
1483 TDECL();
1484 if (trySwitchState(on ? SENSOR_POWERING_UP : SENSOR_POWERING_DOWN)) {
1485 if (on) {
1486 if (!mTask.sensors[STEP].powered) {
1487 mTask.interrupt_enable_2 |= 0x08;
1488 SPI_WRITE(BMI160_REG_INT_EN_2, mTask.interrupt_enable_2, 450);
1489 }
1490 // set step_cnt_en bit
1491 SPI_WRITE(BMI160_REG_STEP_CONF_1, 0x08 | 0x03, 1000);
1492 } else {
1493 if (mTask.stepCntSamplingTimerHandle) {
1494 timTimerCancel(mTask.stepCntSamplingTimerHandle);
1495 mTask.stepCntSamplingTimerHandle = 0;
1496 }
1497 if (!mTask.sensors[STEP].powered) {
1498 mTask.interrupt_enable_2 &= ~0x08;
1499 SPI_WRITE(BMI160_REG_INT_EN_2, mTask.interrupt_enable_2);
1500 }
1501 // unset step_cnt_en bit
1502 SPI_WRITE(BMI160_REG_STEP_CONF_1, 0x03);
1503 mTask.last_step_cnt = 0;
1504 mTask.sensors[STEPCNT].configed = false;
1505 }
1506 mTask.sensors[STEPCNT].powered = on;
1507 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask.sensors[STEPCNT], __FUNCTION__);
1508 } else {
1509 mTask.pending_config[STEPCNT] = true;
1510 mTask.sensors[STEPCNT].pConfig.enable = on;
1511 }
1512 return true;
1513 }
1514
1515 static void updateTimeDelta(uint8_t idx, uint8_t odr)
1516 {
1517 if (mTask.fifo_enabled[idx]) {
1518 // wait till control frame to update, if not disabled
1519 mTask.next_delta[idx] = 1ull << (16 - odr);
1520 mTask.pending_delta[idx] = true;
1521 } else {
1522 mTask.time_delta[idx] = 1ull << (16 - odr);
1523 }
1524 }
1525
1526 // compute the register value from sensor rate.
1527 static uint8_t computeOdr(uint32_t rate)
1528 {
1529 uint8_t odr = 0x00;
1530 switch (rate) {
1531 // fall through intended to get the correct register value
1532 case SENSOR_HZ(3200): odr ++;
1533 case SENSOR_HZ(1600): odr ++;
1534 case SENSOR_HZ(800): odr ++;
1535 case SENSOR_HZ(400): odr ++;
1536 case SENSOR_HZ(200): odr ++;
1537 case SENSOR_HZ(100): odr ++;
1538 case SENSOR_HZ(50): odr ++;
1539 case SENSOR_HZ(25): odr ++;
1540 case SENSOR_HZ(25.0f/2.0f): odr ++;
1541 case SENSOR_HZ(25.0f/4.0f): odr ++;
1542 case SENSOR_HZ(25.0f/8.0f): odr ++;
1543 case SENSOR_HZ(25.0f/16.0f): odr ++;
1544 case SENSOR_HZ(25.0f/32.0f): odr ++;
1545 default:
1546 return odr;
1547 }
1548 }
1549
1550 static void configMotion(uint8_t odr) {
1551 #if BMI160_ACC_RANGE_G == 16
1552 // motion threshold is element * 31.25mg (for 16g range)
1553 static const uint8_t motion_thresholds[ACC_MAX_RATE+1] =
1554 {3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1};
1555 #elif BMI160_ACC_RANGE_G == 8
1556 // motion threshold is element * 15.63mg (for 8g range)
1557 static const uint8_t motion_thresholds[ACC_MAX_RATE+1] =
1558 {5, 5, 5, 5, 5, 5, 5, 5, 4, 3, 2, 2, 2};
1559 #endif
1560
1561 // set any_motion duration to 1 point
1562 // set no_motion duration to (3+1)*1.28sec=5.12sec
1563 SPI_WRITE(BMI160_REG_INT_MOTION_0, 0x03 << 2, 450);
1564
1565 // set any_motion threshold
1566 SPI_WRITE(BMI160_REG_INT_MOTION_1, motion_thresholds[odr], 450);
1567
1568 // set no_motion threshold
1569 SPI_WRITE(BMI160_REG_INT_MOTION_2, motion_thresholds[odr], 450);
1570 }
1571
1572 static bool accSetRate(uint32_t rate, uint64_t latency, void *cookie)
1573 {
1574 TDECL();
1575 int odr, osr = 0;
1576 int osr_mode = 2; // normal
1577
1578 // change this to DEBUG_PRINT as there will be frequent (un)subscribings
1579 // to accel with different rate/latency requirements.
1580 DEBUG_PRINT("accSetRate: rate=%ld, latency=%lld, state=%" PRI_STATE "\n",
1581 rate, latency, getStateName(GET_STATE()));
1582
1583 if (trySwitchState(SENSOR_CONFIG_CHANGING)) {
1584 odr = computeOdr(rate);
1585 if (!odr) {
1586 ERROR_PRINT("invalid acc rate\n");
1587 return false;
1588 }
1589
1590 updateTimeDelta(ACC, odr);
1591
1592 // minimum supported rate for ACCEL is 12.5Hz.
1593 // Anything lower than that shall be acheived by downsampling.
1594 if (odr < ACC_MIN_RATE) {
1595 osr = ACC_MIN_RATE - odr;
1596 odr = ACC_MIN_RATE;
1597 }
1598
1599 // for high odrs, oversample to reduce hw latency and downsample
1600 // to get desired odr
1601 if (odr > ODR_100HZ) {
1602 // 200Hz osr4, >= 400Hz osr2
1603 if (odr == ODR_200HZ) {
1604 osr_mode = 0; // OSR4
1605 } else {
1606 osr_mode = 1; // OSR2
1607 }
1608 osr = (ACC_MAX_OSR + odr) > ACC_MAX_RATE ? (ACC_MAX_RATE - odr) : ACC_MAX_OSR;
1609 odr += osr;
1610 }
1611
1612 mTask.sensors[ACC].rate = rate;
1613 mTask.sensors[ACC].latency = latency;
1614 mTask.sensors[ACC].configed = true;
1615 mTask.acc_downsample = osr;
1616
1617 // configure ANY_MOTION and NO_MOTION based on odr
1618 configMotion(odr);
1619
1620 // set ACC bandwidth parameter to 2 (bits[4:6])
1621 // set the rate (bits[0:3])
1622 SPI_WRITE(BMI160_REG_ACC_CONF, (osr_mode << 4) | odr);
1623
1624 // configure down sampling ratio, 0x88 is to specify we are using
1625 // filtered samples
1626 SPI_WRITE(BMI160_REG_FIFO_DOWNS, (mTask.acc_downsample << 4) | mTask.gyr_downsample | 0x88);
1627
1628 // flush the data and configure the fifo
1629 configFifo();
1630
1631 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask.sensors[ACC], __FUNCTION__);
1632 } else {
1633 mTask.pending_config[ACC] = true;
1634 mTask.sensors[ACC].pConfig.enable = 1;
1635 mTask.sensors[ACC].pConfig.rate = rate;
1636 mTask.sensors[ACC].pConfig.latency = latency;
1637 }
1638 return true;
1639 }
1640
1641 static bool gyrSetRate(uint32_t rate, uint64_t latency, void *cookie)
1642 {
1643 TDECL();
1644 int odr, osr = 0;
1645 int osr_mode = 2; // normal
1646 VERBOSE_PRINT("gyrSetRate: rate=%ld, latency=%lld, state=%" PRI_STATE "\n",
1647 rate, latency, getStateName(GET_STATE()));
1648
1649 if (trySwitchState(SENSOR_CONFIG_CHANGING)) {
1650 odr = computeOdr(rate);
1651 if (!odr) {
1652 ERROR_PRINT("invalid gyr rate\n");
1653 return false;
1654 }
1655
1656 updateTimeDelta(GYR, odr);
1657
1658 // minimum supported rate for GYRO is 25.0Hz.
1659 // Anything lower than that shall be acheived by downsampling.
1660 if (odr < GYR_MIN_RATE) {
1661 osr = GYR_MIN_RATE - odr;
1662 odr = GYR_MIN_RATE;
1663 }
1664
1665 // for high odrs, oversample to reduce hw latency and downsample
1666 // to get desired odr
1667 if (odr > ODR_100HZ) {
1668 // 200Hz osr4, >= 400Hz osr2
1669 if (odr == ODR_200HZ) {
1670 osr_mode = 0; // OSR4
1671 } else {
1672 osr_mode = 1; // OSR2
1673 }
1674 osr = (GYR_MAX_OSR + odr) > GYR_MAX_RATE ? (GYR_MAX_RATE - odr) : GYR_MAX_OSR;
1675 odr += osr;
1676 }
1677
1678 mTask.sensors[GYR].rate = rate;
1679 mTask.sensors[GYR].latency = latency;
1680 mTask.sensors[GYR].configed = true;
1681 mTask.gyr_downsample = osr;
1682
1683 // set GYR bandwidth parameter to 2 (bits[4:6])
1684 // set the rate (bits[0:3])
1685 SPI_WRITE(BMI160_REG_GYR_CONF, (osr_mode << 4) | odr);
1686
1687 // configure down sampling ratio, 0x88 is to specify we are using
1688 // filtered samples
1689 SPI_WRITE(BMI160_REG_FIFO_DOWNS, (mTask.acc_downsample << 4) | mTask.gyr_downsample | 0x88);
1690
1691 // flush the data and configure the fifo
1692 configFifo();
1693
1694 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask.sensors[GYR], __FUNCTION__);
1695 } else {
1696 mTask.pending_config[GYR] = true;
1697 mTask.sensors[GYR].pConfig.enable = 1;
1698 mTask.sensors[GYR].pConfig.rate = rate;
1699 mTask.sensors[GYR].pConfig.latency = latency;
1700 }
1701 return true;
1702 }
1703
1704 #ifdef MAG_SLAVE_PRESENT
1705 static bool magSetRate(uint32_t rate, uint64_t latency, void *cookie)
1706 {
1707 TDECL();
1708 int odr;
1709
1710 if (rate == SENSOR_RATE_ONCHANGE)
1711 rate = SENSOR_HZ(100);
1712
1713 VERBOSE_PRINT("magSetRate: rate=%ld, latency=%lld, state=%" PRI_STATE "\n",
1714 rate, latency, getStateName(GET_STATE()));
1715
1716 if (trySwitchState(SENSOR_CONFIG_CHANGING)) {
1717 mTask.sensors[MAG].rate = rate;
1718 mTask.sensors[MAG].latency = latency;
1719 mTask.sensors[MAG].configed = true;
1720
1721 odr = computeOdr(rate);
1722 if (!odr) {
1723 ERROR_PRINT("invalid mag rate\n");
1724 return false;
1725 }
1726
1727 updateTimeDelta(MAG, odr);
1728
1729 odr = odr > MAG_MAX_RATE ? MAG_MAX_RATE : odr;
1730
1731 // set the rate for MAG
1732 SPI_WRITE(BMI160_REG_MAG_CONF, odr);
1733
1734 // flush the data and configure the fifo
1735 configFifo();
1736
1737 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask.sensors[MAG], __FUNCTION__);
1738 } else {
1739 mTask.pending_config[MAG] = true;
1740 mTask.sensors[MAG].pConfig.enable = 1;
1741 mTask.sensors[MAG].pConfig.rate = rate;
1742 mTask.sensors[MAG].pConfig.latency = latency;
1743 }
1744 return true;
1745 }
1746 #endif
1747
1748 static bool stepSetRate(uint32_t rate, uint64_t latency, void *cookie)
1749 {
1750 mTask.sensors[STEP].rate = rate;
1751 mTask.sensors[STEP].latency = latency;
1752 mTask.sensors[STEP].configed = true;
1753
1754 sensorSignalInternalEvt(mTask.sensors[STEP].handle,
1755 SENSOR_INTERNAL_EVT_RATE_CHG, rate, latency);
1756 return true;
1757 }
1758
1759 static bool flatSetRate(uint32_t rate, uint64_t latency, void *cookie)
1760 {
1761 mTask.sensors[FLAT].rate = rate;
1762 mTask.sensors[FLAT].latency = latency;
1763 mTask.sensors[FLAT].configed = true;
1764
1765 sensorSignalInternalEvt(mTask.sensors[FLAT].handle,
1766 SENSOR_INTERNAL_EVT_RATE_CHG, rate, latency);
1767 return true;
1768 }
1769
1770 static bool doubleTapSetRate(uint32_t rate, uint64_t latency, void *cookie)
1771 {
1772 mTask.sensors[DTAP].rate = rate;
1773 mTask.sensors[DTAP].latency = latency;
1774 mTask.sensors[DTAP].configed = true;
1775
1776 sensorSignalInternalEvt(mTask.sensors[DTAP].handle,
1777 SENSOR_INTERNAL_EVT_RATE_CHG, rate, latency);
1778 return true;
1779 }
1780
1781 static bool anyMotionSetRate(uint32_t rate, uint64_t latency, void *cookie)
1782 {
1783 mTask.sensors[ANYMO].rate = rate;
1784 mTask.sensors[ANYMO].latency = latency;
1785 mTask.sensors[ANYMO].configed = true;
1786
1787 sensorSignalInternalEvt(mTask.sensors[ANYMO].handle,
1788 SENSOR_INTERNAL_EVT_RATE_CHG, rate, latency);
1789
1790 return true;
1791 }
1792
1793 static bool noMotionSetRate(uint32_t rate, uint64_t latency, void *cookie)
1794 {
1795 mTask.sensors[NOMO].rate = rate;
1796 mTask.sensors[NOMO].latency = latency;
1797 mTask.sensors[NOMO].configed = true;
1798
1799 sensorSignalInternalEvt(mTask.sensors[NOMO].handle,
1800 SENSOR_INTERNAL_EVT_RATE_CHG, rate, latency);
1801 return true;
1802 }
1803
1804 static bool stepCntSetRate(uint32_t rate, uint64_t latency, void *cookie)
1805 {
1806 mTask.sensors[STEPCNT].rate = rate;
1807 mTask.sensors[STEPCNT].latency = latency;
1808 mTask.sensors[STEPCNT].configed = true;
1809
1810 if (rate == SENSOR_RATE_ONCHANGE && mTask.stepCntSamplingTimerHandle) {
1811 timTimerCancel(mTask.stepCntSamplingTimerHandle);
1812 mTask.stepCntSamplingTimerHandle = 0;
1813 } else if (rate != SENSOR_RATE_ONCHANGE) {
1814 if (mTask.stepCntSamplingTimerHandle) {
1815 timTimerCancel(mTask.stepCntSamplingTimerHandle);
1816 }
1817 mTask.stepCntSamplingTimerHandle = timTimerSet(sensorTimerLookupCommon(StepCntRates, stepCntRateTimerVals, rate),
1818 0, 50, stepCntSamplingCallback, NULL, false);
1819 if (!mTask.stepCntSamplingTimerHandle)
1820 ERROR_PRINT("Couldn't get a timer for step counter\n");
1821
1822 }
1823
1824 sensorSignalInternalEvt(mTask.sensors[STEPCNT].handle,
1825 SENSOR_INTERNAL_EVT_RATE_CHG, rate, latency);
1826 return true;
1827 }
1828
1829 static void sendFlushEvt(void)
1830 {
1831 while (mTask.sensors[ACC].flush > 0) {
1832 osEnqueueEvt(EVT_SENSOR_ACC_DATA_RDY, SENSOR_DATA_EVENT_FLUSH, NULL);
1833 mTask.sensors[ACC].flush--;
1834 }
1835 while (mTask.sensors[GYR].flush > 0) {
1836 osEnqueueEvt(EVT_SENSOR_GYR_DATA_RDY, SENSOR_DATA_EVENT_FLUSH, NULL);
1837 mTask.sensors[GYR].flush--;
1838 }
1839 #ifdef MAG_SLAVE_PRESENT
1840 while (mTask.sensors[MAG].flush > 0) {
1841 osEnqueueEvt(EVT_SENSOR_MAG_DATA_RDY, SENSOR_DATA_EVENT_FLUSH, NULL);
1842 mTask.sensors[MAG].flush--;
1843 }
1844 #endif
1845 }
1846
1847 static bool accFlush(void *cookie)
1848 {
1849 TDECL();
1850 mTask.sensors[ACC].flush++;
1851 initiateFifoRead(false /*isInterruptContext*/);
1852 return true;
1853 }
1854
1855 static bool gyrFlush(void *cookie)
1856 {
1857 TDECL();
1858 mTask.sensors[GYR].flush++;
1859 initiateFifoRead(false /*isInterruptContext*/);
1860 return true;
1861 }
1862
1863 #ifdef MAG_SLAVE_PRESENT
1864 static bool magFlush(void *cookie)
1865 {
1866 TDECL();
1867 mTask.sensors[MAG].flush++;
1868 initiateFifoRead(false /*isInterruptContext*/);
1869 return true;
1870 }
1871 #endif
1872
1873 static bool stepFlush(void *cookie)
1874 {
1875 return osEnqueueEvt(EVT_SENSOR_STEP, SENSOR_DATA_EVENT_FLUSH, NULL);
1876 }
1877
1878 static bool flatFlush(void *cookie)
1879 {
1880 return osEnqueueEvt(EVT_SENSOR_FLAT, SENSOR_DATA_EVENT_FLUSH, NULL);
1881 }
1882
1883 static bool doubleTapFlush(void *cookie)
1884 {
1885 return osEnqueueEvt(EVT_SENSOR_DOUBLE_TAP, SENSOR_DATA_EVENT_FLUSH, NULL);
1886 }
1887
1888 static bool anyMotionFlush(void *cookie)
1889 {
1890 return osEnqueueEvt(EVT_SENSOR_ANY_MOTION, SENSOR_DATA_EVENT_FLUSH, NULL);
1891 }
1892
1893 static bool noMotionFlush(void *cookie)
1894 {
1895 return osEnqueueEvt(EVT_SENSOR_NO_MOTION, SENSOR_DATA_EVENT_FLUSH, NULL);
1896 }
1897
1898 static bool stepCntFlushGetData()
1899 {
1900 TDECL();
1901 if (trySwitchState(SENSOR_STEP_CNT)) {
1902 SPI_READ(BMI160_REG_STEP_CNT_0, 2, &mTask.dataBuffer);
1903 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask.sensors[STEPCNT], __FUNCTION__);
1904 return true;
1905 }
1906 return false;
1907 }
1908
1909 static bool stepCntFlush(void *cookie)
1910 {
1911 mTask.sensors[STEPCNT].flush++;
1912 stepCntFlushGetData();
1913 return true;
1914 }
1915
1916 static void sendStepCnt()
1917 {
1918 union EmbeddedDataPoint step_cnt;
1919 uint32_t cur_step_cnt;
1920 cur_step_cnt = (int)(mTask.dataBuffer[1] | (mTask.dataBuffer[2] << 8));
1921
1922 if (cur_step_cnt != mTask.last_step_cnt) {
1923 // Check for possible overflow
1924 if (cur_step_cnt < mTask.last_step_cnt) {
1925 mTask.total_step_cnt += cur_step_cnt + (0xFFFF - mTask.last_step_cnt);
1926 } else {
1927 mTask.total_step_cnt += (cur_step_cnt - mTask.last_step_cnt);
1928 }
1929 mTask.last_step_cnt = cur_step_cnt;
1930
1931 // Send the event if the current rate is ONCHANGE or we need to flush;
1932 // otherwise, wait until step count sampling timer expires
1933 if (mTask.sensors[STEPCNT].rate == SENSOR_RATE_ONCHANGE || mTask.sensors[STEPCNT].flush) {
1934 step_cnt.idata = mTask.total_step_cnt;
1935 osEnqueueEvt(EVT_SENSOR_STEP_COUNTER, step_cnt.vptr, NULL);
1936 } else {
1937 mTask.step_cnt_changed = true;
1938 }
1939 }
1940
1941 while (mTask.sensors[STEPCNT].flush) {
1942 osEnqueueEvt(EVT_SENSOR_STEP_COUNTER, SENSOR_DATA_EVENT_FLUSH, NULL);
1943 mTask.sensors[STEPCNT].flush--;
1944 }
1945 }
1946
1947 static bool stepCntSendLastData(void *cookie, uint32_t tid)
1948 {
1949 // If this comes in and we don't have data yet, there's no harm in reporting step_cnt = 0
1950 if (!osEnqueuePrivateEvt(EVT_SENSOR_STEP_COUNTER, (void *) mTask.total_step_cnt, NULL, tid)) {
1951 ERROR_PRINT("stepCntSendLastData: osEnqueuePrivateEvt() failed\n");
1952 return false;
1953 }
1954
1955 return true;
1956 }
1957
1958 static uint64_t parseSensortime(uint32_t sensor_time24)
1959 {
1960 uint32_t prev_time24;
1961 uint32_t kHalf = 1ul << 23;
1962 uint64_t full;
1963
1964 prev_time24 = (uint32_t)mTask.last_sensortime & 0xffffff;
1965
1966 if (mTask.last_sensortime == 0) {
1967 mTask.last_sensortime = (uint64_t)sensor_time24;
1968 return (uint64_t)(sensor_time24);
1969 }
1970
1971 if (sensor_time24 == prev_time24) {
1972 return (uint64_t)(mTask.last_sensortime);
1973 }
1974
1975 full = (mTask.last_sensortime & ~0xffffffull) | sensor_time24;
1976
1977 if (((prev_time24 < sensor_time24) && (sensor_time24 - prev_time24) < kHalf)
1978 || ((prev_time24 > sensor_time24) && (prev_time24 - sensor_time24) > kHalf)) {
1979 if (full < mTask.last_sensortime) {
1980 full += 0x1000000ull;
1981 }
1982 mTask.last_sensortime = full;
1983 return mTask.last_sensortime;
1984 }
1985
1986 if (full < mTask.last_sensortime) {
1987 return full;
1988 }
1989
1990 return (full - 0x1000000ull);
1991 }
1992
1993 static void parseRawData(struct BMI160Sensor *mSensor, uint8_t *buf, float kScale, uint64_t sensorTime)
1994 {
1995 TDECL();
1996 struct TripleAxisDataPoint *sample;
1997 uint64_t rtc_time, cur_time;
1998 uint32_t delta_time;
1999 float x, y, z;
2000 int16_t raw_x, raw_y, raw_z;
2001 #ifdef MAG_SLAVE_PRESENT
2002 bool newMagBias = false;
2003 #endif
2004
2005 if (!sensortime_to_rtc_time(sensorTime, &rtc_time)) {
2006 return;
2007 }
2008
2009 cur_time = sensorGetTime();
2010 if (rtc_time > cur_time + kMinRTCTimeIncrementNs) { // + tolerance to prevent frequent tripping
2011 INFO_PRINT("Future ts %s: rtc_time = %llu, cur_time = %llu",
2012 mSensorInfo[mSensor->idx].sensorName, rtc_time, cur_time);
2013 // clamp to current time
2014 rtc_time = cur_time + kMinRTCTimeIncrementNs;
2015 }
2016
2017 if (rtc_time < mSensor->prev_rtc_time + kMinRTCTimeIncrementNs) {
2018 #if TIMESTAMP_DBG
2019 DEBUG_PRINT("%s prev rtc 0x%08x %08x, curr 0x%08x %08x, delta %d usec\n",
2020 mSensorInfo[mSensor->idx].sensorName,
2021 (unsigned int)((mSensor->prev_rtc_time >> 32) & 0xffffffff),
2022 (unsigned int)(mSensor->prev_rtc_time & 0xffffffff),
2023 (unsigned int)((rtc_time >> 32) & 0xffffffff),
2024 (unsigned int)(rtc_time & 0xffffffff),
2025 (int)(rtc_time - mSensor->prev_rtc_time) / 1000);
2026 #endif
2027 rtc_time = mSensor->prev_rtc_time + kMinRTCTimeIncrementNs;
2028 }
2029
2030 #ifdef MAG_SLAVE_PRESENT
2031 if (mSensor->idx == MAG) {
2032 parseMagData(&magTask, &buf[0], &x, &y, &z);
2033 BMM150_TO_ANDROID_COORDINATE(x, y, z);
2034
2035 float xi, yi, zi;
2036 magCalRemoveSoftiron(&mTask.moc, x, y, z, &xi, &yi, &zi);
2037
2038 newMagBias |= magCalUpdate(&mTask.moc, sensorTime * kSensorTimerIntervalUs, xi, yi, zi);
2039
2040 magCalRemoveBias(&mTask.moc, xi, yi, zi, &x, &y, &z);
2041
2042 #ifdef GYRO_CAL_ENABLED
2043 // Gyro Cal -- Add magnetometer sample.
2044 gyroCalUpdateMag(&mTask.gyro_cal,
2045 rtc_time, // nsec
2046 x, y, z);
2047 #endif // GYRO_CAL_ENABLED
2048 } else
2049 #endif // MAG_SLAVE_PRESENT
2050 {
2051 raw_x = (buf[0] | buf[1] << 8);
2052 raw_y = (buf[2] | buf[3] << 8);
2053 raw_z = (buf[4] | buf[5] << 8);
2054
2055 x = (float)raw_x * kScale;
2056 y = (float)raw_y * kScale;
2057 z = (float)raw_z * kScale;
2058
2059 BMI160_TO_ANDROID_COORDINATE(x, y, z);
2060
2061 if (mSensor->idx == ACC) {
2062
2063 #ifdef ACCEL_CAL_ENABLED
2064 accelCalRun(&mTask.acc, rtc_time,
2065 x, y, z, mTask.tempCelsius);
2066
2067 accelCalBiasRemove(&mTask.acc, &x, &y, &z);
2068
2069 #ifdef ACCEL_CAL_DBG_ENABLED
2070 // Prints debug data report.
2071 accelCalDebPrint(&mTask.acc, mTask.tempCelsius);
2072 #endif // ACCEL_CAL_DBG_ENABLED
2073 #endif // ACCEL_CAL_ENABLED
2074
2075 #ifdef GYRO_CAL_ENABLED
2076 // Gyro Cal -- Add accelerometer sample.
2077 gyroCalUpdateAccel(&mTask.gyro_cal,
2078 rtc_time, // nsec
2079 x, y, z);
2080 #endif // GYRO_CAL_ENABLED
2081 } else if (mSensor->idx == GYR) {
2082 #ifdef GYRO_CAL_ENABLED
2083 // Gyro Cal -- Add gyroscope and temperature sample.
2084 gyroCalUpdateGyro(&mTask.gyro_cal,
2085 rtc_time, // nsec
2086 x, y, z, mTask.tempCelsius);
2087
2088 #ifdef OVERTEMPCAL_ENABLED
2089 // Over-Temp Gyro Cal -- Update measured temperature.
2090 overTempCalSetTemperature(&mTask.over_temp_gyro_cal, rtc_time,
2091 mTask.tempCelsius);
2092
2093 // Over-Temp Gyro Cal -- Apply over-temp calibration correction.
2094 overTempCalRemoveOffset(&mTask.over_temp_gyro_cal, rtc_time,
2095 x, y, z, /* input values */
2096 &x, &y, &z /* calibrated output */);
2097 #else // OVERTEMPCAL_ENABLED
2098 // Gyro Cal -- Apply calibration correction.
2099 gyroCalRemoveBias(&mTask.gyro_cal,
2100 x, y, z, /* input values */
2101 &x, &y, &z /* calibrated output */);
2102 #endif // OVERTEMPCAL_ENABLED
2103
2104 #if defined(GYRO_CAL_DBG_ENABLED) || defined(OVERTEMPCAL_DBG_ENABLED)
2105 // This flag keeps GyroCal and OverTempCal from printing back-to-back.
2106 // If they do, then sometimes important print log data gets dropped.
2107 static size_t print_flag = 0;
2108
2109 if (print_flag > 0) {
2110 #ifdef GYRO_CAL_DBG_ENABLED
2111 // Gyro Cal -- Read out Debug data.
2112 gyroCalDebugPrint(&mTask.gyro_cal, rtc_time);
2113 #endif // GYRO_CAL_DBG_ENABLED
2114 print_flag = 0;
2115 } else {
2116 #ifdef OVERTEMPCAL_ENABLED
2117 #ifdef OVERTEMPCAL_DBG_ENABLED
2118 // Over-Temp Gyro Cal -- Read out Debug data.
2119 overTempCalDebugPrint(&mTask.over_temp_gyro_cal, rtc_time);
2120 #endif // OVERTEMPCAL_DBG_ENABLED
2121 #endif // OVERTEMPCAL_ENABLED
2122 print_flag = 1;
2123 }
2124 #endif // GYRO_CAL_DBG_ENABLED || OVERTEMPCAL_DBG_ENABLED
2125 #endif // GYRO_CAL_ENABLED
2126 }
2127 }
2128
2129 if (mSensor->data_evt == NULL) {
2130 if (!allocateDataEvt(mSensor, rtc_time)) {
2131 return;
2132 }
2133 }
2134
2135 if (mSensor->data_evt->samples[0].firstSample.numSamples >= MAX_NUM_COMMS_EVENT_SAMPLES) {
2136 ERROR_PRINT("BAD INDEX\n");
2137 return;
2138 }
2139
2140 #ifdef ACCEL_CAL_ENABLED
2141 // https://source.android.com/devices/sensors/sensor-types.html
2142 // "The bias and scale calibration must only be updated while the sensor is deactivated,
2143 // so as to avoid causing jumps in values during streaming." Note, this is now regulated
2144 // by the SensorHAL.
2145 if (mSensor->idx == ACC) {
2146 float accel_offset[3] = {0.0f, 0.0f, 0.0f};
2147 bool accelCalNewBiasAvailable = accelCalUpdateBias(
2148 &mTask.acc, &accel_offset[0], &accel_offset[1], &accel_offset[2]);
2149 if (accelCalNewBiasAvailable) {
2150 if (mSensor->data_evt->samples[0].firstSample.numSamples > 0) {
2151 // Flushes existing samples so the bias appears after them.
2152 flushData(mSensor,
2153 EVENT_TYPE_BIT_DISCARDABLE |
2154 sensorGetMyEventType(mSensorInfo[ACC].sensorType));
2155
2156 // Tries to allocate another data event and breaks if unsuccessful.
2157 if (!allocateDataEvt(mSensor, rtc_time)) {
2158 return;
2159 }
2160 }
2161 mSensor->data_evt->samples[0].firstSample.biasCurrent = true;
2162 mSensor->data_evt->samples[0].firstSample.biasPresent = 1;
2163 mSensor->data_evt->samples[0].firstSample.biasSample =
2164 mSensor->data_evt->samples[0].firstSample.numSamples;
2165 sample = &mSensor->data_evt->
2166 samples[mSensor->data_evt->samples[0].firstSample.numSamples++];
2167
2168 // Updates the accel offset in HAL.
2169 sample->x = accel_offset[0];
2170 sample->y = accel_offset[1];
2171 sample->z = accel_offset[2];
2172
2173 flushData(mSensor, sensorGetMyEventType(mSensorInfo[ACC].biasType));
2174 if (!allocateDataEvt(mSensor, rtc_time)) {
2175 return;
2176 }
2177 }
2178 }
2179 #endif // ACCEL_CAL_ENABLED
2180
2181 #ifdef MAG_SLAVE_PRESENT
2182 if (mSensor->idx == MAG && (newMagBias || !mTask.magBiasPosted)) {
2183 if (mSensor->data_evt->samples[0].firstSample.numSamples > 0) {
2184 // flush existing samples so the bias appears after them
2185 flushData(mSensor,
2186 EVENT_TYPE_BIT_DISCARDABLE |
2187 sensorGetMyEventType(mSensorInfo[MAG].sensorType));
2188 if (!allocateDataEvt(mSensor, rtc_time)) {
2189 return;
2190 }
2191 }
2192 if (newMagBias) {
2193 mTask.magBiasCurrent = true;
2194 }
2195 mSensor->data_evt->samples[0].firstSample.biasCurrent = mTask.magBiasCurrent;
2196 mSensor->data_evt->samples[0].firstSample.biasPresent = 1;
2197 mSensor->data_evt->samples[0].firstSample.biasSample =
2198 mSensor->data_evt->samples[0].firstSample.numSamples;
2199 sample = &mSensor->data_evt->
2200 samples[mSensor->data_evt->samples[0].firstSample.numSamples++];
2201
2202 // Updates the mag offset in HAL.
2203 magCalGetBias(&mTask.moc, &sample->x, &sample->y, &sample->z);
2204
2205 // Bias is non-discardable, if we fail to enqueue, don't clear magBiasPosted.
2206 if (flushData(mSensor, sensorGetMyEventType(mSensorInfo[MAG].biasType))) {
2207 mTask.magBiasPosted = true;
2208 }
2209
2210 if (!allocateDataEvt(mSensor, rtc_time)) {
2211 return;
2212 }
2213 }
2214 #endif // MAG_SLAVE_PRESENT
2215
2216 #ifdef GYRO_CAL_ENABLED
2217 if (mSensor->idx == GYR) {
2218 // GyroCal -- Checks for a new offset estimate update.
2219 float gyro_offset[3] = {0.0f, 0.0f, 0.0f};
2220 float gyro_offset_temperature_celsius = 0.0f;
2221 uint64_t calibration_time_nanos = 0;
2222 bool new_gyrocal_offset_update = gyroCalNewBiasAvailable(&mTask.gyro_cal);
2223 if (new_gyrocal_offset_update) {
2224 // GyroCal -- Gets the GyroCal offset estimate.
2225 gyroCalGetBias(&mTask.gyro_cal, &gyro_offset[0], &gyro_offset[1],
2226 &gyro_offset[2], &gyro_offset_temperature_celsius,
2227 &calibration_time_nanos);
2228
2229 #ifdef OVERTEMPCAL_ENABLED
2230 // OTC-Gyro Cal -- Sends a new GyroCal estimate to the OTC-Gyro.
2231 overTempCalUpdateSensorEstimate(&mTask.over_temp_gyro_cal, rtc_time,
2232 gyro_offset,
2233 gyro_offset_temperature_celsius);
2234 #endif // OVERTEMPCAL_ENABLED
2235 }
2236
2237 #ifdef OVERTEMPCAL_ENABLED
2238 // OTC-Gyro Cal -- Gets the latest OTC-Gyro temperature compensated
2239 // offset estimate.
2240 bool new_otc_offset_update =
2241 overTempCalNewOffsetAvailable(&mTask.over_temp_gyro_cal);
2242 overTempCalGetOffset(&mTask.over_temp_gyro_cal,
2243 &gyro_offset_temperature_celsius, gyro_offset);
2244
2245 // OTC-Gyro Cal -- Checks for a model update.
2246 bool new_otc_model_update =
2247 overTempCalNewModelUpdateAvailable(&mTask.over_temp_gyro_cal);
2248
2249 if (new_otc_offset_update) {
2250 #else // OVERTEMPCAL_ENABLED
2251 if (new_gyrocal_offset_update) {
2252 #endif // OVERTEMPCAL_ENABLED
2253 if (mSensor->data_evt->samples[0].firstSample.numSamples > 0) {
2254 // flush existing samples so the bias appears after them.
2255 flushData(mSensor,
2256 EVENT_TYPE_BIT_DISCARDABLE |
2257 sensorGetMyEventType(mSensorInfo[GYR].sensorType));
2258 if (!allocateDataEvt(mSensor, rtc_time)) {
2259 return;
2260 }
2261 }
2262 mSensor->data_evt->samples[0].firstSample.biasCurrent = true;
2263 mSensor->data_evt->samples[0].firstSample.biasPresent = 1;
2264 mSensor->data_evt->samples[0].firstSample.biasSample =
2265 mSensor->data_evt->samples[0].firstSample.numSamples;
2266 sample = &mSensor->data_evt->samples[mSensor->data_evt->samples[0]
2267 .firstSample.numSamples++];
2268 // Updates the gyro offset in HAL.
2269 sample->x = gyro_offset[0];
2270 sample->y = gyro_offset[1];
2271 sample->z = gyro_offset[2];
2272
2273 flushData(mSensor, sensorGetMyEventType(mSensorInfo[GYR].biasType));
2274 if (!allocateDataEvt(mSensor, rtc_time)) {
2275 return;
2276 }
2277 }
2278 #ifdef OVERTEMPCAL_ENABLED
2279 if (new_otc_model_update || new_otc_offset_update) {
2280 // Notify HAL to store new gyro OTC-Gyro data.
2281 T(otcGyroUpdateBuffer).sendToHostRequest = true;
2282 }
2283 #endif // OVERTEMPCAL_ENABLED
2284 }
2285 #endif // GYRO_CAL_ENABLED
2286
2287 sample = &mSensor->data_evt->samples[mSensor->data_evt->samples[0].firstSample.numSamples++];
2288
2289 // the first deltatime is for sample size
2290 if (mSensor->data_evt->samples[0].firstSample.numSamples > 1) {
2291 delta_time = rtc_time - mSensor->prev_rtc_time;
2292 delta_time = delta_time < 0 ? 0 : delta_time;
2293 sample->deltaTime = delta_time;
2294 mSensor->prev_rtc_time = rtc_time;
2295 }
2296
2297 sample->x = x;
2298 sample->y = y;
2299 sample->z = z;
2300
2301 //DEBUG_PRINT("bmi160: x: %d, y: %d, z: %d\n", (int)(1000*x), (int)(1000*y), (int)(1000*z));
2302
2303 //TODO: This was added to prevent too much data of the same type accumulate in internal buffer.
2304 // It might no longer be necessary and can be removed.
2305 if (mSensor->data_evt->samples[0].firstSample.numSamples == MAX_NUM_COMMS_EVENT_SAMPLES) {
2306 flushAllData();
2307 }
2308 }
2309
2310 static void dispatchData(void)
2311 {
2312 size_t i = 1, j;
2313 size_t size = mTask.xferCnt;
2314 int fh_mode, fh_param;
2315 uint8_t *buf = mTask.dataBuffer;
2316
2317 uint64_t min_delta = ULONG_LONG_MAX;
2318 uint32_t sensor_time24;
2319 uint64_t full_sensor_time;
2320 uint64_t frame_sensor_time = mTask.frame_sensortime;
2321 bool observed[NUM_CONT_SENSOR];
2322 uint64_t tmp_frame_time, tmp_time[NUM_CONT_SENSOR];
2323 bool frame_sensor_time_valid = mTask.frame_sensortime_valid;
2324 bool saved_pending_delta[NUM_CONT_SENSOR];
2325 uint64_t saved_time_delta[NUM_CONT_SENSOR];
2326 #if TIMESTAMP_DBG
2327 int frame_num = -1;
2328 #endif
2329
2330 for (j = FIRST_CONT_SENSOR; j < NUM_CONT_SENSOR; j++)
2331 observed[j] = false;
2332
2333 if (!mTask.frame_sensortime_valid) {
2334 // This is the first FIFO delivery after any sensor is enabled in
2335 // bmi160. Sensor time reference is not establised until end of this
2336 // FIFO frame. Assume time start from zero and do a dry run to estimate
2337 // the time and then go through this FIFO again.
2338 frame_sensor_time = 0ull;
2339
2340 // Save these states for future recovery by the end of dry run.
2341 for (j = FIRST_CONT_SENSOR; j < NUM_CONT_SENSOR; j++) {
2342 saved_pending_delta[j] = mTask.pending_delta[j];
2343 saved_time_delta[j] = mTask.time_delta[j];
2344 }
2345 }
2346
2347 while (size > 0) {
2348 if (buf[i] == BMI160_FRAME_HEADER_INVALID) {
2349 // reaching invalid header means no more data
2350 break;
2351 } else if (buf[i] == BMI160_FRAME_HEADER_SKIP) {
2352 // manually injected skip header
2353 DEBUG_PRINT_IF(DBG_CHUNKED, "skip nop header");
2354 i++;
2355 size--;
2356 continue;
2357 }
2358
2359 fh_mode = buf[i] >> 6;
2360 fh_param = (buf[i] >> 2) & 0xf;
2361
2362 i++;
2363 size--;
2364 #if TIMESTAMP_DBG
2365 ++frame_num;
2366 #endif
2367
2368 if (fh_mode == 1) {
2369 // control frame.
2370 if (fh_param == 0) {
2371 // skip frame, we skip it
2372 if (size >= 1) {
2373 i++;
2374 size--;
2375 } else {
2376 size = 0;
2377 }
2378 } else if (fh_param == 1) {
2379 // sensortime frame
2380 if (size >= 3) {
2381 // The active sensor with the highest odr/lowest delta is the one that
2382 // determines the sensor time increments.
2383 for (j = FIRST_CONT_SENSOR; j < NUM_CONT_SENSOR; j++) {
2384 if (mTask.sensors[j].configed &&
2385 mTask.sensors[j].latency != SENSOR_LATENCY_NODATA) {
2386 min_delta = min_delta < mTask.time_delta[j] ? min_delta :
2387 mTask.time_delta[j];
2388 }
2389 }
2390 sensor_time24 = buf[i + 2] << 16 | buf[i + 1] << 8 | buf[i];
2391
2392 // clear lower bits that measure time from taking the sample to reading the
2393 // FIFO, something we're not interested in.
2394 sensor_time24 &= ~(min_delta - 1);
2395
2396 full_sensor_time = parseSensortime(sensor_time24);
2397
2398 #if TIMESTAMP_DBG
2399 if (frame_sensor_time == full_sensor_time) {
2400 //DEBUG_PRINT("frame %d FrameTime 0x%08x\n",
2401 // frame_num - 1,
2402 // (unsigned int)frame_sensor_time);
2403 } else if (frame_sensor_time_valid) {
2404 DEBUG_PRINT("frame %d FrameTime 0x%08x != SensorTime 0x%08x, jumped %d msec\n",
2405 frame_num - 1,
2406 (unsigned int)frame_sensor_time,
2407 (unsigned int)full_sensor_time,
2408 (int)(5 * ((int64_t)(full_sensor_time - frame_sensor_time) >> 7)));
2409 }
2410 #endif
2411
2412
2413 if (frame_sensor_time_valid) {
2414 mTask.frame_sensortime = full_sensor_time;
2415 } else {
2416 // Dry run if frame_sensortime_valid == false,
2417 // no sample is added this round.
2418 // So let's time travel back to beginning of frame.
2419 mTask.frame_sensortime_valid = true;
2420 mTask.frame_sensortime = full_sensor_time - frame_sensor_time;
2421
2422 // recover states
2423 for (j = FIRST_CONT_SENSOR; j < NUM_CONT_SENSOR; j++) {
2424 // reset all prev_frame_time to invalid values
2425 // they should be so anyway at the first FIFO
2426 mTask.prev_frame_time[j] = ULONG_LONG_MAX;
2427
2428 // recover saved time_delta and pending_delta values
2429 mTask.pending_delta[j] = saved_pending_delta[j];
2430 mTask.time_delta[j] = saved_time_delta[j];
2431 }
2432
2433 DEBUG_PRINT_IF(TIMESTAMP_DBG,
2434 "sensortime invalid: full, frame, task = %llu, %llu, %llu\n",
2435 full_sensor_time,
2436 frame_sensor_time,
2437 mTask.frame_sensortime);
2438
2439 // Parse again with known valid timing.
2440 // This time the sensor events will be committed into event buffer.
2441 return dispatchData();
2442 }
2443
2444 // Invalidate sensor timestamp that didn't get corrected by full_sensor_time,
2445 // so it can't be used as a reference at next FIFO read.
2446 // Use (ULONG_LONG_MAX - 1) to indicate this.
2447 for (j = FIRST_CONT_SENSOR; j < NUM_CONT_SENSOR; j++) {
2448 mTask.prev_frame_time[j] = observed[j] ? full_sensor_time : (ULONG_LONG_MAX - 1);
2449
2450 // sensor can be disabled in the middle of the FIFO, but wait till the FIFO
2451 // end to invalidate prev_frame_time since it's still needed for parsing.
2452 // Also invalidate pending delta just to be safe.
2453 if (!mTask.sensors[j].configed ||
2454 mTask.sensors[j].latency == SENSOR_LATENCY_NODATA) {
2455 mTask.prev_frame_time[j] = ULONG_LONG_MAX;
2456 mTask.pending_delta[j] = false;
2457 }
2458 }
2459 i += 3;
2460 size -= 3;
2461 } else {
2462 size = 0;
2463 }
2464 } else if (fh_param == 2) {
2465 // fifo_input config frame
2466 #if TIMESTAMP_DBG
2467 DEBUG_PRINT("frame %d config change 0x%02x\n", frame_num, buf[i]);
2468 #endif
2469 if (size >= 1) {
2470 for (j = FIRST_CONT_SENSOR; j < NUM_CONT_SENSOR; j++) {
2471 if (buf[i] & (0x01 << (j << 1)) && mTask.pending_delta[j]) {
2472 mTask.pending_delta[j] = false;
2473 mTask.time_delta[j] = mTask.next_delta[j];
2474 #if TIMESTAMP_DBG
2475 DEBUG_PRINT("%s new delta %u\n", mSensorInfo[j].sensorName,
2476 (unsigned int)mTask.time_delta[j]);
2477 #endif
2478 }
2479 }
2480 i++;
2481 size--;
2482 } else {
2483 size = 0;
2484 }
2485 } else {
2486 size = 0; // drop this batch
2487 ERROR_PRINT("Invalid fh_param in control frame\n");
2488 }
2489 } else if (fh_mode == 2) {
2490 // Calcutate candidate frame time (tmp_frame_time):
2491 // 1) When sensor is first enabled, reference from other sensors if possible.
2492 // Otherwise, add the smallest increment to the previous data frame time.
2493 // 2) The newly enabled sensor could only underestimate its
2494 // frame time without reference from other sensors.
2495 // 3) The underestimated frame time of a newly enabled sensor will be corrected
2496 // as soon as it shows up in the same frame with another sensor.
2497 // 4) (prev_frame_time == ULONG_LONG_MAX) means the sensor wasn't enabled.
2498 // 5) (prev_frame_time == ULONG_LONG_MAX -1) means the sensor didn't appear in the last
2499 // data frame of the previous fifo read. So it won't be used as a frame time reference.
2500
2501 tmp_frame_time = 0;
2502 for (j = FIRST_CONT_SENSOR; j < NUM_CONT_SENSOR; j++) {
2503 observed[j] = false; // reset at each data frame
2504 tmp_time[j] = 0;
2505 if ((mTask.prev_frame_time[j] < ULONG_LONG_MAX - 1) && (fh_param & (1 << j))) {
2506 tmp_time[j] = mTask.prev_frame_time[j] + mTask.time_delta[j];
2507 tmp_frame_time = (tmp_time[j] > tmp_frame_time) ? tmp_time[j] : tmp_frame_time;
2508 }
2509 }
2510 tmp_frame_time = (frame_sensor_time + kMinSensorTimeIncrement > tmp_frame_time)
2511 ? (frame_sensor_time + kMinSensorTimeIncrement) : tmp_frame_time;
2512
2513 // regular frame, dispatch data to each sensor's own fifo
2514 #ifdef MAG_SLAVE_PRESENT
2515 if (fh_param & 4) { // have mag data
2516 if (size >= 8) {
2517 if (frame_sensor_time_valid) {
2518 // scale not used
2519 parseRawData(&mTask.sensors[MAG], &buf[i], 0, tmp_frame_time);
2520 #if TIMESTAMP_DBG
2521 if (mTask.prev_frame_time[MAG] == ULONG_LONG_MAX) {
2522 DEBUG_PRINT("mag enabled: frame %d time 0x%08x\n",
2523 frame_num, (unsigned int)tmp_frame_time);
2524 } else if ((tmp_frame_time != tmp_time[MAG]) && (tmp_time[MAG] != 0)) {
2525 DEBUG_PRINT("frame %d mag time: 0x%08x -> 0x%08x, jumped %d msec\n",
2526 frame_num,
2527 (unsigned int)tmp_time[MAG],
2528 (unsigned int)tmp_frame_time,
2529 (int)(5 * ((int64_t)(tmp_frame_time - tmp_time[MAG]) >> 7)));
2530 }
2531 #endif
2532 }
2533 mTask.prev_frame_time[MAG] = tmp_frame_time;
2534 i += 8;
2535 size -= 8;
2536 observed[MAG] = true;
2537 } else {
2538 size = 0;
2539 }
2540 }
2541 #endif
2542 if (fh_param & 2) { // have gyro data
2543 if (size >= 6) {
2544 if (frame_sensor_time_valid) {
2545 parseRawData(&mTask.sensors[GYR], &buf[i], kScale_gyr, tmp_frame_time);
2546 #if TIMESTAMP_DBG
2547 if (mTask.prev_frame_time[GYR] == ULONG_LONG_MAX) {
2548 DEBUG_PRINT("gyr enabled: frame %d time 0x%08x\n",
2549 frame_num, (unsigned int)tmp_frame_time);
2550 } else if ((tmp_frame_time != tmp_time[GYR]) && (tmp_time[GYR] != 0)) {
2551 DEBUG_PRINT("frame %d gyr time: 0x%08x -> 0x%08x, jumped %d msec\n",
2552 frame_num,
2553 (unsigned int)tmp_time[GYR],
2554 (unsigned int)tmp_frame_time,
2555 (int)(5 * ((int64_t)(tmp_frame_time - tmp_time[GYR]) >> 7)));
2556 }
2557 #endif
2558 }
2559 mTask.prev_frame_time[GYR] = tmp_frame_time;
2560 i += 6;
2561 size -= 6;
2562 observed[GYR] = true;
2563 } else {
2564 size = 0;
2565 }
2566 }
2567 if (fh_param & 1) { // have accel data
2568 if (size >= 6) {
2569 if (frame_sensor_time_valid) {
2570 parseRawData(&mTask.sensors[ACC], &buf[i], kScale_acc, tmp_frame_time);
2571 #if TIMESTAMP_DBG
2572 if (mTask.prev_frame_time[ACC] == ULONG_LONG_MAX) {
2573 DEBUG_PRINT("acc enabled: frame %d time 0x%08x\n",
2574 frame_num, (unsigned int)tmp_frame_time);
2575 } else if ((tmp_frame_time != tmp_time[ACC]) && (tmp_time[ACC] != 0)) {
2576 DEBUG_PRINT("frame %d gyr time: 0x%08x -> 0x%08x, jumped %d msec\n",
2577 frame_num,
2578 (unsigned int)tmp_time[ACC],
2579 (unsigned int)tmp_frame_time,
2580 (int)(5 * ((int64_t)(tmp_frame_time - tmp_time[ACC]) >> 7)));
2581 }
2582 #endif
2583 }
2584 mTask.prev_frame_time[ACC] = tmp_frame_time;
2585 i += 6;
2586 size -= 6;
2587 observed[ACC] = true;
2588 } else {
2589 size = 0;
2590 }
2591 }
2592
2593 if (observed[ACC] || observed[GYR])
2594 frame_sensor_time = tmp_frame_time;
2595 #ifdef MAG_SLAVE_PRESENT
2596 else if (observed[MAG])
2597 frame_sensor_time = tmp_frame_time;
2598 #endif
2599 } else {
2600 size = 0; // drop this batch
2601 ERROR_PRINT("Invalid fh_mode %d at 0x%x, data dump:\n", fh_mode, i);
2602 // dump (a) bytes back and (b) bytes forward.
2603 int a = i < 0x80 ? 0 : (i - 0x80) & ~0x0F;
2604 int b = ((i + 0x80 > mTask.xferCnt ? mTask.xferCnt : i + 0x80) + 0x0F) & ~0x0F;
2605 dumpBinary(mTask.dataBuffer, a, b - a);
2606 }
2607 }
2608
2609 //flush data events.
2610 flushAllData();
2611 }
2612
2613 /*
2614 * Read the interrupt type and send corresponding event
2615 * If it's anymo or double tap, also send a single uint32 to indicate which axies
2616 * is this interrupt triggered.
2617 * If it's flat, also send a bit to indicate flat/non-flat position.
2618 * If it's step detector, check if we need to send the total step count.
2619 */
2620 static void int2Handling(void)
2621 {
2622 TDECL();
2623 union EmbeddedDataPoint trigger_axies;
2624 uint8_t int_status_0 = mTask.statusBuffer[1];
2625 uint8_t int_status_1 = mTask.statusBuffer[2];
2626 if (int_status_0 & INT_STEP) {
2627 if (mTask.sensors[STEP].powered) {
2628 DEBUG_PRINT("Detected step\n");
2629 osEnqueueEvt(EVT_SENSOR_STEP, NULL, NULL);
2630 }
2631 if (mTask.sensors[STEPCNT].powered) {
2632 T(pending_step_cnt) = true;
2633 }
2634 }
2635 if ((int_status_0 & INT_ANY_MOTION) && mTask.sensors[ANYMO].powered) {
2636 // bit [0:2] of INT_STATUS[2] is set when anymo is triggered by x, y or
2637 // z axies respectively. bit [3] indicates the slope.
2638 trigger_axies.idata = (mTask.statusBuffer[3] & 0x0f);
2639 DEBUG_PRINT("Detected any motion\n");
2640 osEnqueueEvt(EVT_SENSOR_ANY_MOTION, trigger_axies.vptr, NULL);
2641 }
2642 if ((int_status_0 & INT_DOUBLE_TAP) && mTask.sensors[DTAP].powered) {
2643 // bit [4:6] of INT_STATUS[2] is set when double tap is triggered by
2644 // x, y or z axies respectively. bit [7] indicates the slope.
2645 trigger_axies.idata = ((mTask.statusBuffer[3] & 0xf0) >> 4);
2646 DEBUG_PRINT("Detected double tap\n");
2647 osEnqueueEvt(EVT_SENSOR_DOUBLE_TAP, trigger_axies.vptr, NULL);
2648 }
2649 if ((int_status_0 & INT_FLAT) && mTask.sensors[FLAT].powered) {
2650 // bit [7] of INT_STATUS[3] indicates flat/non-flat position
2651 trigger_axies.idata = ((mTask.statusBuffer[4] & 0x80) >> 7);
2652 DEBUG_PRINT("Detected flat\n");
2653 osEnqueueEvt(EVT_SENSOR_FLAT, trigger_axies.vptr, NULL);
2654 }
2655 if ((int_status_1 & INT_NO_MOTION) && mTask.sensors[NOMO].powered) {
2656 DEBUG_PRINT("Detected no motion\n");
2657 osEnqueueEvt(EVT_SENSOR_NO_MOTION, NULL, NULL);
2658 }
2659 return;
2660 }
2661
2662 static void int2Evt(void)
2663 {
2664 TDECL();
2665 if (trySwitchState(SENSOR_INT_2_HANDLING)) {
2666 // Read the interrupt reg value to determine what interrupts
2667 SPI_READ(BMI160_REG_INT_STATUS_0, 4, &mTask.statusBuffer);
2668 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask, __FUNCTION__);
2669 } else {
2670 // even if we are still in SENSOR_INT_2_HANDLING, the SPI may already finished and we need
2671 // to issue another SPI read to get the latest status
2672 mTask.pending_int[1] = true;
2673 }
2674 }
2675
2676 // bits[6:7] in OFFSET[6] to enable/disable gyro/accel offset.
2677 // bits[0:5] in OFFSET[6] stores the most significant 2 bits of gyro offset at
2678 // its x, y, z axies.
2679 // Calculate the stored gyro offset and compose it with the intended
2680 // enable/disable mode for gyro/accel offset to determine the value for
2681 // OFFSET[6].
2682 static uint8_t offset6Mode(void)
2683 {
2684 uint8_t mode = 0;
2685 if (mTask.sensors[GYR].offset_enable)
2686 mode |= 0x01 << 7;
2687 if (mTask.sensors[ACC].offset_enable)
2688 mode |= 0x01 << 6;
2689 mode |= (mTask.sensors[GYR].offset[2] & 0x0300) >> 4;
2690 mode |= (mTask.sensors[GYR].offset[1] & 0x0300) >> 6;
2691 mode |= (mTask.sensors[GYR].offset[0] & 0x0300) >> 8;
2692 DEBUG_PRINT("OFFSET_6_MODE is: %02x\n", mode);
2693 return mode;
2694 }
2695
2696 static bool saveCalibration()
2697 {
2698 TDECL();
2699 if (trySwitchState(SENSOR_SAVE_CALIBRATION)) {
2700 if (mTask.sensors[ACC].offset_enable) {
2701 SPI_WRITE(BMI160_REG_OFFSET_0, mTask.sensors[ACC].offset[0] & 0xFF, 450);
2702 SPI_WRITE(BMI160_REG_OFFSET_0 + 1, mTask.sensors[ACC].offset[1] & 0xFF, 450);
2703 SPI_WRITE(BMI160_REG_OFFSET_0 + 2, mTask.sensors[ACC].offset[2] & 0xFF, 450);
2704 }
2705 if (mTask.sensors[GYR].offset_enable) {
2706 SPI_WRITE(BMI160_REG_OFFSET_3, mTask.sensors[GYR].offset[0] & 0xFF, 450);
2707 SPI_WRITE(BMI160_REG_OFFSET_3 + 1, mTask.sensors[GYR].offset[1] & 0xFF, 450);
2708 SPI_WRITE(BMI160_REG_OFFSET_3 + 2, mTask.sensors[GYR].offset[2] & 0xFF, 450);
2709 }
2710 SPI_WRITE(BMI160_REG_OFFSET_6, offset6Mode(), 450);
2711 SPI_READ(BMI160_REG_OFFSET_0, 7, &mTask.dataBuffer);
2712 spiBatchTxRx(&mTask.mode, sensorSpiCallback, NULL, __FUNCTION__);
2713 return true;
2714 } else {
2715 DEBUG_PRINT("%s, state != IDLE", __FUNCTION__);
2716 return false;
2717 }
2718 }
2719
2720 static void sendCalibrationResult(uint8_t status, uint8_t sensorType,
2721 int32_t xBias, int32_t yBias, int32_t zBias) {
2722 struct CalibrationData *data = heapAlloc(sizeof(struct CalibrationData));
2723 if (!data) {
2724 osLog(LOG_WARN, "Couldn't alloc cal result pkt");
2725 return;
2726 }
2727
2728 data->header.appId = BMI160_APP_ID;
2729 data->header.dataLen = (sizeof(struct CalibrationData) - sizeof(struct HostHubRawPacket));
2730 data->data_header.msgId = SENSOR_APP_MSG_ID_CAL_RESULT;
2731 data->data_header.sensorType = sensorType;
2732 data->data_header.status = status;
2733
2734 data->xBias = xBias;
2735 data->yBias = yBias;
2736 data->zBias = zBias;
2737
2738 if (!osEnqueueEvtOrFree(EVT_APP_TO_HOST, data, heapFree))
2739 osLog(LOG_WARN, "Couldn't send cal result evt");
2740 }
2741
2742 static void accCalibrationHandling(void)
2743 {
2744 TDECL();
2745 switch (mTask.calibration_state) {
2746 case CALIBRATION_START:
2747 T(mRetryLeft) = RETRY_CNT_CALIBRATION;
2748
2749 // turn ACC to NORMAL mode
2750 SPI_WRITE(BMI160_REG_CMD, 0x11, 50000);
2751
2752 mTask.calibration_state = CALIBRATION_FOC;
2753 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask.sensors[ACC], __FUNCTION__);
2754 break;
2755 case CALIBRATION_FOC:
2756
2757 // set accel range
2758 SPI_WRITE(BMI160_REG_ACC_RANGE, ACC_RANGE_SETTING);
2759
2760 // enable accel fast offset compensation,
2761 // x: 0g, y: 0g, z: 1g
2762 SPI_WRITE(BMI160_REG_FOC_CONF, ACC_FOC_CONFIG);
2763
2764 // start calibration
2765 SPI_WRITE(BMI160_REG_CMD, 0x03, 100000);
2766
2767 // poll the status reg until the calibration finishes.
2768 SPI_READ(BMI160_REG_STATUS, 1, &mTask.statusBuffer, 50000);
2769
2770 mTask.calibration_state = CALIBRATION_WAIT_FOC_DONE;
2771 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask.sensors[ACC], __FUNCTION__);
2772 break;
2773 case CALIBRATION_WAIT_FOC_DONE:
2774 // if the STATUS REG has bit 3 set, it means calbration is done.
2775 // otherwise, check back in 50ms later.
2776 if (mTask.statusBuffer[1] & 0x08) {
2777
2778 //disable FOC
2779 SPI_WRITE(BMI160_REG_FOC_CONF, 0x00);
2780
2781 //read the offset value for accel
2782 SPI_READ(BMI160_REG_OFFSET_0, 3, &mTask.dataBuffer);
2783 mTask.calibration_state = CALIBRATION_SET_OFFSET;
2784 DEBUG_PRINT("FOC set FINISHED!\n");
2785 } else {
2786
2787 // calibration hasn't finished yet, go back to wait for 50ms.
2788 SPI_READ(BMI160_REG_STATUS, 1, &mTask.statusBuffer, 50000);
2789 mTask.calibration_state = CALIBRATION_WAIT_FOC_DONE;
2790 T(mRetryLeft)--;
2791 }
2792 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask.sensors[ACC], __FUNCTION__);
2793
2794 // if calbration hasn't finished after 10 polling on the STATUS reg,
2795 // declare timeout.
2796 if (T(mRetryLeft) == 0) {
2797 mTask.calibration_state = CALIBRATION_TIMEOUT;
2798 }
2799 break;
2800 case CALIBRATION_SET_OFFSET:
2801 mTask.sensors[ACC].offset[0] = mTask.dataBuffer[1];
2802 mTask.sensors[ACC].offset[1] = mTask.dataBuffer[2];
2803 mTask.sensors[ACC].offset[2] = mTask.dataBuffer[3];
2804 // sign extend values
2805 if (mTask.sensors[ACC].offset[0] & 0x80)
2806 mTask.sensors[ACC].offset[0] |= 0xFFFFFF00;
2807 if (mTask.sensors[ACC].offset[1] & 0x80)
2808 mTask.sensors[ACC].offset[1] |= 0xFFFFFF00;
2809 if (mTask.sensors[ACC].offset[2] & 0x80)
2810 mTask.sensors[ACC].offset[2] |= 0xFFFFFF00;
2811
2812 mTask.sensors[ACC].offset_enable = true;
2813 DEBUG_PRINT("ACCELERATION OFFSET is %02x %02x %02x\n",
2814 (unsigned int)mTask.sensors[ACC].offset[0],
2815 (unsigned int)mTask.sensors[ACC].offset[1],
2816 (unsigned int)mTask.sensors[ACC].offset[2]);
2817
2818 sendCalibrationResult(SENSOR_APP_EVT_STATUS_SUCCESS, SENS_TYPE_ACCEL,
2819 mTask.sensors[ACC].offset[0], mTask.sensors[ACC].offset[1],
2820 mTask.sensors[ACC].offset[2]);
2821
2822 // Enable offset compensation for accel
2823 uint8_t mode = offset6Mode();
2824 SPI_WRITE(BMI160_REG_OFFSET_6, mode);
2825
2826 // turn ACC to SUSPEND mode
2827 SPI_WRITE(BMI160_REG_CMD, 0x10, 5000);
2828
2829 mTask.calibration_state = CALIBRATION_DONE;
2830 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask.sensors[ACC], __FUNCTION__);
2831 break;
2832 default:
2833 ERROR_PRINT("Invalid calibration state\n");
2834 break;
2835 }
2836 }
2837
2838 static bool accCalibration(void *cookie)
2839 {
2840 TDECL();
2841 if (!mTask.sensors[ACC].powered && trySwitchState(SENSOR_CALIBRATING)) {
2842 mTask.calibration_state = CALIBRATION_START;
2843 accCalibrationHandling();
2844 return true;
2845 } else {
2846 ERROR_PRINT("cannot calibrate accel because sensor is busy\n");
2847 sendCalibrationResult(SENSOR_APP_EVT_STATUS_BUSY, SENS_TYPE_ACCEL, 0, 0, 0);
2848 return false;
2849 }
2850 }
2851
2852 static bool accCfgData(void *data, void *cookie)
2853 {
2854 struct CfgData {
2855 int32_t hw[3];
2856 float sw[3];
2857 };
2858 struct CfgData *values = data;
2859
2860 mTask.sensors[ACC].offset[0] = values->hw[0];
2861 mTask.sensors[ACC].offset[1] = values->hw[1];
2862 mTask.sensors[ACC].offset[2] = values->hw[2];
2863 mTask.sensors[ACC].offset_enable = true;
2864
2865 #ifdef ACCEL_CAL_ENABLED
2866 accelCalBiasSet(&mTask.acc, values->sw[0], values->sw[1], values->sw[2]);
2867 #endif
2868
2869 INFO_PRINT("accCfgData: data=%02lx, %02lx, %02lx\n",
2870 values->hw[0] & 0xFF, values->hw[1] & 0xFF, values->hw[2] & 0xFF);
2871
2872 if (!saveCalibration()) {
2873 mTask.pending_calibration_save = true;
2874 }
2875
2876 return true;
2877 }
2878
2879 static void sendTestResult(uint8_t status, uint8_t sensorType) {
2880 struct TestResultData *data = heapAlloc(sizeof(struct TestResultData));
2881 if (!data) {
2882 osLog(LOG_WARN, "Couldn't alloc test result packet");
2883 return;
2884 }
2885
2886 data->header.appId = BMI160_APP_ID;
2887 data->header.dataLen = (sizeof(struct TestResultData) - sizeof(struct HostHubRawPacket));
2888 data->data_header.msgId = SENSOR_APP_MSG_ID_TEST_RESULT;
2889 data->data_header.sensorType = sensorType;
2890 data->data_header.status = status;
2891
2892 if (!osEnqueueEvtOrFree(EVT_APP_TO_HOST, data, heapFree))
2893 osLog(LOG_WARN, "Couldn't send test result packet");
2894 }
2895
2896 static void accTestHandling(void)
2897 {
2898 // the minimum absolute differences, according to BMI160 datasheet section
2899 // 2.8.1, are 800 mg for the x and y axes and 400 mg for the z axis
2900 static const int32_t kMinDifferenceXY = (800 * 32767) / 8000;
2901 static const int32_t kMinDifferenceZ = (400 * 32767) / 8000;
2902
2903 int32_t tempTestX, tempTestY, tempTestZ;
2904 int32_t absDiffX, absDiffY, absDiffZ;
2905
2906 TDECL();
2907
2908 switch (mTask.acc_test_state) {
2909 case ACC_TEST_START:
2910 // turn ACC to NORMAL mode
2911 SPI_WRITE(BMI160_REG_CMD, 0x11, 50000);
2912
2913 mTask.acc_test_state = ACC_TEST_CONFIG;
2914 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask.sensors[ACC], __FUNCTION__);
2915 break;
2916
2917 case ACC_TEST_CONFIG:
2918 // set accel conf
2919 SPI_WRITE(BMI160_REG_ACC_CONF, 0x2c);
2920
2921 // set accel range
2922 SPI_WRITE(BMI160_REG_ACC_RANGE, ACC_RANGE_SETTING);
2923
2924 // read stale accel data
2925 SPI_READ(BMI160_REG_DATA_14, 6, &mTask.dataBuffer);
2926
2927 mTask.acc_test_state = ACC_TEST_RUN_0;
2928 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask.sensors[ACC], __FUNCTION__);
2929 break;
2930
2931 case ACC_TEST_RUN_0:
2932 // configure acc_self_test_amp=1, acc_self_test_sign=0, acc_self_test_enable=b01
2933 // wait 50ms for data to be available
2934 SPI_WRITE(BMI160_REG_SELF_TEST, 0x09, 50000);
2935
2936 // read accel data
2937 SPI_READ(BMI160_REG_DATA_14, 6, &mTask.dataBuffer);
2938
2939 mTask.acc_test_state = ACC_TEST_RUN_1;
2940 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask.sensors[ACC], __FUNCTION__);
2941 break;
2942
2943 case ACC_TEST_RUN_1:
2944 // save accel data
2945 mTask.accTestX = *(int16_t*)(mTask.dataBuffer+1);
2946 mTask.accTestY = *(int16_t*)(mTask.dataBuffer+3);
2947 mTask.accTestZ = *(int16_t*)(mTask.dataBuffer+5);
2948
2949 // configure acc_self_test_amp=1, acc_self_test_sign=1, acc_self_test_enable=b01
2950 // wait 50ms for data to be available
2951 SPI_WRITE(BMI160_REG_SELF_TEST, 0x0d, 50000);
2952
2953 // read accel data
2954 SPI_READ(BMI160_REG_DATA_14, 6, &mTask.dataBuffer);
2955
2956 mTask.acc_test_state = ACC_TEST_VERIFY;
2957 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask.sensors[ACC], __FUNCTION__);
2958 break;
2959
2960 case ACC_TEST_VERIFY:
2961 // save accel data
2962 tempTestX = *(int16_t*)(mTask.dataBuffer+1);
2963 tempTestY = *(int16_t*)(mTask.dataBuffer+3);
2964 tempTestZ = *(int16_t*)(mTask.dataBuffer+5);
2965
2966 // calculate the differences between run 0 and run 1
2967 absDiffX = ABS((int32_t)mTask.accTestX - tempTestX);
2968 absDiffY = ABS((int32_t)mTask.accTestY - tempTestY);
2969 absDiffZ = ABS((int32_t)mTask.accTestZ - tempTestZ);
2970
2971 DEBUG_PRINT("accSelfTest diffs: X %d, Y %d, Z %d\n", (int)absDiffX, (int)absDiffY, (int)absDiffZ);
2972
2973 // verify that the differences between run 0 and run 1 are within spec
2974 if (absDiffX >= kMinDifferenceXY && absDiffY >= kMinDifferenceXY && absDiffZ >= kMinDifferenceZ) {
2975 sendTestResult(SENSOR_APP_EVT_STATUS_SUCCESS, SENS_TYPE_ACCEL);
2976 } else {
2977 sendTestResult(SENSOR_APP_EVT_STATUS_ERROR, SENS_TYPE_ACCEL);
2978 }
2979
2980 // turn ACC to SUSPEND mode
2981 SPI_WRITE(BMI160_REG_CMD, 0x10, 5000);
2982
2983 mTask.acc_test_state = ACC_TEST_DONE;
2984 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask.sensors[ACC], __FUNCTION__);
2985 break;
2986
2987 default:
2988 ERROR_PRINT("Invalid accel test state\n");
2989 break;
2990 }
2991 }
2992
2993 static bool accSelfTest(void *cookie)
2994 {
2995 TDECL();
2996 INFO_PRINT("accSelfTest\n");
2997
2998 if (!mTask.sensors[ACC].powered && trySwitchState(SENSOR_TESTING)) {
2999 mTask.acc_test_state = ACC_TEST_START;
3000 accTestHandling();
3001 return true;
3002 } else {
3003 ERROR_PRINT("cannot test accel because sensor is busy\n");
3004 sendTestResult(SENSOR_APP_EVT_STATUS_BUSY, SENS_TYPE_ACCEL);
3005 return false;
3006 }
3007 }
3008
3009 static void gyrCalibrationHandling(void)
3010 {
3011 TDECL();
3012 switch (mTask.calibration_state) {
3013 case CALIBRATION_START:
3014 T(mRetryLeft) = RETRY_CNT_CALIBRATION;
3015
3016 // turn GYR to NORMAL mode
3017 SPI_WRITE(BMI160_REG_CMD, 0x15, 50000);
3018
3019 mTask.calibration_state = CALIBRATION_FOC;
3020 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask.sensors[GYR], __FUNCTION__);
3021 break;
3022 case CALIBRATION_FOC:
3023
3024 // set gyro range to +-1000 deg/sec
3025 SPI_WRITE(BMI160_REG_GYR_RANGE, 0x01);
3026
3027 // enable gyro fast offset compensation
3028 SPI_WRITE(BMI160_REG_FOC_CONF, 0x40);
3029
3030 // start FOC
3031 SPI_WRITE(BMI160_REG_CMD, 0x03, 100000);
3032
3033 // poll the status reg until the calibration finishes.
3034 SPI_READ(BMI160_REG_STATUS, 1, &mTask.statusBuffer, 50000);
3035
3036 mTask.calibration_state = CALIBRATION_WAIT_FOC_DONE;
3037 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask.sensors[GYR], __FUNCTION__);
3038 break;
3039 case CALIBRATION_WAIT_FOC_DONE:
3040
3041 // if the STATUS REG has bit 3 set, it means calbration is done.
3042 // otherwise, check back in 50ms later.
3043 if (mTask.statusBuffer[1] & 0x08) {
3044
3045 // disable gyro fast offset compensation
3046 SPI_WRITE(BMI160_REG_FOC_CONF, 0x00);
3047
3048 //read the offset value for gyro
3049 SPI_READ(BMI160_REG_OFFSET_3, 4, &mTask.dataBuffer);
3050 mTask.calibration_state = CALIBRATION_SET_OFFSET;
3051 DEBUG_PRINT("FOC set FINISHED!\n");
3052 } else {
3053
3054 // calibration hasn't finished yet, go back to wait for 50ms.
3055 SPI_READ(BMI160_REG_STATUS, 1, &mTask.statusBuffer, 50000);
3056 mTask.calibration_state = CALIBRATION_WAIT_FOC_DONE;
3057 T(mRetryLeft)--;
3058 }
3059 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask.sensors[GYR], __FUNCTION__);
3060
3061 // if calbration hasn't finished after 10 polling on the STATUS reg,
3062 // declare timeout.
3063 if (T(mRetryLeft) == 0) {
3064 mTask.calibration_state = CALIBRATION_TIMEOUT;
3065 }
3066 break;
3067 case CALIBRATION_SET_OFFSET:
3068 mTask.sensors[GYR].offset[0] = ((mTask.dataBuffer[4] & 0x03) << 8) | mTask.dataBuffer[1];
3069 mTask.sensors[GYR].offset[1] = ((mTask.dataBuffer[4] & 0x0C) << 6) | mTask.dataBuffer[2];
3070 mTask.sensors[GYR].offset[2] = ((mTask.dataBuffer[4] & 0x30) << 4) | mTask.dataBuffer[3];
3071 // sign extend values
3072 if (mTask.sensors[GYR].offset[0] & 0x200)
3073 mTask.sensors[GYR].offset[0] |= 0xFFFFFC00;
3074 if (mTask.sensors[GYR].offset[1] & 0x200)
3075 mTask.sensors[GYR].offset[1] |= 0xFFFFFC00;
3076 if (mTask.sensors[GYR].offset[2] & 0x200)
3077 mTask.sensors[GYR].offset[2] |= 0xFFFFFC00;
3078
3079 mTask.sensors[GYR].offset_enable = true;
3080 DEBUG_PRINT("GYRO OFFSET is %02x %02x %02x\n",
3081 (unsigned int)mTask.sensors[GYR].offset[0],
3082 (unsigned int)mTask.sensors[GYR].offset[1],
3083 (unsigned int)mTask.sensors[GYR].offset[2]);
3084
3085 sendCalibrationResult(SENSOR_APP_EVT_STATUS_SUCCESS, SENS_TYPE_GYRO,
3086 mTask.sensors[GYR].offset[0], mTask.sensors[GYR].offset[1],
3087 mTask.sensors[GYR].offset[2]);
3088
3089 // Enable offset compensation for gyro
3090 uint8_t mode = offset6Mode();
3091 SPI_WRITE(BMI160_REG_OFFSET_6, mode);
3092
3093 // turn GYR to SUSPEND mode
3094 SPI_WRITE(BMI160_REG_CMD, 0x14, 1000);
3095
3096 mTask.calibration_state = CALIBRATION_DONE;
3097 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask.sensors[GYR], __FUNCTION__);
3098 break;
3099 default:
3100 ERROR_PRINT("Invalid calibration state\n");
3101 break;
3102 }
3103 }
3104
3105 static bool gyrCalibration(void *cookie)
3106 {
3107 TDECL();
3108 if (!mTask.sensors[GYR].powered && trySwitchState(SENSOR_CALIBRATING)) {
3109 mTask.calibration_state = CALIBRATION_START;
3110 gyrCalibrationHandling();
3111 return true;
3112 } else {
3113 ERROR_PRINT("cannot calibrate gyro because sensor is busy\n");
3114 sendCalibrationResult(SENSOR_APP_EVT_STATUS_BUSY, SENS_TYPE_GYRO, 0, 0, 0);
3115 return false;
3116 }
3117 }
3118
3119 static bool gyrCfgData(void *data, void *cookie)
3120 {
3121 TDECL();
3122 const struct AppToSensorHalDataPayload *p = data;
3123 if (p->type == HALINTF_TYPE_GYRO_CAL_BIAS && p->size == sizeof(struct GyroCalBias)) {
3124 const struct GyroCalBias *bias = p->gyroCalBias;
3125 mTask.sensors[GYR].offset[0] = bias->hardwareBias[0];
3126 mTask.sensors[GYR].offset[1] = bias->hardwareBias[1];
3127 mTask.sensors[GYR].offset[2] = bias->hardwareBias[2];
3128 mTask.sensors[GYR].offset_enable = true;
3129 INFO_PRINT("gyrCfgData hw bias: data=%02lx, %02lx, %02lx\n",
3130 bias->hardwareBias[0] & 0xFF,
3131 bias->hardwareBias[1] & 0xFF,
3132 bias->hardwareBias[2] & 0xFF);
3133
3134 #ifdef GYRO_CAL_ENABLED
3135 const float dummy_temperature_celsius = 25.0f;
3136 gyroCalSetBias(&T(gyro_cal), bias->softwareBias[0],
3137 bias->softwareBias[1], bias->softwareBias[2],
3138 dummy_temperature_celsius,
3139 sensorGetTime());
3140 #endif // GYRO_CAL_ENABLED
3141 if (!saveCalibration()) {
3142 T(pending_calibration_save) = true;
3143 }
3144 #if OVERTEMPCAL_ENABLED
3145 } else if (p->type == HALINTF_TYPE_GYRO_OTC_DATA && p->size == sizeof(struct GyroOtcData)) {
3146 handleOtcGyroConfig(data);
3147 #endif // OVERTEMPCAL_ENABLED
3148 } else {
3149 ERROR_PRINT("Unknown gyro config data type 0x%04x, size %d\n", p->type, p->size);
3150 }
3151 return true;
3152 }
3153
3154 static void gyroTestHandling(void)
3155 {
3156 TDECL();
3157
3158 switch (mTask.gyro_test_state) {
3159 case GYRO_TEST_START:
3160 // turn GYR to NORMAL mode
3161 SPI_WRITE(BMI160_REG_CMD, 0x15, 50000);
3162
3163 mTask.gyro_test_state = GYRO_TEST_RUN;
3164 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask.sensors[GYR], __FUNCTION__);
3165 break;
3166
3167 case GYRO_TEST_RUN:
3168 // set gyr_self_test_enable
3169 // wait 50ms to check test status
3170 SPI_WRITE(BMI160_REG_SELF_TEST, 0x10, 50000);
3171
3172 // check gyro self-test result in status register
3173 SPI_READ(BMI160_REG_STATUS, 1, &mTask.statusBuffer);
3174
3175 mTask.gyro_test_state = GYRO_TEST_VERIFY;
3176 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask.sensors[GYR], __FUNCTION__);
3177 break;
3178
3179 case GYRO_TEST_VERIFY:
3180 // gyr_self_test_ok is bit 1
3181 if (mTask.statusBuffer[1] & 0x2) {
3182 sendTestResult(SENSOR_APP_EVT_STATUS_SUCCESS, SENS_TYPE_GYRO);
3183 } else {
3184 sendTestResult(SENSOR_APP_EVT_STATUS_ERROR, SENS_TYPE_GYRO);
3185 }
3186
3187 // turn GYR to SUSPEND mode
3188 SPI_WRITE(BMI160_REG_CMD, 0x14, 1000);
3189
3190 mTask.gyro_test_state = GYRO_TEST_DONE;
3191 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask.sensors[GYR], __FUNCTION__);
3192 break;
3193
3194 default:
3195 ERROR_PRINT("Invalid gyro test state\n");
3196 break;
3197 }
3198 }
3199
3200 static bool gyrSelfTest(void *cookie)
3201 {
3202 TDECL();
3203 INFO_PRINT("gyrSelfTest\n");
3204
3205 if (!mTask.sensors[GYR].powered && trySwitchState(SENSOR_TESTING)) {
3206 mTask.gyro_test_state = GYRO_TEST_START;
3207 gyroTestHandling();
3208 return true;
3209 } else {
3210 ERROR_PRINT("cannot test gyro because sensor is busy\n");
3211 sendTestResult(SENSOR_APP_EVT_STATUS_BUSY, SENS_TYPE_GYRO);
3212 return false;
3213 }
3214 }
3215
3216 #ifdef MAG_SLAVE_PRESENT
3217 static bool magCfgData(void *data, void *cookie)
3218 {
3219 const struct AppToSensorHalDataPayload *p = data;
3220 if (p->type == HALINTF_TYPE_MAG_CAL_BIAS && p->size == sizeof(struct MagCalBias)) {
3221 const struct MagCalBias *d = p->magCalBias;
3222 INFO_PRINT("magCfgData: calibration %ldnT, %ldnT, %ldnT\n",
3223 (int32_t)(d->bias[0] * 1000),
3224 (int32_t)(d->bias[1] * 1000),
3225 (int32_t)(d->bias[2] * 1000));
3226
3227 mTask.moc.x_bias = d->bias[0];
3228 mTask.moc.y_bias = d->bias[1];
3229 mTask.moc.z_bias = d->bias[2];
3230 mTask.magBiasPosted = false;
3231 } else if (p->type == HALINTF_TYPE_MAG_LOCAL_FIELD && p->size == sizeof(struct MagLocalField)) {
3232 const struct MagLocalField *d = p->magLocalField;
3233 INFO_PRINT("magCfgData: local field strength %dnT, dec %ddeg, inc %ddeg\n",
3234 (int)(d->strength * 1000),
3235 (int)(d->declination * 180 / M_PI + 0.5f),
3236 (int)(d->inclination * 180 / M_PI + 0.5f));
3237
3238 // Passing local field information to mag calibration routine
3239 diversityCheckerLocalFieldUpdate(&mTask.moc.diversity_checker, d->strength);
3240
3241 // TODO: pass local field information to rotation vector sensor.
3242 } else {
3243 ERROR_PRINT("magCfgData: unknown type 0x%04x, size %d", p->type, p->size);
3244 }
3245 return true;
3246 }
3247 #endif
3248
3249 #define DEC_OPS(power, firmware, rate, flush) \
3250 .sensorPower = power, \
3251 .sensorFirmwareUpload = firmware, \
3252 .sensorSetRate = rate, \
3253 .sensorFlush = flush
3254
3255 #define DEC_OPS_SEND(power, firmware, rate, flush, send) \
3256 DEC_OPS(power, firmware, rate, flush), \
3257 .sensorSendOneDirectEvt = send
3258
3259 #define DEC_OPS_CAL_CFG_TEST(power, firmware, rate, flush, cal, cfg, test) \
3260 DEC_OPS(power, firmware, rate, flush), \
3261 .sensorCalibrate = cal, \
3262 .sensorCfgData = cfg, \
3263 .sensorSelfTest = test,
3264
3265 #define DEC_OPS_CFG(power, firmware, rate, flush, cfg) \
3266 DEC_OPS(power, firmware, rate, flush), \
3267 .sensorCfgData = cfg
3268
3269 static const struct SensorOps mSensorOps[NUM_OF_SENSOR] =
3270 {
3271 { DEC_OPS_CAL_CFG_TEST(accPower, accFirmwareUpload, accSetRate, accFlush, accCalibration,
3272 accCfgData, accSelfTest) },
3273 { DEC_OPS_CAL_CFG_TEST(gyrPower, gyrFirmwareUpload, gyrSetRate, gyrFlush, gyrCalibration,
3274 gyrCfgData, gyrSelfTest) },
3275 #ifdef MAG_SLAVE_PRESENT
3276 { DEC_OPS_CFG(magPower, magFirmwareUpload, magSetRate, magFlush, magCfgData) },
3277 #endif
3278 { DEC_OPS(stepPower, stepFirmwareUpload, stepSetRate, stepFlush) },
3279 { DEC_OPS(doubleTapPower, doubleTapFirmwareUpload, doubleTapSetRate, doubleTapFlush) },
3280 { DEC_OPS(flatPower, flatFirmwareUpload, flatSetRate, flatFlush) },
3281 { DEC_OPS(anyMotionPower, anyMotionFirmwareUpload, anyMotionSetRate, anyMotionFlush) },
3282 { DEC_OPS(noMotionPower, noMotionFirmwareUpload, noMotionSetRate, noMotionFlush) },
3283 { DEC_OPS_SEND(stepCntPower, stepCntFirmwareUpload, stepCntSetRate, stepCntFlush,
3284 stepCntSendLastData) },
3285 };
3286
3287 static void configEvent(struct BMI160Sensor *mSensor, struct ConfigStat *ConfigData)
3288 {
3289 int i;
3290
3291 for (i = 0; &mTask.sensors[i] != mSensor; i++) ;
3292
3293 if (ConfigData->enable == 0 && mSensor->powered)
3294 mSensorOps[i].sensorPower(false, (void *)i);
3295 else if (ConfigData->enable == 1 && !mSensor->powered)
3296 mSensorOps[i].sensorPower(true, (void *)i);
3297 else
3298 mSensorOps[i].sensorSetRate(ConfigData->rate, ConfigData->latency, (void *)i);
3299 }
3300
3301 static void timeSyncEvt(uint32_t evtGeneration, bool evtDataValid)
3302 {
3303 TDECL();
3304 // not processing pending events
3305 if (evtDataValid) {
3306 // stale event
3307 if (evtGeneration != mTask.poll_generation)
3308 return;
3309
3310 mTask.active_poll_generation = mTask.poll_generation;
3311 }
3312
3313 if (trySwitchState(SENSOR_TIME_SYNC)) {
3314 SPI_READ(BMI160_REG_SENSORTIME_0, 3, &mTask.sensorTimeBuffer);
3315 SPI_READ(BMI160_REG_TEMPERATURE_0, 2, &mTask.temperatureBuffer);
3316 // sensorSpiCallback schedules a private event, which can be delayed
3317 // by other long-running tasks.
3318 // Take the rtc time now so it matches the current sensorTime register
3319 // reading.
3320 mTask.timesync_rtc_time = sensorGetTime();
3321 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask, __FUNCTION__);
3322 } else {
3323 mTask.pending_time_sync = true;
3324 }
3325 }
3326
3327 static void processPendingEvt(void)
3328 {
3329 TDECL();
3330 enum SensorIndex i;
3331 if (mTask.pending_int[0]) {
3332 mTask.pending_int[0] = false;
3333 initiateFifoRead(false /*isInterruptContext*/);
3334 return;
3335 }
3336 if (mTask.pending_int[1]) {
3337 mTask.pending_int[1] = false;
3338 int2Evt();
3339 return;
3340 }
3341 if (mTask.pending_time_sync) {
3342 mTask.pending_time_sync = false;
3343 timeSyncEvt(0, false);
3344 return;
3345 }
3346 for (i = FIRST_CONT_SENSOR; i < NUM_OF_SENSOR; i++) {
3347 if (mTask.pending_config[i]) {
3348 mTask.pending_config[i] = false;
3349 configEvent(&mTask.sensors[i], &mTask.sensors[i].pConfig);
3350 return;
3351 }
3352 }
3353 if (mTask.sensors[STEPCNT].flush > 0 || T(pending_step_cnt)) {
3354 T(pending_step_cnt) = !stepCntFlushGetData() && T(pending_step_cnt);
3355 return;
3356 }
3357 if (mTask.pending_calibration_save) {
3358 mTask.pending_calibration_save = !saveCalibration();
3359 return;
3360 }
3361
3362 #ifdef OVERTEMPCAL_ENABLED
3363 // tasks that do not initiate SPI transaction
3364 if (T(otcGyroUpdateBuffer).sendToHostRequest) {
3365 sendOtcGyroUpdate();
3366 }
3367 #endif
3368 }
3369
3370 static void sensorInit(void)
3371 {
3372 TDECL();
3373 switch (mTask.init_state) {
3374 case RESET_BMI160:
3375 DEBUG_PRINT("Performing soft reset\n");
3376 // perform soft reset and wait for 100ms
3377 SPI_WRITE(BMI160_REG_CMD, 0xb6, 100000);
3378 // dummy reads after soft reset, wait 100us
3379 SPI_READ(BMI160_REG_MAGIC, 1, &mTask.dataBuffer, 100);
3380
3381 mTask.init_state = INIT_BMI160;
3382 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask, "sensorInit RESET" );
3383 break;
3384
3385 case INIT_BMI160:
3386 // Read any pending interrupts to reset them
3387 SPI_READ(BMI160_REG_INT_STATUS_0, 4, &mTask.statusBuffer);
3388
3389 // disable accel, gyro and mag data in FIFO, enable header, enable time.
3390 SPI_WRITE(BMI160_REG_FIFO_CONFIG_1, 0x12, 450);
3391
3392 // set the watermark to 24 byte
3393 SPI_WRITE(BMI160_REG_FIFO_CONFIG_0, 0x06, 450);
3394
3395 // FIFO watermark and fifo_full interrupt enabled
3396 SPI_WRITE(BMI160_REG_INT_EN_0, 0x00, 450);
3397 SPI_WRITE(BMI160_REG_INT_EN_1, 0x60, 450);
3398 SPI_WRITE(BMI160_REG_INT_EN_2, 0x00, 450);
3399
3400 // INT1, INT2 enabled, high-edge (push-pull) triggered.
3401 SPI_WRITE(BMI160_REG_INT_OUT_CTRL, 0xbb, 450);
3402
3403 // INT1, INT2 input disabled, interrupt mode: non-latched
3404 SPI_WRITE(BMI160_REG_INT_LATCH, 0x00, 450);
3405
3406 // Map data interrupts (e.g., FIFO) to INT1 and physical
3407 // interrupts (e.g., any motion) to INT2
3408 SPI_WRITE(BMI160_REG_INT_MAP_0, 0x00, 450);
3409 SPI_WRITE(BMI160_REG_INT_MAP_1, 0xE1, 450);
3410 SPI_WRITE(BMI160_REG_INT_MAP_2, 0xFF, 450);
3411
3412 // Use pre-filtered data for tap interrupt
3413 SPI_WRITE(BMI160_REG_INT_DATA_0, 0x08);
3414
3415 // Disable PMU_TRIGGER
3416 SPI_WRITE(BMI160_REG_PMU_TRIGGER, 0x00, 450);
3417
3418 // tell gyro and accel to NOT use the FOC offset.
3419 mTask.sensors[ACC].offset_enable = false;
3420 mTask.sensors[GYR].offset_enable = false;
3421 SPI_WRITE(BMI160_REG_OFFSET_6, offset6Mode(), 450);
3422
3423 // initial range for accel and gyro (+-1000 degree).
3424 SPI_WRITE(BMI160_REG_ACC_RANGE, ACC_RANGE_SETTING, 450);
3425 SPI_WRITE(BMI160_REG_GYR_RANGE, 0x01, 450);
3426
3427 // Reset step counter
3428 SPI_WRITE(BMI160_REG_CMD, 0xB2, 10000);
3429 // Reset interrupt
3430 SPI_WRITE(BMI160_REG_CMD, 0xB1, 10000);
3431 // Reset fifo
3432 SPI_WRITE(BMI160_REG_CMD, 0xB0, 10000);
3433
3434 #ifdef MAG_SLAVE_PRESENT
3435 mTask.init_state = INIT_MAG;
3436 mTask.mag_state = MAG_SET_START;
3437 #else
3438 // no mag connected to secondary interface
3439 mTask.init_state = INIT_ON_CHANGE_SENSORS;
3440 #endif
3441 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask, "sensorInit INIT");
3442 break;
3443
3444 case INIT_MAG:
3445 // Don't check statusBuffer if we are just starting mag config
3446 if (mTask.mag_state == MAG_SET_START) {
3447 T(mRetryLeft) = RETRY_CNT_MAG;
3448 magConfig();
3449 } else if (mTask.mag_state < MAG_SET_DATA && mTask.statusBuffer[1] & 0x04) {
3450 // fixme: poll_until to reduce states
3451 // fixme: check should be done before SPI_READ in MAG_READ
3452 SPI_READ(BMI160_REG_STATUS, 1, &mTask.statusBuffer, 1000);
3453 if (--T(mRetryLeft) == 0) {
3454 ERROR_PRINT("INIT_MAG failed\n");
3455 // fixme: duplicate suspend mag here
3456 mTask.mag_state = MAG_INIT_FAILED;
3457 mTask.init_state = INIT_ON_CHANGE_SENSORS;
3458 }
3459 } else {
3460 T(mRetryLeft) = RETRY_CNT_MAG;
3461 magConfig();
3462 }
3463
3464 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask, "sensorInit INIT_MAG");
3465 break;
3466
3467 case INIT_ON_CHANGE_SENSORS:
3468 // configure any_motion and no_motion for 50Hz accel samples
3469 configMotion(MOTION_ODR);
3470
3471 // select no_motion over slow_motion
3472 // select any_motion over significant motion
3473 SPI_WRITE(BMI160_REG_INT_MOTION_3, 0x15, 450);
3474
3475 // int_tap_quiet=30ms, int_tap_shock=75ms, int_tap_dur=150ms
3476 SPI_WRITE(BMI160_REG_INT_TAP_0, 0x42, 450);
3477
3478 // int_tap_th = 7 * 250 mg (8-g range)
3479 SPI_WRITE(BMI160_REG_INT_TAP_1, TAP_THRESHOLD, 450);
3480
3481 // config step detector
3482 #ifdef BMI160_STEP_COUNT_MODE_SENSITIVE
3483 SPI_WRITE(BMI160_REG_STEP_CONF_0, 0x2D, 450);
3484 SPI_WRITE(BMI160_REG_STEP_CONF_1, 0x02, 450);
3485 #else
3486 SPI_WRITE(BMI160_REG_STEP_CONF_0, 0x15, 450);
3487 SPI_WRITE(BMI160_REG_STEP_CONF_1, 0x03, 450);
3488 #endif
3489
3490 // int_flat_theta = 44.8 deg * (16/64) = 11.2 deg
3491 SPI_WRITE(BMI160_REG_INT_FLAT_0, 0x10, 450);
3492
3493 // int_flat_hold_time = (640 msec)
3494 // int_flat_hy = 44.8 * 4 / 64 = 2.8 deg
3495 SPI_WRITE(BMI160_REG_INT_FLAT_1, 0x14, 450);
3496
3497 mTask.init_state = INIT_DONE;
3498 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask, "sensorInit INIT_ONC");
3499 break;
3500
3501 default:
3502 INFO_PRINT("Invalid init_state.\n");
3503 }
3504 }
3505
3506 static void handleSpiDoneEvt(const void* evtData)
3507 {
3508 TDECL();
3509 struct BMI160Sensor *mSensor;
3510 uint64_t SensorTime;
3511 int16_t temperature16;
3512 int i;
3513 bool returnIdle = false;
3514
3515 switch (GET_STATE()) {
3516 case SENSOR_BOOT:
3517 SET_STATE(SENSOR_VERIFY_ID);
3518 // dummy reads after boot, wait 100us
3519 SPI_READ(BMI160_REG_MAGIC, 1, &mTask.statusBuffer, 100);
3520 // read the device ID for bmi160
3521 SPI_READ(BMI160_REG_ID, 1, &mTask.dataBuffer);
3522 spiBatchTxRx(&mTask.mode, sensorSpiCallback, &mTask, "spiDone SENSOR_BOOT");
3523 break;
3524 case SENSOR_VERIFY_ID:
3525 if (mTask.dataBuffer[1] != BMI160_ID) {
3526 T(mRetryLeft) --;
3527 ERROR_PRINT("failed id match: %02x\n", mTask.dataBuffer[1]);
3528 if (T(mRetryLeft) == 0)
3529 break;
3530 // For some reason the first ID read will fail to get the
3531 // correct value. need to retry a few times.
3532 SET_STATE(SENSOR_BOOT);
3533 if (timTimerSet(100000000, 100, 100, sensorTimerCallback, NULL, true) == 0)
3534 ERROR_PRINT("Couldn't get a timer to verify ID\n");
3535 break;
3536 } else {
3537 INFO_PRINT("detected\n");
3538 SET_STATE(SENSOR_INITIALIZING);
3539 mTask.init_state = RESET_BMI160;
3540 sensorInit();
3541 break;
3542 }
3543 case SENSOR_INITIALIZING:
3544 if (mTask.init_state == INIT_DONE) {
3545 DEBUG_PRINT("Done initialzing, system IDLE\n");
3546 for (i=0; i<NUM_OF_SENSOR; i++)
3547 sensorRegisterInitComplete(mTask.sensors[i].handle);
3548 // In case other tasks have already requested us before we finish booting up.
3549 returnIdle = true;
3550 } else {
3551 sensorInit();
3552 }
3553 break;
3554 case SENSOR_POWERING_UP:
3555 mSensor = (struct BMI160Sensor *)evtData;
3556 if (mSensor->idx >= FIRST_ONESHOT_SENSOR && ++mTask.active_oneshot_sensor_cnt == 1) {
3557 // if this is the first one-shot sensor to enable, we need
3558 // to request the accel at 50Hz.
3559 sensorRequest(mTask.tid, mTask.sensors[ACC].handle, SENSOR_HZ(50), SENSOR_LATENCY_NODATA);
3560 //DEBUG_PRINT("oneshot on\n");
3561 }
3562 sensorSignalInternalEvt(mSensor->handle, SENSOR_INTERNAL_EVT_POWER_STATE_CHG, 1, 0);
3563 returnIdle = true;
3564 break;
3565 case SENSOR_POWERING_DOWN:
3566 mSensor = (struct BMI160Sensor *)evtData;
3567 if (mSensor->idx >= FIRST_ONESHOT_SENSOR && --mTask.active_oneshot_sensor_cnt == 0) {
3568 // if this is the last one-shot sensor to disable, we need to
3569 // release the accel.
3570 sensorRelease(mTask.tid, mTask.sensors[ACC].handle);
3571 //DEBUG_PRINT("oneshot off\n");
3572 }
3573 sensorSignalInternalEvt(mSensor->handle, SENSOR_INTERNAL_EVT_POWER_STATE_CHG, 0, 0);
3574
3575 if (mTask.pending_dispatch) {
3576 mTask.pending_dispatch = false;
3577 dispatchData();
3578 }
3579 returnIdle = true;
3580 break;
3581 case SENSOR_INT_1_HANDLING:
3582 dispatchData();
3583 sendFlushEvt();
3584 returnIdle = true;
3585 break;
3586 case SENSOR_INT_2_HANDLING:
3587 int2Handling();
3588 returnIdle = true;
3589 break;
3590 case SENSOR_CONFIG_CHANGING:
3591 mSensor = (struct BMI160Sensor *)evtData;
3592 sensorSignalInternalEvt(mSensor->handle,
3593 SENSOR_INTERNAL_EVT_RATE_CHG, mSensor->rate, mSensor->latency);
3594
3595 if (mTask.pending_dispatch) {
3596 mTask.pending_dispatch = false;
3597 dispatchData();
3598 }
3599
3600 returnIdle = true;
3601 break;
3602 case SENSOR_CALIBRATING:
3603 mSensor = (struct BMI160Sensor *)evtData;
3604 if (mTask.calibration_state == CALIBRATION_DONE) {
3605 DEBUG_PRINT("DONE calibration\n");
3606 returnIdle = true;
3607 } else if (mTask.calibration_state == CALIBRATION_TIMEOUT) {
3608 DEBUG_PRINT("Calibration TIMED OUT\n");
3609 sendCalibrationResult(SENSOR_APP_EVT_STATUS_ERROR,
3610 (mSensor->idx == ACC) ? SENS_TYPE_ACCEL : SENS_TYPE_GYRO, 0, 0, 0);
3611 returnIdle = true;
3612 } else if (mSensor->idx == ACC) {
3613 accCalibrationHandling();
3614 } else if (mSensor->idx == GYR) {
3615 gyrCalibrationHandling();
3616 }
3617 break;
3618 case SENSOR_TESTING:
3619 mSensor = (struct BMI160Sensor *)evtData;
3620 if (mSensor->idx == ACC) {
3621 if (mTask.acc_test_state == ACC_TEST_DONE) {
3622 returnIdle = true;
3623 } else {
3624 accTestHandling();
3625 }
3626 } else if (mSensor->idx == GYR) {
3627 if (mTask.gyro_test_state == GYRO_TEST_DONE) {
3628 returnIdle = true;
3629 } else {
3630 gyroTestHandling();
3631 }
3632 }
3633 break;
3634 case SENSOR_STEP_CNT:
3635 sendStepCnt();
3636 returnIdle = true;
3637 break;
3638 case SENSOR_TIME_SYNC:
3639 SensorTime = parseSensortime(mTask.sensorTimeBuffer[1] |
3640 (mTask.sensorTimeBuffer[2] << 8) | (mTask.sensorTimeBuffer[3] << 16));
3641 map_sensortime_to_rtc_time(SensorTime, mTask.timesync_rtc_time);
3642
3643 temperature16 = (mTask.temperatureBuffer[1] | (mTask.temperatureBuffer[2] << 8));
3644 if (temperature16 == 0x8000) {
3645 mTask.tempCelsius = kTempInvalid;
3646 } else {
3647 mTask.tempCelsius = 23.0f + temperature16 * kScale_temp;
3648 mTask.tempTime = sensorGetTime();
3649 }
3650
3651 if (mTask.active_poll_generation == mTask.poll_generation) {
3652 // attach the generation number to event
3653 if (timTimerSet(kTimeSyncPeriodNs, 100, 100, timeSyncCallback,
3654 (void *)mTask.poll_generation, true) == 0)
3655 ERROR_PRINT("Couldn't get a timer for time sync\n");
3656 }
3657
3658 returnIdle = true;
3659 break;
3660 case SENSOR_SAVE_CALIBRATION:
3661 DEBUG_PRINT("SENSOR_SAVE_CALIBRATION: %02x %02x %02x %02x %02x %02x %02x\n",
3662 mTask.dataBuffer[1], mTask.dataBuffer[2], mTask.dataBuffer[3], mTask.dataBuffer[4],
3663 mTask.dataBuffer[5], mTask.dataBuffer[6], mTask.dataBuffer[7]);
3664 returnIdle = true;
3665 break;
3666 default:
3667 break;
3668 }
3669
3670 if (returnIdle) {
3671 SET_STATE(SENSOR_IDLE);
3672 processPendingEvt();
3673 }
3674 }
3675
3676 #ifdef BMI160_USE_I2C
3677 static void i2cCallback(void *cookie, size_t tx, size_t rx, int err);
3678
3679 /* delayed callback */
3680 static void i2cDelayCallback(uint32_t timerId, void *data)
3681 {
3682 i2cCallback(data, 0, 0, 0);
3683 }
3684
3685 static void i2cCallback(void *cookie, size_t tx, size_t rx, int err)
3686 {
3687 TDECL();
3688 uint8_t reg = T(cReg) - 1;
3689 uint32_t delay;
3690
3691 if (err != 0) {
3692 ERROR_PRINT("i2c error (tx: %d, rx: %d, err: %d)\n", tx, rx, err);
3693 } else { /* delay callback if it is the case */
3694 delay = T(packets[reg]).delay;
3695 T(packets[reg]).delay = 0;
3696 if (delay > 0) {
3697 if (timTimerSet(delay, 0, 50, i2cDelayCallback, cookie, true))
3698 return;
3699 ERROR_PRINT("Cannot do delayed i2cCallback\n");
3700 err = -ENOMEM;
3701 }
3702 }
3703 i2cBatchTxRx(cookie, err);
3704 }
3705
3706 static void i2cBatchTxRx(void *evtData, int err)
3707 {
3708 TDECL();
3709 uint8_t *txBuf;
3710 uint8_t *rxBuf;
3711 uint16_t size;
3712 uint8_t reg;
3713
3714 reg = T(cReg)++;
3715 if (err || (reg >= T(mRegCnt))) // No more packets
3716 goto i2c_batch_end;
3717
3718 // Setup i2c op for next packet
3719 txBuf = (uint8_t *)T(packets[reg]).txBuf;
3720 size = T(packets[reg]).size;
3721 if (txBuf[0] & BMI160_SPI_READ) { // Read op
3722 rxBuf = (uint8_t *)T(packets[reg]).rxBuf + 1;
3723 size--;
3724 err = i2cMasterTxRx(BMI160_I2C_BUS_ID, BMI160_I2C_ADDR, txBuf, 1, rxBuf, size, i2cCallback, evtData);
3725 } else { // Write op
3726 err = i2cMasterTx(BMI160_I2C_BUS_ID, BMI160_I2C_ADDR, txBuf, size, i2cCallback, evtData);
3727 }
3728 if (!err)
3729 return;
3730 ERROR_PRINT("%s: [0x%x] (err: %d)\n", __func__, txBuf[0], err);
3731
3732 i2c_batch_end:
3733 T(mRegCnt) = 0;
3734 if (T(sCallback))
3735 T(sCallback)((void *)evtData, err);
3736 }
3737 #endif
3738
3739 static void handleEvent(uint32_t evtType, const void* evtData)
3740 {
3741 TDECL();
3742 uint64_t currTime;
3743 uint8_t *packet;
3744 float newMagBias;
3745
3746 switch (evtType) {
3747 case EVT_APP_START:
3748 SET_STATE(SENSOR_BOOT);
3749 T(mRetryLeft) = RETRY_CNT_ID;
3750 osEventUnsubscribe(mTask.tid, EVT_APP_START);
3751
3752 // wait 100ms for sensor to boot
3753 currTime = timGetTime();
3754 if (currTime < 100000000ULL) {
3755 if (timTimerSet(100000000 - currTime, 100, 100, sensorTimerCallback, NULL, true) == 0)
3756 ERROR_PRINT("Couldn't get a timer for boot delay\n");
3757 break;
3758 }
3759 /* We have already been powered on long enough - fall through */
3760 case EVT_SPI_DONE:
3761 handleSpiDoneEvt(evtData);
3762 break;
3763
3764 case EVT_APP_FROM_HOST:
3765 packet = (uint8_t*)evtData;
3766 if (packet[0] == sizeof(float)) {
3767 memcpy(&newMagBias, packet+1, sizeof(float));
3768 #ifdef MAG_SLAVE_PRESENT
3769 magCalAddBias(&mTask.moc, (mTask.last_charging_bias_x - newMagBias), 0.0, 0.0);
3770 #endif
3771 mTask.last_charging_bias_x = newMagBias;
3772 mTask.magBiasPosted = false;
3773 }
3774 break;
3775
3776 case EVT_SENSOR_INTERRUPT_1:
3777 initiateFifoRead(false /*isInterruptContext*/);
3778 break;
3779 case EVT_SENSOR_INTERRUPT_2:
3780 int2Evt();
3781 break;
3782 case EVT_TIME_SYNC:
3783 timeSyncEvt((uint32_t)evtData, true);
3784 default:
3785 break;
3786 }
3787 }
3788
3789 static void initSensorStruct(struct BMI160Sensor *sensor, enum SensorIndex idx)
3790 {
3791 sensor->idx = idx;
3792 sensor->powered = false;
3793 sensor->configed = false;
3794 sensor->rate = 0;
3795 sensor->offset[0] = 0;
3796 sensor->offset[1] = 0;
3797 sensor->offset[2] = 0;
3798 sensor->latency = 0;
3799 sensor->data_evt = NULL;
3800 sensor->flush = 0;
3801 sensor->prev_rtc_time = 0;
3802 }
3803
3804 static bool startTask(uint32_t task_id)
3805 {
3806 TDECL();
3807 enum SensorIndex i;
3808 size_t slabSize;
3809
3810 time_init();
3811
3812 T(tid) = task_id;
3813
3814 T(Int1) = gpioRequest(BMI160_INT1_PIN);
3815 T(Irq1) = BMI160_INT1_IRQ;
3816 T(Isr1).func = bmi160Isr1;
3817 T(Int2) = gpioRequest(BMI160_INT2_PIN);
3818 T(Irq2) = BMI160_INT2_IRQ;
3819 T(Isr2).func = bmi160Isr2;
3820 T(pending_int[0]) = false;
3821 T(pending_int[1]) = false;
3822 T(pending_step_cnt) = false;
3823 T(pending_dispatch) = false;
3824 T(frame_sensortime_valid) = false;
3825 T(poll_generation) = 0;
3826 T(tempCelsius) = kTempInvalid;
3827 T(tempTime) = 0;
3828
3829 T(mode).speed = BMI160_SPI_SPEED_HZ;
3830 T(mode).bitsPerWord = 8;
3831 T(mode).cpol = SPI_CPOL_IDLE_HI;
3832 T(mode).cpha = SPI_CPHA_TRAILING_EDGE;
3833 T(mode).nssChange = true;
3834 T(mode).format = SPI_FORMAT_MSB_FIRST;
3835 T(cs) = BMI160_SPI_CS_PIN;
3836
3837 T(watermark) = 0;
3838
3839 #ifdef BMI160_USE_I2C
3840 i2cMasterRequest(BMI160_I2C_BUS_ID, BMI160_I2C_SPEED);
3841 #else
3842 spiMasterRequest(BMI160_SPI_BUS_ID, &T(spiDev));
3843 #endif
3844
3845 for (i = FIRST_CONT_SENSOR; i < NUM_OF_SENSOR; i++) {
3846 initSensorStruct(&T(sensors[i]), i);
3847 T(sensors[i]).handle = sensorRegister(&mSensorInfo[i], &mSensorOps[i], NULL, false);
3848 T(pending_config[i]) = false;
3849 }
3850
3851 osEventSubscribe(mTask.tid, EVT_APP_START);
3852
3853 #ifdef ACCEL_CAL_ENABLED
3854 // Initializes the accelerometer offset calibration algorithm.
3855 const struct AccelCalParameters accel_cal_parameters = {
3856 MSEC_TO_NANOS(800), // t0
3857 5, // n_s
3858 15, // fx
3859 15, // fxb
3860 15, // fy
3861 15, // fyb
3862 15, // fz
3863 15, // fzb
3864 15, // fle
3865 0.00025f // th
3866 };
3867 accelCalInit(&mTask.acc, &accel_cal_parameters);
3868 #endif // ACCEL_CAL_ENABLED
3869
3870 #ifdef GYRO_CAL_ENABLED
3871 // Initializes the gyroscope offset calibration algorithm.
3872 const struct GyroCalParameters gyro_cal_parameters = {
3873 SEC_TO_NANOS(5), // min_still_duration_nanos
3874 SEC_TO_NANOS(5.9f), // max_still_duration_nanos [see, NOTE 1]
3875 0, // calibration_time_nanos
3876 SEC_TO_NANOS(1.5f), // window_time_duration_nanos
3877 0, // bias_x
3878 0, // bias_y
3879 0, // bias_z
3880 0.95f, // stillness_threshold
3881 MDEG_TO_RAD * 40.0f, // stillness_mean_delta_limit [rad/sec]
3882 7.5e-5f, // gyro_var_threshold [rad/sec]^2
3883 1.5e-5f, // gyro_confidence_delta [rad/sec]^2
3884 4.5e-3f, // accel_var_threshold [m/sec^2]^2
3885 9.0e-4f, // accel_confidence_delta [m/sec^2]^2
3886 5.0f, // mag_var_threshold [uTesla]^2
3887 1.0f, // mag_confidence_delta [uTesla]^2
3888 1.5f, // temperature_delta_limit_celsius
3889 true // gyro_calibration_enable
3890 };
3891 // [NOTE 1]: 'max_still_duration_nanos' is set to 5.9 seconds to achieve a
3892 // max stillness period of 6.0 seconds and avoid buffer boundary conditions
3893 // that could push the max stillness to the next multiple of the analysis
3894 // window length (i.e., 7.5 seconds).
3895 gyroCalInit(&mTask.gyro_cal, &gyro_cal_parameters);
3896
3897 #ifdef OVERTEMPCAL_ENABLED
3898 // Initializes the gyroscope over-temperature offset compensation algorithm.
3899 const struct OverTempCalParameters gyro_otc_parameters = {
3900 MSEC_TO_NANOS(500), // min_temp_update_period_nanos
3901 DAYS_TO_NANOS(2), // age_limit_nanos
3902 0.75f, // delta_temp_per_bin
3903 40.0f * MDEG_TO_RAD, // jump_tolerance
3904 50.0f * MDEG_TO_RAD, // outlier_limit
3905 80.0f * MDEG_TO_RAD, // temp_sensitivity_limit
3906 3.0e3f * MDEG_TO_RAD, // sensor_intercept_limit
3907 0.1f * MDEG_TO_RAD, // significant_offset_change
3908 5, // min_num_model_pts
3909 true // over_temp_enable
3910 };
3911 overTempCalInit(&mTask.over_temp_gyro_cal, &gyro_otc_parameters);
3912
3913 #endif // OVERTEMPCAL_ENABLED
3914 #endif // GYRO_CAL_ENABLED
3915
3916 #ifdef MAG_SLAVE_PRESENT
3917 const struct MagCalParameters mag_cal_parameters = {
3918 3000000, // min_batch_window_in_micros
3919 0.0f, // x_bias
3920 0.0f, // y_bias
3921 0.0f, // z_bias
3922 1.0f, // c00
3923 0.0f, // c01
3924 0.0f, // c02
3925 0.0f, // c10
3926 1.0f, // c11
3927 0.0f, // c12
3928 0.0f, // c20
3929 0.0f, // c21
3930 1.0f // c22
3931 };
3932
3933 // Initializes the magnetometer offset calibration algorithm with diversity
3934 // checker.
3935 const struct DiversityCheckerParameters mag_diversity_parameters = {
3936 6.0f, // var_threshold
3937 10.0f, // max_min_threshold
3938 48.0f, // local_field
3939 0.5f, // threshold_tuning_param
3940 2.552f, // max_distance_tuning_param
3941 8, // min_num_diverse_vectors
3942 1 // max_num_max_distance
3943 };
3944 initMagCal(&mTask.moc, &mag_cal_parameters, &mag_diversity_parameters);
3945 #endif // MAG_SLAVE_PRESENT
3946
3947 slabSize = sizeof(struct TripleAxisDataEvent) +
3948 MAX_NUM_COMMS_EVENT_SAMPLES * sizeof(struct TripleAxisDataPoint);
3949
3950 // each event has 15 samples, with 7 bytes per sample from the fifo.
3951 // the fifo size is 1K.
3952 // 20 slabs because some slabs may only hold 1-2 samples.
3953 // XXX: this consumes too much memeory, need to optimize
3954 T(mDataSlab) = slabAllocatorNew(slabSize, 4, 20);
3955 if (!T(mDataSlab)) {
3956 ERROR_PRINT("slabAllocatorNew() failed\n");
3957 return false;
3958 }
3959 T(mWbufCnt) = 0;
3960 T(mRegCnt) = 0;
3961 #ifdef BMI160_USE_I2C
3962 T(cReg) = 0;
3963 #endif
3964 T(spiInUse) = false;
3965
3966 T(interrupt_enable_0) = 0x00;
3967 T(interrupt_enable_2) = 0x00;
3968
3969 // initialize the last bmi160 time to be ULONG_MAX, so that we know it's
3970 // not valid yet.
3971 T(last_sensortime) = 0;
3972 T(frame_sensortime) = ULONG_LONG_MAX;
3973
3974 // it's ok to leave interrupt open all the time.
3975 enableInterrupt(T(Int1), T(Irq1), &T(Isr1));
3976 enableInterrupt(T(Int2), T(Irq2), &T(Isr2));
3977
3978 return true;
3979 }
3980
3981 static void endTask(void)
3982 {
3983 TDECL();
3984 #ifdef MAG_SLAVE_PRESENT
3985 magCalDestroy(&mTask.moc);
3986 #endif
3987 #ifdef ACCEL_CAL_ENABLED
3988 accelCalDestroy(&mTask.acc);
3989 #endif
3990 slabAllocatorDestroy(T(mDataSlab));
3991 #ifndef BMI160_USE_I2C
3992 spiMasterRelease(mTask.spiDev);
3993 #endif
3994
3995 // disable and release interrupt.
3996 disableInterrupt(mTask.Int1, mTask.Irq1, &mTask.Isr1);
3997 disableInterrupt(mTask.Int2, mTask.Irq2, &mTask.Isr2);
3998 gpioRelease(mTask.Int1);
3999 gpioRelease(mTask.Int2);
4000 }
4001
4002 /**
4003 * Parse BMI160 FIFO frame without side effect.
4004 *
4005 * The major purpose of this function is to determine if FIFO content is received completely (start
4006 * to see invalid headers). If not, return the pointer to the beginning last incomplete frame so
4007 * additional read can use this pointer as start of read buffer.
4008 *
4009 * @param buf buffer location
4010 * @param size size of data to be parsed
4011 *
4012 * @return NULL if the FIFO is received completely; or pointer to the beginning of last incomplete
4013 * frame for additional read.
4014 */
4015 static uint8_t* shallowParseFrame(uint8_t * buf, int size) {
4016 int i = 0;
4017 int iLastFrame = 0; // last valid frame header index
4018
4019 DEBUG_PRINT_IF(DBG_SHALLOW_PARSE, "spf start %p: %x %x %x\n", buf, buf[0], buf[1], buf[2]);
4020 while (size > 0) {
4021 int fh_mode, fh_param;
4022 iLastFrame = i;
4023
4024 if (buf[i] == BMI160_FRAME_HEADER_INVALID) {
4025 // no more data
4026 DEBUG_PRINT_IF(DBG_SHALLOW_PARSE, "spf:at%d=0x80\n", iLastFrame);
4027 return NULL;
4028 } else if (buf[i] == BMI160_FRAME_HEADER_SKIP) {
4029 // artifically added nop frame header, skip
4030 DEBUG_PRINT_IF(DBG_SHALLOW_PARSE, "at %d, skip header\n", i);
4031 i++;
4032 size--;
4033 continue;
4034 }
4035
4036 //++frame_num;
4037
4038 fh_mode = buf[i] >> 6;
4039 fh_param = (buf[i] >> 2) & 0xf;
4040
4041 i++;
4042 size--;
4043
4044 if (fh_mode == 1) {
4045 // control frame.
4046 if (fh_param == 0) {
4047 // skip frame, we skip it (1 byte)
4048 i++;
4049 size--;
4050 DEBUG_PRINT_IF(DBG_SHALLOW_PARSE, "at %d, a skip frame\n", iLastFrame);
4051 } else if (fh_param == 1) {
4052 // sensortime frame (3 bytes)
4053 i += 3;
4054 size -= 3;
4055 DEBUG_PRINT_IF(DBG_SHALLOW_PARSE, "at %d, a sensor_time frame\n", iLastFrame);
4056 } else if (fh_param == 2) {
4057 // fifo_input config frame (1byte)
4058 i++;
4059 size--;
4060 DEBUG_PRINT_IF(DBG_SHALLOW_PARSE, "at %d, a fifo cfg frame\n", iLastFrame);
4061 } else {
4062 size = 0; // drop this batch
4063 DEBUG_PRINT_IF(DBG_SHALLOW_PARSE, "Invalid fh_param in control frame!!\n");
4064 // mark invalid
4065 buf[iLastFrame] = BMI160_FRAME_HEADER_INVALID;
4066 return NULL;
4067 }
4068 } else if (fh_mode == 2) {
4069 // regular frame, dispatch data to each sensor's own fifo
4070 if (fh_param & 4) { // have mag data
4071 i += 8;
4072 size -= 8;
4073 }
4074 if (fh_param & 2) { // have gyro data
4075 i += 6;
4076 size -= 6;
4077 }
4078 if (fh_param & 1) { // have accel data
4079 i += 6;
4080 size -= 6;
4081 }
4082 DEBUG_PRINT_IF(DBG_SHALLOW_PARSE, "at %d, a reg frame acc %d, gyro %d, mag %d\n",
4083 iLastFrame, fh_param &1 ? 1:0, fh_param&2?1:0, fh_param&4?1:0);
4084 } else {
4085 size = 0; // drop the rest of batch
4086 DEBUG_PRINT_IF(DBG_SHALLOW_PARSE, "spf: Invalid fh_mode %d!!\n", fh_mode);
4087 //mark invalid
4088 buf[iLastFrame] = BMI160_FRAME_HEADER_INVALID;
4089 return NULL;
4090 }
4091 }
4092
4093 // there is a partial frame, return where to write next chunck of data
4094 DEBUG_PRINT_IF(DBG_SHALLOW_PARSE, "partial frame ends %p\n", buf + iLastFrame);
4095 return buf + iLastFrame;
4096 }
4097
4098 /**
4099 * Intialize the first read of chunked SPI read sequence.
4100 *
4101 * @param index starting index of the txrxBuffer in which the data will be write into.
4102 */
4103 static void chunkedReadInit_(TASK, int index, int size) {
4104
4105 if (GET_STATE() != SENSOR_INT_1_HANDLING) {
4106 ERROR_PRINT("chunkedReadInit in wrong mode");
4107 return;
4108 }
4109
4110 if (T(mRegCnt)) {
4111 //chunked read are always executed as a single command. This should never happen.
4112 ERROR_PRINT("SPI queue not empty at chunkedReadInit, regcnt = %d", T(mRegCnt));
4113 // In case it did happen, we do not want to write crap to BMI160.
4114 T(mRegCnt) = 0;
4115 }
4116
4117 T(mWbufCnt) = index;
4118 if (T(mWbufCnt) > FIFO_READ_SIZE) {
4119 // drop data to prevent bigger issue
4120 T(mWbufCnt) = 0;
4121 }
4122 T(chunkReadSize) = size > CHUNKED_READ_SIZE ? size : CHUNKED_READ_SIZE;
4123
4124 DEBUG_PRINT_IF(DBG_CHUNKED, "crd %d>>%d\n", T(chunkReadSize), index);
4125 SPI_READ(BMI160_REG_FIFO_DATA, T(chunkReadSize), &T(dataBuffer));
4126 spiBatchTxRx(&T(mode), chunkedReadSpiCallback, _task, __FUNCTION__);
4127 }
4128
4129 /**
4130 * Chunked SPI read callback.
4131 *
4132 * Handles the chunked read logic: issue additional read if necessary, or calls sensorSpiCallback()
4133 * if the entire FIFO is read.
4134 *
4135 * @param cookie extra data
4136 * @param err error
4137 *
4138 * @see sensorSpiCallback()
4139 */
4140 static void chunkedReadSpiCallback(void *cookie, int err) {
4141 TASK = (_Task*) cookie;
4142
4143 T(spiInUse) = false;
4144 DEBUG_PRINT_IF(err !=0 || GET_STATE() != SENSOR_INT_1_HANDLING,
4145 "crcb,e:%d,s:%d", err, (int)GET_STATE());
4146 bool int1 = gpioGet(T(Int1));
4147 if (err != 0) {
4148 DEBUG_PRINT_IF(DBG_CHUNKED, "spi err, crd retry");
4149 // read full fifo length to be safe
4150 chunkedReadInit(0, FIFO_READ_SIZE);
4151 return;
4152 }
4153
4154 *T(dataBuffer) = BMI160_FRAME_HEADER_SKIP; // fill the 0x00/0xff hole at the first byte
4155 uint8_t* end = shallowParseFrame(T(dataBuffer), T(chunkReadSize));
4156
4157 if (end == NULL) {
4158 // if interrupt is still set after read for some reason, set the pending interrupt
4159 // to handle it immediately after data is handled.
4160 T(pending_int[0]) = T(pending_int[0]) || int1;
4161
4162 // recover the buffer and valid data size to make it looks like a single read so that
4163 // real frame parse works properly
4164 T(dataBuffer) = T(txrxBuffer);
4165 T(xferCnt) = FIFO_READ_SIZE;
4166 sensorSpiCallback(cookie, err);
4167 } else {
4168 DEBUG_PRINT_IF(DBG_CHUNKED, "crd cont");
4169 chunkedReadInit(end - T(txrxBuffer), CHUNKED_READ_SIZE);
4170 }
4171 }
4172
4173 /**
4174 * Initiate read of sensor fifo.
4175 *
4176 * If task is in idle state, init chunked FIFO read; otherwise, submit an interrupt message or mark
4177 * the read pending depending if it is called in interrupt context.
4178 *
4179 * @param isInterruptContext true if called from interrupt context; false otherwise.
4180 *
4181 */
4182 static void initiateFifoRead_(TASK, bool isInterruptContext) {
4183 if (trySwitchState(SENSOR_INT_1_HANDLING)) {
4184 // estimate first read size to be watermark + 1 more sample + some extra
4185 int firstReadSize = T(watermark) * 4 + 32; // 1+6+6+8+1+3 + extra = 25 + extra = 32
4186 if (firstReadSize < CHUNKED_READ_SIZE) {
4187 firstReadSize = CHUNKED_READ_SIZE;
4188 }
4189 chunkedReadInit(0, firstReadSize);
4190 } else {
4191 if (isInterruptContext) {
4192 // called from interrupt context, queue event
4193 if (!osEnqueuePrivateEvt(EVT_SENSOR_INTERRUPT_1, _task, NULL, T(tid)))
4194 ERROR_PRINT("initiateFifoRead_: osEnqueuePrivateEvt() failed\n");
4195 } else {
4196 // non-interrupt context, set pending flag, so next time it will be picked up after
4197 // switching back to idle.
4198 // Note: even if we are still in SENSOR_INT_1_HANDLING, the SPI may already finished and
4199 // we need to issue another SPI read to get the latest status.
4200 T(pending_int[0]) = true;
4201 }
4202 }
4203 }
4204
4205 /**
4206 * Calculate fifo size using normalized input.
4207 *
4208 * @param iPeriod normalized period vector
4209 * @param iLatency normalized latency vector
4210 * @param factor vector that contains size factor for each sensor
4211 * @param n size of the vectors
4212 *
4213 * @return max size of FIFO to guarantee latency requirements of all sensors or SIZE_MAX if no
4214 * sensor is active.
4215 */
4216 static size_t calcFifoSize(const int* iPeriod, const int* iLatency, const int* factor, int n) {
4217 int i;
4218
4219 int minLatency = INT_MAX;
4220 for (i = 0; i < n; i++) {
4221 if (iLatency[i] > 0) {
4222 minLatency = iLatency[i] < minLatency ? iLatency[i] : minLatency;
4223 }
4224 }
4225 DEBUG_PRINT_IF(DBG_WM_CALC, "cfifo: min latency %d unit", minLatency);
4226
4227 bool anyActive = false;
4228 size_t s = 0;
4229 size_t head = 0;
4230 for (i = 0; i < n; i++) {
4231 if (iPeriod[i] > 0) {
4232 anyActive = true;
4233 size_t t = minLatency / iPeriod[i];
4234 head = t > head ? t : head;
4235 s += t * factor[i];
4236 DEBUG_PRINT_IF(DBG_WM_CALC, "cfifo %d: s += %d * %d, head = %d", i, t, factor[i], head);
4237 }
4238 }
4239
4240 return anyActive ? head + s : SIZE_MAX;
4241 }
4242
4243 /**
4244 * Calculate the watermark setting from sensor registration information
4245 *
4246 * It is assumed that all sensor periods share a common denominator (true for BMI160) and the
4247 * latency of sensor will be lower bounded by its sampling period.
4248 *
4249 * @return watermark register setting
4250 */
4251 static uint8_t calcWatermark2_(TASK) {
4252 int period[] = {-1, -1, -1};
4253 int latency[] = {-1, -1, -1};
4254 const int factor[] = {6, 6, 8};
4255 int i;
4256
4257 for (i = FIRST_CONT_SENSOR; i < NUM_CONT_SENSOR; ++i) {
4258 if (T(sensors[i]).configed && T(sensors[i]).latency != SENSOR_LATENCY_NODATA) {
4259 period[i - ACC] = SENSOR_HZ((float)WATERMARK_MAX_SENSOR_RATE) / T(sensors[i]).rate;
4260 latency[i - ACC] = U64_DIV_BY_U64_CONSTANT(
4261 T(sensors[i]).latency + WATERMARK_TIME_UNIT_NS/2, WATERMARK_TIME_UNIT_NS);
4262 DEBUG_PRINT_IF(DBG_WM_CALC, "cwm2 %d: f %dHz, l %dus => T %d unit, L %d unit",
4263 i, (int) T(sensors[i]).rate/1024,
4264 (int) U64_DIV_BY_U64_CONSTANT(T(sensors[i]).latency, 1000),
4265 period[i-ACC], latency[i-ACC]);
4266 }
4267 }
4268
4269
4270 size_t watermark = calcFifoSize(period, latency, factor, NUM_CONT_SENSOR) / 4;
4271 DEBUG_PRINT_IF(DBG_WM_CALC, "cwm2: wm = %d", watermark);
4272 watermark = watermark < WATERMARK_MIN ? WATERMARK_MIN : watermark;
4273 watermark = watermark > WATERMARK_MAX ? WATERMARK_MAX : watermark;
4274
4275 return watermark;
4276 }
4277
4278 static bool dumpBinaryPutC(void* p, char c) {
4279 *(*(char**)p)++ = c;
4280 return true;
4281 }
4282
4283 static uint32_t cvprintf_ellipsis(printf_write_c writeF, void* writeD, const char* fmtStr, ...) {
4284 va_list vl;
4285 uint32_t ret;
4286
4287 va_start(vl, fmtStr);
4288 ret = cvprintf(writeF, 0, writeD, fmtStr, vl);
4289 va_end(vl);
4290
4291 return ret;
4292 }
4293
4294 static void dumpBinary(void* buf, unsigned int address, size_t size) {
4295 size_t i, j;
4296 char buffer[5+16*3+1+2]; //5: address, 3:each byte+space, 1: middle space, 1: \n and \0
4297 char* p;
4298
4299 for (i = 0; i < size; ) {
4300 p = buffer;
4301 cvprintf_ellipsis(dumpBinaryPutC, &p, "%08x:", address);
4302 for (j = 0; j < 0x10 && i < size; ++i, ++j) {
4303 if (j == 0x8) {
4304 *p++ = ' ';
4305 }
4306 cvprintf_ellipsis(dumpBinaryPutC, &p, " %02x", ((unsigned char *)buf)[i]);
4307 }
4308 *p = '\0';
4309
4310 osLog(LOG_INFO, "%s\n", buffer);
4311 address += 0x10;
4312 }
4313 }
4314
4315 #ifdef OVERTEMPCAL_ENABLED
4316 static void handleOtcGyroConfig_(TASK, const struct AppToSensorHalDataPayload *data) {
4317 const struct GyroOtcData *d = data->gyroOtcData;
4318
4319 INFO_PRINT("gyrCfgData otc-data: off %d %d %d, t %d, s %d %d %d, i %d %d %d",
4320 (int)(d->lastOffset[0]), (int)(d->lastOffset[1]), (int)(d->lastOffset[2]),
4321 (int)(d->lastTemperature),
4322 (int)(d->sensitivity[0]), (int)(d->sensitivity[1]), (int)(d->sensitivity[2]),
4323 (int)(d->intercept[0]), (int)(d->intercept[1]), (int)(d->intercept[2]));
4324
4325 overTempCalSetModel(&T(over_temp_gyro_cal), d->lastOffset, d->lastTemperature,
4326 sensorGetTime(), d->sensitivity, d->intercept, true /*jumpstart*/);
4327 }
4328
4329 static bool sendOtcGyroUpdate_(TASK) {
4330 int step = 0;
4331 if (atomicCmpXchgByte(&T(otcGyroUpdateBuffer).lock, false, true)) {
4332 ++step;
4333 //fill HostIntfDataBuffer header
4334 struct HostIntfDataBuffer *p = (struct HostIntfDataBuffer *)(&T(otcGyroUpdateBuffer));
4335 p->sensType = SENS_TYPE_INVALID;
4336 p->length = sizeof(struct AppToSensorHalDataPayload) + sizeof(struct GyroOtcData);
4337 p->dataType = HOSTINTF_DATA_TYPE_APP_TO_SENSOR_HAL;
4338 p->interrupt = NANOHUB_INT_NONWAKEUP;
4339
4340 //fill AppToSensorHalDataPayload header
4341 struct AppToSensorHalDataBuffer *q = (struct AppToSensorHalDataBuffer *)p;
4342 q->payload.size = sizeof(struct GyroOtcData);
4343 q->payload.type = HALINTF_TYPE_GYRO_OTC_DATA; // bit-or EVENT_TYPE_BIT_DISCARDABLE
4344 // to make it discardable
4345
4346 // fill payload data
4347 struct GyroOtcData *data = q->payload.gyroOtcData;
4348 uint64_t timestamp;
4349 overTempCalGetModel(&T(over_temp_gyro_cal), data->lastOffset, &data->lastTemperature,
4350 ×tamp, data->sensitivity, data->intercept);
4351 if (osEnqueueEvtOrFree(EVT_APP_TO_SENSOR_HAL_DATA, // bit-or EVENT_TYPE_BIT_DISCARDABLE
4352 // to make event discardable
4353 p, unlockOtcGyroUpdateBuffer)) {
4354 T(otcGyroUpdateBuffer).sendToHostRequest = false;
4355 ++step;
4356 }
4357 }
4358 DEBUG_PRINT("otc gyro update, finished at step %d", step);
4359 return step == 2;
4360 }
4361
4362 static void unlockOtcGyroUpdateBuffer(void *event) {
4363 atomicXchgByte(&(((struct OtcGyroUpdateBuffer*)(event))->lock), false);
4364 }
4365 #endif // OVERTEMPCAL_ENABLED
4366
4367 INTERNAL_APP_INIT(BMI160_APP_ID, BMI160_APP_VERSION, startTask, endTask, handleEvent);
4368