1 /*
2 * Copyright (c) 2012, The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in
12 * the documentation and/or other materials provided with the
13 * distribution.
14 * * Neither the name of Google, Inc. nor the names of its contributors
15 * may be used to endorse or promote products derived from this
16 * software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
21 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
22 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
27 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
28 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <string.h>
35 #include <unistd.h>
36
37 #define MAX_BUF_SIZE 64
38
39 struct freq_info {
40 unsigned freq;
41 long unsigned time;
42 };
43
44 struct cpu_info {
45 long unsigned utime, ntime, stime, itime, iowtime, irqtime, sirqtime;
46 struct freq_info *freqs;
47 int freq_count;
48 };
49
50 #define die(...) { fprintf(stderr, __VA_ARGS__); exit(EXIT_FAILURE); }
51
52 static struct cpu_info old_total_cpu, new_total_cpu, *old_cpus, *new_cpus;
53 static int cpu_count, delay, iterations;
54 static char minimal, aggregate_freq_stats;
55
56 static int get_cpu_count();
57 static int get_cpu_count_from_file(char *filename);
58 static long unsigned get_cpu_total_time(struct cpu_info *cpu);
59 static int get_freq_scales_count(int cpu);
60 static void print_stats();
61 static void print_cpu_stats(char *label, struct cpu_info *new_cpu, struct cpu_info *old_cpu,
62 char print_freq);
63 static void print_freq_stats(struct cpu_info *new_cpu, struct cpu_info *old_cpu);
64 static void read_stats();
65 static void read_freq_stats(int cpu);
66 static char should_aggregate_freq_stats();
67 static char should_print_freq_stats();
68 static void usage(char *cmd);
69
main(int argc,char * argv[])70 int main(int argc, char *argv[]) {
71 struct cpu_info *tmp_cpus, tmp_total_cpu;
72 int i, freq_count;
73
74 delay = 3;
75 iterations = -1;
76 minimal = 0;
77 aggregate_freq_stats = 0;
78
79 for (i = 0; i < argc; i++) {
80 if (!strcmp(argv[i], "-n")) {
81 if (i + 1 >= argc) {
82 fprintf(stderr, "Option -n expects an argument.\n");
83 usage(argv[0]);
84 exit(EXIT_FAILURE);
85 }
86 iterations = atoi(argv[++i]);
87 continue;
88 }
89 if (!strcmp(argv[i], "-d")) {
90 if (i + 1 >= argc) {
91 fprintf(stderr, "Option -d expects an argument.\n");
92 usage(argv[0]);
93 exit(EXIT_FAILURE);
94 }
95 delay = atoi(argv[++i]);
96 continue;
97 }
98 if (!strcmp(argv[i], "-m")) {
99 minimal = 1;
100 }
101 if (!strcmp(argv[i], "-h")) {
102 usage(argv[0]);
103 exit(EXIT_SUCCESS);
104 }
105 }
106
107 cpu_count = get_cpu_count();
108 if (cpu_count < 1) die("Unexpected cpu count\n");
109
110 old_cpus = malloc(sizeof(struct cpu_info) * cpu_count);
111 if (!old_cpus) die("Could not allocate struct cpu_info\n");
112 new_cpus = malloc(sizeof(struct cpu_info) * cpu_count);
113 if (!new_cpus) die("Could not allocate struct cpu_info\n");
114
115 for (i = 0; i < cpu_count; i++) {
116 freq_count = get_freq_scales_count(i);
117 if (freq_count < 1) die("Unexpected frequency scale count\n");
118 old_cpus[i].freq_count = new_cpus[i].freq_count = freq_count;
119 new_cpus[i].freqs = malloc(sizeof(struct freq_info) * new_cpus[i].freq_count);
120 if (!new_cpus[i].freqs) die("Could not allocate struct freq_info\n");
121 old_cpus[i].freqs = malloc(sizeof(struct freq_info) * old_cpus[i].freq_count);
122 if (!old_cpus[i].freqs) die("Could not allocate struct freq_info\n");
123 }
124
125 // Read stats without aggregating freq stats in the total cpu
126 read_stats();
127
128 aggregate_freq_stats = should_aggregate_freq_stats();
129 if (aggregate_freq_stats) {
130 old_total_cpu.freq_count = new_total_cpu.freq_count = new_cpus[0].freq_count;
131 new_total_cpu.freqs = malloc(sizeof(struct freq_info) * new_total_cpu.freq_count);
132 if (!new_total_cpu.freqs) die("Could not allocate struct freq_info\n");
133 old_total_cpu.freqs = malloc(sizeof(struct freq_info) * old_total_cpu.freq_count);
134 if (!old_total_cpu.freqs) die("Could not allocate struct freq_info\n");
135
136 // Read stats again with aggregating freq stats in the total cpu
137 read_stats();
138 }
139
140 while ((iterations == -1) || (iterations-- > 0)) {
141 // Swap new and old cpu buffers;
142 tmp_total_cpu = old_total_cpu;
143 old_total_cpu = new_total_cpu;
144 new_total_cpu = tmp_total_cpu;
145
146 tmp_cpus = old_cpus;
147 old_cpus = new_cpus;
148 new_cpus = tmp_cpus;
149
150 sleep(delay);
151 read_stats();
152 print_stats();
153 }
154
155 // Clean up
156 if (aggregate_freq_stats) {
157 free(new_total_cpu.freqs);
158 free(old_total_cpu.freqs);
159 }
160 for (i = 0; i < cpu_count; i++) {
161 free(new_cpus[i].freqs);
162 free(old_cpus[i].freqs);
163 }
164 free(new_cpus);
165 free(old_cpus);
166
167 return 0;
168 }
169
170 /*
171 * Get the number of CPUs of the system.
172 *
173 * Uses the two files /sys/devices/system/cpu/present and
174 * /sys/devices/system/cpu/online to determine the number of CPUs. Expects the
175 * format of both files to be either 0 or 0-N where N+1 is the number of CPUs.
176 *
177 * Exits if the present CPUs is not equal to the online CPUs
178 */
get_cpu_count()179 static int get_cpu_count() {
180 int cpu_count = get_cpu_count_from_file("/sys/devices/system/cpu/present");
181 if (cpu_count != get_cpu_count_from_file("/sys/devices/system/cpu/online")) {
182 die("present cpus != online cpus\n");
183 }
184 return cpu_count;
185 }
186
187 /*
188 * Get the number of CPUs from a given filename.
189 */
get_cpu_count_from_file(char * filename)190 static int get_cpu_count_from_file(char *filename) {
191 FILE *file;
192 char line[MAX_BUF_SIZE];
193 int cpu_count;
194
195 file = fopen(filename, "r");
196 if (!file) die("Could not open %s\n", filename);
197 if (!fgets(line, MAX_BUF_SIZE, file)) die("Could not get %s contents\n", filename);
198 fclose(file);
199
200 if (strcmp(line, "0\n") == 0) {
201 return 1;
202 }
203
204 if (1 == sscanf(line, "0-%d\n", &cpu_count)) {
205 return cpu_count + 1;
206 }
207
208 die("Unexpected input in file %s (%s).\n", filename, line);
209 return -1;
210 }
211
212 /*
213 * Get the number of frequency states a given CPU can be scaled to.
214 */
get_freq_scales_count(int cpu)215 static int get_freq_scales_count(int cpu) {
216 FILE *file;
217 char filename[MAX_BUF_SIZE];
218 long unsigned freq;
219 int count = 0;
220
221 sprintf(filename, "/sys/devices/system/cpu/cpu%d/cpufreq/stats/time_in_state", cpu);
222 file = fopen(filename, "r");
223 if (!file) die("Could not open %s\n", filename);
224 do {
225 freq = 0;
226 fscanf(file, "%lu %*d\n", &freq);
227 if (freq) count++;
228 } while(freq);
229 fclose(file);
230
231 return count;
232 }
233
234 /*
235 * Read the CPU and frequency stats for all cpus.
236 */
read_stats()237 static void read_stats() {
238 FILE *file;
239 char scanline[MAX_BUF_SIZE];
240 int i;
241
242 file = fopen("/proc/stat", "r");
243 if (!file) die("Could not open /proc/stat.\n");
244 fscanf(file, "cpu %lu %lu %lu %lu %lu %lu %lu %*d %*d %*d\n",
245 &new_total_cpu.utime, &new_total_cpu.ntime, &new_total_cpu.stime, &new_total_cpu.itime,
246 &new_total_cpu.iowtime, &new_total_cpu.irqtime, &new_total_cpu.sirqtime);
247 if (aggregate_freq_stats) {
248 for (i = 0; i < new_total_cpu.freq_count; i++) {
249 new_total_cpu.freqs[i].time = 0;
250 }
251 }
252
253 for (i = 0; i < cpu_count; i++) {
254 sprintf(scanline, "cpu%d %%lu %%lu %%lu %%lu %%lu %%lu %%lu %%*d %%*d %%*d\n", i);
255 fscanf(file, scanline, &new_cpus[i].utime, &new_cpus[i].ntime, &new_cpus[i].stime,
256 &new_cpus[i].itime, &new_cpus[i].iowtime, &new_cpus[i].irqtime,
257 &new_cpus[i].sirqtime);
258 read_freq_stats(i);
259 }
260 fclose(file);
261 }
262
263 /*
264 * Read the frequency stats for a given cpu.
265 */
read_freq_stats(int cpu)266 static void read_freq_stats(int cpu) {
267 FILE *file;
268 char filename[MAX_BUF_SIZE];
269 int i;
270
271 sprintf(filename, "/sys/devices/system/cpu/cpu%d/cpufreq/stats/time_in_state", cpu);
272 file = fopen(filename, "r");
273 for (i = 0; i < new_cpus[cpu].freq_count; i++) {
274 if (file) {
275 fscanf(file, "%u %lu\n", &new_cpus[cpu].freqs[i].freq,
276 &new_cpus[cpu].freqs[i].time);
277 } else {
278 /* The CPU has been off lined for some reason */
279 new_cpus[cpu].freqs[i].freq = old_cpus[cpu].freqs[i].freq;
280 new_cpus[cpu].freqs[i].time = old_cpus[cpu].freqs[i].time;
281 }
282 if (aggregate_freq_stats) {
283 new_total_cpu.freqs[i].freq = new_cpus[cpu].freqs[i].freq;
284 new_total_cpu.freqs[i].time += new_cpus[cpu].freqs[i].time;
285 }
286 }
287 if (file)
288 fclose(file);
289 }
290
291 /*
292 * Get the sum of the cpu time from all categories.
293 */
get_cpu_total_time(struct cpu_info * cpu)294 static long unsigned get_cpu_total_time(struct cpu_info *cpu) {
295 return (cpu->utime + cpu->ntime + cpu->stime + cpu->itime + cpu->iowtime + cpu->irqtime +
296 cpu->sirqtime);
297 }
298
299 /*
300 * Print the stats for all CPUs.
301 */
print_stats()302 static void print_stats() {
303 char label[8];
304 int i;
305 char print_freq;
306
307 print_freq = should_print_freq_stats();
308
309 print_cpu_stats("Total", &new_total_cpu, &old_total_cpu, 1);
310 for (i = 0; i < cpu_count; i++) {
311 sprintf(label, "cpu%d", i);
312 print_cpu_stats(label, &new_cpus[i], &old_cpus[i], print_freq);
313 }
314 printf("\n");
315 }
316
317 /*
318 * Print the stats for a single CPU.
319 */
print_cpu_stats(char * label,struct cpu_info * new_cpu,struct cpu_info * old_cpu,char print_freq)320 static void print_cpu_stats(char *label, struct cpu_info *new_cpu, struct cpu_info *old_cpu,
321 char print_freq) {
322 long int total_delta_time;
323
324 if (!minimal) {
325 total_delta_time = get_cpu_total_time(new_cpu) - get_cpu_total_time(old_cpu);
326 printf("%s: User %ld + Nice %ld + Sys %ld + Idle %ld + IOW %ld + IRQ %ld + SIRQ %ld = "
327 "%ld\n", label,
328 new_cpu->utime - old_cpu->utime,
329 new_cpu->ntime - old_cpu->ntime,
330 new_cpu->stime - old_cpu->stime,
331 new_cpu->itime - old_cpu->itime,
332 new_cpu->iowtime - old_cpu->iowtime,
333 new_cpu->irqtime - old_cpu->irqtime,
334 new_cpu->sirqtime - old_cpu->sirqtime,
335 total_delta_time);
336 if (print_freq) {
337 print_freq_stats(new_cpu, old_cpu);
338 }
339 } else {
340 printf("%s,%ld,%ld,%ld,%ld,%ld,%ld,%ld", label,
341 new_cpu->utime - old_cpu->utime,
342 new_cpu->ntime - old_cpu->ntime,
343 new_cpu->stime - old_cpu->stime,
344 new_cpu->itime - old_cpu->itime,
345 new_cpu->iowtime - old_cpu->iowtime,
346 new_cpu->irqtime - old_cpu->irqtime,
347 new_cpu->sirqtime - old_cpu->sirqtime);
348 print_freq_stats(new_cpu, old_cpu);
349 printf("\n");
350 }
351 }
352
353 /*
354 * Print the CPU stats for a single CPU.
355 */
print_freq_stats(struct cpu_info * new_cpu,struct cpu_info * old_cpu)356 static void print_freq_stats(struct cpu_info *new_cpu, struct cpu_info *old_cpu) {
357 long int delta_time, total_delta_time;
358 int i;
359
360 if (new_cpu->freq_count > 0) {
361 if (!minimal) {
362 total_delta_time = 0;
363 printf(" ");
364 for (i = 0; i < new_cpu->freq_count; i++) {
365 delta_time = new_cpu->freqs[i].time - old_cpu->freqs[i].time;
366 total_delta_time += delta_time;
367 printf("%ukHz %ld", new_cpu->freqs[i].freq, delta_time);
368 if (i + 1 != new_cpu->freq_count) {
369 printf(" + \n ");
370 } else {
371 printf(" = ");
372 }
373 }
374 printf("%ld\n", total_delta_time);
375 } else {
376 for (i = 0; i < new_cpu->freq_count; i++) {
377 printf(",%u,%ld", new_cpu->freqs[i].freq,
378 new_cpu->freqs[i].time - old_cpu->freqs[i].time);
379 }
380 }
381 }
382 }
383
384 /*
385 * Determine if frequency stats should be printed.
386 *
387 * If the frequency stats are different between CPUs, the stats should be
388 * printed for each CPU, else only the aggregate frequency stats should be
389 * printed.
390 */
should_print_freq_stats()391 static char should_print_freq_stats() {
392 int i, j;
393
394 for (i = 1; i < cpu_count; i++) {
395 for (j = 0; j < new_cpus[i].freq_count; j++) {
396 if (new_cpus[i].freqs[j].time - old_cpus[i].freqs[j].time !=
397 new_cpus[0].freqs[j].time - old_cpus[0].freqs[j].time) {
398 return 1;
399 }
400 }
401 }
402 return 0;
403 }
404
405 /*
406 * Determine if the frequency stats should be aggregated.
407 *
408 * Only aggregate the frequency stats in the total cpu stats if the frequencies
409 * reported by all CPUs are identical. Must be called after read_stats() has
410 * been called once.
411 */
should_aggregate_freq_stats()412 static char should_aggregate_freq_stats() {
413 int i, j;
414
415 for (i = 1; i < cpu_count; i++) {
416 if (new_cpus[i].freq_count != new_cpus[0].freq_count) {
417 return 0;
418 }
419 for (j = 0; j < new_cpus[i].freq_count; j++) {
420 if (new_cpus[i].freqs[j].freq != new_cpus[0].freqs[j].freq) {
421 return 0;
422 }
423 }
424 }
425
426 return 1;
427 }
428
429 /*
430 * Print the usage message.
431 */
usage(char * cmd)432 static void usage(char *cmd) {
433 fprintf(stderr, "Usage %s [ -n iterations ] [ -d delay ] [ -c cpu ] [ -m ] [ -h ]\n"
434 " -n num Updates to show before exiting.\n"
435 " -d num Seconds to wait between updates.\n"
436 " -m Display minimal output.\n"
437 " -h Display this help screen.\n",
438 cmd);
439 }
440