1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
18 #define ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
19 
20 #include <map>
21 #include <unordered_set>
22 #include <vector>
23 
24 #include "art_field-inl.h"
25 #include "debug/elf_compilation_unit.h"
26 #include "debug/elf_debug_loc_writer.h"
27 #include "debug/method_debug_info.h"
28 #include "dex/code_item_accessors-inl.h"
29 #include "dex/dex_file-inl.h"
30 #include "dex/dex_file.h"
31 #include "dwarf/debug_abbrev_writer.h"
32 #include "dwarf/debug_info_entry_writer.h"
33 #include "elf/elf_builder.h"
34 #include "heap_poisoning.h"
35 #include "linear_alloc.h"
36 #include "mirror/array.h"
37 #include "mirror/class-inl.h"
38 #include "mirror/class.h"
39 #include "oat_file.h"
40 #include "obj_ptr-inl.h"
41 
42 namespace art {
43 namespace debug {
44 
GetParamNames(const MethodDebugInfo * mi)45 static std::vector<const char*> GetParamNames(const MethodDebugInfo* mi) {
46   std::vector<const char*> names;
47   DCHECK(mi->dex_file != nullptr);
48   CodeItemDebugInfoAccessor accessor(*mi->dex_file, mi->code_item, mi->dex_method_index);
49   if (accessor.HasCodeItem()) {
50     accessor.VisitParameterNames([&](const dex::StringIndex& id) {
51       names.push_back(mi->dex_file->StringDataByIdx(id));
52     });
53   }
54   return names;
55 }
56 
57 // Helper class to write .debug_info and its supporting sections.
58 template<typename ElfTypes>
59 class ElfDebugInfoWriter {
60   using Elf_Addr = typename ElfTypes::Addr;
61 
62  public:
ElfDebugInfoWriter(ElfBuilder<ElfTypes> * builder)63   explicit ElfDebugInfoWriter(ElfBuilder<ElfTypes>* builder)
64       : builder_(builder),
65         debug_abbrev_(&debug_abbrev_buffer_) {
66   }
67 
Start()68   void Start() {
69     builder_->GetDebugInfo()->Start();
70   }
71 
End()72   void End() {
73     builder_->GetDebugInfo()->End();
74     builder_->WriteSection(".debug_abbrev", &debug_abbrev_buffer_);
75     if (!debug_loc_.empty()) {
76       builder_->WriteSection(".debug_loc", &debug_loc_);
77     }
78     if (!debug_ranges_.empty()) {
79       builder_->WriteSection(".debug_ranges", &debug_ranges_);
80     }
81   }
82 
83  private:
84   ElfBuilder<ElfTypes>* builder_;
85   std::vector<uint8_t> debug_abbrev_buffer_;
86   dwarf::DebugAbbrevWriter<> debug_abbrev_;
87   std::vector<uint8_t> debug_loc_;
88   std::vector<uint8_t> debug_ranges_;
89 
90   std::unordered_set<const char*> defined_dex_classes_;  // For CHECKs only.
91 
92   template<typename ElfTypes2>
93   friend class ElfCompilationUnitWriter;
94 };
95 
96 // Helper class to write one compilation unit.
97 // It holds helper methods and temporary state.
98 template<typename ElfTypes>
99 class ElfCompilationUnitWriter {
100   using Elf_Addr = typename ElfTypes::Addr;
101 
102  public:
ElfCompilationUnitWriter(ElfDebugInfoWriter<ElfTypes> * owner)103   explicit ElfCompilationUnitWriter(ElfDebugInfoWriter<ElfTypes>* owner)
104     : owner_(owner),
105       info_(Is64BitInstructionSet(owner_->builder_->GetIsa()), &owner->debug_abbrev_) {
106   }
107 
Write(const ElfCompilationUnit & compilation_unit)108   void Write(const ElfCompilationUnit& compilation_unit) {
109     CHECK(!compilation_unit.methods.empty());
110     const Elf_Addr base_address = compilation_unit.is_code_address_text_relative
111         ? owner_->builder_->GetText()->GetAddress()
112         : 0;
113     const bool is64bit = Is64BitInstructionSet(owner_->builder_->GetIsa());
114     using namespace dwarf;  // NOLINT. For easy access to DWARF constants.
115 
116     info_.StartTag(DW_TAG_compile_unit);
117     info_.WriteString(DW_AT_producer, "Android dex2oat");
118     info_.WriteData1(DW_AT_language, DW_LANG_Java);
119     info_.WriteString(DW_AT_comp_dir, "$JAVA_SRC_ROOT");
120     // The low_pc acts as base address for several other addresses/ranges.
121     info_.WriteAddr(DW_AT_low_pc, base_address + compilation_unit.code_address);
122     info_.WriteSecOffset(DW_AT_stmt_list, compilation_unit.debug_line_offset);
123 
124     // Write .debug_ranges entries covering code ranges of the whole compilation unit.
125     dwarf::Writer<> debug_ranges(&owner_->debug_ranges_);
126     info_.WriteSecOffset(DW_AT_ranges, owner_->debug_ranges_.size());
127     for (auto mi : compilation_unit.methods) {
128       uint64_t low_pc = mi->code_address - compilation_unit.code_address;
129       uint64_t high_pc = low_pc + mi->code_size;
130       if (is64bit) {
131         debug_ranges.PushUint64(low_pc);
132         debug_ranges.PushUint64(high_pc);
133       } else {
134         debug_ranges.PushUint32(low_pc);
135         debug_ranges.PushUint32(high_pc);
136       }
137     }
138     if (is64bit) {
139       debug_ranges.PushUint64(0);  // End of list.
140       debug_ranges.PushUint64(0);
141     } else {
142       debug_ranges.PushUint32(0);  // End of list.
143       debug_ranges.PushUint32(0);
144     }
145 
146     const char* last_dex_class_desc = nullptr;
147     for (auto mi : compilation_unit.methods) {
148       DCHECK(mi->dex_file != nullptr);
149       const DexFile* dex = mi->dex_file;
150       CodeItemDebugInfoAccessor accessor(*dex, mi->code_item, mi->dex_method_index);
151       const dex::MethodId& dex_method = dex->GetMethodId(mi->dex_method_index);
152       const dex::ProtoId& dex_proto = dex->GetMethodPrototype(dex_method);
153       const dex::TypeList* dex_params = dex->GetProtoParameters(dex_proto);
154       const char* dex_class_desc = dex->GetMethodDeclaringClassDescriptor(dex_method);
155       const bool is_static = (mi->access_flags & kAccStatic) != 0;
156 
157       // Enclose the method in correct class definition.
158       if (last_dex_class_desc != dex_class_desc) {
159         if (last_dex_class_desc != nullptr) {
160           EndClassTag();
161         }
162         // Write reference tag for the class we are about to declare.
163         size_t reference_tag_offset = info_.StartTag(DW_TAG_reference_type);
164         type_cache_.emplace(std::string(dex_class_desc), reference_tag_offset);
165         size_t type_attrib_offset = info_.size();
166         info_.WriteRef4(DW_AT_type, 0);
167         info_.EndTag();
168         // Declare the class that owns this method.
169         size_t class_offset = StartClassTag(dex_class_desc);
170         info_.UpdateUint32(type_attrib_offset, class_offset);
171         info_.WriteFlagPresent(DW_AT_declaration);
172         // Check that each class is defined only once.
173         bool unique = owner_->defined_dex_classes_.insert(dex_class_desc).second;
174         CHECK(unique) << "Redefinition of " << dex_class_desc;
175         last_dex_class_desc = dex_class_desc;
176       }
177 
178       int start_depth = info_.Depth();
179       info_.StartTag(DW_TAG_subprogram);
180       WriteName(dex->GetMethodName(dex_method));
181       info_.WriteAddr(DW_AT_low_pc, base_address + mi->code_address);
182       info_.WriteUdata(DW_AT_high_pc, mi->code_size);
183       std::vector<uint8_t> expr_buffer;
184       Expression expr(&expr_buffer);
185       expr.WriteOpCallFrameCfa();
186       info_.WriteExprLoc(DW_AT_frame_base, expr);
187       WriteLazyType(dex->GetReturnTypeDescriptor(dex_proto));
188 
189       // Decode dex register locations for all stack maps.
190       // It might be expensive, so do it just once and reuse the result.
191       std::unique_ptr<const CodeInfo> code_info;
192       std::vector<DexRegisterMap> dex_reg_maps;
193       if (accessor.HasCodeItem() && mi->code_info != nullptr) {
194         code_info.reset(new CodeInfo(mi->code_info));
195         for (StackMap stack_map : code_info->GetStackMaps()) {
196           dex_reg_maps.push_back(code_info->GetDexRegisterMapOf(stack_map));
197         }
198       }
199 
200       // Write parameters. DecodeDebugLocalInfo returns them as well, but it does not
201       // guarantee order or uniqueness so it is safer to iterate over them manually.
202       // DecodeDebugLocalInfo might not also be available if there is no debug info.
203       std::vector<const char*> param_names = GetParamNames(mi);
204       uint32_t arg_reg = 0;
205       if (!is_static) {
206         info_.StartTag(DW_TAG_formal_parameter);
207         WriteName("this");
208         info_.WriteFlagPresent(DW_AT_artificial);
209         WriteLazyType(dex_class_desc);
210         if (accessor.HasCodeItem()) {
211           // Write the stack location of the parameter.
212           const uint32_t vreg = accessor.RegistersSize() - accessor.InsSize() + arg_reg;
213           const bool is64bitValue = false;
214           WriteRegLocation(mi, dex_reg_maps, vreg, is64bitValue, compilation_unit.code_address);
215         }
216         arg_reg++;
217         info_.EndTag();
218       }
219       if (dex_params != nullptr) {
220         for (uint32_t i = 0; i < dex_params->Size(); ++i) {
221           info_.StartTag(DW_TAG_formal_parameter);
222           // Parameter names may not be always available.
223           if (i < param_names.size()) {
224             WriteName(param_names[i]);
225           }
226           // Write the type.
227           const char* type_desc = dex->StringByTypeIdx(dex_params->GetTypeItem(i).type_idx_);
228           WriteLazyType(type_desc);
229           const bool is64bitValue = type_desc[0] == 'D' || type_desc[0] == 'J';
230           if (accessor.HasCodeItem()) {
231             // Write the stack location of the parameter.
232             const uint32_t vreg = accessor.RegistersSize() - accessor.InsSize() + arg_reg;
233             WriteRegLocation(mi, dex_reg_maps, vreg, is64bitValue, compilation_unit.code_address);
234           }
235           arg_reg += is64bitValue ? 2 : 1;
236           info_.EndTag();
237         }
238         if (accessor.HasCodeItem()) {
239           DCHECK_EQ(arg_reg, accessor.InsSize());
240         }
241       }
242 
243       // Write local variables.
244       std::vector<DexFile::LocalInfo> local_infos;
245       if (accessor.DecodeDebugLocalInfo(is_static,
246                                         mi->dex_method_index,
247                                         [&](const DexFile::LocalInfo& entry) {
248                                           local_infos.push_back(entry);
249                                         })) {
250         for (const DexFile::LocalInfo& var : local_infos) {
251           if (var.reg_ < accessor.RegistersSize() - accessor.InsSize()) {
252             info_.StartTag(DW_TAG_variable);
253             WriteName(var.name_);
254             WriteLazyType(var.descriptor_);
255             bool is64bitValue = var.descriptor_[0] == 'D' || var.descriptor_[0] == 'J';
256             WriteRegLocation(mi,
257                              dex_reg_maps,
258                              var.reg_,
259                              is64bitValue,
260                              compilation_unit.code_address,
261                              var.start_address_,
262                              var.end_address_);
263             info_.EndTag();
264           }
265         }
266       }
267 
268       info_.EndTag();
269       CHECK_EQ(info_.Depth(), start_depth);  // Balanced start/end.
270     }
271     if (last_dex_class_desc != nullptr) {
272       EndClassTag();
273     }
274     FinishLazyTypes();
275     CloseNamespacesAboveDepth(0);
276     info_.EndTag();  // DW_TAG_compile_unit
277     CHECK_EQ(info_.Depth(), 0);
278     std::vector<uint8_t> buffer;
279     buffer.reserve(info_.data()->size() + KB);
280     // All compilation units share single table which is at the start of .debug_abbrev.
281     const size_t debug_abbrev_offset = 0;
282     WriteDebugInfoCU(debug_abbrev_offset, info_, &buffer);
283     owner_->builder_->GetDebugInfo()->WriteFully(buffer.data(), buffer.size());
284   }
285 
Write(const ArrayRef<mirror::Class * > & types)286   void Write(const ArrayRef<mirror::Class*>& types) REQUIRES_SHARED(Locks::mutator_lock_) {
287     using namespace dwarf;  // NOLINT. For easy access to DWARF constants.
288 
289     info_.StartTag(DW_TAG_compile_unit);
290     info_.WriteString(DW_AT_producer, "Android dex2oat");
291     info_.WriteData1(DW_AT_language, DW_LANG_Java);
292 
293     // Base class references to be patched at the end.
294     std::map<size_t, mirror::Class*> base_class_references;
295 
296     // Already written declarations or definitions.
297     std::map<mirror::Class*, size_t> class_declarations;
298 
299     std::vector<uint8_t> expr_buffer;
300     for (mirror::Class* type : types) {
301       if (type->IsPrimitive()) {
302         // For primitive types the definition and the declaration is the same.
303         if (type->GetPrimitiveType() != Primitive::kPrimVoid) {
304           WriteTypeDeclaration(type->GetDescriptor(nullptr));
305         }
306       } else if (type->IsArrayClass()) {
307         ObjPtr<mirror::Class> element_type = type->GetComponentType();
308         uint32_t component_size = type->GetComponentSize();
309         uint32_t data_offset = mirror::Array::DataOffset(component_size).Uint32Value();
310         uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value();
311 
312         CloseNamespacesAboveDepth(0);  // Declare in root namespace.
313         info_.StartTag(DW_TAG_array_type);
314         std::string descriptor_string;
315         WriteLazyType(element_type->GetDescriptor(&descriptor_string));
316         WriteLinkageName(type);
317         info_.WriteUdata(DW_AT_data_member_location, data_offset);
318         info_.StartTag(DW_TAG_subrange_type);
319         Expression count_expr(&expr_buffer);
320         count_expr.WriteOpPushObjectAddress();
321         count_expr.WriteOpPlusUconst(length_offset);
322         count_expr.WriteOpDerefSize(4);  // Array length is always 32-bit wide.
323         info_.WriteExprLoc(DW_AT_count, count_expr);
324         info_.EndTag();  // DW_TAG_subrange_type.
325         info_.EndTag();  // DW_TAG_array_type.
326       } else if (type->IsInterface()) {
327         // Skip.  Variables cannot have an interface as a dynamic type.
328         // We do not expose the interface information to the debugger in any way.
329       } else {
330         std::string descriptor_string;
331         const char* desc = type->GetDescriptor(&descriptor_string);
332         size_t class_offset = StartClassTag(desc);
333         class_declarations.emplace(type, class_offset);
334 
335         if (!type->IsVariableSize()) {
336           info_.WriteUdata(DW_AT_byte_size, type->GetObjectSize());
337         }
338 
339         WriteLinkageName(type);
340 
341         if (type->IsObjectClass()) {
342           // Generate artificial member which is used to get the dynamic type of variable.
343           // The run-time value of this field will correspond to linkage name of some type.
344           // We need to do it only once in j.l.Object since all other types inherit it.
345           info_.StartTag(DW_TAG_member);
346           WriteName(".dynamic_type");
347           WriteLazyType(sizeof(uintptr_t) == 8 ? "J" : "I");
348           info_.WriteFlagPresent(DW_AT_artificial);
349           // Create DWARF expression to get the value of the methods_ field.
350           Expression expr(&expr_buffer);
351           // The address of the object has been implicitly pushed on the stack.
352           // Dereference the klass_ field of Object (32-bit; possibly poisoned).
353           DCHECK_EQ(type->ClassOffset().Uint32Value(), 0u);
354           DCHECK_EQ(sizeof(mirror::HeapReference<mirror::Class>), 4u);
355           expr.WriteOpDerefSize(4);
356           if (kPoisonHeapReferences) {
357             expr.WriteOpNeg();
358             // DWARF stack is pointer sized. Ensure that the high bits are clear.
359             expr.WriteOpConstu(0xFFFFFFFF);
360             expr.WriteOpAnd();
361           }
362           // Add offset to the methods_ field.
363           expr.WriteOpPlusUconst(mirror::Class::MethodsOffset().Uint32Value());
364           // Top of stack holds the location of the field now.
365           info_.WriteExprLoc(DW_AT_data_member_location, expr);
366           info_.EndTag();  // DW_TAG_member.
367         }
368 
369         // Base class.
370         ObjPtr<mirror::Class> base_class = type->GetSuperClass();
371         if (base_class != nullptr) {
372           info_.StartTag(DW_TAG_inheritance);
373           base_class_references.emplace(info_.size(), base_class.Ptr());
374           info_.WriteRef4(DW_AT_type, 0);
375           info_.WriteUdata(DW_AT_data_member_location, 0);
376           info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_public);
377           info_.EndTag();  // DW_TAG_inheritance.
378         }
379 
380         // Member variables.
381         for (uint32_t i = 0, count = type->NumInstanceFields(); i < count; ++i) {
382           ArtField* field = type->GetInstanceField(i);
383           info_.StartTag(DW_TAG_member);
384           WriteName(field->GetName());
385           WriteLazyType(field->GetTypeDescriptor());
386           info_.WriteUdata(DW_AT_data_member_location, field->GetOffset().Uint32Value());
387           uint32_t access_flags = field->GetAccessFlags();
388           if (access_flags & kAccPublic) {
389             info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_public);
390           } else if (access_flags & kAccProtected) {
391             info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_protected);
392           } else if (access_flags & kAccPrivate) {
393             info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_private);
394           }
395           info_.EndTag();  // DW_TAG_member.
396         }
397 
398         if (type->IsStringClass()) {
399           // Emit debug info about an artifical class member for java.lang.String which represents
400           // the first element of the data stored in a string instance. Consumers of the debug
401           // info will be able to read the content of java.lang.String based on the count (real
402           // field) and based on the location of this data member.
403           info_.StartTag(DW_TAG_member);
404           WriteName("value");
405           // We don't support fields with C like array types so we just say its type is java char.
406           WriteLazyType("C");  // char.
407           info_.WriteUdata(DW_AT_data_member_location,
408                            mirror::String::ValueOffset().Uint32Value());
409           info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_private);
410           info_.EndTag();  // DW_TAG_member.
411         }
412 
413         EndClassTag();
414       }
415     }
416 
417     // Write base class declarations.
418     for (const auto& base_class_reference : base_class_references) {
419       size_t reference_offset = base_class_reference.first;
420       mirror::Class* base_class = base_class_reference.second;
421       const auto it = class_declarations.find(base_class);
422       if (it != class_declarations.end()) {
423         info_.UpdateUint32(reference_offset, it->second);
424       } else {
425         // Declare base class.  We can not use the standard WriteLazyType
426         // since we want to avoid the DW_TAG_reference_tag wrapping.
427         std::string tmp_storage;
428         const char* base_class_desc = base_class->GetDescriptor(&tmp_storage);
429         size_t base_class_declaration_offset = StartClassTag(base_class_desc);
430         info_.WriteFlagPresent(DW_AT_declaration);
431         WriteLinkageName(base_class);
432         EndClassTag();
433         class_declarations.emplace(base_class, base_class_declaration_offset);
434         info_.UpdateUint32(reference_offset, base_class_declaration_offset);
435       }
436     }
437 
438     FinishLazyTypes();
439     CloseNamespacesAboveDepth(0);
440     info_.EndTag();  // DW_TAG_compile_unit.
441     CHECK_EQ(info_.Depth(), 0);
442     std::vector<uint8_t> buffer;
443     buffer.reserve(info_.data()->size() + KB);
444     // All compilation units share single table which is at the start of .debug_abbrev.
445     const size_t debug_abbrev_offset = 0;
446     WriteDebugInfoCU(debug_abbrev_offset, info_, &buffer);
447     owner_->builder_->GetDebugInfo()->WriteFully(buffer.data(), buffer.size());
448   }
449 
450   // Write table into .debug_loc which describes location of dex register.
451   // The dex register might be valid only at some points and it might
452   // move between machine registers and stack.
453   void WriteRegLocation(const MethodDebugInfo* method_info,
454                         const std::vector<DexRegisterMap>& dex_register_maps,
455                         uint16_t vreg,
456                         bool is64bitValue,
457                         uint64_t compilation_unit_code_address,
458                         uint32_t dex_pc_low = 0,
459                         uint32_t dex_pc_high = 0xFFFFFFFF) {
460     WriteDebugLocEntry(method_info,
461                        dex_register_maps,
462                        vreg,
463                        is64bitValue,
464                        compilation_unit_code_address,
465                        dex_pc_low,
466                        dex_pc_high,
467                        owner_->builder_->GetIsa(),
468                        &info_,
469                        &owner_->debug_loc_,
470                        &owner_->debug_ranges_);
471   }
472 
473   // Linkage name uniquely identifies type.
474   // It is used to determine the dynamic type of objects.
475   // We use the methods_ field of class since it is unique and it is not moved by the GC.
WriteLinkageName(mirror::Class * type)476   void WriteLinkageName(mirror::Class* type) REQUIRES_SHARED(Locks::mutator_lock_) {
477     auto* methods_ptr = type->GetMethodsPtr();
478     if (methods_ptr == nullptr) {
479       // Some types might have no methods.  Allocate empty array instead.
480       LinearAlloc* allocator = Runtime::Current()->GetLinearAlloc();
481       void* storage = allocator->Alloc(Thread::Current(), sizeof(LengthPrefixedArray<ArtMethod>));
482       methods_ptr = new (storage) LengthPrefixedArray<ArtMethod>(0);
483       type->SetMethodsPtr(methods_ptr, 0, 0);
484       DCHECK(type->GetMethodsPtr() != nullptr);
485     }
486     char name[32];
487     snprintf(name, sizeof(name), "0x%" PRIXPTR, reinterpret_cast<uintptr_t>(methods_ptr));
488     info_.WriteString(dwarf::DW_AT_linkage_name, name);
489   }
490 
491   // Some types are difficult to define as we go since they need
492   // to be enclosed in the right set of namespaces. Therefore we
493   // just define all types lazily at the end of compilation unit.
WriteLazyType(const char * type_descriptor)494   void WriteLazyType(const char* type_descriptor) {
495     if (type_descriptor != nullptr && type_descriptor[0] != 'V') {
496       lazy_types_.emplace(std::string(type_descriptor), info_.size());
497       info_.WriteRef4(dwarf::DW_AT_type, 0);
498     }
499   }
500 
FinishLazyTypes()501   void FinishLazyTypes() {
502     for (const auto& lazy_type : lazy_types_) {
503       info_.UpdateUint32(lazy_type.second, WriteTypeDeclaration(lazy_type.first));
504     }
505     lazy_types_.clear();
506   }
507 
508  private:
WriteName(const char * name)509   void WriteName(const char* name) {
510     if (name != nullptr) {
511       info_.WriteString(dwarf::DW_AT_name, name);
512     }
513   }
514 
515   // Convert dex type descriptor to DWARF.
516   // Returns offset in the compilation unit.
WriteTypeDeclaration(const std::string & desc)517   size_t WriteTypeDeclaration(const std::string& desc) {
518     using namespace dwarf;  // NOLINT. For easy access to DWARF constants.
519 
520     DCHECK(!desc.empty());
521     const auto it = type_cache_.find(desc);
522     if (it != type_cache_.end()) {
523       return it->second;
524     }
525 
526     size_t offset;
527     if (desc[0] == 'L') {
528       // Class type. For example: Lpackage/name;
529       size_t class_offset = StartClassTag(desc.c_str());
530       info_.WriteFlagPresent(DW_AT_declaration);
531       EndClassTag();
532       // Reference to the class type.
533       offset = info_.StartTag(DW_TAG_reference_type);
534       info_.WriteRef(DW_AT_type, class_offset);
535       info_.EndTag();
536     } else if (desc[0] == '[') {
537       // Array type.
538       size_t element_type = WriteTypeDeclaration(desc.substr(1));
539       CloseNamespacesAboveDepth(0);  // Declare in root namespace.
540       size_t array_type = info_.StartTag(DW_TAG_array_type);
541       info_.WriteFlagPresent(DW_AT_declaration);
542       info_.WriteRef(DW_AT_type, element_type);
543       info_.EndTag();
544       offset = info_.StartTag(DW_TAG_reference_type);
545       info_.WriteRef4(DW_AT_type, array_type);
546       info_.EndTag();
547     } else {
548       // Primitive types.
549       DCHECK_EQ(desc.size(), 1u);
550 
551       const char* name;
552       uint32_t encoding;
553       uint32_t byte_size;
554       switch (desc[0]) {
555       case 'B':
556         name = "byte";
557         encoding = DW_ATE_signed;
558         byte_size = 1;
559         break;
560       case 'C':
561         name = "char";
562         encoding = DW_ATE_UTF;
563         byte_size = 2;
564         break;
565       case 'D':
566         name = "double";
567         encoding = DW_ATE_float;
568         byte_size = 8;
569         break;
570       case 'F':
571         name = "float";
572         encoding = DW_ATE_float;
573         byte_size = 4;
574         break;
575       case 'I':
576         name = "int";
577         encoding = DW_ATE_signed;
578         byte_size = 4;
579         break;
580       case 'J':
581         name = "long";
582         encoding = DW_ATE_signed;
583         byte_size = 8;
584         break;
585       case 'S':
586         name = "short";
587         encoding = DW_ATE_signed;
588         byte_size = 2;
589         break;
590       case 'Z':
591         name = "boolean";
592         encoding = DW_ATE_boolean;
593         byte_size = 1;
594         break;
595       case 'V':
596         LOG(FATAL) << "Void type should not be encoded";
597         UNREACHABLE();
598       default:
599         LOG(FATAL) << "Unknown dex type descriptor: \"" << desc << "\"";
600         UNREACHABLE();
601       }
602       CloseNamespacesAboveDepth(0);  // Declare in root namespace.
603       offset = info_.StartTag(DW_TAG_base_type);
604       WriteName(name);
605       info_.WriteData1(DW_AT_encoding, encoding);
606       info_.WriteData1(DW_AT_byte_size, byte_size);
607       info_.EndTag();
608     }
609 
610     type_cache_.emplace(desc, offset);
611     return offset;
612   }
613 
614   // Start DW_TAG_class_type tag nested in DW_TAG_namespace tags.
615   // Returns offset of the class tag in the compilation unit.
StartClassTag(const char * desc)616   size_t StartClassTag(const char* desc) {
617     std::string name = SetNamespaceForClass(desc);
618     size_t offset = info_.StartTag(dwarf::DW_TAG_class_type);
619     WriteName(name.c_str());
620     return offset;
621   }
622 
EndClassTag()623   void EndClassTag() {
624     info_.EndTag();
625   }
626 
627   // Set the current namespace nesting to one required by the given class.
628   // Returns the class name with namespaces, 'L', and ';' stripped.
SetNamespaceForClass(const char * desc)629   std::string SetNamespaceForClass(const char* desc) {
630     DCHECK(desc != nullptr && desc[0] == 'L');
631     desc++;  // Skip the initial 'L'.
632     size_t depth = 0;
633     for (const char* end; (end = strchr(desc, '/')) != nullptr; desc = end + 1, ++depth) {
634       // Check whether the name at this depth is already what we need.
635       if (depth < current_namespace_.size()) {
636         const std::string& name = current_namespace_[depth];
637         if (name.compare(0, name.size(), desc, end - desc) == 0) {
638           continue;
639         }
640       }
641       // Otherwise we need to open a new namespace tag at this depth.
642       CloseNamespacesAboveDepth(depth);
643       info_.StartTag(dwarf::DW_TAG_namespace);
644       std::string name(desc, end - desc);
645       WriteName(name.c_str());
646       current_namespace_.push_back(std::move(name));
647     }
648     CloseNamespacesAboveDepth(depth);
649     return std::string(desc, strchr(desc, ';') - desc);
650   }
651 
652   // Close namespace tags to reach the given nesting depth.
CloseNamespacesAboveDepth(size_t depth)653   void CloseNamespacesAboveDepth(size_t depth) {
654     DCHECK_LE(depth, current_namespace_.size());
655     while (current_namespace_.size() > depth) {
656       info_.EndTag();
657       current_namespace_.pop_back();
658     }
659   }
660 
661   // For access to the ELF sections.
662   ElfDebugInfoWriter<ElfTypes>* owner_;
663   // Temporary buffer to create and store the entries.
664   dwarf::DebugInfoEntryWriter<> info_;
665   // Cache of already translated type descriptors.
666   std::map<std::string, size_t> type_cache_;  // type_desc -> definition_offset.
667   // 32-bit references which need to be resolved to a type later.
668   // Given type may be used multiple times.  Therefore we need a multimap.
669   std::multimap<std::string, size_t> lazy_types_;  // type_desc -> patch_offset.
670   // The current set of open namespace tags which are active and not closed yet.
671   std::vector<std::string> current_namespace_;
672 };
673 
674 }  // namespace debug
675 }  // namespace art
676 
677 #endif  // ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
678 
679