1 /*	$OpenBSD: hdtoa.c,v 1.5 2020/05/31 12:27:19 mortimer Exp $	*/
2 /*-
3  * Copyright (c) 2004, 2005 David Schultz <das@FreeBSD.ORG>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/types.h>
29 #include <machine/ieee.h>
30 #include <float.h>
31 #include <limits.h>
32 #include <math.h>
33 
34 #include "gdtoaimp.h"
35 
36 /* Strings values used by dtoa() */
37 #define	INFSTR	"Infinity"
38 #define	NANSTR	"NaN"
39 
40 #define	DBL_ADJ		(DBL_MAX_EXP - 2 + ((DBL_MANT_DIG - 1) % 4))
41 #define	LDBL_ADJ	(LDBL_MAX_EXP - 2 + ((LDBL_MANT_DIG - 1) % 4))
42 
43 /*
44  * Round up the given digit string.  If the digit string is fff...f,
45  * this procedure sets it to 100...0 and returns 1 to indicate that
46  * the exponent needs to be bumped.  Otherwise, 0 is returned.
47  */
48 static int
roundup(char * s0,int ndigits)49 roundup(char *s0, int ndigits)
50 {
51 	char *s;
52 
53 	for (s = s0 + ndigits - 1; *s == 0xf; s--) {
54 		if (s == s0) {
55 			*s = 1;
56 			return (1);
57 		}
58 		*s = 0;
59 	}
60 	++*s;
61 	return (0);
62 }
63 
64 /*
65  * Round the given digit string to ndigits digits according to the
66  * current rounding mode.  Note that this could produce a string whose
67  * value is not representable in the corresponding floating-point
68  * type.  The exponent pointed to by decpt is adjusted if necessary.
69  */
70 static void
dorounding(char * s0,int ndigits,int sign,int * decpt)71 dorounding(char *s0, int ndigits, int sign, int *decpt)
72 {
73 	int adjust = 0;	/* do we need to adjust the exponent? */
74 
75 	switch (FLT_ROUNDS) {
76 	case 0:		/* toward zero */
77 	default:	/* implementation-defined */
78 		break;
79 	case 1:		/* to nearest, halfway rounds to even */
80 		if ((s0[ndigits] > 8) ||
81 		    (s0[ndigits] == 8 && s0[ndigits + 1] & 1))
82 			adjust = roundup(s0, ndigits);
83 		break;
84 	case 2:		/* toward +inf */
85 		if (sign == 0)
86 			adjust = roundup(s0, ndigits);
87 		break;
88 	case 3:		/* toward -inf */
89 		if (sign != 0)
90 			adjust = roundup(s0, ndigits);
91 		break;
92 	}
93 
94 	if (adjust)
95 		*decpt += 4;
96 }
97 
98 /*
99  * This procedure converts a double-precision number in IEEE format
100  * into a string of hexadecimal digits and an exponent of 2.  Its
101  * behavior is bug-for-bug compatible with dtoa() in mode 2, with the
102  * following exceptions:
103  *
104  * - An ndigits < 0 causes it to use as many digits as necessary to
105  *   represent the number exactly.
106  * - The additional xdigs argument should point to either the string
107  *   "0123456789ABCDEF" or the string "0123456789abcdef", depending on
108  *   which case is desired.
109  * - This routine does not repeat dtoa's mistake of setting decpt
110  *   to 9999 in the case of an infinity or NaN.  INT_MAX is used
111  *   for this purpose instead.
112  *
113  * Note that the C99 standard does not specify what the leading digit
114  * should be for non-zero numbers.  For instance, 0x1.3p3 is the same
115  * as 0x2.6p2 is the same as 0x4.cp1.  This implementation chooses the
116  * first digit so that subsequent digits are aligned on nibble
117  * boundaries (before rounding).
118  *
119  * Inputs:	d, xdigs, ndigits
120  * Outputs:	decpt, sign, rve
121  */
122 char *
__hdtoa(double d,const char * xdigs,int ndigits,int * decpt,int * sign,char ** rve)123 __hdtoa(double d, const char *xdigs, int ndigits, int *decpt, int *sign,
124     char **rve)
125 {
126 	static const int sigfigs = (DBL_MANT_DIG + 3) / 4;
127 	struct ieee_double *p = (struct ieee_double *)&d;
128 	char *s, *s0;
129 	int bufsize;
130 
131 	*sign = p->dbl_sign;
132 
133 	switch (fpclassify(d)) {
134 	case FP_NORMAL:
135 		*decpt = p->dbl_exp - DBL_ADJ;
136 		break;
137 	case FP_ZERO:
138 		*decpt = 1;
139 		return (nrv_alloc("0", rve, 1));
140 	case FP_SUBNORMAL:
141 		d *= 0x1p514;
142 		*decpt = p->dbl_exp - (514 + DBL_ADJ);
143 		break;
144 	case FP_INFINITE:
145 		*decpt = INT_MAX;
146 		return (nrv_alloc(INFSTR, rve, sizeof(INFSTR) - 1));
147 	case FP_NAN:
148 		*decpt = INT_MAX;
149 		return (nrv_alloc(NANSTR, rve, sizeof(NANSTR) - 1));
150 	default:
151 		abort();
152 	}
153 
154 	/* FP_NORMAL or FP_SUBNORMAL */
155 
156 	if (ndigits == 0)		/* dtoa() compatibility */
157 		ndigits = 1;
158 
159 	/*
160 	 * For simplicity, we generate all the digits even if the
161 	 * caller has requested fewer.
162 	 */
163 	bufsize = (sigfigs > ndigits) ? sigfigs : ndigits;
164 	s0 = rv_alloc(bufsize);
165 	if (s0 == NULL)
166 		return (NULL);
167 
168 	/*
169 	 * We work from right to left, first adding any requested zero
170 	 * padding, then the least significant portion of the
171 	 * mantissa, followed by the most significant.  The buffer is
172 	 * filled with the byte values 0x0 through 0xf, which are
173 	 * converted to xdigs[0x0] through xdigs[0xf] after the
174 	 * rounding phase.
175 	 */
176 	for (s = s0 + bufsize - 1; s > s0 + sigfigs - 1; s--)
177 		*s = 0;
178 	for (; s > s0 + sigfigs - (DBL_FRACLBITS / 4) - 1 && s > s0; s--) {
179 		*s = p->dbl_fracl & 0xf;
180 		p->dbl_fracl >>= 4;
181 	}
182 	for (; s > s0; s--) {
183 		*s = p->dbl_frach & 0xf;
184 		p->dbl_frach >>= 4;
185 	}
186 
187 	/*
188 	 * At this point, we have snarfed all the bits in the
189 	 * mantissa, with the possible exception of the highest-order
190 	 * (partial) nibble, which is dealt with by the next
191 	 * statement.  We also tack on the implicit normalization bit.
192 	 */
193 	*s = p->dbl_frach | (1U << ((DBL_MANT_DIG - 1) % 4));
194 
195 	/* If ndigits < 0, we are expected to auto-size the precision. */
196 	if (ndigits < 0) {
197 		for (ndigits = sigfigs; s0[ndigits - 1] == 0; ndigits--)
198 			;
199 	}
200 
201 	if (sigfigs > ndigits && s0[ndigits] != 0)
202 		dorounding(s0, ndigits, p->dbl_sign, decpt);
203 
204 	s = s0 + ndigits;
205 	if (rve != NULL)
206 		*rve = s;
207 	*s-- = '\0';
208 	for (; s >= s0; s--)
209 		*s = xdigs[(unsigned int)*s];
210 
211 	return (s0);
212 }
213 DEF_STRONG(__hdtoa);
214 
215 #if (LDBL_MANT_DIG > DBL_MANT_DIG)
216 
217 /*
218  * This is the long double version of __hdtoa().
219  */
220 char *
__hldtoa(long double e,const char * xdigs,int ndigits,int * decpt,int * sign,char ** rve)221 __hldtoa(long double e, const char *xdigs, int ndigits, int *decpt, int *sign,
222     char **rve)
223 {
224 	static const int sigfigs = (LDBL_MANT_DIG + 3) / 4;
225 	struct ieee_ext *p = (struct ieee_ext *)&e;
226 	char *s, *s0;
227 	int bufsize;
228 	int fbits = 0;
229 
230 	*sign = p->ext_sign;
231 
232 	switch (fpclassify(e)) {
233 	case FP_NORMAL:
234 		*decpt = p->ext_exp - LDBL_ADJ;
235 		break;
236 	case FP_ZERO:
237 		*decpt = 1;
238 		return (nrv_alloc("0", rve, 1));
239 	case FP_SUBNORMAL:
240 		e *= 0x1p514L;
241 		*decpt = p->ext_exp - (514 + LDBL_ADJ);
242 		break;
243 	case FP_INFINITE:
244 		*decpt = INT_MAX;
245 		return (nrv_alloc(INFSTR, rve, sizeof(INFSTR) - 1));
246 	case FP_NAN:
247 		*decpt = INT_MAX;
248 		return (nrv_alloc(NANSTR, rve, sizeof(NANSTR) - 1));
249 	default:
250 		abort();
251 	}
252 
253 	/* FP_NORMAL or FP_SUBNORMAL */
254 
255 	if (ndigits == 0)		/* dtoa() compatibility */
256 		ndigits = 1;
257 
258 	/*
259 	 * For simplicity, we generate all the digits even if the
260 	 * caller has requested fewer.
261 	 */
262 	bufsize = (sigfigs > ndigits) ? sigfigs : ndigits;
263 	s0 = rv_alloc(bufsize);
264 	if (s0 == NULL)
265 		return (NULL);
266 
267 	/*
268 	 * We work from right to left, first adding any requested zero
269 	 * padding, then the least significant portion of the
270 	 * mantissa, followed by the most significant.  The buffer is
271 	 * filled with the byte values 0x0 through 0xf, which are
272 	 * converted to xdigs[0x0] through xdigs[0xf] after the
273 	 * rounding phase.
274 	 */
275 	for (s = s0 + bufsize - 1; s > s0 + sigfigs - 1; s--)
276 		*s = 0;
277 
278 	for (fbits = EXT_FRACLBITS / 4; fbits > 0 && s > s0; s--, fbits--) {
279 		*s = p->ext_fracl & 0xf;
280 		p->ext_fracl >>= 4;
281 	}
282 #ifdef EXT_FRACLMBITS
283 	for (fbits = EXT_FRACLMBITS / 4; fbits > 0 && s > s0; s--, fbits--) {
284 		*s = p->ext_fraclm & 0xf;
285 		p->ext_fraclm >>= 4;
286 	}
287 #endif
288 #ifdef EXT_FRACHMBITS
289 	for (fbits = EXT_FRACHMBITS / 4; fbits > 0 && s > s0; s--, fbits--) {
290 		*s = p->ext_frachm & 0xf;
291 		p->ext_frachm >>= 4;
292 	}
293 #endif
294 	for (fbits = EXT_FRACHBITS / 4; fbits > 0 && s > s0; s--, fbits--) {
295 		*s = p->ext_frach & 0xf;
296 		p->ext_frach >>= 4;
297 	}
298 
299 	/*
300 	 * At this point, we have snarfed all the bits in the
301 	 * mantissa, with the possible exception of the highest-order
302 	 * (partial) nibble, which is dealt with by the next
303 	 * statement.  We also tack on the implicit normalization bit.
304 	 */
305 	*s = (p->ext_frach | (1U << ((LDBL_MANT_DIG - 1) % 4))) & 0xf;
306 
307 	/* If ndigits < 0, we are expected to auto-size the precision. */
308 	if (ndigits < 0) {
309 		for (ndigits = sigfigs; s0[ndigits - 1] == 0; ndigits--)
310 			;
311 	}
312 
313 	if (sigfigs > ndigits && s0[ndigits] != 0)
314 		dorounding(s0, ndigits, p->ext_sign, decpt);
315 
316 	s = s0 + ndigits;
317 	if (rve != NULL)
318 		*rve = s;
319 	*s-- = '\0';
320 	for (; s >= s0; s--)
321 		*s = xdigs[(unsigned int)*s];
322 
323 	return (s0);
324 }
325 DEF_STRONG(__hldtoa);
326 
327 #else	/* (LDBL_MANT_DIG == DBL_MANT_DIG) */
328 
329 char *
__hldtoa(long double e,const char * xdigs,int ndigits,int * decpt,int * sign,char ** rve)330 __hldtoa(long double e, const char *xdigs, int ndigits, int *decpt, int *sign,
331     char **rve)
332 {
333 	return (__hdtoa((double)e, xdigs, ndigits, decpt, sign, rve));
334 }
335 DEF_STRONG(__hldtoa);
336 
337 #endif	/* (LDBL_MANT_DIG == DBL_MANT_DIG) */
338