1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "instruction_simplifier_shared.h"
18
19 #include "mirror/array-inl.h"
20
21 namespace art {
22
23 namespace {
24
TrySimpleMultiplyAccumulatePatterns(HMul * mul,HBinaryOperation * input_binop,HInstruction * input_other)25 bool TrySimpleMultiplyAccumulatePatterns(HMul* mul,
26 HBinaryOperation* input_binop,
27 HInstruction* input_other) {
28 DCHECK(DataType::IsIntOrLongType(mul->GetType()));
29 DCHECK(input_binop->IsAdd() || input_binop->IsSub());
30 DCHECK_NE(input_binop, input_other);
31 if (!input_binop->HasOnlyOneNonEnvironmentUse()) {
32 return false;
33 }
34
35 // Try to interpret patterns like
36 // a * (b <+/-> 1)
37 // as
38 // (a * b) <+/-> a
39 HInstruction* input_a = input_other;
40 HInstruction* input_b = nullptr; // Set to a non-null value if we found a pattern to optimize.
41 HInstruction::InstructionKind op_kind;
42
43 if (input_binop->IsAdd()) {
44 if ((input_binop->GetConstantRight() != nullptr) && input_binop->GetConstantRight()->IsOne()) {
45 // Interpret
46 // a * (b + 1)
47 // as
48 // (a * b) + a
49 input_b = input_binop->GetLeastConstantLeft();
50 op_kind = HInstruction::kAdd;
51 }
52 } else {
53 DCHECK(input_binop->IsSub());
54 if (input_binop->GetRight()->IsConstant() &&
55 input_binop->GetRight()->AsConstant()->IsMinusOne()) {
56 // Interpret
57 // a * (b - (-1))
58 // as
59 // a + (a * b)
60 input_b = input_binop->GetLeft();
61 op_kind = HInstruction::kAdd;
62 } else if (input_binop->GetLeft()->IsConstant() &&
63 input_binop->GetLeft()->AsConstant()->IsOne()) {
64 // Interpret
65 // a * (1 - b)
66 // as
67 // a - (a * b)
68 input_b = input_binop->GetRight();
69 op_kind = HInstruction::kSub;
70 }
71 }
72
73 if (input_b == nullptr) {
74 // We did not find a pattern we can optimize.
75 return false;
76 }
77
78 ArenaAllocator* allocator = mul->GetBlock()->GetGraph()->GetAllocator();
79 HMultiplyAccumulate* mulacc = new (allocator) HMultiplyAccumulate(
80 mul->GetType(), op_kind, input_a, input_a, input_b, mul->GetDexPc());
81
82 mul->GetBlock()->ReplaceAndRemoveInstructionWith(mul, mulacc);
83 input_binop->GetBlock()->RemoveInstruction(input_binop);
84
85 return true;
86 }
87
88 } // namespace
89
TryCombineMultiplyAccumulate(HMul * mul,InstructionSet isa)90 bool TryCombineMultiplyAccumulate(HMul* mul, InstructionSet isa) {
91 DataType::Type type = mul->GetType();
92 switch (isa) {
93 case InstructionSet::kArm:
94 case InstructionSet::kThumb2:
95 if (type != DataType::Type::kInt32) {
96 return false;
97 }
98 break;
99 case InstructionSet::kArm64:
100 if (!DataType::IsIntOrLongType(type)) {
101 return false;
102 }
103 break;
104 default:
105 return false;
106 }
107
108 ArenaAllocator* allocator = mul->GetBlock()->GetGraph()->GetAllocator();
109
110 if (mul->HasOnlyOneNonEnvironmentUse()) {
111 HInstruction* use = mul->GetUses().front().GetUser();
112 if (use->IsAdd() || use->IsSub()) {
113 // Replace code looking like
114 // MUL tmp, x, y
115 // SUB dst, acc, tmp
116 // with
117 // MULSUB dst, acc, x, y
118 // Note that we do not want to (unconditionally) perform the merge when the
119 // multiplication has multiple uses and it can be merged in all of them.
120 // Multiple uses could happen on the same control-flow path, and we would
121 // then increase the amount of work. In the future we could try to evaluate
122 // whether all uses are on different control-flow paths (using dominance and
123 // reverse-dominance information) and only perform the merge when they are.
124 HInstruction* accumulator = nullptr;
125 HBinaryOperation* binop = use->AsBinaryOperation();
126 HInstruction* binop_left = binop->GetLeft();
127 HInstruction* binop_right = binop->GetRight();
128 // Be careful after GVN. This should not happen since the `HMul` has only
129 // one use.
130 DCHECK_NE(binop_left, binop_right);
131 if (binop_right == mul) {
132 accumulator = binop_left;
133 } else if (use->IsAdd()) {
134 DCHECK_EQ(binop_left, mul);
135 accumulator = binop_right;
136 }
137
138 if (accumulator != nullptr) {
139 HMultiplyAccumulate* mulacc =
140 new (allocator) HMultiplyAccumulate(type,
141 binop->GetKind(),
142 accumulator,
143 mul->GetLeft(),
144 mul->GetRight());
145
146 binop->GetBlock()->ReplaceAndRemoveInstructionWith(binop, mulacc);
147 DCHECK(!mul->HasUses());
148 mul->GetBlock()->RemoveInstruction(mul);
149 return true;
150 }
151 } else if (use->IsNeg() && isa != InstructionSet::kArm) {
152 HMultiplyAccumulate* mulacc =
153 new (allocator) HMultiplyAccumulate(type,
154 HInstruction::kSub,
155 mul->GetBlock()->GetGraph()->GetConstant(type, 0),
156 mul->GetLeft(),
157 mul->GetRight());
158
159 use->GetBlock()->ReplaceAndRemoveInstructionWith(use, mulacc);
160 DCHECK(!mul->HasUses());
161 mul->GetBlock()->RemoveInstruction(mul);
162 return true;
163 }
164 }
165
166 // Use multiply accumulate instruction for a few simple patterns.
167 // We prefer not applying the following transformations if the left and
168 // right inputs perform the same operation.
169 // We rely on GVN having squashed the inputs if appropriate. However the
170 // results are still correct even if that did not happen.
171 if (mul->GetLeft() == mul->GetRight()) {
172 return false;
173 }
174
175 HInstruction* left = mul->GetLeft();
176 HInstruction* right = mul->GetRight();
177 if ((right->IsAdd() || right->IsSub()) &&
178 TrySimpleMultiplyAccumulatePatterns(mul, right->AsBinaryOperation(), left)) {
179 return true;
180 }
181 if ((left->IsAdd() || left->IsSub()) &&
182 TrySimpleMultiplyAccumulatePatterns(mul, left->AsBinaryOperation(), right)) {
183 return true;
184 }
185 return false;
186 }
187
188
TryMergeNegatedInput(HBinaryOperation * op)189 bool TryMergeNegatedInput(HBinaryOperation* op) {
190 DCHECK(op->IsAnd() || op->IsOr() || op->IsXor()) << op->DebugName();
191 HInstruction* left = op->GetLeft();
192 HInstruction* right = op->GetRight();
193
194 // Only consider the case where there is exactly one Not, with 2 Not's De
195 // Morgan's laws should be applied instead.
196 if (left->IsNot() ^ right->IsNot()) {
197 HInstruction* hnot = (left->IsNot() ? left : right);
198 HInstruction* hother = (left->IsNot() ? right : left);
199
200 // Only do the simplification if the Not has only one use and can thus be
201 // safely removed. Even though ARM64 negated bitwise operations do not have
202 // an immediate variant (only register), we still do the simplification when
203 // `hother` is a constant, because it removes an instruction if the constant
204 // cannot be encoded as an immediate:
205 // mov r0, #large_constant
206 // neg r2, r1
207 // and r0, r0, r2
208 // becomes:
209 // mov r0, #large_constant
210 // bic r0, r0, r1
211 if (hnot->HasOnlyOneNonEnvironmentUse()) {
212 // Replace code looking like
213 // NOT tmp, mask
214 // AND dst, src, tmp (respectively ORR, EOR)
215 // with
216 // BIC dst, src, mask (respectively ORN, EON)
217 HInstruction* src = hnot->AsNot()->GetInput();
218
219 HBitwiseNegatedRight* neg_op = new (hnot->GetBlock()->GetGraph()->GetAllocator())
220 HBitwiseNegatedRight(op->GetType(), op->GetKind(), hother, src, op->GetDexPc());
221
222 op->GetBlock()->ReplaceAndRemoveInstructionWith(op, neg_op);
223 hnot->GetBlock()->RemoveInstruction(hnot);
224 return true;
225 }
226 }
227
228 return false;
229 }
230
231
TryExtractArrayAccessAddress(HInstruction * access,HInstruction * array,HInstruction * index,size_t data_offset)232 bool TryExtractArrayAccessAddress(HInstruction* access,
233 HInstruction* array,
234 HInstruction* index,
235 size_t data_offset) {
236 if (index->IsConstant() ||
237 (index->IsBoundsCheck() && index->AsBoundsCheck()->GetIndex()->IsConstant())) {
238 // When the index is a constant all the addressing can be fitted in the
239 // memory access instruction, so do not split the access.
240 return false;
241 }
242 if (access->IsArraySet() &&
243 access->AsArraySet()->GetValue()->GetType() == DataType::Type::kReference) {
244 // The access may require a runtime call or the original array pointer.
245 return false;
246 }
247 if (kEmitCompilerReadBarrier &&
248 !kUseBakerReadBarrier &&
249 access->IsArrayGet() &&
250 access->GetType() == DataType::Type::kReference) {
251 // For object arrays, the non-Baker read barrier instrumentation requires
252 // the original array pointer.
253 return false;
254 }
255
256 // Proceed to extract the base address computation.
257 HGraph* graph = access->GetBlock()->GetGraph();
258 ArenaAllocator* allocator = graph->GetAllocator();
259
260 HIntConstant* offset = graph->GetIntConstant(data_offset);
261 HIntermediateAddress* address = new (allocator) HIntermediateAddress(array, offset, kNoDexPc);
262 // TODO: Is it ok to not have this on the intermediate address?
263 // address->SetReferenceTypeInfo(array->GetReferenceTypeInfo());
264 access->GetBlock()->InsertInstructionBefore(address, access);
265 access->ReplaceInput(address, 0);
266 // Both instructions must depend on GC to prevent any instruction that can
267 // trigger GC to be inserted between the two.
268 access->AddSideEffects(SideEffects::DependsOnGC());
269 DCHECK(address->GetSideEffects().Includes(SideEffects::DependsOnGC()));
270 DCHECK(access->GetSideEffects().Includes(SideEffects::DependsOnGC()));
271 // TODO: Code generation for HArrayGet and HArraySet will check whether the input address
272 // is an HIntermediateAddress and generate appropriate code.
273 // We would like to replace the `HArrayGet` and `HArraySet` with custom instructions (maybe
274 // `HArm64Load` and `HArm64Store`,`HArmLoad` and `HArmStore`). We defer these changes
275 // because these new instructions would not bring any advantages yet.
276 // Also see the comments in
277 // `InstructionCodeGeneratorARMVIXL::VisitArrayGet()`
278 // `InstructionCodeGeneratorARMVIXL::VisitArraySet()`
279 // `InstructionCodeGeneratorARM64::VisitArrayGet()`
280 // `InstructionCodeGeneratorARM64::VisitArraySet()`.
281 return true;
282 }
283
TryExtractVecArrayAccessAddress(HVecMemoryOperation * access,HInstruction * index)284 bool TryExtractVecArrayAccessAddress(HVecMemoryOperation* access, HInstruction* index) {
285 if (index->IsConstant()) {
286 // If index is constant the whole address calculation often can be done by LDR/STR themselves.
287 // TODO: Treat the case with not-embedable constant.
288 return false;
289 }
290
291 HGraph* graph = access->GetBlock()->GetGraph();
292 ArenaAllocator* allocator = graph->GetAllocator();
293 DataType::Type packed_type = access->GetPackedType();
294 uint32_t data_offset = mirror::Array::DataOffset(
295 DataType::Size(packed_type)).Uint32Value();
296 size_t component_shift = DataType::SizeShift(packed_type);
297
298 bool is_extracting_beneficial = false;
299 // It is beneficial to extract index intermediate address only if there are at least 2 users.
300 for (const HUseListNode<HInstruction*>& use : index->GetUses()) {
301 HInstruction* user = use.GetUser();
302 if (user->IsVecMemoryOperation() && user != access) {
303 HVecMemoryOperation* another_access = user->AsVecMemoryOperation();
304 DataType::Type another_packed_type = another_access->GetPackedType();
305 uint32_t another_data_offset = mirror::Array::DataOffset(
306 DataType::Size(another_packed_type)).Uint32Value();
307 size_t another_component_shift = DataType::SizeShift(another_packed_type);
308 if (another_data_offset == data_offset && another_component_shift == component_shift) {
309 is_extracting_beneficial = true;
310 break;
311 }
312 } else if (user->IsIntermediateAddressIndex()) {
313 HIntermediateAddressIndex* another_access = user->AsIntermediateAddressIndex();
314 uint32_t another_data_offset = another_access->GetOffset()->AsIntConstant()->GetValue();
315 size_t another_component_shift = another_access->GetShift()->AsIntConstant()->GetValue();
316 if (another_data_offset == data_offset && another_component_shift == component_shift) {
317 is_extracting_beneficial = true;
318 break;
319 }
320 }
321 }
322
323 if (!is_extracting_beneficial) {
324 return false;
325 }
326
327 // Proceed to extract the index + data_offset address computation.
328 HIntConstant* offset = graph->GetIntConstant(data_offset);
329 HIntConstant* shift = graph->GetIntConstant(component_shift);
330 HIntermediateAddressIndex* address =
331 new (allocator) HIntermediateAddressIndex(index, offset, shift, kNoDexPc);
332
333 access->GetBlock()->InsertInstructionBefore(address, access);
334 access->ReplaceInput(address, 1);
335
336 return true;
337 }
338
TryReplaceSubSubWithSubAdd(HSub * last_sub)339 bool TryReplaceSubSubWithSubAdd(HSub* last_sub) {
340 DCHECK(last_sub->GetRight()->IsSub());
341 HBasicBlock* basic_block = last_sub->GetBlock();
342 ArenaAllocator* allocator = basic_block->GetGraph()->GetAllocator();
343 HInstruction* last_sub_right = last_sub->GetRight();
344 HInstruction* last_sub_left = last_sub->GetLeft();
345 if (last_sub_right->GetUses().HasExactlyOneElement()) {
346 // Reorder operands of last_sub_right: Sub(a, b) -> Sub(b, a).
347 HInstruction* a = last_sub_right->InputAt(0);
348 HInstruction* b = last_sub_right->InputAt(1);
349 last_sub_right->ReplaceInput(b, 0);
350 last_sub_right->ReplaceInput(a, 1);
351
352 // Replace Sub(c, Sub(a, b)) with Add(c, Sub(b, a).
353 HAdd* add = new (allocator) HAdd(last_sub->GetType(), last_sub_left, last_sub_right);
354 basic_block->ReplaceAndRemoveInstructionWith(last_sub, add);
355 return true;
356 } else {
357 return false;
358 }
359 }
360
361 } // namespace art
362