1# Copyright 2016 The Android Open Source Project 2# 3# Licensed under the Apache License, Version 2.0 (the 'License'); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an 'AS IS' BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14 15import os 16 17import its.caps 18import its.cv2image 19import its.device 20import its.image 21import its.objects 22import numpy as np 23 24NUM_IMGS = 12 25FRAME_TIME_TOL = 10 # ms 26SHARPNESS_TOL = 0.10 # percentage 27POSITION_TOL = 0.10 # percentage 28VGA_WIDTH = 640 29VGA_HEIGHT = 480 30NAME = os.path.basename(__file__).split('.')[0] 31 32 33def test_lens_movement_reporting(cam, props, fmt, gain, exp, af_fd, chart): 34 """Return fd, sharpness, lens state of the output images. 35 36 Args: 37 cam: An open device session. 38 props: Properties of cam 39 fmt: dict; capture format 40 gain: Sensitivity for the 3A request as defined in 41 android.sensor.sensitivity 42 exp: Exposure time for the 3A request as defined in 43 android.sensor.exposureTime 44 af_fd: Focus distance for the 3A request as defined in 45 android.lens.focusDistance 46 chart: Object that contains chart information 47 48 Returns: 49 Object containing reported sharpness of the output image, keyed by 50 the following string: 51 'sharpness' 52 """ 53 54 # initialize variables and take data sets 55 data_set = {} 56 white_level = int(props['android.sensor.info.whiteLevel']) 57 min_fd = props['android.lens.info.minimumFocusDistance'] 58 fds = [af_fd, min_fd] 59 fds = sorted(fds * NUM_IMGS) 60 reqs = [] 61 for i, fd in enumerate(fds): 62 reqs.append(its.objects.manual_capture_request(gain, exp)) 63 reqs[i]['android.lens.focusDistance'] = fd 64 caps = cam.do_capture(reqs, fmt) 65 for i, cap in enumerate(caps): 66 data = {'fd': fds[i]} 67 data['loc'] = cap['metadata']['android.lens.focusDistance'] 68 data['lens_moving'] = (cap['metadata']['android.lens.state'] 69 == 1) 70 timestamp = cap['metadata']['android.sensor.timestamp'] 71 if i == 0: 72 timestamp_init = timestamp 73 timestamp -= timestamp_init 74 timestamp *= 1E-6 75 data['timestamp'] = timestamp 76 print ' focus distance (diopters): %.3f' % data['fd'] 77 print ' current lens location (diopters): %.3f' % data['loc'] 78 print ' lens moving %r' % data['lens_moving'] 79 y, _, _ = its.image.convert_capture_to_planes(cap, props) 80 y = its.image.rotate_img_per_argv(y) 81 chart.img = its.image.normalize_img(its.image.get_image_patch( 82 y, chart.xnorm, chart.ynorm, chart.wnorm, chart.hnorm)) 83 its.image.write_image(chart.img, '%s_i=%d_chart.jpg' % (NAME, i)) 84 data['sharpness'] = white_level*its.image.compute_image_sharpness( 85 chart.img) 86 print 'Chart sharpness: %.1f\n' % data['sharpness'] 87 data_set[i] = data 88 return data_set 89 90 91def main(): 92 """Test if focus distance is properly reported. 93 94 Capture images at a variety of focus locations. 95 """ 96 97 print '\nStarting test_lens_movement_reporting.py' 98 # check skip conditions 99 with its.device.ItsSession() as cam: 100 props = cam.get_camera_properties() 101 its.caps.skip_unless(not its.caps.fixed_focus(props)) 102 its.caps.skip_unless(its.caps.read_3a(props) and 103 its.caps.lens_approx_calibrated(props)) 104 # initialize chart class 105 chart = its.cv2image.Chart() 106 107 with its.device.ItsSession() as cam: 108 mono_camera = its.caps.mono_camera(props) 109 min_fd = props['android.lens.info.minimumFocusDistance'] 110 fmt = {'format': 'yuv', 'width': VGA_WIDTH, 'height': VGA_HEIGHT} 111 112 # Get proper sensitivity, exposure time, and focus distance with 3A. 113 s, e, _, _, fd = cam.do_3a(get_results=True, mono_camera=mono_camera) 114 115 # Get sharpness for each focal distance 116 d = test_lens_movement_reporting(cam, props, fmt, s, e, fd, chart) 117 for k in sorted(d): 118 print ('i: %d\tfd: %.3f\tlens location (diopters): %.3f \t' 119 'sharpness: %.1f \tlens_moving: %r \t' 120 'timestamp: %.1fms' % (k, d[k]['fd'], d[k]['loc'], 121 d[k]['sharpness'], 122 d[k]['lens_moving'], 123 d[k]['timestamp'])) 124 125 # assert frames are consecutive 126 print 'Asserting frames are consecutive' 127 times = [v['timestamp'] for v in d.itervalues()] 128 diffs = np.gradient(times) 129 assert np.isclose(np.amax(diffs)-np.amax(diffs), 0, atol=FRAME_TIME_TOL) 130 131 # remove data when lens is moving 132 for k in sorted(d): 133 if d[k]['lens_moving']: 134 del d[k] 135 136 # split data into min_fd and af data for processing 137 d_min_fd = {} 138 d_af_fd = {} 139 for k in sorted(d): 140 if d[k]['fd'] == min_fd: 141 d_min_fd[k] = d[k] 142 if d[k]['fd'] == fd: 143 d_af_fd[k] = d[k] 144 145 # assert reported locations are close at af_fd 146 print 'Asserting lens location of af_fd data' 147 min_loc = min([v['loc'] for v in d_af_fd.itervalues()]) 148 max_loc = max([v['loc'] for v in d_af_fd.itervalues()]) 149 assert np.isclose(min_loc, max_loc, rtol=POSITION_TOL) 150 # assert reported sharpness is close at af_fd 151 print 'Asserting sharpness of af_fd data' 152 min_sharp = min([v['sharpness'] for v in d_af_fd.itervalues()]) 153 max_sharp = max([v['sharpness'] for v in d_af_fd.itervalues()]) 154 assert np.isclose(min_sharp, max_sharp, rtol=SHARPNESS_TOL) 155 # assert reported location is close to assign location for af_fd 156 print 'Asserting lens location close to assigned fd for af_fd data' 157 first_key = min(d_af_fd.keys()) # finds 1st non-moving frame 158 assert np.isclose(d_af_fd[first_key]['loc'], d_af_fd[first_key]['fd'], 159 rtol=POSITION_TOL) 160 161 # assert reported location is close for min_fd captures 162 print 'Asserting lens location similar min_fd data' 163 min_loc = min([v['loc'] for v in d_min_fd.itervalues()]) 164 max_loc = max([v['loc'] for v in d_min_fd.itervalues()]) 165 assert np.isclose(min_loc, max_loc, rtol=POSITION_TOL) 166 # assert reported sharpness is close at min_fd 167 print 'Asserting sharpness of min_fd data' 168 min_sharp = min([v['sharpness'] for v in d_min_fd.itervalues()]) 169 max_sharp = max([v['sharpness'] for v in d_min_fd.itervalues()]) 170 assert np.isclose(min_sharp, max_sharp, rtol=SHARPNESS_TOL) 171 # assert reported location is close to assign location for min_fd 172 print 'Asserting lens location close to assigned fd for min_fd data' 173 assert np.isclose(d_min_fd[NUM_IMGS*2-1]['loc'], 174 d_min_fd[NUM_IMGS*2-1]['fd'], rtol=POSITION_TOL) 175 176 177if __name__ == '__main__': 178 main() 179