1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ART_RUNTIME_THREAD_H_ 18 #define ART_RUNTIME_THREAD_H_ 19 20 #include <atomic> 21 #include <bitset> 22 #include <deque> 23 #include <iosfwd> 24 #include <list> 25 #include <memory> 26 #include <string> 27 28 #include "base/atomic.h" 29 #include "base/enums.h" 30 #include "base/locks.h" 31 #include "base/macros.h" 32 #include "base/safe_map.h" 33 #include "base/value_object.h" 34 #include "entrypoints/jni/jni_entrypoints.h" 35 #include "entrypoints/quick/quick_entrypoints.h" 36 #include "handle.h" 37 #include "handle_scope.h" 38 #include "interpreter/interpreter_cache.h" 39 #include "jvalue.h" 40 #include "managed_stack.h" 41 #include "offsets.h" 42 #include "read_barrier_config.h" 43 #include "reflective_handle_scope.h" 44 #include "runtime_globals.h" 45 #include "runtime_stats.h" 46 #include "thread_state.h" 47 48 class BacktraceMap; 49 50 namespace art { 51 52 namespace gc { 53 namespace accounting { 54 template<class T> class AtomicStack; 55 } // namespace accounting 56 namespace collector { 57 class SemiSpace; 58 } // namespace collector 59 } // namespace gc 60 61 namespace instrumentation { 62 struct InstrumentationStackFrame; 63 } // namespace instrumentation 64 65 namespace mirror { 66 class Array; 67 class Class; 68 class ClassLoader; 69 class Object; 70 template<class T> class ObjectArray; 71 template<class T> class PrimitiveArray; 72 typedef PrimitiveArray<int32_t> IntArray; 73 class StackTraceElement; 74 class String; 75 class Throwable; 76 } // namespace mirror 77 78 namespace verifier { 79 class MethodVerifier; 80 class VerifierDeps; 81 } // namespace verifier 82 83 class ArtMethod; 84 class BaseMutex; 85 class ClassLinker; 86 class Closure; 87 class Context; 88 class DeoptimizationContextRecord; 89 class DexFile; 90 class FrameIdToShadowFrame; 91 class IsMarkedVisitor; 92 class JavaVMExt; 93 class JNIEnvExt; 94 class Monitor; 95 class RootVisitor; 96 class ScopedObjectAccessAlreadyRunnable; 97 class ShadowFrame; 98 class StackedShadowFrameRecord; 99 enum class SuspendReason : char; 100 class Thread; 101 class ThreadList; 102 enum VisitRootFlags : uint8_t; 103 104 // A piece of data that can be held in the CustomTls. The destructor will be called during thread 105 // shutdown. The thread the destructor is called on is not necessarily the same thread it was stored 106 // on. 107 class TLSData { 108 public: ~TLSData()109 virtual ~TLSData() {} 110 }; 111 112 // Thread priorities. These must match the Thread.MIN_PRIORITY, 113 // Thread.NORM_PRIORITY, and Thread.MAX_PRIORITY constants. 114 enum ThreadPriority { 115 kMinThreadPriority = 1, 116 kNormThreadPriority = 5, 117 kMaxThreadPriority = 10, 118 }; 119 120 enum ThreadFlag { 121 kSuspendRequest = 1, // If set implies that suspend_count_ > 0 and the Thread should enter the 122 // safepoint handler. 123 kCheckpointRequest = 2, // Request that the thread do some checkpoint work and then continue. 124 kEmptyCheckpointRequest = 4, // Request that the thread do empty checkpoint and then continue. 125 kActiveSuspendBarrier = 8, // Register that at least 1 suspend barrier needs to be passed. 126 }; 127 128 enum class StackedShadowFrameType { 129 kShadowFrameUnderConstruction, 130 kDeoptimizationShadowFrame, 131 }; 132 133 // The type of method that triggers deoptimization. It contains info on whether 134 // the deoptimized method should advance dex_pc. 135 enum class DeoptimizationMethodType { 136 kKeepDexPc, // dex pc is required to be kept upon deoptimization. 137 kDefault // dex pc may or may not advance depending on other conditions. 138 }; 139 140 // This should match RosAlloc::kNumThreadLocalSizeBrackets. 141 static constexpr size_t kNumRosAllocThreadLocalSizeBracketsInThread = 16; 142 143 // Thread's stack layout for implicit stack overflow checks: 144 // 145 // +---------------------+ <- highest address of stack memory 146 // | | 147 // . . <- SP 148 // | | 149 // | | 150 // +---------------------+ <- stack_end 151 // | | 152 // | Gap | 153 // | | 154 // +---------------------+ <- stack_begin 155 // | | 156 // | Protected region | 157 // | | 158 // +---------------------+ <- lowest address of stack memory 159 // 160 // The stack always grows down in memory. At the lowest address is a region of memory 161 // that is set mprotect(PROT_NONE). Any attempt to read/write to this region will 162 // result in a segmentation fault signal. At any point, the thread's SP will be somewhere 163 // between the stack_end and the highest address in stack memory. An implicit stack 164 // overflow check is a read of memory at a certain offset below the current SP (4K typically). 165 // If the thread's SP is below the stack_end address this will be a read into the protected 166 // region. If the SP is above the stack_end address, the thread is guaranteed to have 167 // at least 4K of space. Because stack overflow checks are only performed in generated code, 168 // if the thread makes a call out to a native function (through JNI), that native function 169 // might only have 4K of memory (if the SP is adjacent to stack_end). 170 171 class Thread { 172 public: 173 static const size_t kStackOverflowImplicitCheckSize; 174 static constexpr bool kVerifyStack = kIsDebugBuild; 175 176 // Creates a new native thread corresponding to the given managed peer. 177 // Used to implement Thread.start. 178 static void CreateNativeThread(JNIEnv* env, jobject peer, size_t stack_size, bool daemon); 179 180 // Attaches the calling native thread to the runtime, returning the new native peer. 181 // Used to implement JNI AttachCurrentThread and AttachCurrentThreadAsDaemon calls. 182 static Thread* Attach(const char* thread_name, bool as_daemon, jobject thread_group, 183 bool create_peer); 184 // Attaches the calling native thread to the runtime, returning the new native peer. 185 static Thread* Attach(const char* thread_name, bool as_daemon, jobject thread_peer); 186 187 // Reset internal state of child thread after fork. 188 void InitAfterFork(); 189 190 // Get the currently executing thread, frequently referred to as 'self'. This call has reasonably 191 // high cost and so we favor passing self around when possible. 192 // TODO: mark as PURE so the compiler may coalesce and remove? 193 static Thread* Current(); 194 195 // On a runnable thread, check for pending thread suspension request and handle if pending. 196 void AllowThreadSuspension() REQUIRES_SHARED(Locks::mutator_lock_); 197 198 // Process pending thread suspension request and handle if pending. 199 void CheckSuspend() REQUIRES_SHARED(Locks::mutator_lock_); 200 201 // Process a pending empty checkpoint if pending. 202 void CheckEmptyCheckpointFromWeakRefAccess(BaseMutex* cond_var_mutex); 203 void CheckEmptyCheckpointFromMutex(); 204 205 static Thread* FromManagedThread(const ScopedObjectAccessAlreadyRunnable& ts, 206 ObjPtr<mirror::Object> thread_peer) 207 REQUIRES(Locks::thread_list_lock_, !Locks::thread_suspend_count_lock_) 208 REQUIRES_SHARED(Locks::mutator_lock_); 209 static Thread* FromManagedThread(const ScopedObjectAccessAlreadyRunnable& ts, jobject thread) 210 REQUIRES(Locks::thread_list_lock_, !Locks::thread_suspend_count_lock_) 211 REQUIRES_SHARED(Locks::mutator_lock_); 212 213 // Translates 172 to pAllocArrayFromCode and so on. 214 template<PointerSize size_of_pointers> 215 static void DumpThreadOffset(std::ostream& os, uint32_t offset); 216 217 // Dumps a one-line summary of thread state (used for operator<<). 218 void ShortDump(std::ostream& os) const; 219 220 // Dumps the detailed thread state and the thread stack (used for SIGQUIT). 221 void Dump(std::ostream& os, 222 bool dump_native_stack = true, 223 BacktraceMap* backtrace_map = nullptr, 224 bool force_dump_stack = false) const 225 REQUIRES_SHARED(Locks::mutator_lock_); 226 227 void DumpJavaStack(std::ostream& os, 228 bool check_suspended = true, 229 bool dump_locks = true) const 230 REQUIRES_SHARED(Locks::mutator_lock_); 231 232 // Dumps the SIGQUIT per-thread header. 'thread' can be null for a non-attached thread, in which 233 // case we use 'tid' to identify the thread, and we'll include as much information as we can. 234 static void DumpState(std::ostream& os, const Thread* thread, pid_t tid) 235 REQUIRES_SHARED(Locks::mutator_lock_); 236 GetState()237 ThreadState GetState() const { 238 DCHECK_GE(tls32_.state_and_flags.as_struct.state, kTerminated); 239 DCHECK_LE(tls32_.state_and_flags.as_struct.state, kSuspended); 240 return static_cast<ThreadState>(tls32_.state_and_flags.as_struct.state); 241 } 242 243 ThreadState SetState(ThreadState new_state); 244 GetSuspendCount()245 int GetSuspendCount() const REQUIRES(Locks::thread_suspend_count_lock_) { 246 return tls32_.suspend_count; 247 } 248 GetUserCodeSuspendCount()249 int GetUserCodeSuspendCount() const REQUIRES(Locks::thread_suspend_count_lock_, 250 Locks::user_code_suspension_lock_) { 251 return tls32_.user_code_suspend_count; 252 } 253 IsSuspended()254 bool IsSuspended() const { 255 union StateAndFlags state_and_flags; 256 state_and_flags.as_int = tls32_.state_and_flags.as_int; 257 return state_and_flags.as_struct.state != kRunnable && 258 (state_and_flags.as_struct.flags & kSuspendRequest) != 0; 259 } 260 DecrDefineClassCount()261 void DecrDefineClassCount() { 262 tls32_.define_class_counter--; 263 } 264 IncrDefineClassCount()265 void IncrDefineClassCount() { 266 tls32_.define_class_counter++; 267 } GetDefineClassCount()268 uint32_t GetDefineClassCount() const { 269 return tls32_.define_class_counter; 270 } 271 272 // If delta > 0 and (this != self or suspend_barrier is not null), this function may temporarily 273 // release thread_suspend_count_lock_ internally. 274 ALWAYS_INLINE 275 bool ModifySuspendCount(Thread* self, 276 int delta, 277 AtomicInteger* suspend_barrier, 278 SuspendReason reason) 279 WARN_UNUSED 280 REQUIRES(Locks::thread_suspend_count_lock_); 281 282 // Requests a checkpoint closure to run on another thread. The closure will be run when the thread 283 // gets suspended. This will return true if the closure was added and will (eventually) be 284 // executed. It returns false otherwise. 285 // 286 // Since multiple closures can be queued and some closures can delay other threads from running no 287 // closure should attempt to suspend another thread while running. 288 // TODO We should add some debug option that verifies this. 289 bool RequestCheckpoint(Closure* function) 290 REQUIRES(Locks::thread_suspend_count_lock_); 291 292 // RequestSynchronousCheckpoint releases the thread_list_lock_ as a part of its execution. This is 293 // due to the fact that Thread::Current() needs to go to sleep to allow the targeted thread to 294 // execute the checkpoint for us if it is Runnable. The suspend_state is the state that the thread 295 // will go into while it is awaiting the checkpoint to be run. 296 // NB Passing ThreadState::kRunnable may cause the current thread to wait in a condition variable 297 // while holding the mutator_lock_. Callers should ensure that this will not cause any problems 298 // for the closure or the rest of the system. 299 // NB Since multiple closures can be queued and some closures can delay other threads from running 300 // no closure should attempt to suspend another thread while running. 301 bool RequestSynchronousCheckpoint(Closure* function, 302 ThreadState suspend_state = ThreadState::kWaiting) 303 REQUIRES_SHARED(Locks::mutator_lock_) 304 RELEASE(Locks::thread_list_lock_) 305 REQUIRES(!Locks::thread_suspend_count_lock_); 306 307 bool RequestEmptyCheckpoint() 308 REQUIRES(Locks::thread_suspend_count_lock_); 309 310 void SetFlipFunction(Closure* function); 311 Closure* GetFlipFunction(); 312 GetThreadLocalMarkStack()313 gc::accounting::AtomicStack<mirror::Object>* GetThreadLocalMarkStack() { 314 CHECK(kUseReadBarrier); 315 return tlsPtr_.thread_local_mark_stack; 316 } SetThreadLocalMarkStack(gc::accounting::AtomicStack<mirror::Object> * stack)317 void SetThreadLocalMarkStack(gc::accounting::AtomicStack<mirror::Object>* stack) { 318 CHECK(kUseReadBarrier); 319 tlsPtr_.thread_local_mark_stack = stack; 320 } 321 322 // Called when thread detected that the thread_suspend_count_ was non-zero. Gives up share of 323 // mutator_lock_ and waits until it is resumed and thread_suspend_count_ is zero. 324 void FullSuspendCheck() 325 REQUIRES(!Locks::thread_suspend_count_lock_) 326 REQUIRES_SHARED(Locks::mutator_lock_); 327 328 // Transition from non-runnable to runnable state acquiring share on mutator_lock_. 329 ALWAYS_INLINE ThreadState TransitionFromSuspendedToRunnable() 330 REQUIRES(!Locks::thread_suspend_count_lock_) 331 SHARED_LOCK_FUNCTION(Locks::mutator_lock_); 332 333 // Transition from runnable into a state where mutator privileges are denied. Releases share of 334 // mutator lock. 335 ALWAYS_INLINE void TransitionFromRunnableToSuspended(ThreadState new_state) 336 REQUIRES(!Locks::thread_suspend_count_lock_, !Roles::uninterruptible_) 337 UNLOCK_FUNCTION(Locks::mutator_lock_); 338 339 // Once called thread suspension will cause an assertion failure. StartAssertNoThreadSuspension(const char * cause)340 const char* StartAssertNoThreadSuspension(const char* cause) ACQUIRE(Roles::uninterruptible_) { 341 Roles::uninterruptible_.Acquire(); // No-op. 342 if (kIsDebugBuild) { 343 CHECK(cause != nullptr); 344 const char* previous_cause = tlsPtr_.last_no_thread_suspension_cause; 345 tls32_.no_thread_suspension++; 346 tlsPtr_.last_no_thread_suspension_cause = cause; 347 return previous_cause; 348 } else { 349 return nullptr; 350 } 351 } 352 353 // End region where no thread suspension is expected. EndAssertNoThreadSuspension(const char * old_cause)354 void EndAssertNoThreadSuspension(const char* old_cause) RELEASE(Roles::uninterruptible_) { 355 if (kIsDebugBuild) { 356 CHECK(old_cause != nullptr || tls32_.no_thread_suspension == 1); 357 CHECK_GT(tls32_.no_thread_suspension, 0U); 358 tls32_.no_thread_suspension--; 359 tlsPtr_.last_no_thread_suspension_cause = old_cause; 360 } 361 Roles::uninterruptible_.Release(); // No-op. 362 } 363 364 // End region where no thread suspension is expected. Returns the current open region in case we 365 // want to reopen it. Used for ScopedAllowThreadSuspension. Not supported if no_thread_suspension 366 // is larger than one. EndAssertNoThreadSuspension()367 const char* EndAssertNoThreadSuspension() RELEASE(Roles::uninterruptible_) WARN_UNUSED { 368 const char* ret = nullptr; 369 if (kIsDebugBuild) { 370 CHECK_EQ(tls32_.no_thread_suspension, 1u); 371 tls32_.no_thread_suspension--; 372 ret = tlsPtr_.last_no_thread_suspension_cause; 373 tlsPtr_.last_no_thread_suspension_cause = nullptr; 374 } 375 Roles::uninterruptible_.Release(); // No-op. 376 return ret; 377 } 378 379 void AssertThreadSuspensionIsAllowable(bool check_locks = true) const; 380 381 // Return true if thread suspension is allowable. 382 bool IsThreadSuspensionAllowable() const; 383 IsDaemon()384 bool IsDaemon() const { 385 return tls32_.daemon; 386 } 387 388 size_t NumberOfHeldMutexes() const; 389 390 bool HoldsLock(ObjPtr<mirror::Object> object) const REQUIRES_SHARED(Locks::mutator_lock_); 391 392 /* 393 * Changes the priority of this thread to match that of the java.lang.Thread object. 394 * 395 * We map a priority value from 1-10 to Linux "nice" values, where lower 396 * numbers indicate higher priority. 397 */ 398 void SetNativePriority(int newPriority); 399 400 /* 401 * Returns the priority of this thread by querying the system. 402 * This is useful when attaching a thread through JNI. 403 * 404 * Returns a value from 1 to 10 (compatible with java.lang.Thread values). 405 */ 406 int GetNativePriority() const; 407 408 // Guaranteed to be non-zero. GetThreadId()409 uint32_t GetThreadId() const { 410 return tls32_.thin_lock_thread_id; 411 } 412 GetTid()413 pid_t GetTid() const { 414 return tls32_.tid; 415 } 416 417 // Returns the java.lang.Thread's name, or null if this Thread* doesn't have a peer. 418 ObjPtr<mirror::String> GetThreadName() const REQUIRES_SHARED(Locks::mutator_lock_); 419 420 // Sets 'name' to the java.lang.Thread's name. This requires no transition to managed code, 421 // allocation, or locking. 422 void GetThreadName(std::string& name) const; 423 424 // Sets the thread's name. 425 void SetThreadName(const char* name) REQUIRES_SHARED(Locks::mutator_lock_); 426 427 // Returns the thread-specific CPU-time clock in microseconds or -1 if unavailable. 428 uint64_t GetCpuMicroTime() const; 429 GetPeer()430 mirror::Object* GetPeer() const REQUIRES_SHARED(Locks::mutator_lock_) { 431 DCHECK(Thread::Current() == this) << "Use GetPeerFromOtherThread instead"; 432 CHECK(tlsPtr_.jpeer == nullptr); 433 return tlsPtr_.opeer; 434 } 435 // GetPeer is not safe if called on another thread in the middle of the CC thread flip and 436 // the thread's stack may have not been flipped yet and peer may be a from-space (stale) ref. 437 // This function will explicitly mark/forward it. 438 mirror::Object* GetPeerFromOtherThread() const REQUIRES_SHARED(Locks::mutator_lock_); 439 HasPeer()440 bool HasPeer() const { 441 return tlsPtr_.jpeer != nullptr || tlsPtr_.opeer != nullptr; 442 } 443 GetStats()444 RuntimeStats* GetStats() { 445 return &tls64_.stats; 446 } 447 448 bool IsStillStarting() const; 449 IsExceptionPending()450 bool IsExceptionPending() const { 451 return tlsPtr_.exception != nullptr; 452 } 453 IsAsyncExceptionPending()454 bool IsAsyncExceptionPending() const { 455 return tlsPtr_.async_exception != nullptr; 456 } 457 GetException()458 mirror::Throwable* GetException() const REQUIRES_SHARED(Locks::mutator_lock_) { 459 return tlsPtr_.exception; 460 } 461 462 void AssertPendingException() const; 463 void AssertPendingOOMException() const REQUIRES_SHARED(Locks::mutator_lock_); 464 void AssertNoPendingException() const; 465 void AssertNoPendingExceptionForNewException(const char* msg) const; 466 467 void SetException(ObjPtr<mirror::Throwable> new_exception) REQUIRES_SHARED(Locks::mutator_lock_); 468 469 // Set an exception that is asynchronously thrown from a different thread. This will be checked 470 // periodically and might overwrite the current 'Exception'. This can only be called from a 471 // checkpoint. 472 // 473 // The caller should also make sure that the thread has been deoptimized so that the exception 474 // could be detected on back-edges. 475 void SetAsyncException(ObjPtr<mirror::Throwable> new_exception) 476 REQUIRES_SHARED(Locks::mutator_lock_); 477 ClearException()478 void ClearException() REQUIRES_SHARED(Locks::mutator_lock_) { 479 tlsPtr_.exception = nullptr; 480 } 481 482 // Move the current async-exception to the main exception. This should be called when the current 483 // thread is ready to deal with any async exceptions. Returns true if there is an async exception 484 // that needs to be dealt with, false otherwise. 485 bool ObserveAsyncException() REQUIRES_SHARED(Locks::mutator_lock_); 486 487 // Find catch block and perform long jump to appropriate exception handle 488 NO_RETURN void QuickDeliverException() REQUIRES_SHARED(Locks::mutator_lock_); 489 490 Context* GetLongJumpContext(); ReleaseLongJumpContext(Context * context)491 void ReleaseLongJumpContext(Context* context) { 492 if (tlsPtr_.long_jump_context != nullptr) { 493 ReleaseLongJumpContextInternal(); 494 } 495 tlsPtr_.long_jump_context = context; 496 } 497 498 // Get the current method and dex pc. If there are errors in retrieving the dex pc, this will 499 // abort the runtime iff abort_on_error is true. 500 ArtMethod* GetCurrentMethod(uint32_t* dex_pc, 501 bool check_suspended = true, 502 bool abort_on_error = true) const 503 REQUIRES_SHARED(Locks::mutator_lock_); 504 505 // Returns whether the given exception was thrown by the current Java method being executed 506 // (Note that this includes native Java methods). 507 bool IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const 508 REQUIRES_SHARED(Locks::mutator_lock_); 509 SetTopOfStack(ArtMethod ** top_method)510 void SetTopOfStack(ArtMethod** top_method) { 511 tlsPtr_.managed_stack.SetTopQuickFrame(top_method); 512 } 513 SetTopOfStackTagged(ArtMethod ** top_method)514 void SetTopOfStackTagged(ArtMethod** top_method) { 515 tlsPtr_.managed_stack.SetTopQuickFrameTagged(top_method); 516 } 517 SetTopOfShadowStack(ShadowFrame * top)518 void SetTopOfShadowStack(ShadowFrame* top) { 519 tlsPtr_.managed_stack.SetTopShadowFrame(top); 520 } 521 HasManagedStack()522 bool HasManagedStack() const { 523 return tlsPtr_.managed_stack.HasTopQuickFrame() || tlsPtr_.managed_stack.HasTopShadowFrame(); 524 } 525 526 // If 'msg' is null, no detail message is set. 527 void ThrowNewException(const char* exception_class_descriptor, const char* msg) 528 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_); 529 530 // If 'msg' is null, no detail message is set. An exception must be pending, and will be 531 // used as the new exception's cause. 532 void ThrowNewWrappedException(const char* exception_class_descriptor, const char* msg) 533 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_); 534 535 void ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) 536 __attribute__((format(printf, 3, 4))) 537 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_); 538 539 void ThrowNewExceptionV(const char* exception_class_descriptor, const char* fmt, va_list ap) 540 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_); 541 542 // OutOfMemoryError is special, because we need to pre-allocate an instance. 543 // Only the GC should call this. 544 void ThrowOutOfMemoryError(const char* msg) REQUIRES_SHARED(Locks::mutator_lock_) 545 REQUIRES(!Roles::uninterruptible_); 546 547 static void Startup(); 548 static void FinishStartup(); 549 static void Shutdown(); 550 551 // Notify this thread's thread-group that this thread has started. 552 // Note: the given thread-group is used as a fast path and verified in debug build. If the value 553 // is null, the thread's thread-group is loaded from the peer. 554 void NotifyThreadGroup(ScopedObjectAccessAlreadyRunnable& soa, jobject thread_group = nullptr) 555 REQUIRES_SHARED(Locks::mutator_lock_); 556 557 // JNI methods GetJniEnv()558 JNIEnvExt* GetJniEnv() const { 559 return tlsPtr_.jni_env; 560 } 561 562 // Convert a jobject into a Object* 563 ObjPtr<mirror::Object> DecodeJObject(jobject obj) const REQUIRES_SHARED(Locks::mutator_lock_); 564 // Checks if the weak global ref has been cleared by the GC without decoding it. 565 bool IsJWeakCleared(jweak obj) const REQUIRES_SHARED(Locks::mutator_lock_); 566 GetMonitorEnterObject()567 mirror::Object* GetMonitorEnterObject() const REQUIRES_SHARED(Locks::mutator_lock_) { 568 return tlsPtr_.monitor_enter_object; 569 } 570 SetMonitorEnterObject(mirror::Object * obj)571 void SetMonitorEnterObject(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { 572 tlsPtr_.monitor_enter_object = obj; 573 } 574 575 // Implements java.lang.Thread.interrupted. 576 bool Interrupted(); 577 // Implements java.lang.Thread.isInterrupted. 578 bool IsInterrupted(); 579 void Interrupt(Thread* self) REQUIRES(!wait_mutex_); SetInterrupted(bool i)580 void SetInterrupted(bool i) { 581 tls32_.interrupted.store(i, std::memory_order_seq_cst); 582 } 583 void Notify() REQUIRES(!wait_mutex_); 584 PoisonObjectPointers()585 ALWAYS_INLINE void PoisonObjectPointers() { 586 ++poison_object_cookie_; 587 } 588 589 ALWAYS_INLINE static void PoisonObjectPointersIfDebug(); 590 GetPoisonObjectCookie()591 ALWAYS_INLINE uintptr_t GetPoisonObjectCookie() const { 592 return poison_object_cookie_; 593 } 594 595 // Parking for 0ns of relative time means an untimed park, negative (though 596 // should be handled in java code) returns immediately 597 void Park(bool is_absolute, int64_t time) REQUIRES_SHARED(Locks::mutator_lock_); 598 void Unpark(); 599 600 private: 601 void NotifyLocked(Thread* self) REQUIRES(wait_mutex_); 602 603 public: GetWaitMutex()604 Mutex* GetWaitMutex() const LOCK_RETURNED(wait_mutex_) { 605 return wait_mutex_; 606 } 607 GetWaitConditionVariable()608 ConditionVariable* GetWaitConditionVariable() const REQUIRES(wait_mutex_) { 609 return wait_cond_; 610 } 611 GetWaitMonitor()612 Monitor* GetWaitMonitor() const REQUIRES(wait_mutex_) { 613 return wait_monitor_; 614 } 615 SetWaitMonitor(Monitor * mon)616 void SetWaitMonitor(Monitor* mon) REQUIRES(wait_mutex_) { 617 wait_monitor_ = mon; 618 } 619 620 // Waiter link-list support. GetWaitNext()621 Thread* GetWaitNext() const { 622 return tlsPtr_.wait_next; 623 } 624 SetWaitNext(Thread * next)625 void SetWaitNext(Thread* next) { 626 tlsPtr_.wait_next = next; 627 } 628 GetClassLoaderOverride()629 jobject GetClassLoaderOverride() { 630 return tlsPtr_.class_loader_override; 631 } 632 633 void SetClassLoaderOverride(jobject class_loader_override); 634 635 // Create the internal representation of a stack trace, that is more time 636 // and space efficient to compute than the StackTraceElement[]. 637 jobject CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const 638 REQUIRES_SHARED(Locks::mutator_lock_); 639 640 // Convert an internal stack trace representation (returned by CreateInternalStackTrace) to a 641 // StackTraceElement[]. If output_array is null, a new array is created, otherwise as many 642 // frames as will fit are written into the given array. If stack_depth is non-null, it's updated 643 // with the number of valid frames in the returned array. 644 static jobjectArray InternalStackTraceToStackTraceElementArray( 645 const ScopedObjectAccessAlreadyRunnable& soa, jobject internal, 646 jobjectArray output_array = nullptr, int* stack_depth = nullptr) 647 REQUIRES_SHARED(Locks::mutator_lock_); 648 649 jobjectArray CreateAnnotatedStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const 650 REQUIRES_SHARED(Locks::mutator_lock_); 651 HasDebuggerShadowFrames()652 bool HasDebuggerShadowFrames() const { 653 return tlsPtr_.frame_id_to_shadow_frame != nullptr; 654 } 655 656 void VisitRoots(RootVisitor* visitor, VisitRootFlags flags) 657 REQUIRES_SHARED(Locks::mutator_lock_); 658 659 void VisitReflectiveTargets(ReflectiveValueVisitor* visitor) 660 REQUIRES(Locks::mutator_lock_); 661 VerifyStack()662 void VerifyStack() REQUIRES_SHARED(Locks::mutator_lock_) { 663 if (kVerifyStack) { 664 VerifyStackImpl(); 665 } 666 } 667 668 // 669 // Offsets of various members of native Thread class, used by compiled code. 670 // 671 672 template<PointerSize pointer_size> ThinLockIdOffset()673 static constexpr ThreadOffset<pointer_size> ThinLockIdOffset() { 674 return ThreadOffset<pointer_size>( 675 OFFSETOF_MEMBER(Thread, tls32_) + 676 OFFSETOF_MEMBER(tls_32bit_sized_values, thin_lock_thread_id)); 677 } 678 679 template<PointerSize pointer_size> InterruptedOffset()680 static constexpr ThreadOffset<pointer_size> InterruptedOffset() { 681 return ThreadOffset<pointer_size>( 682 OFFSETOF_MEMBER(Thread, tls32_) + 683 OFFSETOF_MEMBER(tls_32bit_sized_values, interrupted)); 684 } 685 686 template<PointerSize pointer_size> ThreadFlagsOffset()687 static constexpr ThreadOffset<pointer_size> ThreadFlagsOffset() { 688 return ThreadOffset<pointer_size>( 689 OFFSETOF_MEMBER(Thread, tls32_) + 690 OFFSETOF_MEMBER(tls_32bit_sized_values, state_and_flags)); 691 } 692 693 template<PointerSize pointer_size> UseMterpOffset()694 static constexpr ThreadOffset<pointer_size> UseMterpOffset() { 695 return ThreadOffset<pointer_size>( 696 OFFSETOF_MEMBER(Thread, tls32_) + 697 OFFSETOF_MEMBER(tls_32bit_sized_values, use_mterp)); 698 } 699 700 template<PointerSize pointer_size> IsGcMarkingOffset()701 static constexpr ThreadOffset<pointer_size> IsGcMarkingOffset() { 702 return ThreadOffset<pointer_size>( 703 OFFSETOF_MEMBER(Thread, tls32_) + 704 OFFSETOF_MEMBER(tls_32bit_sized_values, is_gc_marking)); 705 } 706 IsGcMarkingSize()707 static constexpr size_t IsGcMarkingSize() { 708 return sizeof(tls32_.is_gc_marking); 709 } 710 711 // Deoptimize the Java stack. 712 void DeoptimizeWithDeoptimizationException(JValue* result) REQUIRES_SHARED(Locks::mutator_lock_); 713 714 private: 715 template<PointerSize pointer_size> ThreadOffsetFromTlsPtr(size_t tls_ptr_offset)716 static constexpr ThreadOffset<pointer_size> ThreadOffsetFromTlsPtr(size_t tls_ptr_offset) { 717 size_t base = OFFSETOF_MEMBER(Thread, tlsPtr_); 718 size_t scale = (pointer_size > kRuntimePointerSize) ? 719 static_cast<size_t>(pointer_size) / static_cast<size_t>(kRuntimePointerSize) : 1; 720 size_t shrink = (kRuntimePointerSize > pointer_size) ? 721 static_cast<size_t>(kRuntimePointerSize) / static_cast<size_t>(pointer_size) : 1; 722 return ThreadOffset<pointer_size>(base + ((tls_ptr_offset * scale) / shrink)); 723 } 724 725 public: 726 template<PointerSize pointer_size> QuickEntryPointOffset(size_t quick_entrypoint_offset)727 static constexpr ThreadOffset<pointer_size> QuickEntryPointOffset( 728 size_t quick_entrypoint_offset) { 729 return ThreadOffsetFromTlsPtr<pointer_size>( 730 OFFSETOF_MEMBER(tls_ptr_sized_values, quick_entrypoints) + quick_entrypoint_offset); 731 } 732 QuickEntryPointOffsetWithSize(size_t quick_entrypoint_offset,PointerSize pointer_size)733 static constexpr uint32_t QuickEntryPointOffsetWithSize(size_t quick_entrypoint_offset, 734 PointerSize pointer_size) { 735 if (pointer_size == PointerSize::k32) { 736 return QuickEntryPointOffset<PointerSize::k32>(quick_entrypoint_offset). 737 Uint32Value(); 738 } else { 739 return QuickEntryPointOffset<PointerSize::k64>(quick_entrypoint_offset). 740 Uint32Value(); 741 } 742 } 743 744 template<PointerSize pointer_size> JniEntryPointOffset(size_t jni_entrypoint_offset)745 static ThreadOffset<pointer_size> JniEntryPointOffset(size_t jni_entrypoint_offset) { 746 return ThreadOffsetFromTlsPtr<pointer_size>( 747 OFFSETOF_MEMBER(tls_ptr_sized_values, jni_entrypoints) + jni_entrypoint_offset); 748 } 749 750 // Return the entry point offset integer value for ReadBarrierMarkRegX, where X is `reg`. 751 template <PointerSize pointer_size> ReadBarrierMarkEntryPointsOffset(size_t reg)752 static constexpr int32_t ReadBarrierMarkEntryPointsOffset(size_t reg) { 753 // The entry point list defines 30 ReadBarrierMarkRegX entry points. 754 DCHECK_LT(reg, 30u); 755 // The ReadBarrierMarkRegX entry points are ordered by increasing 756 // register number in Thread::tls_Ptr_.quick_entrypoints. 757 return QUICK_ENTRYPOINT_OFFSET(pointer_size, pReadBarrierMarkReg00).Int32Value() 758 + static_cast<size_t>(pointer_size) * reg; 759 } 760 761 template<PointerSize pointer_size> SelfOffset()762 static constexpr ThreadOffset<pointer_size> SelfOffset() { 763 return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, self)); 764 } 765 766 template<PointerSize pointer_size> MterpCurrentIBaseOffset()767 static constexpr ThreadOffset<pointer_size> MterpCurrentIBaseOffset() { 768 return ThreadOffsetFromTlsPtr<pointer_size>( 769 OFFSETOF_MEMBER(tls_ptr_sized_values, mterp_current_ibase)); 770 } 771 772 template<PointerSize pointer_size> ExceptionOffset()773 static constexpr ThreadOffset<pointer_size> ExceptionOffset() { 774 return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, exception)); 775 } 776 777 template<PointerSize pointer_size> PeerOffset()778 static constexpr ThreadOffset<pointer_size> PeerOffset() { 779 return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, opeer)); 780 } 781 782 783 template<PointerSize pointer_size> CardTableOffset()784 static constexpr ThreadOffset<pointer_size> CardTableOffset() { 785 return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, card_table)); 786 } 787 788 template<PointerSize pointer_size> ThreadSuspendTriggerOffset()789 static constexpr ThreadOffset<pointer_size> ThreadSuspendTriggerOffset() { 790 return ThreadOffsetFromTlsPtr<pointer_size>( 791 OFFSETOF_MEMBER(tls_ptr_sized_values, suspend_trigger)); 792 } 793 794 template<PointerSize pointer_size> ThreadLocalPosOffset()795 static constexpr ThreadOffset<pointer_size> ThreadLocalPosOffset() { 796 return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, 797 thread_local_pos)); 798 } 799 800 template<PointerSize pointer_size> ThreadLocalEndOffset()801 static constexpr ThreadOffset<pointer_size> ThreadLocalEndOffset() { 802 return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, 803 thread_local_end)); 804 } 805 806 template<PointerSize pointer_size> ThreadLocalObjectsOffset()807 static constexpr ThreadOffset<pointer_size> ThreadLocalObjectsOffset() { 808 return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, 809 thread_local_objects)); 810 } 811 812 template<PointerSize pointer_size> RosAllocRunsOffset()813 static constexpr ThreadOffset<pointer_size> RosAllocRunsOffset() { 814 return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, 815 rosalloc_runs)); 816 } 817 818 template<PointerSize pointer_size> ThreadLocalAllocStackTopOffset()819 static constexpr ThreadOffset<pointer_size> ThreadLocalAllocStackTopOffset() { 820 return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, 821 thread_local_alloc_stack_top)); 822 } 823 824 template<PointerSize pointer_size> ThreadLocalAllocStackEndOffset()825 static constexpr ThreadOffset<pointer_size> ThreadLocalAllocStackEndOffset() { 826 return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, 827 thread_local_alloc_stack_end)); 828 } 829 830 // Size of stack less any space reserved for stack overflow GetStackSize()831 size_t GetStackSize() const { 832 return tlsPtr_.stack_size - (tlsPtr_.stack_end - tlsPtr_.stack_begin); 833 } 834 835 ALWAYS_INLINE uint8_t* GetStackEndForInterpreter(bool implicit_overflow_check) const; 836 GetStackEnd()837 uint8_t* GetStackEnd() const { 838 return tlsPtr_.stack_end; 839 } 840 841 // Set the stack end to that to be used during a stack overflow 842 void SetStackEndForStackOverflow() REQUIRES_SHARED(Locks::mutator_lock_); 843 844 // Set the stack end to that to be used during regular execution 845 ALWAYS_INLINE void ResetDefaultStackEnd(); 846 IsHandlingStackOverflow()847 bool IsHandlingStackOverflow() const { 848 return tlsPtr_.stack_end == tlsPtr_.stack_begin; 849 } 850 851 template<PointerSize pointer_size> StackEndOffset()852 static constexpr ThreadOffset<pointer_size> StackEndOffset() { 853 return ThreadOffsetFromTlsPtr<pointer_size>( 854 OFFSETOF_MEMBER(tls_ptr_sized_values, stack_end)); 855 } 856 857 template<PointerSize pointer_size> JniEnvOffset()858 static constexpr ThreadOffset<pointer_size> JniEnvOffset() { 859 return ThreadOffsetFromTlsPtr<pointer_size>( 860 OFFSETOF_MEMBER(tls_ptr_sized_values, jni_env)); 861 } 862 863 template<PointerSize pointer_size> TopOfManagedStackOffset()864 static constexpr ThreadOffset<pointer_size> TopOfManagedStackOffset() { 865 return ThreadOffsetFromTlsPtr<pointer_size>( 866 OFFSETOF_MEMBER(tls_ptr_sized_values, managed_stack) + 867 ManagedStack::TaggedTopQuickFrameOffset()); 868 } 869 GetManagedStack()870 const ManagedStack* GetManagedStack() const { 871 return &tlsPtr_.managed_stack; 872 } 873 874 // Linked list recording fragments of managed stack. PushManagedStackFragment(ManagedStack * fragment)875 void PushManagedStackFragment(ManagedStack* fragment) { 876 tlsPtr_.managed_stack.PushManagedStackFragment(fragment); 877 } PopManagedStackFragment(const ManagedStack & fragment)878 void PopManagedStackFragment(const ManagedStack& fragment) { 879 tlsPtr_.managed_stack.PopManagedStackFragment(fragment); 880 } 881 882 ALWAYS_INLINE ShadowFrame* PushShadowFrame(ShadowFrame* new_top_frame); 883 ALWAYS_INLINE ShadowFrame* PopShadowFrame(); 884 885 template<PointerSize pointer_size> TopShadowFrameOffset()886 static constexpr ThreadOffset<pointer_size> TopShadowFrameOffset() { 887 return ThreadOffsetFromTlsPtr<pointer_size>( 888 OFFSETOF_MEMBER(tls_ptr_sized_values, managed_stack) + 889 ManagedStack::TopShadowFrameOffset()); 890 } 891 892 // Is the given obj in this thread's stack indirect reference table? 893 bool HandleScopeContains(jobject obj) const; 894 895 void HandleScopeVisitRoots(RootVisitor* visitor, pid_t thread_id) 896 REQUIRES_SHARED(Locks::mutator_lock_); 897 GetTopHandleScope()898 BaseHandleScope* GetTopHandleScope() { 899 return tlsPtr_.top_handle_scope; 900 } 901 PushHandleScope(BaseHandleScope * handle_scope)902 void PushHandleScope(BaseHandleScope* handle_scope) { 903 DCHECK_EQ(handle_scope->GetLink(), tlsPtr_.top_handle_scope); 904 tlsPtr_.top_handle_scope = handle_scope; 905 } 906 PopHandleScope()907 BaseHandleScope* PopHandleScope() { 908 BaseHandleScope* handle_scope = tlsPtr_.top_handle_scope; 909 DCHECK(handle_scope != nullptr); 910 tlsPtr_.top_handle_scope = tlsPtr_.top_handle_scope->GetLink(); 911 return handle_scope; 912 } 913 914 template<PointerSize pointer_size> TopHandleScopeOffset()915 static constexpr ThreadOffset<pointer_size> TopHandleScopeOffset() { 916 return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, 917 top_handle_scope)); 918 } 919 GetTopReflectiveHandleScope()920 BaseReflectiveHandleScope* GetTopReflectiveHandleScope() { 921 return tlsPtr_.top_reflective_handle_scope; 922 } 923 PushReflectiveHandleScope(BaseReflectiveHandleScope * scope)924 void PushReflectiveHandleScope(BaseReflectiveHandleScope* scope) { 925 DCHECK_EQ(scope->GetLink(), tlsPtr_.top_reflective_handle_scope); 926 DCHECK_EQ(scope->GetThread(), this); 927 tlsPtr_.top_reflective_handle_scope = scope; 928 } 929 PopReflectiveHandleScope()930 BaseReflectiveHandleScope* PopReflectiveHandleScope() { 931 BaseReflectiveHandleScope* handle_scope = tlsPtr_.top_reflective_handle_scope; 932 DCHECK(handle_scope != nullptr); 933 tlsPtr_.top_reflective_handle_scope = tlsPtr_.top_reflective_handle_scope->GetLink(); 934 return handle_scope; 935 } 936 937 // Indicates whether this thread is ready to invoke a method for debugging. This 938 // is only true if the thread has been suspended by a debug event. IsReadyForDebugInvoke()939 bool IsReadyForDebugInvoke() const { 940 return tls32_.ready_for_debug_invoke; 941 } 942 SetReadyForDebugInvoke(bool ready)943 void SetReadyForDebugInvoke(bool ready) { 944 tls32_.ready_for_debug_invoke = ready; 945 } 946 IsDebugMethodEntry()947 bool IsDebugMethodEntry() const { 948 return tls32_.debug_method_entry_; 949 } 950 SetDebugMethodEntry()951 void SetDebugMethodEntry() { 952 tls32_.debug_method_entry_ = true; 953 } 954 ClearDebugMethodEntry()955 void ClearDebugMethodEntry() { 956 tls32_.debug_method_entry_ = false; 957 } 958 GetIsGcMarking()959 bool GetIsGcMarking() const { 960 CHECK(kUseReadBarrier); 961 return tls32_.is_gc_marking; 962 } 963 964 void SetIsGcMarkingAndUpdateEntrypoints(bool is_marking); 965 GetWeakRefAccessEnabled()966 bool GetWeakRefAccessEnabled() const { 967 CHECK(kUseReadBarrier); 968 return tls32_.weak_ref_access_enabled; 969 } 970 SetWeakRefAccessEnabled(bool enabled)971 void SetWeakRefAccessEnabled(bool enabled) { 972 CHECK(kUseReadBarrier); 973 tls32_.weak_ref_access_enabled = enabled; 974 } 975 GetDisableThreadFlipCount()976 uint32_t GetDisableThreadFlipCount() const { 977 CHECK(kUseReadBarrier); 978 return tls32_.disable_thread_flip_count; 979 } 980 IncrementDisableThreadFlipCount()981 void IncrementDisableThreadFlipCount() { 982 CHECK(kUseReadBarrier); 983 ++tls32_.disable_thread_flip_count; 984 } 985 DecrementDisableThreadFlipCount()986 void DecrementDisableThreadFlipCount() { 987 CHECK(kUseReadBarrier); 988 DCHECK_GT(tls32_.disable_thread_flip_count, 0U); 989 --tls32_.disable_thread_flip_count; 990 } 991 992 // Returns true if the thread is a runtime thread (eg from a ThreadPool). IsRuntimeThread()993 bool IsRuntimeThread() const { 994 return is_runtime_thread_; 995 } 996 SetIsRuntimeThread(bool is_runtime_thread)997 void SetIsRuntimeThread(bool is_runtime_thread) { 998 is_runtime_thread_ = is_runtime_thread; 999 } 1000 CorePlatformApiCookie()1001 uint32_t CorePlatformApiCookie() { 1002 return core_platform_api_cookie_; 1003 } 1004 SetCorePlatformApiCookie(uint32_t cookie)1005 void SetCorePlatformApiCookie(uint32_t cookie) { 1006 core_platform_api_cookie_ = cookie; 1007 } 1008 1009 // Returns true if the thread is allowed to load java classes. 1010 bool CanLoadClasses() const; 1011 1012 // Returns the fake exception used to activate deoptimization. GetDeoptimizationException()1013 static mirror::Throwable* GetDeoptimizationException() { 1014 // Note that the mirror::Throwable must be aligned to kObjectAlignment or else it cannot be 1015 // represented by ObjPtr. 1016 return reinterpret_cast<mirror::Throwable*>(0x100); 1017 } 1018 1019 // Currently deoptimization invokes verifier which can trigger class loading 1020 // and execute Java code, so there might be nested deoptimizations happening. 1021 // We need to save the ongoing deoptimization shadow frames and return 1022 // values on stacks. 1023 // 'from_code' denotes whether the deoptimization was explicitly made from 1024 // compiled code. 1025 // 'method_type' contains info on whether deoptimization should advance 1026 // dex_pc. 1027 void PushDeoptimizationContext(const JValue& return_value, 1028 bool is_reference, 1029 ObjPtr<mirror::Throwable> exception, 1030 bool from_code, 1031 DeoptimizationMethodType method_type) 1032 REQUIRES_SHARED(Locks::mutator_lock_); 1033 void PopDeoptimizationContext(JValue* result, 1034 ObjPtr<mirror::Throwable>* exception, 1035 bool* from_code, 1036 DeoptimizationMethodType* method_type) 1037 REQUIRES_SHARED(Locks::mutator_lock_); 1038 void AssertHasDeoptimizationContext() 1039 REQUIRES_SHARED(Locks::mutator_lock_); 1040 void PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type); 1041 ShadowFrame* PopStackedShadowFrame(StackedShadowFrameType type, bool must_be_present = true); 1042 1043 // For debugger, find the shadow frame that corresponds to a frame id. 1044 // Or return null if there is none. 1045 ShadowFrame* FindDebuggerShadowFrame(size_t frame_id) 1046 REQUIRES_SHARED(Locks::mutator_lock_); 1047 // For debugger, find the bool array that keeps track of the updated vreg set 1048 // for a frame id. 1049 bool* GetUpdatedVRegFlags(size_t frame_id) REQUIRES_SHARED(Locks::mutator_lock_); 1050 // For debugger, find the shadow frame that corresponds to a frame id. If 1051 // one doesn't exist yet, create one and track it in frame_id_to_shadow_frame. 1052 ShadowFrame* FindOrCreateDebuggerShadowFrame(size_t frame_id, 1053 uint32_t num_vregs, 1054 ArtMethod* method, 1055 uint32_t dex_pc) 1056 REQUIRES_SHARED(Locks::mutator_lock_); 1057 1058 // Delete the entry that maps from frame_id to shadow_frame. 1059 void RemoveDebuggerShadowFrameMapping(size_t frame_id) 1060 REQUIRES_SHARED(Locks::mutator_lock_); 1061 1062 // While getting this map requires shared the mutator lock, manipulating it 1063 // should actually follow these rules: 1064 // (1) The owner of this map (the thread) can change it with its mutator lock. 1065 // (2) Other threads can read this map when the owner is suspended and they 1066 // hold the mutator lock. 1067 // (3) Other threads can change this map when owning the mutator lock exclusively. 1068 // 1069 // The reason why (3) needs the mutator lock exclusively (and not just having 1070 // the owner suspended) is that we don't want other threads to concurrently read the map. 1071 // 1072 // TODO: Add a class abstraction to express these rules. GetInstrumentationStack()1073 std::map<uintptr_t, instrumentation::InstrumentationStackFrame>* GetInstrumentationStack() 1074 REQUIRES_SHARED(Locks::mutator_lock_) { 1075 return tlsPtr_.instrumentation_stack; 1076 } 1077 GetStackTraceSample()1078 std::vector<ArtMethod*>* GetStackTraceSample() const { 1079 DCHECK(!IsAotCompiler()); 1080 return tlsPtr_.deps_or_stack_trace_sample.stack_trace_sample; 1081 } 1082 SetStackTraceSample(std::vector<ArtMethod * > * sample)1083 void SetStackTraceSample(std::vector<ArtMethod*>* sample) { 1084 DCHECK(!IsAotCompiler()); 1085 tlsPtr_.deps_or_stack_trace_sample.stack_trace_sample = sample; 1086 } 1087 GetVerifierDeps()1088 verifier::VerifierDeps* GetVerifierDeps() const { 1089 DCHECK(IsAotCompiler()); 1090 return tlsPtr_.deps_or_stack_trace_sample.verifier_deps; 1091 } 1092 1093 // It is the responsability of the caller to make sure the verifier_deps 1094 // entry in the thread is cleared before destruction of the actual VerifierDeps 1095 // object, or the thread. SetVerifierDeps(verifier::VerifierDeps * verifier_deps)1096 void SetVerifierDeps(verifier::VerifierDeps* verifier_deps) { 1097 DCHECK(IsAotCompiler()); 1098 DCHECK(verifier_deps == nullptr || tlsPtr_.deps_or_stack_trace_sample.verifier_deps == nullptr); 1099 tlsPtr_.deps_or_stack_trace_sample.verifier_deps = verifier_deps; 1100 } 1101 GetTraceClockBase()1102 uint64_t GetTraceClockBase() const { 1103 return tls64_.trace_clock_base; 1104 } 1105 SetTraceClockBase(uint64_t clock_base)1106 void SetTraceClockBase(uint64_t clock_base) { 1107 tls64_.trace_clock_base = clock_base; 1108 } 1109 GetHeldMutex(LockLevel level)1110 BaseMutex* GetHeldMutex(LockLevel level) const { 1111 return tlsPtr_.held_mutexes[level]; 1112 } 1113 SetHeldMutex(LockLevel level,BaseMutex * mutex)1114 void SetHeldMutex(LockLevel level, BaseMutex* mutex) { 1115 tlsPtr_.held_mutexes[level] = mutex; 1116 } 1117 1118 void ClearSuspendBarrier(AtomicInteger* target) 1119 REQUIRES(Locks::thread_suspend_count_lock_); 1120 ReadFlag(ThreadFlag flag)1121 bool ReadFlag(ThreadFlag flag) const { 1122 return (tls32_.state_and_flags.as_struct.flags & flag) != 0; 1123 } 1124 TestAllFlags()1125 bool TestAllFlags() const { 1126 return (tls32_.state_and_flags.as_struct.flags != 0); 1127 } 1128 AtomicSetFlag(ThreadFlag flag)1129 void AtomicSetFlag(ThreadFlag flag) { 1130 tls32_.state_and_flags.as_atomic_int.fetch_or(flag, std::memory_order_seq_cst); 1131 } 1132 AtomicClearFlag(ThreadFlag flag)1133 void AtomicClearFlag(ThreadFlag flag) { 1134 tls32_.state_and_flags.as_atomic_int.fetch_and(-1 ^ flag, std::memory_order_seq_cst); 1135 } 1136 UseMterp()1137 bool UseMterp() const { 1138 return tls32_.use_mterp.load(); 1139 } 1140 1141 void ResetQuickAllocEntryPointsForThread(); 1142 1143 // Returns the remaining space in the TLAB. TlabSize()1144 size_t TlabSize() const { 1145 return tlsPtr_.thread_local_end - tlsPtr_.thread_local_pos; 1146 } 1147 1148 // Returns the remaining space in the TLAB if we were to expand it to maximum capacity. TlabRemainingCapacity()1149 size_t TlabRemainingCapacity() const { 1150 return tlsPtr_.thread_local_limit - tlsPtr_.thread_local_pos; 1151 } 1152 1153 // Expand the TLAB by a fixed number of bytes. There must be enough capacity to do so. ExpandTlab(size_t bytes)1154 void ExpandTlab(size_t bytes) { 1155 tlsPtr_.thread_local_end += bytes; 1156 DCHECK_LE(tlsPtr_.thread_local_end, tlsPtr_.thread_local_limit); 1157 } 1158 1159 // Doesn't check that there is room. 1160 mirror::Object* AllocTlab(size_t bytes); 1161 void SetTlab(uint8_t* start, uint8_t* end, uint8_t* limit); 1162 bool HasTlab() const; 1163 void ResetTlab(); GetTlabStart()1164 uint8_t* GetTlabStart() { 1165 return tlsPtr_.thread_local_start; 1166 } GetTlabPos()1167 uint8_t* GetTlabPos() { 1168 return tlsPtr_.thread_local_pos; 1169 } GetTlabEnd()1170 uint8_t* GetTlabEnd() { 1171 return tlsPtr_.thread_local_end; 1172 } 1173 // Remove the suspend trigger for this thread by making the suspend_trigger_ TLS value 1174 // equal to a valid pointer. 1175 // TODO: does this need to atomic? I don't think so. RemoveSuspendTrigger()1176 void RemoveSuspendTrigger() { 1177 tlsPtr_.suspend_trigger = reinterpret_cast<uintptr_t*>(&tlsPtr_.suspend_trigger); 1178 } 1179 1180 // Trigger a suspend check by making the suspend_trigger_ TLS value an invalid pointer. 1181 // The next time a suspend check is done, it will load from the value at this address 1182 // and trigger a SIGSEGV. TriggerSuspend()1183 void TriggerSuspend() { 1184 tlsPtr_.suspend_trigger = nullptr; 1185 } 1186 1187 1188 // Push an object onto the allocation stack. 1189 bool PushOnThreadLocalAllocationStack(mirror::Object* obj) 1190 REQUIRES_SHARED(Locks::mutator_lock_); 1191 1192 // Set the thread local allocation pointers to the given pointers. 1193 void SetThreadLocalAllocationStack(StackReference<mirror::Object>* start, 1194 StackReference<mirror::Object>* end); 1195 1196 // Resets the thread local allocation pointers. 1197 void RevokeThreadLocalAllocationStack(); 1198 GetThreadLocalBytesAllocated()1199 size_t GetThreadLocalBytesAllocated() const { 1200 return tlsPtr_.thread_local_end - tlsPtr_.thread_local_start; 1201 } 1202 GetThreadLocalObjectsAllocated()1203 size_t GetThreadLocalObjectsAllocated() const { 1204 return tlsPtr_.thread_local_objects; 1205 } 1206 GetRosAllocRun(size_t index)1207 void* GetRosAllocRun(size_t index) const { 1208 return tlsPtr_.rosalloc_runs[index]; 1209 } 1210 SetRosAllocRun(size_t index,void * run)1211 void SetRosAllocRun(size_t index, void* run) { 1212 tlsPtr_.rosalloc_runs[index] = run; 1213 } 1214 1215 bool ProtectStack(bool fatal_on_error = true); 1216 bool UnprotectStack(); 1217 SetMterpCurrentIBase(void * ibase)1218 void SetMterpCurrentIBase(void* ibase) { 1219 tlsPtr_.mterp_current_ibase = ibase; 1220 } 1221 GetMterpCurrentIBase()1222 const void* GetMterpCurrentIBase() const { 1223 return tlsPtr_.mterp_current_ibase; 1224 } 1225 HandlingSignal()1226 bool HandlingSignal() const { 1227 return tls32_.handling_signal_; 1228 } 1229 SetHandlingSignal(bool handling_signal)1230 void SetHandlingSignal(bool handling_signal) { 1231 tls32_.handling_signal_ = handling_signal; 1232 } 1233 IsTransitioningToRunnable()1234 bool IsTransitioningToRunnable() const { 1235 return tls32_.is_transitioning_to_runnable; 1236 } 1237 SetIsTransitioningToRunnable(bool value)1238 void SetIsTransitioningToRunnable(bool value) { 1239 tls32_.is_transitioning_to_runnable = value; 1240 } 1241 DecrementForceInterpreterCount()1242 uint32_t DecrementForceInterpreterCount() REQUIRES(Locks::thread_list_lock_) { 1243 return --tls32_.force_interpreter_count; 1244 } 1245 IncrementForceInterpreterCount()1246 uint32_t IncrementForceInterpreterCount() REQUIRES(Locks::thread_list_lock_) { 1247 return ++tls32_.force_interpreter_count; 1248 } 1249 SetForceInterpreterCount(uint32_t value)1250 void SetForceInterpreterCount(uint32_t value) REQUIRES(Locks::thread_list_lock_) { 1251 tls32_.force_interpreter_count = value; 1252 } 1253 ForceInterpreterCount()1254 uint32_t ForceInterpreterCount() const { 1255 return tls32_.force_interpreter_count; 1256 } 1257 IsForceInterpreter()1258 bool IsForceInterpreter() const { 1259 return tls32_.force_interpreter_count != 0; 1260 } 1261 IncrementMakeVisiblyInitializedCounter()1262 bool IncrementMakeVisiblyInitializedCounter() { 1263 tls32_.make_visibly_initialized_counter += 1u; 1264 return tls32_.make_visibly_initialized_counter == kMakeVisiblyInitializedCounterTriggerCount; 1265 } 1266 ClearMakeVisiblyInitializedCounter()1267 void ClearMakeVisiblyInitializedCounter() { 1268 tls32_.make_visibly_initialized_counter = 0u; 1269 } 1270 1271 void PushVerifier(verifier::MethodVerifier* verifier); 1272 void PopVerifier(verifier::MethodVerifier* verifier); 1273 1274 void InitStringEntryPoints(); 1275 ModifyDebugDisallowReadBarrier(int8_t delta)1276 void ModifyDebugDisallowReadBarrier(int8_t delta) { 1277 debug_disallow_read_barrier_ += delta; 1278 } 1279 GetDebugDisallowReadBarrierCount()1280 uint8_t GetDebugDisallowReadBarrierCount() const { 1281 return debug_disallow_read_barrier_; 1282 } 1283 1284 // Gets the current TLSData associated with the key or nullptr if there isn't any. Note that users 1285 // do not gain ownership of TLSData and must synchronize with SetCustomTls themselves to prevent 1286 // it from being deleted. 1287 TLSData* GetCustomTLS(const char* key) REQUIRES(!Locks::custom_tls_lock_); 1288 1289 // Sets the tls entry at 'key' to data. The thread takes ownership of the TLSData. The destructor 1290 // will be run when the thread exits or when SetCustomTLS is called again with the same key. 1291 void SetCustomTLS(const char* key, TLSData* data) REQUIRES(!Locks::custom_tls_lock_); 1292 1293 // Returns true if the current thread is the jit sensitive thread. IsJitSensitiveThread()1294 bool IsJitSensitiveThread() const { 1295 return this == jit_sensitive_thread_; 1296 } 1297 1298 bool IsSystemDaemon() const REQUIRES_SHARED(Locks::mutator_lock_); 1299 1300 // Returns true if StrictMode events are traced for the current thread. IsSensitiveThread()1301 static bool IsSensitiveThread() { 1302 if (is_sensitive_thread_hook_ != nullptr) { 1303 return (*is_sensitive_thread_hook_)(); 1304 } 1305 return false; 1306 } 1307 1308 // Set to the read barrier marking entrypoints to be non-null. 1309 void SetReadBarrierEntrypoints(); 1310 1311 static jobject CreateCompileTimePeer(JNIEnv* env, 1312 const char* name, 1313 bool as_daemon, 1314 jobject thread_group) 1315 REQUIRES_SHARED(Locks::mutator_lock_); 1316 GetInterpreterCache()1317 ALWAYS_INLINE InterpreterCache* GetInterpreterCache() { 1318 return &interpreter_cache_; 1319 } 1320 1321 // Clear all thread-local interpreter caches. 1322 // 1323 // Since the caches are keyed by memory pointer to dex instructions, this must be 1324 // called when any dex code is unloaded (before different code gets loaded at the 1325 // same memory location). 1326 // 1327 // If presence of cache entry implies some pre-conditions, this must also be 1328 // called if the pre-conditions might no longer hold true. 1329 static void ClearAllInterpreterCaches(); 1330 1331 template<PointerSize pointer_size> InterpreterCacheOffset()1332 static constexpr ThreadOffset<pointer_size> InterpreterCacheOffset() { 1333 return ThreadOffset<pointer_size>(OFFSETOF_MEMBER(Thread, interpreter_cache_)); 1334 } 1335 InterpreterCacheSizeLog2()1336 static constexpr int InterpreterCacheSizeLog2() { 1337 return WhichPowerOf2(InterpreterCache::kSize); 1338 } 1339 1340 private: 1341 explicit Thread(bool daemon); 1342 ~Thread() REQUIRES(!Locks::mutator_lock_, !Locks::thread_suspend_count_lock_); 1343 void Destroy(); 1344 1345 // Deletes and clears the tlsPtr_.jpeer field. Done in a way so that both it and opeer cannot be 1346 // observed to be set at the same time by instrumentation. 1347 void DeleteJPeer(JNIEnv* env); 1348 1349 void NotifyInTheadList() 1350 REQUIRES_SHARED(Locks::thread_list_lock_); 1351 1352 // Attaches the calling native thread to the runtime, returning the new native peer. 1353 // Used to implement JNI AttachCurrentThread and AttachCurrentThreadAsDaemon calls. 1354 template <typename PeerAction> 1355 static Thread* Attach(const char* thread_name, 1356 bool as_daemon, 1357 PeerAction p); 1358 1359 void CreatePeer(const char* name, bool as_daemon, jobject thread_group); 1360 1361 template<bool kTransactionActive> 1362 static void InitPeer(ScopedObjectAccessAlreadyRunnable& soa, 1363 ObjPtr<mirror::Object> peer, 1364 jboolean thread_is_daemon, 1365 jobject thread_group, 1366 jobject thread_name, 1367 jint thread_priority) 1368 REQUIRES_SHARED(Locks::mutator_lock_); 1369 1370 // Avoid use, callers should use SetState. Used only by SignalCatcher::HandleSigQuit and, ~Thread SetStateUnsafe(ThreadState new_state)1371 ThreadState SetStateUnsafe(ThreadState new_state) { 1372 ThreadState old_state = GetState(); 1373 if (old_state == kRunnable && new_state != kRunnable) { 1374 // Need to run pending checkpoint and suspend barriers. Run checkpoints in runnable state in 1375 // case they need to use a ScopedObjectAccess. If we are holding the mutator lock and a SOA 1376 // attempts to TransitionFromSuspendedToRunnable, it results in a deadlock. 1377 TransitionToSuspendedAndRunCheckpoints(new_state); 1378 // Since we transitioned to a suspended state, check the pass barrier requests. 1379 PassActiveSuspendBarriers(); 1380 } else { 1381 tls32_.state_and_flags.as_struct.state = new_state; 1382 } 1383 return old_state; 1384 } 1385 1386 void VerifyStackImpl() REQUIRES_SHARED(Locks::mutator_lock_); 1387 1388 void DumpState(std::ostream& os) const REQUIRES_SHARED(Locks::mutator_lock_); 1389 void DumpStack(std::ostream& os, 1390 bool dump_native_stack = true, 1391 BacktraceMap* backtrace_map = nullptr, 1392 bool force_dump_stack = false) const 1393 REQUIRES_SHARED(Locks::mutator_lock_); 1394 1395 // Out-of-line conveniences for debugging in gdb. 1396 static Thread* CurrentFromGdb(); // Like Thread::Current. 1397 // Like Thread::Dump(std::cerr). 1398 void DumpFromGdb() const REQUIRES_SHARED(Locks::mutator_lock_); 1399 1400 static void* CreateCallback(void* arg); 1401 1402 void HandleUncaughtExceptions(ScopedObjectAccessAlreadyRunnable& soa) 1403 REQUIRES_SHARED(Locks::mutator_lock_); 1404 void RemoveFromThreadGroup(ScopedObjectAccessAlreadyRunnable& soa) 1405 REQUIRES_SHARED(Locks::mutator_lock_); 1406 1407 // Initialize a thread. 1408 // 1409 // The third parameter is not mandatory. If given, the thread will use this JNIEnvExt. In case 1410 // Init succeeds, this means the thread takes ownership of it. If Init fails, it is the caller's 1411 // responsibility to destroy the given JNIEnvExt. If the parameter is null, Init will try to 1412 // create a JNIEnvExt on its own (and potentially fail at that stage, indicated by a return value 1413 // of false). 1414 bool Init(ThreadList*, JavaVMExt*, JNIEnvExt* jni_env_ext = nullptr) 1415 REQUIRES(Locks::runtime_shutdown_lock_); 1416 void InitCardTable(); 1417 void InitCpu(); 1418 void CleanupCpu(); 1419 void InitTlsEntryPoints(); 1420 void InitTid(); 1421 void InitPthreadKeySelf(); 1422 bool InitStackHwm(); 1423 1424 void SetUpAlternateSignalStack(); 1425 void TearDownAlternateSignalStack(); 1426 1427 ALWAYS_INLINE void TransitionToSuspendedAndRunCheckpoints(ThreadState new_state) 1428 REQUIRES(!Locks::thread_suspend_count_lock_, !Roles::uninterruptible_); 1429 1430 ALWAYS_INLINE void PassActiveSuspendBarriers() 1431 REQUIRES(!Locks::thread_suspend_count_lock_, !Roles::uninterruptible_); 1432 1433 // Registers the current thread as the jit sensitive thread. Should be called just once. SetJitSensitiveThread()1434 static void SetJitSensitiveThread() { 1435 if (jit_sensitive_thread_ == nullptr) { 1436 jit_sensitive_thread_ = Thread::Current(); 1437 } else { 1438 LOG(WARNING) << "Attempt to set the sensitive thread twice. Tid:" 1439 << Thread::Current()->GetTid(); 1440 } 1441 } 1442 SetSensitiveThreadHook(bool (* is_sensitive_thread_hook)())1443 static void SetSensitiveThreadHook(bool (*is_sensitive_thread_hook)()) { 1444 is_sensitive_thread_hook_ = is_sensitive_thread_hook; 1445 } 1446 1447 bool ModifySuspendCountInternal(Thread* self, 1448 int delta, 1449 AtomicInteger* suspend_barrier, 1450 SuspendReason reason) 1451 WARN_UNUSED 1452 REQUIRES(Locks::thread_suspend_count_lock_); 1453 1454 // Runs a single checkpoint function. If there are no more pending checkpoint functions it will 1455 // clear the kCheckpointRequest flag. The caller is responsible for calling this in a loop until 1456 // the kCheckpointRequest flag is cleared. 1457 void RunCheckpointFunction(); 1458 void RunEmptyCheckpoint(); 1459 1460 bool PassActiveSuspendBarriers(Thread* self) 1461 REQUIRES(!Locks::thread_suspend_count_lock_); 1462 1463 // Install the protected region for implicit stack checks. 1464 void InstallImplicitProtection(); 1465 1466 template <bool kPrecise> 1467 void VisitRoots(RootVisitor* visitor) REQUIRES_SHARED(Locks::mutator_lock_); 1468 1469 void SweepInterpreterCache(IsMarkedVisitor* visitor) REQUIRES_SHARED(Locks::mutator_lock_); 1470 1471 static bool IsAotCompiler(); 1472 1473 void ReleaseLongJumpContextInternal(); 1474 1475 // 32 bits of atomically changed state and flags. Keeping as 32 bits allows and atomic CAS to 1476 // change from being Suspended to Runnable without a suspend request occurring. 1477 union PACKED(4) StateAndFlags { StateAndFlags()1478 StateAndFlags() {} 1479 struct PACKED(4) { 1480 // Bitfield of flag values. Must be changed atomically so that flag values aren't lost. See 1481 // ThreadFlags for bit field meanings. 1482 volatile uint16_t flags; 1483 // Holds the ThreadState. May be changed non-atomically between Suspended (ie not Runnable) 1484 // transitions. Changing to Runnable requires that the suspend_request be part of the atomic 1485 // operation. If a thread is suspended and a suspend_request is present, a thread may not 1486 // change to Runnable as a GC or other operation is in progress. 1487 volatile uint16_t state; 1488 } as_struct; 1489 AtomicInteger as_atomic_int; 1490 volatile int32_t as_int; 1491 1492 private: 1493 // gcc does not handle struct with volatile member assignments correctly. 1494 // See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47409 1495 DISALLOW_COPY_AND_ASSIGN(StateAndFlags); 1496 }; 1497 static_assert(sizeof(StateAndFlags) == sizeof(int32_t), "Weird state_and_flags size"); 1498 1499 static void ThreadExitCallback(void* arg); 1500 1501 // Maximum number of suspend barriers. 1502 static constexpr uint32_t kMaxSuspendBarriers = 3; 1503 1504 // Has Thread::Startup been called? 1505 static bool is_started_; 1506 1507 // TLS key used to retrieve the Thread*. 1508 static pthread_key_t pthread_key_self_; 1509 1510 // Used to notify threads that they should attempt to resume, they will suspend again if 1511 // their suspend count is > 0. 1512 static ConditionVariable* resume_cond_ GUARDED_BY(Locks::thread_suspend_count_lock_); 1513 1514 // Hook passed by framework which returns true 1515 // when StrictMode events are traced for the current thread. 1516 static bool (*is_sensitive_thread_hook_)(); 1517 // Stores the jit sensitive thread (which for now is the UI thread). 1518 static Thread* jit_sensitive_thread_; 1519 1520 static constexpr uint32_t kMakeVisiblyInitializedCounterTriggerCount = 128; 1521 1522 /***********************************************************************************************/ 1523 // Thread local storage. Fields are grouped by size to enable 32 <-> 64 searching to account for 1524 // pointer size differences. To encourage shorter encoding, more frequently used values appear 1525 // first if possible. 1526 /***********************************************************************************************/ 1527 1528 struct PACKED(4) tls_32bit_sized_values { 1529 // We have no control over the size of 'bool', but want our boolean fields 1530 // to be 4-byte quantities. 1531 typedef uint32_t bool32_t; 1532 tls_32bit_sized_valuestls_32bit_sized_values1533 explicit tls_32bit_sized_values(bool is_daemon) 1534 : suspend_count(0), 1535 thin_lock_thread_id(0), 1536 tid(0), 1537 daemon(is_daemon), 1538 throwing_OutOfMemoryError(false), 1539 no_thread_suspension(0), 1540 thread_exit_check_count(0), 1541 handling_signal_(false), 1542 is_transitioning_to_runnable(false), 1543 ready_for_debug_invoke(false), 1544 debug_method_entry_(false), 1545 is_gc_marking(false), 1546 weak_ref_access_enabled(true), 1547 disable_thread_flip_count(0), 1548 user_code_suspend_count(0), 1549 force_interpreter_count(0), 1550 use_mterp(0), 1551 make_visibly_initialized_counter(0), 1552 define_class_counter(0) {} 1553 1554 union StateAndFlags state_and_flags; 1555 static_assert(sizeof(union StateAndFlags) == sizeof(int32_t), 1556 "Size of state_and_flags and int32 are different"); 1557 1558 // A non-zero value is used to tell the current thread to enter a safe point 1559 // at the next poll. 1560 int suspend_count GUARDED_BY(Locks::thread_suspend_count_lock_); 1561 1562 // Thin lock thread id. This is a small integer used by the thin lock implementation. 1563 // This is not to be confused with the native thread's tid, nor is it the value returned 1564 // by java.lang.Thread.getId --- this is a distinct value, used only for locking. One 1565 // important difference between this id and the ids visible to managed code is that these 1566 // ones get reused (to ensure that they fit in the number of bits available). 1567 uint32_t thin_lock_thread_id; 1568 1569 // System thread id. 1570 uint32_t tid; 1571 1572 // Is the thread a daemon? 1573 const bool32_t daemon; 1574 1575 // A boolean telling us whether we're recursively throwing OOME. 1576 bool32_t throwing_OutOfMemoryError; 1577 1578 // A positive value implies we're in a region where thread suspension isn't expected. 1579 uint32_t no_thread_suspension; 1580 1581 // How many times has our pthread key's destructor been called? 1582 uint32_t thread_exit_check_count; 1583 1584 // True if signal is being handled by this thread. 1585 bool32_t handling_signal_; 1586 1587 // True if the thread is in TransitionFromSuspendedToRunnable(). This is used to distinguish the 1588 // non-runnable threads (eg. kNative, kWaiting) that are about to transition to runnable from 1589 // the rest of them. 1590 bool32_t is_transitioning_to_runnable; 1591 1592 // True if the thread has been suspended by a debugger event. This is 1593 // used to invoke method from the debugger which is only allowed when 1594 // the thread is suspended by an event. 1595 bool32_t ready_for_debug_invoke; 1596 1597 // True if the thread enters a method. This is used to detect method entry 1598 // event for the debugger. 1599 bool32_t debug_method_entry_; 1600 1601 // True if the GC is in the marking phase. This is used for the CC collector only. This is 1602 // thread local so that we can simplify the logic to check for the fast path of read barriers of 1603 // GC roots. 1604 bool32_t is_gc_marking; 1605 1606 // Thread "interrupted" status; stays raised until queried or thrown. 1607 Atomic<bool32_t> interrupted; 1608 1609 AtomicInteger park_state_; 1610 1611 // True if the thread is allowed to access a weak ref (Reference::GetReferent() and system 1612 // weaks) and to potentially mark an object alive/gray. This is used for concurrent reference 1613 // processing of the CC collector only. This is thread local so that we can enable/disable weak 1614 // ref access by using a checkpoint and avoid a race around the time weak ref access gets 1615 // disabled and concurrent reference processing begins (if weak ref access is disabled during a 1616 // pause, this is not an issue.) Other collectors use Runtime::DisallowNewSystemWeaks() and 1617 // ReferenceProcessor::EnableSlowPath(). 1618 bool32_t weak_ref_access_enabled; 1619 1620 // A thread local version of Heap::disable_thread_flip_count_. This keeps track of how many 1621 // levels of (nested) JNI critical sections the thread is in and is used to detect a nested JNI 1622 // critical section enter. 1623 uint32_t disable_thread_flip_count; 1624 1625 // How much of 'suspend_count_' is by request of user code, used to distinguish threads 1626 // suspended by the runtime from those suspended by user code. 1627 // This should have GUARDED_BY(Locks::user_code_suspension_lock_) but auto analysis cannot be 1628 // told that AssertHeld should be good enough. 1629 int user_code_suspend_count GUARDED_BY(Locks::thread_suspend_count_lock_); 1630 1631 // Count of how many times this thread has been forced to interpreter. If this is not 0 the 1632 // thread must remain in interpreted code as much as possible. 1633 uint32_t force_interpreter_count; 1634 1635 // True if everything is in the ideal state for fast interpretation. 1636 // False if we need to switch to the C++ interpreter to handle special cases. 1637 std::atomic<bool32_t> use_mterp; 1638 1639 // Counter for calls to initialize a class that's initialized but not visibly initialized. 1640 // When this reaches kMakeVisiblyInitializedCounterTriggerCount, we call the runtime to 1641 // make initialized classes visibly initialized. This is needed because we usually make 1642 // classes visibly initialized in batches but we do not want to be stuck with a class 1643 // initialized but not visibly initialized for a long time even if no more classes are 1644 // being initialized anymore. 1645 uint32_t make_visibly_initialized_counter; 1646 1647 // Counter for how many nested define-classes are ongoing in this thread. Used to allow waiting 1648 // for threads to be done with class-definition work. 1649 uint32_t define_class_counter; 1650 } tls32_; 1651 1652 struct PACKED(8) tls_64bit_sized_values { tls_64bit_sized_valuestls_64bit_sized_values1653 tls_64bit_sized_values() : trace_clock_base(0) { 1654 } 1655 1656 // The clock base used for tracing. 1657 uint64_t trace_clock_base; 1658 1659 RuntimeStats stats; 1660 } tls64_; 1661 PACKED(sizeof (void *))1662 struct PACKED(sizeof(void*)) tls_ptr_sized_values { 1663 tls_ptr_sized_values() : card_table(nullptr), exception(nullptr), stack_end(nullptr), 1664 managed_stack(), suspend_trigger(nullptr), jni_env(nullptr), tmp_jni_env(nullptr), 1665 self(nullptr), opeer(nullptr), jpeer(nullptr), stack_begin(nullptr), stack_size(0), 1666 deps_or_stack_trace_sample(), wait_next(nullptr), monitor_enter_object(nullptr), 1667 top_handle_scope(nullptr), class_loader_override(nullptr), long_jump_context(nullptr), 1668 instrumentation_stack(nullptr), 1669 stacked_shadow_frame_record(nullptr), deoptimization_context_stack(nullptr), 1670 frame_id_to_shadow_frame(nullptr), name(nullptr), pthread_self(0), 1671 last_no_thread_suspension_cause(nullptr), checkpoint_function(nullptr), 1672 thread_local_start(nullptr), thread_local_pos(nullptr), thread_local_end(nullptr), 1673 thread_local_limit(nullptr), 1674 thread_local_objects(0), mterp_current_ibase(nullptr), thread_local_alloc_stack_top(nullptr), 1675 thread_local_alloc_stack_end(nullptr), 1676 flip_function(nullptr), method_verifier(nullptr), thread_local_mark_stack(nullptr), 1677 async_exception(nullptr), top_reflective_handle_scope(nullptr) { 1678 std::fill(held_mutexes, held_mutexes + kLockLevelCount, nullptr); 1679 } 1680 1681 // The biased card table, see CardTable for details. 1682 uint8_t* card_table; 1683 1684 // The pending exception or null. 1685 mirror::Throwable* exception; 1686 1687 // The end of this thread's stack. This is the lowest safely-addressable address on the stack. 1688 // We leave extra space so there's room for the code that throws StackOverflowError. 1689 uint8_t* stack_end; 1690 1691 // The top of the managed stack often manipulated directly by compiler generated code. 1692 ManagedStack managed_stack; 1693 1694 // In certain modes, setting this to 0 will trigger a SEGV and thus a suspend check. It is 1695 // normally set to the address of itself. 1696 uintptr_t* suspend_trigger; 1697 1698 // Every thread may have an associated JNI environment 1699 JNIEnvExt* jni_env; 1700 1701 // Temporary storage to transfer a pre-allocated JNIEnvExt from the creating thread to the 1702 // created thread. 1703 JNIEnvExt* tmp_jni_env; 1704 1705 // Initialized to "this". On certain architectures (such as x86) reading off of Thread::Current 1706 // is easy but getting the address of Thread::Current is hard. This field can be read off of 1707 // Thread::Current to give the address. 1708 Thread* self; 1709 1710 // Our managed peer (an instance of java.lang.Thread). The jobject version is used during thread 1711 // start up, until the thread is registered and the local opeer_ is used. 1712 mirror::Object* opeer; 1713 jobject jpeer; 1714 1715 // The "lowest addressable byte" of the stack. 1716 uint8_t* stack_begin; 1717 1718 // Size of the stack. 1719 size_t stack_size; 1720 1721 // Sampling profiler and AOT verification cannot happen on the same run, so we share 1722 // the same entry for the stack trace and the verifier deps. 1723 union DepsOrStackTraceSample { 1724 DepsOrStackTraceSample() { 1725 verifier_deps = nullptr; 1726 stack_trace_sample = nullptr; 1727 } 1728 // Pointer to previous stack trace captured by sampling profiler. 1729 std::vector<ArtMethod*>* stack_trace_sample; 1730 // When doing AOT verification, per-thread VerifierDeps. 1731 verifier::VerifierDeps* verifier_deps; 1732 } deps_or_stack_trace_sample; 1733 1734 // The next thread in the wait set this thread is part of or null if not waiting. 1735 Thread* wait_next; 1736 1737 // If we're blocked in MonitorEnter, this is the object we're trying to lock. 1738 mirror::Object* monitor_enter_object; 1739 1740 // Top of linked list of handle scopes or null for none. 1741 BaseHandleScope* top_handle_scope; 1742 1743 // Needed to get the right ClassLoader in JNI_OnLoad, but also 1744 // useful for testing. 1745 jobject class_loader_override; 1746 1747 // Thread local, lazily allocated, long jump context. Used to deliver exceptions. 1748 Context* long_jump_context; 1749 1750 // Additional stack used by method instrumentation to store method and return pc values. 1751 // Stored as a pointer since std::map is not PACKED. 1752 // !DO NOT CHANGE! to std::unordered_map: the users of this map require an 1753 // ordered iteration on the keys (which are stack addresses). 1754 // Also see Thread::GetInstrumentationStack for the requirements on 1755 // manipulating and reading this map. 1756 std::map<uintptr_t, instrumentation::InstrumentationStackFrame>* instrumentation_stack; 1757 1758 // For gc purpose, a shadow frame record stack that keeps track of: 1759 // 1) shadow frames under construction. 1760 // 2) deoptimization shadow frames. 1761 StackedShadowFrameRecord* stacked_shadow_frame_record; 1762 1763 // Deoptimization return value record stack. 1764 DeoptimizationContextRecord* deoptimization_context_stack; 1765 1766 // For debugger, a linked list that keeps the mapping from frame_id to shadow frame. 1767 // Shadow frames may be created before deoptimization happens so that the debugger can 1768 // set local values there first. 1769 FrameIdToShadowFrame* frame_id_to_shadow_frame; 1770 1771 // A cached copy of the java.lang.Thread's name. 1772 std::string* name; 1773 1774 // A cached pthread_t for the pthread underlying this Thread*. 1775 pthread_t pthread_self; 1776 1777 // If no_thread_suspension_ is > 0, what is causing that assertion. 1778 const char* last_no_thread_suspension_cause; 1779 1780 // Pending checkpoint function or null if non-pending. If this checkpoint is set and someone\ 1781 // requests another checkpoint, it goes to the checkpoint overflow list. 1782 Closure* checkpoint_function GUARDED_BY(Locks::thread_suspend_count_lock_); 1783 1784 // Pending barriers that require passing or NULL if non-pending. Installation guarding by 1785 // Locks::thread_suspend_count_lock_. 1786 // They work effectively as art::Barrier, but implemented directly using AtomicInteger and futex 1787 // to avoid additional cost of a mutex and a condition variable, as used in art::Barrier. 1788 AtomicInteger* active_suspend_barriers[kMaxSuspendBarriers]; 1789 1790 // Thread-local allocation pointer. Moved here to force alignment for thread_local_pos on ARM. 1791 uint8_t* thread_local_start; 1792 1793 // thread_local_pos and thread_local_end must be consecutive for ldrd and are 8 byte aligned for 1794 // potentially better performance. 1795 uint8_t* thread_local_pos; 1796 uint8_t* thread_local_end; 1797 1798 // Thread local limit is how much we can expand the thread local buffer to, it is greater or 1799 // equal to thread_local_end. 1800 uint8_t* thread_local_limit; 1801 1802 size_t thread_local_objects; 1803 1804 // Entrypoint function pointers. 1805 // TODO: move this to more of a global offset table model to avoid per-thread duplication. 1806 JniEntryPoints jni_entrypoints; 1807 QuickEntryPoints quick_entrypoints; 1808 1809 // Mterp jump table base. 1810 void* mterp_current_ibase; 1811 1812 // There are RosAlloc::kNumThreadLocalSizeBrackets thread-local size brackets per thread. 1813 void* rosalloc_runs[kNumRosAllocThreadLocalSizeBracketsInThread]; 1814 1815 // Thread-local allocation stack data/routines. 1816 StackReference<mirror::Object>* thread_local_alloc_stack_top; 1817 StackReference<mirror::Object>* thread_local_alloc_stack_end; 1818 1819 // Support for Mutex lock hierarchy bug detection. 1820 BaseMutex* held_mutexes[kLockLevelCount]; 1821 1822 // The function used for thread flip. 1823 Closure* flip_function; 1824 1825 // Current method verifier, used for root marking. 1826 verifier::MethodVerifier* method_verifier; 1827 1828 // Thread-local mark stack for the concurrent copying collector. 1829 gc::accounting::AtomicStack<mirror::Object>* thread_local_mark_stack; 1830 1831 // The pending async-exception or null. 1832 mirror::Throwable* async_exception; 1833 1834 // Top of the linked-list for reflective-handle scopes or null if none. 1835 BaseReflectiveHandleScope* top_reflective_handle_scope; 1836 } tlsPtr_; 1837 1838 // Small thread-local cache to be used from the interpreter. 1839 // It is keyed by dex instruction pointer. 1840 // The value is opcode-depended (e.g. field offset). 1841 InterpreterCache interpreter_cache_; 1842 1843 // All fields below this line should not be accessed by native code. This means these fields can 1844 // be modified, rearranged, added or removed without having to modify asm_support.h 1845 1846 // Guards the 'wait_monitor_' members. 1847 Mutex* wait_mutex_ DEFAULT_MUTEX_ACQUIRED_AFTER; 1848 1849 // Condition variable waited upon during a wait. 1850 ConditionVariable* wait_cond_ GUARDED_BY(wait_mutex_); 1851 // Pointer to the monitor lock we're currently waiting on or null if not waiting. 1852 Monitor* wait_monitor_ GUARDED_BY(wait_mutex_); 1853 1854 // Debug disable read barrier count, only is checked for debug builds and only in the runtime. 1855 uint8_t debug_disallow_read_barrier_ = 0; 1856 1857 // Note that it is not in the packed struct, may not be accessed for cross compilation. 1858 uintptr_t poison_object_cookie_ = 0; 1859 1860 // Pending extra checkpoints if checkpoint_function_ is already used. 1861 std::list<Closure*> checkpoint_overflow_ GUARDED_BY(Locks::thread_suspend_count_lock_); 1862 1863 // Custom TLS field that can be used by plugins or the runtime. Should not be accessed directly by 1864 // compiled code or entrypoints. 1865 SafeMap<std::string, std::unique_ptr<TLSData>> custom_tls_ GUARDED_BY(Locks::custom_tls_lock_); 1866 1867 #ifndef __BIONIC__ 1868 __attribute__((tls_model("initial-exec"))) 1869 static thread_local Thread* self_tls_; 1870 #endif 1871 1872 // True if the thread is some form of runtime thread (ex, GC or JIT). 1873 bool is_runtime_thread_; 1874 1875 // Set during execution of JNI methods that get field and method id's as part of determining if 1876 // the caller is allowed to access all fields and methods in the Core Platform API. 1877 uint32_t core_platform_api_cookie_ = 0; 1878 1879 friend class gc::collector::SemiSpace; // For getting stack traces. 1880 friend class Runtime; // For CreatePeer. 1881 friend class QuickExceptionHandler; // For dumping the stack. 1882 friend class ScopedThreadStateChange; 1883 friend class StubTest; // For accessing entrypoints. 1884 friend class ThreadList; // For ~Thread and Destroy. 1885 1886 friend class EntrypointsOrderTest; // To test the order of tls entries. 1887 1888 DISALLOW_COPY_AND_ASSIGN(Thread); 1889 }; 1890 1891 class SCOPED_CAPABILITY ScopedAssertNoThreadSuspension { 1892 public: 1893 ALWAYS_INLINE ScopedAssertNoThreadSuspension(const char* cause, 1894 bool enabled = true) ACQUIRE(Roles::uninterruptible_)1895 ACQUIRE(Roles::uninterruptible_) 1896 : enabled_(enabled) { 1897 if (!enabled_) { 1898 return; 1899 } 1900 if (kIsDebugBuild) { 1901 self_ = Thread::Current(); 1902 old_cause_ = self_->StartAssertNoThreadSuspension(cause); 1903 } else { 1904 Roles::uninterruptible_.Acquire(); // No-op. 1905 } 1906 } ~ScopedAssertNoThreadSuspension()1907 ALWAYS_INLINE ~ScopedAssertNoThreadSuspension() RELEASE(Roles::uninterruptible_) { 1908 if (!enabled_) { 1909 return; 1910 } 1911 if (kIsDebugBuild) { 1912 self_->EndAssertNoThreadSuspension(old_cause_); 1913 } else { 1914 Roles::uninterruptible_.Release(); // No-op. 1915 } 1916 } 1917 1918 private: 1919 Thread* self_; 1920 const bool enabled_; 1921 const char* old_cause_; 1922 }; 1923 1924 class ScopedAllowThreadSuspension { 1925 public: ScopedAllowThreadSuspension()1926 ALWAYS_INLINE ScopedAllowThreadSuspension() RELEASE(Roles::uninterruptible_) { 1927 if (kIsDebugBuild) { 1928 self_ = Thread::Current(); 1929 old_cause_ = self_->EndAssertNoThreadSuspension(); 1930 } else { 1931 Roles::uninterruptible_.Release(); // No-op. 1932 } 1933 } ~ScopedAllowThreadSuspension()1934 ALWAYS_INLINE ~ScopedAllowThreadSuspension() ACQUIRE(Roles::uninterruptible_) { 1935 if (kIsDebugBuild) { 1936 CHECK(self_->StartAssertNoThreadSuspension(old_cause_) == nullptr); 1937 } else { 1938 Roles::uninterruptible_.Acquire(); // No-op. 1939 } 1940 } 1941 1942 private: 1943 Thread* self_; 1944 const char* old_cause_; 1945 }; 1946 1947 1948 class ScopedStackedShadowFramePusher { 1949 public: ScopedStackedShadowFramePusher(Thread * self,ShadowFrame * sf,StackedShadowFrameType type)1950 ScopedStackedShadowFramePusher(Thread* self, ShadowFrame* sf, StackedShadowFrameType type) 1951 : self_(self), type_(type) { 1952 self_->PushStackedShadowFrame(sf, type); 1953 } ~ScopedStackedShadowFramePusher()1954 ~ScopedStackedShadowFramePusher() { 1955 self_->PopStackedShadowFrame(type_); 1956 } 1957 1958 private: 1959 Thread* const self_; 1960 const StackedShadowFrameType type_; 1961 1962 DISALLOW_COPY_AND_ASSIGN(ScopedStackedShadowFramePusher); 1963 }; 1964 1965 // Only works for debug builds. 1966 class ScopedDebugDisallowReadBarriers { 1967 public: ScopedDebugDisallowReadBarriers(Thread * self)1968 explicit ScopedDebugDisallowReadBarriers(Thread* self) : self_(self) { 1969 self_->ModifyDebugDisallowReadBarrier(1); 1970 } ~ScopedDebugDisallowReadBarriers()1971 ~ScopedDebugDisallowReadBarriers() { 1972 self_->ModifyDebugDisallowReadBarrier(-1); 1973 } 1974 1975 private: 1976 Thread* const self_; 1977 }; 1978 1979 class ScopedTransitioningToRunnable : public ValueObject { 1980 public: ScopedTransitioningToRunnable(Thread * self)1981 explicit ScopedTransitioningToRunnable(Thread* self) 1982 : self_(self) { 1983 DCHECK_EQ(self, Thread::Current()); 1984 if (kUseReadBarrier) { 1985 self_->SetIsTransitioningToRunnable(true); 1986 } 1987 } 1988 ~ScopedTransitioningToRunnable()1989 ~ScopedTransitioningToRunnable() { 1990 if (kUseReadBarrier) { 1991 self_->SetIsTransitioningToRunnable(false); 1992 } 1993 } 1994 1995 private: 1996 Thread* const self_; 1997 }; 1998 1999 class ThreadLifecycleCallback { 2000 public: ~ThreadLifecycleCallback()2001 virtual ~ThreadLifecycleCallback() {} 2002 2003 virtual void ThreadStart(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) = 0; 2004 virtual void ThreadDeath(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) = 0; 2005 }; 2006 2007 // Store an exception from the thread and suppress it for the duration of this object. 2008 class ScopedExceptionStorage { 2009 public: 2010 explicit ScopedExceptionStorage(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_); 2011 void SuppressOldException(const char* message = "") REQUIRES_SHARED(Locks::mutator_lock_); 2012 ~ScopedExceptionStorage() REQUIRES_SHARED(Locks::mutator_lock_); 2013 2014 private: 2015 Thread* self_; 2016 StackHandleScope<1> hs_; 2017 MutableHandle<mirror::Throwable> excp_; 2018 }; 2019 2020 std::ostream& operator<<(std::ostream& os, const Thread& thread); 2021 std::ostream& operator<<(std::ostream& os, StackedShadowFrameType thread); 2022 2023 } // namespace art 2024 2025 #endif // ART_RUNTIME_THREAD_H_ 2026