1 /* @(#)e_fmod.c 1.3 95/01/18 */
2 /*-
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunSoft, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 #include <sys/cdefs.h>
14 __FBSDID("$FreeBSD: head/lib/msun/src/s_remquof.c 336663 2018-07-24 10:10:16Z bde $");
15 
16 #include "math.h"
17 #include "math_private.h"
18 
19 static const float Zero[] = {0.0, -0.0,};
20 
21 /*
22  * Return the IEEE remainder and set *quo to the last n bits of the
23  * quotient, rounded to the nearest integer.  We choose n=31 because
24  * we wind up computing all the integer bits of the quotient anyway as
25  * a side-effect of computing the remainder by the shift and subtract
26  * method.  In practice, this is far more bits than are needed to use
27  * remquo in reduction algorithms.
28  */
29 float
remquof(float x,float y,int * quo)30 remquof(float x, float y, int *quo)
31 {
32 	int32_t n,hx,hy,hz,ix,iy,sx,i;
33 	u_int32_t q,sxy;
34 
35 	GET_FLOAT_WORD(hx,x);
36 	GET_FLOAT_WORD(hy,y);
37 	sxy = (hx ^ hy) & 0x80000000;
38 	sx = hx&0x80000000;		/* sign of x */
39 	hx ^=sx;		/* |x| */
40 	hy &= 0x7fffffff;	/* |y| */
41 
42     /* purge off exception values */
43 	if(hy==0||hx>=0x7f800000||hy>0x7f800000) /* y=0,NaN;or x not finite */
44 	    return nan_mix_op(x, y, *)/nan_mix_op(x, y, *);
45 	if(hx<hy) {
46 	    q = 0;
47 	    goto fixup;	/* |x|<|y| return x or x-y */
48 	} else if(hx==hy) {
49 	    *quo = (sxy ? -1 : 1);
50 	    return Zero[(u_int32_t)sx>>31];	/* |x|=|y| return x*0*/
51 	}
52 
53     /* determine ix = ilogb(x) */
54 	if(hx<0x00800000) {	/* subnormal x */
55 	    for (ix = -126,i=(hx<<8); i>0; i<<=1) ix -=1;
56 	} else ix = (hx>>23)-127;
57 
58     /* determine iy = ilogb(y) */
59 	if(hy<0x00800000) {	/* subnormal y */
60 	    for (iy = -126,i=(hy<<8); i>0; i<<=1) iy -=1;
61 	} else iy = (hy>>23)-127;
62 
63     /* set up {hx,lx}, {hy,ly} and align y to x */
64 	if(ix >= -126)
65 	    hx = 0x00800000|(0x007fffff&hx);
66 	else {		/* subnormal x, shift x to normal */
67 	    n = -126-ix;
68 	    hx <<= n;
69 	}
70 	if(iy >= -126)
71 	    hy = 0x00800000|(0x007fffff&hy);
72 	else {		/* subnormal y, shift y to normal */
73 	    n = -126-iy;
74 	    hy <<= n;
75 	}
76 
77     /* fix point fmod */
78 	n = ix - iy;
79 	q = 0;
80 	while(n--) {
81 	    hz=hx-hy;
82 	    if(hz<0) hx = hx << 1;
83 	    else {hx = hz << 1; q++;}
84 	    q <<= 1;
85 	}
86 	hz=hx-hy;
87 	if(hz>=0) {hx=hz;q++;}
88 
89     /* convert back to floating value and restore the sign */
90 	if(hx==0) {				/* return sign(x)*0 */
91 	    q &= 0x7fffffff;
92 	    *quo = (sxy ? -q : q);
93 	    return Zero[(u_int32_t)sx>>31];
94 	}
95 	while(hx<0x00800000) {		/* normalize x */
96 	    hx <<= 1;
97 	    iy -= 1;
98 	}
99 	if(iy>= -126) {		/* normalize output */
100 	    hx = ((hx-0x00800000)|((iy+127)<<23));
101 	} else {		/* subnormal output */
102 	    n = -126 - iy;
103 	    hx >>= n;
104 	}
105 fixup:
106 	SET_FLOAT_WORD(x,hx);
107 	y = fabsf(y);
108 	if (y < 0x1p-125f) {
109 	    if (x+x>y || (x+x==y && (q & 1))) {
110 		q++;
111 		x-=y;
112 	    }
113 	} else if (x>0.5f*y || (x==0.5f*y && (q & 1))) {
114 	    q++;
115 	    x-=y;
116 	}
117 	GET_FLOAT_WORD(hx,x);
118 	SET_FLOAT_WORD(x,hx^sx);
119 	q &= 0x7fffffff;
120 	*quo = (sxy ? -q : q);
121 	return x;
122 }
123