1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <gtest/gtest.h>
18
19 #include <errno.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <malloc.h>
23 #include <pthread.h>
24 #include <signal.h>
25 #include <stdio.h>
26 #include <sys/mman.h>
27 #include <sys/prctl.h>
28 #include <sys/resource.h>
29 #include <sys/syscall.h>
30 #include <time.h>
31 #include <unistd.h>
32 #include <unwind.h>
33
34 #include <atomic>
35 #include <future>
36 #include <vector>
37
38 #include <android-base/macros.h>
39 #include <android-base/parseint.h>
40 #include <android-base/scopeguard.h>
41 #include <android-base/strings.h>
42
43 #include "private/bionic_constants.h"
44 #include "BionicDeathTest.h"
45 #include "SignalUtils.h"
46 #include "utils.h"
47
TEST(pthread,pthread_key_create)48 TEST(pthread, pthread_key_create) {
49 pthread_key_t key;
50 ASSERT_EQ(0, pthread_key_create(&key, nullptr));
51 ASSERT_EQ(0, pthread_key_delete(key));
52 // Can't delete a key that's already been deleted.
53 ASSERT_EQ(EINVAL, pthread_key_delete(key));
54 }
55
TEST(pthread,pthread_keys_max)56 TEST(pthread, pthread_keys_max) {
57 // POSIX says PTHREAD_KEYS_MAX should be at least _POSIX_THREAD_KEYS_MAX.
58 ASSERT_GE(PTHREAD_KEYS_MAX, _POSIX_THREAD_KEYS_MAX);
59 }
60
TEST(pthread,sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX)61 TEST(pthread, sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX) {
62 int sysconf_max = sysconf(_SC_THREAD_KEYS_MAX);
63 ASSERT_EQ(sysconf_max, PTHREAD_KEYS_MAX);
64 }
65
TEST(pthread,pthread_key_many_distinct)66 TEST(pthread, pthread_key_many_distinct) {
67 // As gtest uses pthread keys, we can't allocate exactly PTHREAD_KEYS_MAX
68 // pthread keys, but We should be able to allocate at least this many keys.
69 int nkeys = PTHREAD_KEYS_MAX / 2;
70 std::vector<pthread_key_t> keys;
71
72 auto scope_guard = android::base::make_scope_guard([&keys] {
73 for (const auto& key : keys) {
74 EXPECT_EQ(0, pthread_key_delete(key));
75 }
76 });
77
78 for (int i = 0; i < nkeys; ++i) {
79 pthread_key_t key;
80 // If this fails, it's likely that LIBC_PTHREAD_KEY_RESERVED_COUNT is wrong.
81 ASSERT_EQ(0, pthread_key_create(&key, nullptr)) << i << " of " << nkeys;
82 keys.push_back(key);
83 ASSERT_EQ(0, pthread_setspecific(key, reinterpret_cast<void*>(i)));
84 }
85
86 for (int i = keys.size() - 1; i >= 0; --i) {
87 ASSERT_EQ(reinterpret_cast<void*>(i), pthread_getspecific(keys.back()));
88 pthread_key_t key = keys.back();
89 keys.pop_back();
90 ASSERT_EQ(0, pthread_key_delete(key));
91 }
92 }
93
TEST(pthread,pthread_key_not_exceed_PTHREAD_KEYS_MAX)94 TEST(pthread, pthread_key_not_exceed_PTHREAD_KEYS_MAX) {
95 std::vector<pthread_key_t> keys;
96 int rv = 0;
97
98 // Pthread keys are used by gtest, so PTHREAD_KEYS_MAX should
99 // be more than we are allowed to allocate now.
100 for (int i = 0; i < PTHREAD_KEYS_MAX; i++) {
101 pthread_key_t key;
102 rv = pthread_key_create(&key, nullptr);
103 if (rv == EAGAIN) {
104 break;
105 }
106 EXPECT_EQ(0, rv);
107 keys.push_back(key);
108 }
109
110 // Don't leak keys.
111 for (const auto& key : keys) {
112 EXPECT_EQ(0, pthread_key_delete(key));
113 }
114 keys.clear();
115
116 // We should have eventually reached the maximum number of keys and received
117 // EAGAIN.
118 ASSERT_EQ(EAGAIN, rv);
119 }
120
TEST(pthread,pthread_key_delete)121 TEST(pthread, pthread_key_delete) {
122 void* expected = reinterpret_cast<void*>(1234);
123 pthread_key_t key;
124 ASSERT_EQ(0, pthread_key_create(&key, nullptr));
125 ASSERT_EQ(0, pthread_setspecific(key, expected));
126 ASSERT_EQ(expected, pthread_getspecific(key));
127 ASSERT_EQ(0, pthread_key_delete(key));
128 // After deletion, pthread_getspecific returns nullptr.
129 ASSERT_EQ(nullptr, pthread_getspecific(key));
130 // And you can't use pthread_setspecific with the deleted key.
131 ASSERT_EQ(EINVAL, pthread_setspecific(key, expected));
132 }
133
TEST(pthread,pthread_key_fork)134 TEST(pthread, pthread_key_fork) {
135 void* expected = reinterpret_cast<void*>(1234);
136 pthread_key_t key;
137 ASSERT_EQ(0, pthread_key_create(&key, nullptr));
138 ASSERT_EQ(0, pthread_setspecific(key, expected));
139 ASSERT_EQ(expected, pthread_getspecific(key));
140
141 pid_t pid = fork();
142 ASSERT_NE(-1, pid) << strerror(errno);
143
144 if (pid == 0) {
145 // The surviving thread inherits all the forking thread's TLS values...
146 ASSERT_EQ(expected, pthread_getspecific(key));
147 _exit(99);
148 }
149
150 AssertChildExited(pid, 99);
151
152 ASSERT_EQ(expected, pthread_getspecific(key));
153 ASSERT_EQ(0, pthread_key_delete(key));
154 }
155
DirtyKeyFn(void * key)156 static void* DirtyKeyFn(void* key) {
157 return pthread_getspecific(*reinterpret_cast<pthread_key_t*>(key));
158 }
159
TEST(pthread,pthread_key_dirty)160 TEST(pthread, pthread_key_dirty) {
161 pthread_key_t key;
162 ASSERT_EQ(0, pthread_key_create(&key, nullptr));
163
164 size_t stack_size = 640 * 1024;
165 void* stack = mmap(nullptr, stack_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
166 ASSERT_NE(MAP_FAILED, stack);
167 memset(stack, 0xff, stack_size);
168
169 pthread_attr_t attr;
170 ASSERT_EQ(0, pthread_attr_init(&attr));
171 ASSERT_EQ(0, pthread_attr_setstack(&attr, stack, stack_size));
172
173 pthread_t t;
174 ASSERT_EQ(0, pthread_create(&t, &attr, DirtyKeyFn, &key));
175
176 void* result;
177 ASSERT_EQ(0, pthread_join(t, &result));
178 ASSERT_EQ(nullptr, result); // Not ~0!
179
180 ASSERT_EQ(0, munmap(stack, stack_size));
181 ASSERT_EQ(0, pthread_key_delete(key));
182 }
183
TEST(pthread,static_pthread_key_used_before_creation)184 TEST(pthread, static_pthread_key_used_before_creation) {
185 #if defined(__BIONIC__)
186 // See http://b/19625804. The bug is about a static/global pthread key being used before creation.
187 // So here tests if the static/global default value 0 can be detected as invalid key.
188 static pthread_key_t key;
189 ASSERT_EQ(nullptr, pthread_getspecific(key));
190 ASSERT_EQ(EINVAL, pthread_setspecific(key, nullptr));
191 ASSERT_EQ(EINVAL, pthread_key_delete(key));
192 #else
193 GTEST_SKIP() << "bionic-only test";
194 #endif
195 }
196
IdFn(void * arg)197 static void* IdFn(void* arg) {
198 return arg;
199 }
200
201 class SpinFunctionHelper {
202 public:
SpinFunctionHelper()203 SpinFunctionHelper() {
204 SpinFunctionHelper::spin_flag_ = true;
205 }
206
~SpinFunctionHelper()207 ~SpinFunctionHelper() {
208 UnSpin();
209 }
210
GetFunction()211 auto GetFunction() -> void* (*)(void*) {
212 return SpinFunctionHelper::SpinFn;
213 }
214
UnSpin()215 void UnSpin() {
216 SpinFunctionHelper::spin_flag_ = false;
217 }
218
219 private:
SpinFn(void *)220 static void* SpinFn(void*) {
221 while (spin_flag_) {}
222 return nullptr;
223 }
224 static std::atomic<bool> spin_flag_;
225 };
226
227 // It doesn't matter if spin_flag_ is used in several tests,
228 // because it is always set to false after each test. Each thread
229 // loops on spin_flag_ can find it becomes false at some time.
230 std::atomic<bool> SpinFunctionHelper::spin_flag_;
231
JoinFn(void * arg)232 static void* JoinFn(void* arg) {
233 return reinterpret_cast<void*>(pthread_join(reinterpret_cast<pthread_t>(arg), nullptr));
234 }
235
AssertDetached(pthread_t t,bool is_detached)236 static void AssertDetached(pthread_t t, bool is_detached) {
237 pthread_attr_t attr;
238 ASSERT_EQ(0, pthread_getattr_np(t, &attr));
239 int detach_state;
240 ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &detach_state));
241 pthread_attr_destroy(&attr);
242 ASSERT_EQ(is_detached, (detach_state == PTHREAD_CREATE_DETACHED));
243 }
244
MakeDeadThread(pthread_t & t)245 static void MakeDeadThread(pthread_t& t) {
246 ASSERT_EQ(0, pthread_create(&t, nullptr, IdFn, nullptr));
247 ASSERT_EQ(0, pthread_join(t, nullptr));
248 }
249
TEST(pthread,pthread_create)250 TEST(pthread, pthread_create) {
251 void* expected_result = reinterpret_cast<void*>(123);
252 // Can we create a thread?
253 pthread_t t;
254 ASSERT_EQ(0, pthread_create(&t, nullptr, IdFn, expected_result));
255 // If we join, do we get the expected value back?
256 void* result;
257 ASSERT_EQ(0, pthread_join(t, &result));
258 ASSERT_EQ(expected_result, result);
259 }
260
TEST(pthread,pthread_create_EAGAIN)261 TEST(pthread, pthread_create_EAGAIN) {
262 pthread_attr_t attributes;
263 ASSERT_EQ(0, pthread_attr_init(&attributes));
264 ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, static_cast<size_t>(-1) & ~(getpagesize() - 1)));
265
266 pthread_t t;
267 ASSERT_EQ(EAGAIN, pthread_create(&t, &attributes, IdFn, nullptr));
268 }
269
TEST(pthread,pthread_no_join_after_detach)270 TEST(pthread, pthread_no_join_after_detach) {
271 SpinFunctionHelper spin_helper;
272
273 pthread_t t1;
274 ASSERT_EQ(0, pthread_create(&t1, nullptr, spin_helper.GetFunction(), nullptr));
275
276 // After a pthread_detach...
277 ASSERT_EQ(0, pthread_detach(t1));
278 AssertDetached(t1, true);
279
280 // ...pthread_join should fail.
281 ASSERT_EQ(EINVAL, pthread_join(t1, nullptr));
282 }
283
TEST(pthread,pthread_no_op_detach_after_join)284 TEST(pthread, pthread_no_op_detach_after_join) {
285 SpinFunctionHelper spin_helper;
286
287 pthread_t t1;
288 ASSERT_EQ(0, pthread_create(&t1, nullptr, spin_helper.GetFunction(), nullptr));
289
290 // If thread 2 is already waiting to join thread 1...
291 pthread_t t2;
292 ASSERT_EQ(0, pthread_create(&t2, nullptr, JoinFn, reinterpret_cast<void*>(t1)));
293
294 sleep(1); // (Give t2 a chance to call pthread_join.)
295
296 #if defined(__BIONIC__)
297 ASSERT_EQ(EINVAL, pthread_detach(t1));
298 #else
299 ASSERT_EQ(0, pthread_detach(t1));
300 #endif
301 AssertDetached(t1, false);
302
303 spin_helper.UnSpin();
304
305 // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
306 void* join_result;
307 ASSERT_EQ(0, pthread_join(t2, &join_result));
308 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
309 }
310
TEST(pthread,pthread_join_self)311 TEST(pthread, pthread_join_self) {
312 ASSERT_EQ(EDEADLK, pthread_join(pthread_self(), nullptr));
313 }
314
315 struct TestBug37410 {
316 pthread_t main_thread;
317 pthread_mutex_t mutex;
318
mainTestBug37410319 static void main() {
320 TestBug37410 data;
321 data.main_thread = pthread_self();
322 ASSERT_EQ(0, pthread_mutex_init(&data.mutex, nullptr));
323 ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
324
325 pthread_t t;
326 ASSERT_EQ(0, pthread_create(&t, nullptr, TestBug37410::thread_fn, reinterpret_cast<void*>(&data)));
327
328 // Wait for the thread to be running...
329 ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
330 ASSERT_EQ(0, pthread_mutex_unlock(&data.mutex));
331
332 // ...and exit.
333 pthread_exit(nullptr);
334 }
335
336 private:
thread_fnTestBug37410337 static void* thread_fn(void* arg) {
338 TestBug37410* data = reinterpret_cast<TestBug37410*>(arg);
339
340 // Unlocking data->mutex will cause the main thread to exit, invalidating *data. Save the handle.
341 pthread_t main_thread = data->main_thread;
342
343 // Let the main thread know we're running.
344 pthread_mutex_unlock(&data->mutex);
345
346 // And wait for the main thread to exit.
347 pthread_join(main_thread, nullptr);
348
349 return nullptr;
350 }
351 };
352
353 // Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to
354 // run this test (which exits normally) in its own process.
355
356 class pthread_DeathTest : public BionicDeathTest {};
357
TEST_F(pthread_DeathTest,pthread_bug_37410)358 TEST_F(pthread_DeathTest, pthread_bug_37410) {
359 // http://code.google.com/p/android/issues/detail?id=37410
360 ASSERT_EXIT(TestBug37410::main(), ::testing::ExitedWithCode(0), "");
361 }
362
SignalHandlerFn(void * arg)363 static void* SignalHandlerFn(void* arg) {
364 sigset64_t wait_set;
365 sigfillset64(&wait_set);
366 return reinterpret_cast<void*>(sigwait64(&wait_set, reinterpret_cast<int*>(arg)));
367 }
368
TEST(pthread,pthread_sigmask)369 TEST(pthread, pthread_sigmask) {
370 // Check that SIGUSR1 isn't blocked.
371 sigset_t original_set;
372 sigemptyset(&original_set);
373 ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, nullptr, &original_set));
374 ASSERT_FALSE(sigismember(&original_set, SIGUSR1));
375
376 // Block SIGUSR1.
377 sigset_t set;
378 sigemptyset(&set);
379 sigaddset(&set, SIGUSR1);
380 ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, &set, nullptr));
381
382 // Check that SIGUSR1 is blocked.
383 sigset_t final_set;
384 sigemptyset(&final_set);
385 ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, nullptr, &final_set));
386 ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
387 // ...and that sigprocmask agrees with pthread_sigmask.
388 sigemptyset(&final_set);
389 ASSERT_EQ(0, sigprocmask(SIG_BLOCK, nullptr, &final_set));
390 ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
391
392 // Spawn a thread that calls sigwait and tells us what it received.
393 pthread_t signal_thread;
394 int received_signal = -1;
395 ASSERT_EQ(0, pthread_create(&signal_thread, nullptr, SignalHandlerFn, &received_signal));
396
397 // Send that thread SIGUSR1.
398 pthread_kill(signal_thread, SIGUSR1);
399
400 // See what it got.
401 void* join_result;
402 ASSERT_EQ(0, pthread_join(signal_thread, &join_result));
403 ASSERT_EQ(SIGUSR1, received_signal);
404 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
405
406 // Restore the original signal mask.
407 ASSERT_EQ(0, pthread_sigmask(SIG_SETMASK, &original_set, nullptr));
408 }
409
TEST(pthread,pthread_sigmask64_SIGTRMIN)410 TEST(pthread, pthread_sigmask64_SIGTRMIN) {
411 // Check that SIGRTMIN isn't blocked.
412 sigset64_t original_set;
413 sigemptyset64(&original_set);
414 ASSERT_EQ(0, pthread_sigmask64(SIG_BLOCK, nullptr, &original_set));
415 ASSERT_FALSE(sigismember64(&original_set, SIGRTMIN));
416
417 // Block SIGRTMIN.
418 sigset64_t set;
419 sigemptyset64(&set);
420 sigaddset64(&set, SIGRTMIN);
421 ASSERT_EQ(0, pthread_sigmask64(SIG_BLOCK, &set, nullptr));
422
423 // Check that SIGRTMIN is blocked.
424 sigset64_t final_set;
425 sigemptyset64(&final_set);
426 ASSERT_EQ(0, pthread_sigmask64(SIG_BLOCK, nullptr, &final_set));
427 ASSERT_TRUE(sigismember64(&final_set, SIGRTMIN));
428 // ...and that sigprocmask64 agrees with pthread_sigmask64.
429 sigemptyset64(&final_set);
430 ASSERT_EQ(0, sigprocmask64(SIG_BLOCK, nullptr, &final_set));
431 ASSERT_TRUE(sigismember64(&final_set, SIGRTMIN));
432
433 // Spawn a thread that calls sigwait64 and tells us what it received.
434 pthread_t signal_thread;
435 int received_signal = -1;
436 ASSERT_EQ(0, pthread_create(&signal_thread, nullptr, SignalHandlerFn, &received_signal));
437
438 // Send that thread SIGRTMIN.
439 pthread_kill(signal_thread, SIGRTMIN);
440
441 // See what it got.
442 void* join_result;
443 ASSERT_EQ(0, pthread_join(signal_thread, &join_result));
444 ASSERT_EQ(SIGRTMIN, received_signal);
445 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
446
447 // Restore the original signal mask.
448 ASSERT_EQ(0, pthread_sigmask64(SIG_SETMASK, &original_set, nullptr));
449 }
450
test_pthread_setname_np__pthread_getname_np(pthread_t t)451 static void test_pthread_setname_np__pthread_getname_np(pthread_t t) {
452 ASSERT_EQ(0, pthread_setname_np(t, "short"));
453 char name[32];
454 ASSERT_EQ(0, pthread_getname_np(t, name, sizeof(name)));
455 ASSERT_STREQ("short", name);
456
457 // The limit is 15 characters --- the kernel's buffer is 16, but includes a NUL.
458 ASSERT_EQ(0, pthread_setname_np(t, "123456789012345"));
459 ASSERT_EQ(0, pthread_getname_np(t, name, sizeof(name)));
460 ASSERT_STREQ("123456789012345", name);
461
462 ASSERT_EQ(ERANGE, pthread_setname_np(t, "1234567890123456"));
463
464 // The passed-in buffer should be at least 16 bytes.
465 ASSERT_EQ(0, pthread_getname_np(t, name, 16));
466 ASSERT_EQ(ERANGE, pthread_getname_np(t, name, 15));
467 }
468
TEST(pthread,pthread_setname_np__pthread_getname_np__self)469 TEST(pthread, pthread_setname_np__pthread_getname_np__self) {
470 test_pthread_setname_np__pthread_getname_np(pthread_self());
471 }
472
TEST(pthread,pthread_setname_np__pthread_getname_np__other)473 TEST(pthread, pthread_setname_np__pthread_getname_np__other) {
474 SpinFunctionHelper spin_helper;
475
476 pthread_t t;
477 ASSERT_EQ(0, pthread_create(&t, nullptr, spin_helper.GetFunction(), nullptr));
478 test_pthread_setname_np__pthread_getname_np(t);
479 spin_helper.UnSpin();
480 ASSERT_EQ(0, pthread_join(t, nullptr));
481 }
482
483 // http://b/28051133: a kernel misfeature means that you can't change the
484 // name of another thread if you've set PR_SET_DUMPABLE to 0.
TEST(pthread,pthread_setname_np__pthread_getname_np__other_PR_SET_DUMPABLE)485 TEST(pthread, pthread_setname_np__pthread_getname_np__other_PR_SET_DUMPABLE) {
486 ASSERT_EQ(0, prctl(PR_SET_DUMPABLE, 0)) << strerror(errno);
487
488 SpinFunctionHelper spin_helper;
489
490 pthread_t t;
491 ASSERT_EQ(0, pthread_create(&t, nullptr, spin_helper.GetFunction(), nullptr));
492 test_pthread_setname_np__pthread_getname_np(t);
493 spin_helper.UnSpin();
494 ASSERT_EQ(0, pthread_join(t, nullptr));
495 }
496
TEST_F(pthread_DeathTest,pthread_setname_np__no_such_thread)497 TEST_F(pthread_DeathTest, pthread_setname_np__no_such_thread) {
498 pthread_t dead_thread;
499 MakeDeadThread(dead_thread);
500
501 EXPECT_DEATH(pthread_setname_np(dead_thread, "short 3"),
502 "invalid pthread_t (.*) passed to pthread_setname_np");
503 }
504
TEST_F(pthread_DeathTest,pthread_setname_np__null_thread)505 TEST_F(pthread_DeathTest, pthread_setname_np__null_thread) {
506 pthread_t null_thread = 0;
507 EXPECT_EQ(ENOENT, pthread_setname_np(null_thread, "short 3"));
508 }
509
TEST_F(pthread_DeathTest,pthread_getname_np__no_such_thread)510 TEST_F(pthread_DeathTest, pthread_getname_np__no_such_thread) {
511 pthread_t dead_thread;
512 MakeDeadThread(dead_thread);
513
514 char name[64];
515 EXPECT_DEATH(pthread_getname_np(dead_thread, name, sizeof(name)),
516 "invalid pthread_t (.*) passed to pthread_getname_np");
517 }
518
TEST_F(pthread_DeathTest,pthread_getname_np__null_thread)519 TEST_F(pthread_DeathTest, pthread_getname_np__null_thread) {
520 pthread_t null_thread = 0;
521
522 char name[64];
523 EXPECT_EQ(ENOENT, pthread_getname_np(null_thread, name, sizeof(name)));
524 }
525
TEST(pthread,pthread_kill__0)526 TEST(pthread, pthread_kill__0) {
527 // Signal 0 just tests that the thread exists, so it's safe to call on ourselves.
528 ASSERT_EQ(0, pthread_kill(pthread_self(), 0));
529 }
530
TEST(pthread,pthread_kill__invalid_signal)531 TEST(pthread, pthread_kill__invalid_signal) {
532 ASSERT_EQ(EINVAL, pthread_kill(pthread_self(), -1));
533 }
534
pthread_kill__in_signal_handler_helper(int signal_number)535 static void pthread_kill__in_signal_handler_helper(int signal_number) {
536 static int count = 0;
537 ASSERT_EQ(SIGALRM, signal_number);
538 if (++count == 1) {
539 // Can we call pthread_kill from a signal handler?
540 ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
541 }
542 }
543
TEST(pthread,pthread_kill__in_signal_handler)544 TEST(pthread, pthread_kill__in_signal_handler) {
545 ScopedSignalHandler ssh(SIGALRM, pthread_kill__in_signal_handler_helper);
546 ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
547 }
548
TEST(pthread,pthread_kill__exited_thread)549 TEST(pthread, pthread_kill__exited_thread) {
550 static std::promise<pid_t> tid_promise;
551 pthread_t thread;
552 ASSERT_EQ(0, pthread_create(&thread, nullptr,
553 [](void*) -> void* {
554 tid_promise.set_value(gettid());
555 return nullptr;
556 },
557 nullptr));
558
559 pid_t tid = tid_promise.get_future().get();
560 while (TEMP_FAILURE_RETRY(syscall(__NR_tgkill, getpid(), tid, 0)) != -1) {
561 continue;
562 }
563 ASSERT_EQ(ESRCH, errno);
564
565 ASSERT_EQ(ESRCH, pthread_kill(thread, 0));
566 }
567
TEST_F(pthread_DeathTest,pthread_detach__no_such_thread)568 TEST_F(pthread_DeathTest, pthread_detach__no_such_thread) {
569 pthread_t dead_thread;
570 MakeDeadThread(dead_thread);
571
572 EXPECT_DEATH(pthread_detach(dead_thread),
573 "invalid pthread_t (.*) passed to pthread_detach");
574 }
575
TEST_F(pthread_DeathTest,pthread_detach__null_thread)576 TEST_F(pthread_DeathTest, pthread_detach__null_thread) {
577 pthread_t null_thread = 0;
578 EXPECT_EQ(ESRCH, pthread_detach(null_thread));
579 }
580
TEST(pthread,pthread_getcpuclockid__clock_gettime)581 TEST(pthread, pthread_getcpuclockid__clock_gettime) {
582 SpinFunctionHelper spin_helper;
583
584 pthread_t t;
585 ASSERT_EQ(0, pthread_create(&t, nullptr, spin_helper.GetFunction(), nullptr));
586
587 clockid_t c;
588 ASSERT_EQ(0, pthread_getcpuclockid(t, &c));
589 timespec ts;
590 ASSERT_EQ(0, clock_gettime(c, &ts));
591 spin_helper.UnSpin();
592 ASSERT_EQ(0, pthread_join(t, nullptr));
593 }
594
TEST_F(pthread_DeathTest,pthread_getcpuclockid__no_such_thread)595 TEST_F(pthread_DeathTest, pthread_getcpuclockid__no_such_thread) {
596 pthread_t dead_thread;
597 MakeDeadThread(dead_thread);
598
599 clockid_t c;
600 EXPECT_DEATH(pthread_getcpuclockid(dead_thread, &c),
601 "invalid pthread_t (.*) passed to pthread_getcpuclockid");
602 }
603
TEST_F(pthread_DeathTest,pthread_getcpuclockid__null_thread)604 TEST_F(pthread_DeathTest, pthread_getcpuclockid__null_thread) {
605 pthread_t null_thread = 0;
606 clockid_t c;
607 EXPECT_EQ(ESRCH, pthread_getcpuclockid(null_thread, &c));
608 }
609
TEST_F(pthread_DeathTest,pthread_getschedparam__no_such_thread)610 TEST_F(pthread_DeathTest, pthread_getschedparam__no_such_thread) {
611 pthread_t dead_thread;
612 MakeDeadThread(dead_thread);
613
614 int policy;
615 sched_param param;
616 EXPECT_DEATH(pthread_getschedparam(dead_thread, &policy, ¶m),
617 "invalid pthread_t (.*) passed to pthread_getschedparam");
618 }
619
TEST_F(pthread_DeathTest,pthread_getschedparam__null_thread)620 TEST_F(pthread_DeathTest, pthread_getschedparam__null_thread) {
621 pthread_t null_thread = 0;
622 int policy;
623 sched_param param;
624 EXPECT_EQ(ESRCH, pthread_getschedparam(null_thread, &policy, ¶m));
625 }
626
TEST_F(pthread_DeathTest,pthread_setschedparam__no_such_thread)627 TEST_F(pthread_DeathTest, pthread_setschedparam__no_such_thread) {
628 pthread_t dead_thread;
629 MakeDeadThread(dead_thread);
630
631 int policy = 0;
632 sched_param param;
633 EXPECT_DEATH(pthread_setschedparam(dead_thread, policy, ¶m),
634 "invalid pthread_t (.*) passed to pthread_setschedparam");
635 }
636
TEST_F(pthread_DeathTest,pthread_setschedparam__null_thread)637 TEST_F(pthread_DeathTest, pthread_setschedparam__null_thread) {
638 pthread_t null_thread = 0;
639 int policy = 0;
640 sched_param param;
641 EXPECT_EQ(ESRCH, pthread_setschedparam(null_thread, policy, ¶m));
642 }
643
TEST_F(pthread_DeathTest,pthread_setschedprio__no_such_thread)644 TEST_F(pthread_DeathTest, pthread_setschedprio__no_such_thread) {
645 pthread_t dead_thread;
646 MakeDeadThread(dead_thread);
647
648 EXPECT_DEATH(pthread_setschedprio(dead_thread, 123),
649 "invalid pthread_t (.*) passed to pthread_setschedprio");
650 }
651
TEST_F(pthread_DeathTest,pthread_setschedprio__null_thread)652 TEST_F(pthread_DeathTest, pthread_setschedprio__null_thread) {
653 pthread_t null_thread = 0;
654 EXPECT_EQ(ESRCH, pthread_setschedprio(null_thread, 123));
655 }
656
TEST_F(pthread_DeathTest,pthread_join__no_such_thread)657 TEST_F(pthread_DeathTest, pthread_join__no_such_thread) {
658 pthread_t dead_thread;
659 MakeDeadThread(dead_thread);
660
661 EXPECT_DEATH(pthread_join(dead_thread, nullptr),
662 "invalid pthread_t (.*) passed to pthread_join");
663 }
664
TEST_F(pthread_DeathTest,pthread_join__null_thread)665 TEST_F(pthread_DeathTest, pthread_join__null_thread) {
666 pthread_t null_thread = 0;
667 EXPECT_EQ(ESRCH, pthread_join(null_thread, nullptr));
668 }
669
TEST_F(pthread_DeathTest,pthread_kill__no_such_thread)670 TEST_F(pthread_DeathTest, pthread_kill__no_such_thread) {
671 pthread_t dead_thread;
672 MakeDeadThread(dead_thread);
673
674 EXPECT_DEATH(pthread_kill(dead_thread, 0),
675 "invalid pthread_t (.*) passed to pthread_kill");
676 }
677
TEST_F(pthread_DeathTest,pthread_kill__null_thread)678 TEST_F(pthread_DeathTest, pthread_kill__null_thread) {
679 pthread_t null_thread = 0;
680 EXPECT_EQ(ESRCH, pthread_kill(null_thread, 0));
681 }
682
TEST(pthread,pthread_join__multijoin)683 TEST(pthread, pthread_join__multijoin) {
684 SpinFunctionHelper spin_helper;
685
686 pthread_t t1;
687 ASSERT_EQ(0, pthread_create(&t1, nullptr, spin_helper.GetFunction(), nullptr));
688
689 pthread_t t2;
690 ASSERT_EQ(0, pthread_create(&t2, nullptr, JoinFn, reinterpret_cast<void*>(t1)));
691
692 sleep(1); // (Give t2 a chance to call pthread_join.)
693
694 // Multiple joins to the same thread should fail.
695 ASSERT_EQ(EINVAL, pthread_join(t1, nullptr));
696
697 spin_helper.UnSpin();
698
699 // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
700 void* join_result;
701 ASSERT_EQ(0, pthread_join(t2, &join_result));
702 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
703 }
704
TEST(pthread,pthread_join__race)705 TEST(pthread, pthread_join__race) {
706 // http://b/11693195 --- pthread_join could return before the thread had actually exited.
707 // If the joiner unmapped the thread's stack, that could lead to SIGSEGV in the thread.
708 for (size_t i = 0; i < 1024; ++i) {
709 size_t stack_size = 640*1024;
710 void* stack = mmap(nullptr, stack_size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
711
712 pthread_attr_t a;
713 pthread_attr_init(&a);
714 pthread_attr_setstack(&a, stack, stack_size);
715
716 pthread_t t;
717 ASSERT_EQ(0, pthread_create(&t, &a, IdFn, nullptr));
718 ASSERT_EQ(0, pthread_join(t, nullptr));
719 ASSERT_EQ(0, munmap(stack, stack_size));
720 }
721 }
722
GetActualGuardSizeFn(void * arg)723 static void* GetActualGuardSizeFn(void* arg) {
724 pthread_attr_t attributes;
725 pthread_getattr_np(pthread_self(), &attributes);
726 pthread_attr_getguardsize(&attributes, reinterpret_cast<size_t*>(arg));
727 return nullptr;
728 }
729
GetActualGuardSize(const pthread_attr_t & attributes)730 static size_t GetActualGuardSize(const pthread_attr_t& attributes) {
731 size_t result;
732 pthread_t t;
733 pthread_create(&t, &attributes, GetActualGuardSizeFn, &result);
734 pthread_join(t, nullptr);
735 return result;
736 }
737
GetActualStackSizeFn(void * arg)738 static void* GetActualStackSizeFn(void* arg) {
739 pthread_attr_t attributes;
740 pthread_getattr_np(pthread_self(), &attributes);
741 pthread_attr_getstacksize(&attributes, reinterpret_cast<size_t*>(arg));
742 return nullptr;
743 }
744
GetActualStackSize(const pthread_attr_t & attributes)745 static size_t GetActualStackSize(const pthread_attr_t& attributes) {
746 size_t result;
747 pthread_t t;
748 pthread_create(&t, &attributes, GetActualStackSizeFn, &result);
749 pthread_join(t, nullptr);
750 return result;
751 }
752
TEST(pthread,pthread_attr_setguardsize_tiny)753 TEST(pthread, pthread_attr_setguardsize_tiny) {
754 pthread_attr_t attributes;
755 ASSERT_EQ(0, pthread_attr_init(&attributes));
756
757 // No such thing as too small: will be rounded up to one page by pthread_create.
758 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 128));
759 size_t guard_size;
760 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
761 ASSERT_EQ(128U, guard_size);
762 ASSERT_EQ(4096U, GetActualGuardSize(attributes));
763 }
764
TEST(pthread,pthread_attr_setguardsize_reasonable)765 TEST(pthread, pthread_attr_setguardsize_reasonable) {
766 pthread_attr_t attributes;
767 ASSERT_EQ(0, pthread_attr_init(&attributes));
768
769 // Large enough and a multiple of the page size.
770 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024));
771 size_t guard_size;
772 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
773 ASSERT_EQ(32*1024U, guard_size);
774 ASSERT_EQ(32*1024U, GetActualGuardSize(attributes));
775 }
776
TEST(pthread,pthread_attr_setguardsize_needs_rounding)777 TEST(pthread, pthread_attr_setguardsize_needs_rounding) {
778 pthread_attr_t attributes;
779 ASSERT_EQ(0, pthread_attr_init(&attributes));
780
781 // Large enough but not a multiple of the page size.
782 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024 + 1));
783 size_t guard_size;
784 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
785 ASSERT_EQ(32*1024U + 1, guard_size);
786 ASSERT_EQ(36*1024U, GetActualGuardSize(attributes));
787 }
788
TEST(pthread,pthread_attr_setguardsize_enormous)789 TEST(pthread, pthread_attr_setguardsize_enormous) {
790 pthread_attr_t attributes;
791 ASSERT_EQ(0, pthread_attr_init(&attributes));
792
793 // Larger than the stack itself. (Historically we mistakenly carved
794 // the guard out of the stack itself, rather than adding it after the
795 // end.)
796 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024*1024));
797 size_t guard_size;
798 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
799 ASSERT_EQ(32*1024*1024U, guard_size);
800 ASSERT_EQ(32*1024*1024U, GetActualGuardSize(attributes));
801 }
802
TEST(pthread,pthread_attr_setstacksize)803 TEST(pthread, pthread_attr_setstacksize) {
804 pthread_attr_t attributes;
805 ASSERT_EQ(0, pthread_attr_init(&attributes));
806
807 // Get the default stack size.
808 size_t default_stack_size;
809 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &default_stack_size));
810
811 // Too small.
812 ASSERT_EQ(EINVAL, pthread_attr_setstacksize(&attributes, 128));
813 size_t stack_size;
814 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
815 ASSERT_EQ(default_stack_size, stack_size);
816 ASSERT_GE(GetActualStackSize(attributes), default_stack_size);
817
818 // Large enough and a multiple of the page size; may be rounded up by pthread_create.
819 ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024));
820 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
821 ASSERT_EQ(32*1024U, stack_size);
822 ASSERT_GE(GetActualStackSize(attributes), 32*1024U);
823
824 // Large enough but not aligned; will be rounded up by pthread_create.
825 ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024 + 1));
826 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
827 ASSERT_EQ(32*1024U + 1, stack_size);
828 #if defined(__BIONIC__)
829 ASSERT_GT(GetActualStackSize(attributes), 32*1024U + 1);
830 #else // __BIONIC__
831 // glibc rounds down, in violation of POSIX. They document this in their BUGS section.
832 ASSERT_EQ(GetActualStackSize(attributes), 32*1024U);
833 #endif // __BIONIC__
834 }
835
TEST(pthread,pthread_rwlockattr_smoke)836 TEST(pthread, pthread_rwlockattr_smoke) {
837 pthread_rwlockattr_t attr;
838 ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
839
840 int pshared_value_array[] = {PTHREAD_PROCESS_PRIVATE, PTHREAD_PROCESS_SHARED};
841 for (size_t i = 0; i < sizeof(pshared_value_array) / sizeof(pshared_value_array[0]); ++i) {
842 ASSERT_EQ(0, pthread_rwlockattr_setpshared(&attr, pshared_value_array[i]));
843 int pshared;
844 ASSERT_EQ(0, pthread_rwlockattr_getpshared(&attr, &pshared));
845 ASSERT_EQ(pshared_value_array[i], pshared);
846 }
847
848 int kind_array[] = {PTHREAD_RWLOCK_PREFER_READER_NP,
849 PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP};
850 for (size_t i = 0; i < sizeof(kind_array) / sizeof(kind_array[0]); ++i) {
851 ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_array[i]));
852 int kind;
853 ASSERT_EQ(0, pthread_rwlockattr_getkind_np(&attr, &kind));
854 ASSERT_EQ(kind_array[i], kind);
855 }
856
857 ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
858 }
859
TEST(pthread,pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER)860 TEST(pthread, pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER) {
861 pthread_rwlock_t lock1 = PTHREAD_RWLOCK_INITIALIZER;
862 pthread_rwlock_t lock2;
863 ASSERT_EQ(0, pthread_rwlock_init(&lock2, nullptr));
864 ASSERT_EQ(0, memcmp(&lock1, &lock2, sizeof(lock1)));
865 }
866
TEST(pthread,pthread_rwlock_smoke)867 TEST(pthread, pthread_rwlock_smoke) {
868 pthread_rwlock_t l;
869 ASSERT_EQ(0, pthread_rwlock_init(&l, nullptr));
870
871 // Single read lock
872 ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
873 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
874
875 // Multiple read lock
876 ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
877 ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
878 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
879 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
880
881 // Write lock
882 ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
883 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
884
885 // Try writer lock
886 ASSERT_EQ(0, pthread_rwlock_trywrlock(&l));
887 ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
888 ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&l));
889 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
890
891 // Try reader lock
892 ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
893 ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
894 ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
895 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
896 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
897
898 // Try writer lock after unlock
899 ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
900 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
901
902 // EDEADLK in "read after write"
903 ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
904 ASSERT_EQ(EDEADLK, pthread_rwlock_rdlock(&l));
905 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
906
907 // EDEADLK in "write after write"
908 ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
909 ASSERT_EQ(EDEADLK, pthread_rwlock_wrlock(&l));
910 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
911
912 ASSERT_EQ(0, pthread_rwlock_destroy(&l));
913 }
914
915 struct RwlockWakeupHelperArg {
916 pthread_rwlock_t lock;
917 enum Progress {
918 LOCK_INITIALIZED,
919 LOCK_WAITING,
920 LOCK_RELEASED,
921 LOCK_ACCESSED,
922 LOCK_TIMEDOUT,
923 };
924 std::atomic<Progress> progress;
925 std::atomic<pid_t> tid;
926 std::function<int (pthread_rwlock_t*)> trylock_function;
927 std::function<int (pthread_rwlock_t*)> lock_function;
928 std::function<int (pthread_rwlock_t*, const timespec*)> timed_lock_function;
929 clockid_t clock;
930 };
931
pthread_rwlock_wakeup_helper(RwlockWakeupHelperArg * arg)932 static void pthread_rwlock_wakeup_helper(RwlockWakeupHelperArg* arg) {
933 arg->tid = gettid();
934 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
935 arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
936
937 ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock));
938 ASSERT_EQ(0, arg->lock_function(&arg->lock));
939 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress);
940 ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock));
941
942 arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED;
943 }
944
test_pthread_rwlock_reader_wakeup_writer(std::function<int (pthread_rwlock_t *)> lock_function)945 static void test_pthread_rwlock_reader_wakeup_writer(std::function<int (pthread_rwlock_t*)> lock_function) {
946 RwlockWakeupHelperArg wakeup_arg;
947 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
948 ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
949 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
950 wakeup_arg.tid = 0;
951 wakeup_arg.trylock_function = &pthread_rwlock_trywrlock;
952 wakeup_arg.lock_function = lock_function;
953
954 pthread_t thread;
955 ASSERT_EQ(0, pthread_create(&thread, nullptr,
956 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg));
957 WaitUntilThreadSleep(wakeup_arg.tid);
958 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
959
960 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
961 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
962
963 ASSERT_EQ(0, pthread_join(thread, nullptr));
964 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
965 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
966 }
967
TEST(pthread,pthread_rwlock_reader_wakeup_writer)968 TEST(pthread, pthread_rwlock_reader_wakeup_writer) {
969 test_pthread_rwlock_reader_wakeup_writer(pthread_rwlock_wrlock);
970 }
971
TEST(pthread,pthread_rwlock_reader_wakeup_writer_timedwait)972 TEST(pthread, pthread_rwlock_reader_wakeup_writer_timedwait) {
973 timespec ts;
974 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
975 ts.tv_sec += 1;
976 test_pthread_rwlock_reader_wakeup_writer([&](pthread_rwlock_t* lock) {
977 return pthread_rwlock_timedwrlock(lock, &ts);
978 });
979 }
980
TEST(pthread,pthread_rwlock_reader_wakeup_writer_timedwait_monotonic_np)981 TEST(pthread, pthread_rwlock_reader_wakeup_writer_timedwait_monotonic_np) {
982 #if defined(__BIONIC__)
983 timespec ts;
984 ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts));
985 ts.tv_sec += 1;
986 test_pthread_rwlock_reader_wakeup_writer(
987 [&](pthread_rwlock_t* lock) { return pthread_rwlock_timedwrlock_monotonic_np(lock, &ts); });
988 #else // __BIONIC__
989 GTEST_SKIP() << "pthread_rwlock_timedwrlock_monotonic_np not available";
990 #endif // __BIONIC__
991 }
992
TEST(pthread,pthread_rwlock_reader_wakeup_writer_clockwait)993 TEST(pthread, pthread_rwlock_reader_wakeup_writer_clockwait) {
994 #if defined(__BIONIC__)
995 timespec ts;
996 ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts));
997 ts.tv_sec += 1;
998 test_pthread_rwlock_reader_wakeup_writer([&](pthread_rwlock_t* lock) {
999 return pthread_rwlock_clockwrlock(lock, CLOCK_MONOTONIC, &ts);
1000 });
1001
1002 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1003 ts.tv_sec += 1;
1004 test_pthread_rwlock_reader_wakeup_writer([&](pthread_rwlock_t* lock) {
1005 return pthread_rwlock_clockwrlock(lock, CLOCK_REALTIME, &ts);
1006 });
1007 #else // __BIONIC__
1008 GTEST_SKIP() << "pthread_rwlock_clockwrlock not available";
1009 #endif // __BIONIC__
1010 }
1011
test_pthread_rwlock_writer_wakeup_reader(std::function<int (pthread_rwlock_t *)> lock_function)1012 static void test_pthread_rwlock_writer_wakeup_reader(std::function<int (pthread_rwlock_t*)> lock_function) {
1013 RwlockWakeupHelperArg wakeup_arg;
1014 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
1015 ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
1016 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
1017 wakeup_arg.tid = 0;
1018 wakeup_arg.trylock_function = &pthread_rwlock_tryrdlock;
1019 wakeup_arg.lock_function = lock_function;
1020
1021 pthread_t thread;
1022 ASSERT_EQ(0, pthread_create(&thread, nullptr,
1023 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg));
1024 WaitUntilThreadSleep(wakeup_arg.tid);
1025 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
1026
1027 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
1028 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
1029
1030 ASSERT_EQ(0, pthread_join(thread, nullptr));
1031 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
1032 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
1033 }
1034
TEST(pthread,pthread_rwlock_writer_wakeup_reader)1035 TEST(pthread, pthread_rwlock_writer_wakeup_reader) {
1036 test_pthread_rwlock_writer_wakeup_reader(pthread_rwlock_rdlock);
1037 }
1038
TEST(pthread,pthread_rwlock_writer_wakeup_reader_timedwait)1039 TEST(pthread, pthread_rwlock_writer_wakeup_reader_timedwait) {
1040 timespec ts;
1041 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1042 ts.tv_sec += 1;
1043 test_pthread_rwlock_writer_wakeup_reader([&](pthread_rwlock_t* lock) {
1044 return pthread_rwlock_timedrdlock(lock, &ts);
1045 });
1046 }
1047
TEST(pthread,pthread_rwlock_writer_wakeup_reader_timedwait_monotonic_np)1048 TEST(pthread, pthread_rwlock_writer_wakeup_reader_timedwait_monotonic_np) {
1049 #if defined(__BIONIC__)
1050 timespec ts;
1051 ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts));
1052 ts.tv_sec += 1;
1053 test_pthread_rwlock_writer_wakeup_reader(
1054 [&](pthread_rwlock_t* lock) { return pthread_rwlock_timedrdlock_monotonic_np(lock, &ts); });
1055 #else // __BIONIC__
1056 GTEST_SKIP() << "pthread_rwlock_timedrdlock_monotonic_np not available";
1057 #endif // __BIONIC__
1058 }
1059
TEST(pthread,pthread_rwlock_writer_wakeup_reader_clockwait)1060 TEST(pthread, pthread_rwlock_writer_wakeup_reader_clockwait) {
1061 #if defined(__BIONIC__)
1062 timespec ts;
1063 ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts));
1064 ts.tv_sec += 1;
1065 test_pthread_rwlock_writer_wakeup_reader([&](pthread_rwlock_t* lock) {
1066 return pthread_rwlock_clockrdlock(lock, CLOCK_MONOTONIC, &ts);
1067 });
1068
1069 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1070 ts.tv_sec += 1;
1071 test_pthread_rwlock_writer_wakeup_reader([&](pthread_rwlock_t* lock) {
1072 return pthread_rwlock_clockrdlock(lock, CLOCK_REALTIME, &ts);
1073 });
1074 #else // __BIONIC__
1075 GTEST_SKIP() << "pthread_rwlock_clockrdlock not available";
1076 #endif // __BIONIC__
1077 }
1078
pthread_rwlock_wakeup_timeout_helper(RwlockWakeupHelperArg * arg)1079 static void pthread_rwlock_wakeup_timeout_helper(RwlockWakeupHelperArg* arg) {
1080 arg->tid = gettid();
1081 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
1082 arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
1083
1084 ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock));
1085
1086 timespec ts;
1087 ASSERT_EQ(0, clock_gettime(arg->clock, &ts));
1088 ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
1089 ts.tv_nsec = -1;
1090 ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts));
1091 ts.tv_nsec = NS_PER_S;
1092 ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts));
1093 ts.tv_nsec = NS_PER_S - 1;
1094 ts.tv_sec = -1;
1095 ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
1096 ASSERT_EQ(0, clock_gettime(arg->clock, &ts));
1097 ts.tv_sec += 1;
1098 ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
1099 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, arg->progress);
1100 arg->progress = RwlockWakeupHelperArg::LOCK_TIMEDOUT;
1101 }
1102
pthread_rwlock_timedrdlock_timeout_helper(clockid_t clock,int (* lock_function)(pthread_rwlock_t * __rwlock,const timespec * __timeout))1103 static void pthread_rwlock_timedrdlock_timeout_helper(
1104 clockid_t clock, int (*lock_function)(pthread_rwlock_t* __rwlock, const timespec* __timeout)) {
1105 RwlockWakeupHelperArg wakeup_arg;
1106 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
1107 ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
1108 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
1109 wakeup_arg.tid = 0;
1110 wakeup_arg.trylock_function = &pthread_rwlock_tryrdlock;
1111 wakeup_arg.timed_lock_function = lock_function;
1112 wakeup_arg.clock = clock;
1113
1114 pthread_t thread;
1115 ASSERT_EQ(0, pthread_create(&thread, nullptr,
1116 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg));
1117 WaitUntilThreadSleep(wakeup_arg.tid);
1118 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
1119
1120 ASSERT_EQ(0, pthread_join(thread, nullptr));
1121 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress);
1122 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
1123 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
1124 }
1125
TEST(pthread,pthread_rwlock_timedrdlock_timeout)1126 TEST(pthread, pthread_rwlock_timedrdlock_timeout) {
1127 pthread_rwlock_timedrdlock_timeout_helper(CLOCK_REALTIME, pthread_rwlock_timedrdlock);
1128 }
1129
TEST(pthread,pthread_rwlock_timedrdlock_monotonic_np_timeout)1130 TEST(pthread, pthread_rwlock_timedrdlock_monotonic_np_timeout) {
1131 #if defined(__BIONIC__)
1132 pthread_rwlock_timedrdlock_timeout_helper(CLOCK_MONOTONIC,
1133 pthread_rwlock_timedrdlock_monotonic_np);
1134 #else // __BIONIC__
1135 GTEST_SKIP() << "pthread_rwlock_timedrdlock_monotonic_np not available";
1136 #endif // __BIONIC__
1137 }
1138
TEST(pthread,pthread_rwlock_clockrdlock_monotonic_timeout)1139 TEST(pthread, pthread_rwlock_clockrdlock_monotonic_timeout) {
1140 #if defined(__BIONIC__)
1141 pthread_rwlock_timedrdlock_timeout_helper(
1142 CLOCK_MONOTONIC, [](pthread_rwlock_t* __rwlock, const timespec* __timeout) {
1143 return pthread_rwlock_clockrdlock(__rwlock, CLOCK_MONOTONIC, __timeout);
1144 });
1145 #else // __BIONIC__
1146 GTEST_SKIP() << "pthread_rwlock_clockrdlock not available";
1147 #endif // __BIONIC__
1148 }
1149
TEST(pthread,pthread_rwlock_clockrdlock_realtime_timeout)1150 TEST(pthread, pthread_rwlock_clockrdlock_realtime_timeout) {
1151 #if defined(__BIONIC__)
1152 pthread_rwlock_timedrdlock_timeout_helper(
1153 CLOCK_REALTIME, [](pthread_rwlock_t* __rwlock, const timespec* __timeout) {
1154 return pthread_rwlock_clockrdlock(__rwlock, CLOCK_REALTIME, __timeout);
1155 });
1156 #else // __BIONIC__
1157 GTEST_SKIP() << "pthread_rwlock_clockrdlock not available";
1158 #endif // __BIONIC__
1159 }
1160
TEST(pthread,pthread_rwlock_clockrdlock_invalid)1161 TEST(pthread, pthread_rwlock_clockrdlock_invalid) {
1162 #if defined(__BIONIC__)
1163 pthread_rwlock_t lock = PTHREAD_RWLOCK_INITIALIZER;
1164 timespec ts;
1165 EXPECT_EQ(EINVAL, pthread_rwlock_clockrdlock(&lock, CLOCK_PROCESS_CPUTIME_ID, &ts));
1166 #else // __BIONIC__
1167 GTEST_SKIP() << "pthread_rwlock_clockrdlock not available";
1168 #endif // __BIONIC__
1169 }
1170
pthread_rwlock_timedwrlock_timeout_helper(clockid_t clock,int (* lock_function)(pthread_rwlock_t * __rwlock,const timespec * __timeout))1171 static void pthread_rwlock_timedwrlock_timeout_helper(
1172 clockid_t clock, int (*lock_function)(pthread_rwlock_t* __rwlock, const timespec* __timeout)) {
1173 RwlockWakeupHelperArg wakeup_arg;
1174 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
1175 ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
1176 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
1177 wakeup_arg.tid = 0;
1178 wakeup_arg.trylock_function = &pthread_rwlock_trywrlock;
1179 wakeup_arg.timed_lock_function = lock_function;
1180 wakeup_arg.clock = clock;
1181
1182 pthread_t thread;
1183 ASSERT_EQ(0, pthread_create(&thread, nullptr,
1184 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg));
1185 WaitUntilThreadSleep(wakeup_arg.tid);
1186 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
1187
1188 ASSERT_EQ(0, pthread_join(thread, nullptr));
1189 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress);
1190 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
1191 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
1192 }
1193
TEST(pthread,pthread_rwlock_timedwrlock_timeout)1194 TEST(pthread, pthread_rwlock_timedwrlock_timeout) {
1195 pthread_rwlock_timedwrlock_timeout_helper(CLOCK_REALTIME, pthread_rwlock_timedwrlock);
1196 }
1197
TEST(pthread,pthread_rwlock_timedwrlock_monotonic_np_timeout)1198 TEST(pthread, pthread_rwlock_timedwrlock_monotonic_np_timeout) {
1199 #if defined(__BIONIC__)
1200 pthread_rwlock_timedwrlock_timeout_helper(CLOCK_MONOTONIC,
1201 pthread_rwlock_timedwrlock_monotonic_np);
1202 #else // __BIONIC__
1203 GTEST_SKIP() << "pthread_rwlock_timedwrlock_monotonic_np not available";
1204 #endif // __BIONIC__
1205 }
1206
TEST(pthread,pthread_rwlock_clockwrlock_monotonic_timeout)1207 TEST(pthread, pthread_rwlock_clockwrlock_monotonic_timeout) {
1208 #if defined(__BIONIC__)
1209 pthread_rwlock_timedwrlock_timeout_helper(
1210 CLOCK_MONOTONIC, [](pthread_rwlock_t* __rwlock, const timespec* __timeout) {
1211 return pthread_rwlock_clockwrlock(__rwlock, CLOCK_MONOTONIC, __timeout);
1212 });
1213 #else // __BIONIC__
1214 GTEST_SKIP() << "pthread_rwlock_clockwrlock not available";
1215 #endif // __BIONIC__
1216 }
1217
TEST(pthread,pthread_rwlock_clockwrlock_realtime_timeout)1218 TEST(pthread, pthread_rwlock_clockwrlock_realtime_timeout) {
1219 #if defined(__BIONIC__)
1220 pthread_rwlock_timedwrlock_timeout_helper(
1221 CLOCK_REALTIME, [](pthread_rwlock_t* __rwlock, const timespec* __timeout) {
1222 return pthread_rwlock_clockwrlock(__rwlock, CLOCK_REALTIME, __timeout);
1223 });
1224 #else // __BIONIC__
1225 GTEST_SKIP() << "pthread_rwlock_clockwrlock not available";
1226 #endif // __BIONIC__
1227 }
1228
TEST(pthread,pthread_rwlock_clockwrlock_invalid)1229 TEST(pthread, pthread_rwlock_clockwrlock_invalid) {
1230 #if defined(__BIONIC__)
1231 pthread_rwlock_t lock = PTHREAD_RWLOCK_INITIALIZER;
1232 timespec ts;
1233 EXPECT_EQ(EINVAL, pthread_rwlock_clockwrlock(&lock, CLOCK_PROCESS_CPUTIME_ID, &ts));
1234 #else // __BIONIC__
1235 GTEST_SKIP() << "pthread_rwlock_clockrwlock not available";
1236 #endif // __BIONIC__
1237 }
1238
1239 class RwlockKindTestHelper {
1240 private:
1241 struct ThreadArg {
1242 RwlockKindTestHelper* helper;
1243 std::atomic<pid_t>& tid;
1244
ThreadArgRwlockKindTestHelper::ThreadArg1245 ThreadArg(RwlockKindTestHelper* helper, std::atomic<pid_t>& tid)
1246 : helper(helper), tid(tid) { }
1247 };
1248
1249 public:
1250 pthread_rwlock_t lock;
1251
1252 public:
RwlockKindTestHelper(int kind_type)1253 explicit RwlockKindTestHelper(int kind_type) {
1254 InitRwlock(kind_type);
1255 }
1256
~RwlockKindTestHelper()1257 ~RwlockKindTestHelper() {
1258 DestroyRwlock();
1259 }
1260
CreateWriterThread(pthread_t & thread,std::atomic<pid_t> & tid)1261 void CreateWriterThread(pthread_t& thread, std::atomic<pid_t>& tid) {
1262 tid = 0;
1263 ThreadArg* arg = new ThreadArg(this, tid);
1264 ASSERT_EQ(0, pthread_create(&thread, nullptr,
1265 reinterpret_cast<void* (*)(void*)>(WriterThreadFn), arg));
1266 }
1267
CreateReaderThread(pthread_t & thread,std::atomic<pid_t> & tid)1268 void CreateReaderThread(pthread_t& thread, std::atomic<pid_t>& tid) {
1269 tid = 0;
1270 ThreadArg* arg = new ThreadArg(this, tid);
1271 ASSERT_EQ(0, pthread_create(&thread, nullptr,
1272 reinterpret_cast<void* (*)(void*)>(ReaderThreadFn), arg));
1273 }
1274
1275 private:
InitRwlock(int kind_type)1276 void InitRwlock(int kind_type) {
1277 pthread_rwlockattr_t attr;
1278 ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
1279 ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_type));
1280 ASSERT_EQ(0, pthread_rwlock_init(&lock, &attr));
1281 ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
1282 }
1283
DestroyRwlock()1284 void DestroyRwlock() {
1285 ASSERT_EQ(0, pthread_rwlock_destroy(&lock));
1286 }
1287
WriterThreadFn(ThreadArg * arg)1288 static void WriterThreadFn(ThreadArg* arg) {
1289 arg->tid = gettid();
1290
1291 RwlockKindTestHelper* helper = arg->helper;
1292 ASSERT_EQ(0, pthread_rwlock_wrlock(&helper->lock));
1293 ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
1294 delete arg;
1295 }
1296
ReaderThreadFn(ThreadArg * arg)1297 static void ReaderThreadFn(ThreadArg* arg) {
1298 arg->tid = gettid();
1299
1300 RwlockKindTestHelper* helper = arg->helper;
1301 ASSERT_EQ(0, pthread_rwlock_rdlock(&helper->lock));
1302 ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
1303 delete arg;
1304 }
1305 };
1306
TEST(pthread,pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP)1307 TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP) {
1308 RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_READER_NP);
1309 ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
1310
1311 pthread_t writer_thread;
1312 std::atomic<pid_t> writer_tid;
1313 helper.CreateWriterThread(writer_thread, writer_tid);
1314 WaitUntilThreadSleep(writer_tid);
1315
1316 pthread_t reader_thread;
1317 std::atomic<pid_t> reader_tid;
1318 helper.CreateReaderThread(reader_thread, reader_tid);
1319 ASSERT_EQ(0, pthread_join(reader_thread, nullptr));
1320
1321 ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
1322 ASSERT_EQ(0, pthread_join(writer_thread, nullptr));
1323 }
1324
TEST(pthread,pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP)1325 TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP) {
1326 RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
1327 ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
1328
1329 pthread_t writer_thread;
1330 std::atomic<pid_t> writer_tid;
1331 helper.CreateWriterThread(writer_thread, writer_tid);
1332 WaitUntilThreadSleep(writer_tid);
1333
1334 pthread_t reader_thread;
1335 std::atomic<pid_t> reader_tid;
1336 helper.CreateReaderThread(reader_thread, reader_tid);
1337 WaitUntilThreadSleep(reader_tid);
1338
1339 ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
1340 ASSERT_EQ(0, pthread_join(writer_thread, nullptr));
1341 ASSERT_EQ(0, pthread_join(reader_thread, nullptr));
1342 }
1343
1344 static int g_once_fn_call_count = 0;
OnceFn()1345 static void OnceFn() {
1346 ++g_once_fn_call_count;
1347 }
1348
TEST(pthread,pthread_once_smoke)1349 TEST(pthread, pthread_once_smoke) {
1350 pthread_once_t once_control = PTHREAD_ONCE_INIT;
1351 ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
1352 ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
1353 ASSERT_EQ(1, g_once_fn_call_count);
1354 }
1355
1356 static std::string pthread_once_1934122_result = "";
1357
Routine2()1358 static void Routine2() {
1359 pthread_once_1934122_result += "2";
1360 }
1361
Routine1()1362 static void Routine1() {
1363 pthread_once_t once_control_2 = PTHREAD_ONCE_INIT;
1364 pthread_once_1934122_result += "1";
1365 pthread_once(&once_control_2, &Routine2);
1366 }
1367
TEST(pthread,pthread_once_1934122)1368 TEST(pthread, pthread_once_1934122) {
1369 // Very old versions of Android couldn't call pthread_once from a
1370 // pthread_once init routine. http://b/1934122.
1371 pthread_once_t once_control_1 = PTHREAD_ONCE_INIT;
1372 ASSERT_EQ(0, pthread_once(&once_control_1, &Routine1));
1373 ASSERT_EQ("12", pthread_once_1934122_result);
1374 }
1375
1376 static int g_atfork_prepare_calls = 0;
AtForkPrepare1()1377 static void AtForkPrepare1() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 1; }
AtForkPrepare2()1378 static void AtForkPrepare2() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 2; }
1379 static int g_atfork_parent_calls = 0;
AtForkParent1()1380 static void AtForkParent1() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 1; }
AtForkParent2()1381 static void AtForkParent2() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 2; }
1382 static int g_atfork_child_calls = 0;
AtForkChild1()1383 static void AtForkChild1() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 1; }
AtForkChild2()1384 static void AtForkChild2() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 2; }
1385
TEST(pthread,pthread_atfork_smoke)1386 TEST(pthread, pthread_atfork_smoke) {
1387 ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1));
1388 ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2));
1389
1390 pid_t pid = fork();
1391 ASSERT_NE(-1, pid) << strerror(errno);
1392
1393 // Child and parent calls are made in the order they were registered.
1394 if (pid == 0) {
1395 ASSERT_EQ(12, g_atfork_child_calls);
1396 _exit(0);
1397 }
1398 ASSERT_EQ(12, g_atfork_parent_calls);
1399
1400 // Prepare calls are made in the reverse order.
1401 ASSERT_EQ(21, g_atfork_prepare_calls);
1402 AssertChildExited(pid, 0);
1403 }
1404
TEST(pthread,pthread_attr_getscope)1405 TEST(pthread, pthread_attr_getscope) {
1406 pthread_attr_t attr;
1407 ASSERT_EQ(0, pthread_attr_init(&attr));
1408
1409 int scope;
1410 ASSERT_EQ(0, pthread_attr_getscope(&attr, &scope));
1411 ASSERT_EQ(PTHREAD_SCOPE_SYSTEM, scope);
1412 }
1413
TEST(pthread,pthread_condattr_init)1414 TEST(pthread, pthread_condattr_init) {
1415 pthread_condattr_t attr;
1416 pthread_condattr_init(&attr);
1417
1418 clockid_t clock;
1419 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1420 ASSERT_EQ(CLOCK_REALTIME, clock);
1421
1422 int pshared;
1423 ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
1424 ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
1425 }
1426
TEST(pthread,pthread_condattr_setclock)1427 TEST(pthread, pthread_condattr_setclock) {
1428 pthread_condattr_t attr;
1429 pthread_condattr_init(&attr);
1430
1431 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_REALTIME));
1432 clockid_t clock;
1433 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1434 ASSERT_EQ(CLOCK_REALTIME, clock);
1435
1436 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
1437 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1438 ASSERT_EQ(CLOCK_MONOTONIC, clock);
1439
1440 ASSERT_EQ(EINVAL, pthread_condattr_setclock(&attr, CLOCK_PROCESS_CPUTIME_ID));
1441 }
1442
TEST(pthread,pthread_cond_broadcast__preserves_condattr_flags)1443 TEST(pthread, pthread_cond_broadcast__preserves_condattr_flags) {
1444 #if defined(__BIONIC__)
1445 pthread_condattr_t attr;
1446 pthread_condattr_init(&attr);
1447
1448 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
1449 ASSERT_EQ(0, pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
1450
1451 pthread_cond_t cond_var;
1452 ASSERT_EQ(0, pthread_cond_init(&cond_var, &attr));
1453
1454 ASSERT_EQ(0, pthread_cond_signal(&cond_var));
1455 ASSERT_EQ(0, pthread_cond_broadcast(&cond_var));
1456
1457 attr = static_cast<pthread_condattr_t>(*reinterpret_cast<uint32_t*>(cond_var.__private));
1458 clockid_t clock;
1459 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1460 ASSERT_EQ(CLOCK_MONOTONIC, clock);
1461 int pshared;
1462 ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
1463 ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
1464 #else // !defined(__BIONIC__)
1465 GTEST_SKIP() << "bionic-only test";
1466 #endif // !defined(__BIONIC__)
1467 }
1468
1469 class pthread_CondWakeupTest : public ::testing::Test {
1470 protected:
1471 pthread_mutex_t mutex;
1472 pthread_cond_t cond;
1473
1474 enum Progress {
1475 INITIALIZED,
1476 WAITING,
1477 SIGNALED,
1478 FINISHED,
1479 };
1480 std::atomic<Progress> progress;
1481 pthread_t thread;
1482 std::function<int (pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function;
1483
1484 protected:
SetUp()1485 void SetUp() override {
1486 ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr));
1487 }
1488
InitCond(clockid_t clock=CLOCK_REALTIME)1489 void InitCond(clockid_t clock=CLOCK_REALTIME) {
1490 pthread_condattr_t attr;
1491 ASSERT_EQ(0, pthread_condattr_init(&attr));
1492 ASSERT_EQ(0, pthread_condattr_setclock(&attr, clock));
1493 ASSERT_EQ(0, pthread_cond_init(&cond, &attr));
1494 ASSERT_EQ(0, pthread_condattr_destroy(&attr));
1495 }
1496
StartWaitingThread(std::function<int (pthread_cond_t * cond,pthread_mutex_t * mutex)> wait_function)1497 void StartWaitingThread(
1498 std::function<int(pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function) {
1499 progress = INITIALIZED;
1500 this->wait_function = wait_function;
1501 ASSERT_EQ(0, pthread_create(&thread, nullptr, reinterpret_cast<void* (*)(void*)>(WaitThreadFn),
1502 this));
1503 while (progress != WAITING) {
1504 usleep(5000);
1505 }
1506 usleep(5000);
1507 }
1508
RunTimedTest(clockid_t clock,std::function<int (pthread_cond_t * cond,pthread_mutex_t * mutex,const timespec * timeout)> wait_function)1509 void RunTimedTest(
1510 clockid_t clock,
1511 std::function<int(pthread_cond_t* cond, pthread_mutex_t* mutex, const timespec* timeout)>
1512 wait_function) {
1513 timespec ts;
1514 ASSERT_EQ(0, clock_gettime(clock, &ts));
1515 ts.tv_sec += 1;
1516
1517 StartWaitingThread([&wait_function, &ts](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1518 return wait_function(cond, mutex, &ts);
1519 });
1520
1521 progress = SIGNALED;
1522 ASSERT_EQ(0, pthread_cond_signal(&cond));
1523 }
1524
RunTimedTest(clockid_t clock,std::function<int (pthread_cond_t * cond,pthread_mutex_t * mutex,clockid_t clock,const timespec * timeout)> wait_function)1525 void RunTimedTest(clockid_t clock, std::function<int(pthread_cond_t* cond, pthread_mutex_t* mutex,
1526 clockid_t clock, const timespec* timeout)>
1527 wait_function) {
1528 RunTimedTest(clock, [clock, &wait_function](pthread_cond_t* cond, pthread_mutex_t* mutex,
1529 const timespec* timeout) {
1530 return wait_function(cond, mutex, clock, timeout);
1531 });
1532 }
1533
TearDown()1534 void TearDown() override {
1535 ASSERT_EQ(0, pthread_join(thread, nullptr));
1536 ASSERT_EQ(FINISHED, progress);
1537 ASSERT_EQ(0, pthread_cond_destroy(&cond));
1538 ASSERT_EQ(0, pthread_mutex_destroy(&mutex));
1539 }
1540
1541 private:
WaitThreadFn(pthread_CondWakeupTest * test)1542 static void WaitThreadFn(pthread_CondWakeupTest* test) {
1543 ASSERT_EQ(0, pthread_mutex_lock(&test->mutex));
1544 test->progress = WAITING;
1545 while (test->progress == WAITING) {
1546 ASSERT_EQ(0, test->wait_function(&test->cond, &test->mutex));
1547 }
1548 ASSERT_EQ(SIGNALED, test->progress);
1549 test->progress = FINISHED;
1550 ASSERT_EQ(0, pthread_mutex_unlock(&test->mutex));
1551 }
1552 };
1553
TEST_F(pthread_CondWakeupTest,signal_wait)1554 TEST_F(pthread_CondWakeupTest, signal_wait) {
1555 InitCond();
1556 StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1557 return pthread_cond_wait(cond, mutex);
1558 });
1559 progress = SIGNALED;
1560 ASSERT_EQ(0, pthread_cond_signal(&cond));
1561 }
1562
TEST_F(pthread_CondWakeupTest,broadcast_wait)1563 TEST_F(pthread_CondWakeupTest, broadcast_wait) {
1564 InitCond();
1565 StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1566 return pthread_cond_wait(cond, mutex);
1567 });
1568 progress = SIGNALED;
1569 ASSERT_EQ(0, pthread_cond_broadcast(&cond));
1570 }
1571
TEST_F(pthread_CondWakeupTest,signal_timedwait_CLOCK_REALTIME)1572 TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_REALTIME) {
1573 InitCond(CLOCK_REALTIME);
1574 RunTimedTest(CLOCK_REALTIME, pthread_cond_timedwait);
1575 }
1576
TEST_F(pthread_CondWakeupTest,signal_timedwait_CLOCK_MONOTONIC)1577 TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_MONOTONIC) {
1578 InitCond(CLOCK_MONOTONIC);
1579 RunTimedTest(CLOCK_MONOTONIC, pthread_cond_timedwait);
1580 }
1581
TEST_F(pthread_CondWakeupTest,signal_timedwait_CLOCK_MONOTONIC_np)1582 TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_MONOTONIC_np) {
1583 #if defined(__BIONIC__)
1584 InitCond(CLOCK_REALTIME);
1585 RunTimedTest(CLOCK_MONOTONIC, pthread_cond_timedwait_monotonic_np);
1586 #else // __BIONIC__
1587 GTEST_SKIP() << "pthread_cond_timedwait_monotonic_np not available";
1588 #endif // __BIONIC__
1589 }
1590
TEST_F(pthread_CondWakeupTest,signal_clockwait_monotonic_monotonic)1591 TEST_F(pthread_CondWakeupTest, signal_clockwait_monotonic_monotonic) {
1592 #if defined(__BIONIC__)
1593 InitCond(CLOCK_MONOTONIC);
1594 RunTimedTest(CLOCK_MONOTONIC, pthread_cond_clockwait);
1595 #else // __BIONIC__
1596 GTEST_SKIP() << "pthread_cond_clockwait not available";
1597 #endif // __BIONIC__
1598 }
1599
TEST_F(pthread_CondWakeupTest,signal_clockwait_monotonic_realtime)1600 TEST_F(pthread_CondWakeupTest, signal_clockwait_monotonic_realtime) {
1601 #if defined(__BIONIC__)
1602 InitCond(CLOCK_MONOTONIC);
1603 RunTimedTest(CLOCK_REALTIME, pthread_cond_clockwait);
1604 #else // __BIONIC__
1605 GTEST_SKIP() << "pthread_cond_clockwait not available";
1606 #endif // __BIONIC__
1607 }
1608
TEST_F(pthread_CondWakeupTest,signal_clockwait_realtime_monotonic)1609 TEST_F(pthread_CondWakeupTest, signal_clockwait_realtime_monotonic) {
1610 #if defined(__BIONIC__)
1611 InitCond(CLOCK_REALTIME);
1612 RunTimedTest(CLOCK_MONOTONIC, pthread_cond_clockwait);
1613 #else // __BIONIC__
1614 GTEST_SKIP() << "pthread_cond_clockwait not available";
1615 #endif // __BIONIC__
1616 }
1617
TEST_F(pthread_CondWakeupTest,signal_clockwait_realtime_realtime)1618 TEST_F(pthread_CondWakeupTest, signal_clockwait_realtime_realtime) {
1619 #if defined(__BIONIC__)
1620 InitCond(CLOCK_REALTIME);
1621 RunTimedTest(CLOCK_REALTIME, pthread_cond_clockwait);
1622 #else // __BIONIC__
1623 GTEST_SKIP() << "pthread_cond_clockwait not available";
1624 #endif // __BIONIC__
1625 }
1626
pthread_cond_timedwait_timeout_helper(bool init_monotonic,clockid_t clock,int (* wait_function)(pthread_cond_t * __cond,pthread_mutex_t * __mutex,const timespec * __timeout))1627 static void pthread_cond_timedwait_timeout_helper(bool init_monotonic, clockid_t clock,
1628 int (*wait_function)(pthread_cond_t* __cond,
1629 pthread_mutex_t* __mutex,
1630 const timespec* __timeout)) {
1631 pthread_mutex_t mutex;
1632 ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr));
1633 pthread_cond_t cond;
1634
1635 if (init_monotonic) {
1636 pthread_condattr_t attr;
1637 pthread_condattr_init(&attr);
1638
1639 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
1640 clockid_t clock;
1641 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1642 ASSERT_EQ(CLOCK_MONOTONIC, clock);
1643
1644 ASSERT_EQ(0, pthread_cond_init(&cond, &attr));
1645 } else {
1646 ASSERT_EQ(0, pthread_cond_init(&cond, nullptr));
1647 }
1648 ASSERT_EQ(0, pthread_mutex_lock(&mutex));
1649
1650 timespec ts;
1651 ASSERT_EQ(0, clock_gettime(clock, &ts));
1652 ASSERT_EQ(ETIMEDOUT, wait_function(&cond, &mutex, &ts));
1653 ts.tv_nsec = -1;
1654 ASSERT_EQ(EINVAL, wait_function(&cond, &mutex, &ts));
1655 ts.tv_nsec = NS_PER_S;
1656 ASSERT_EQ(EINVAL, wait_function(&cond, &mutex, &ts));
1657 ts.tv_nsec = NS_PER_S - 1;
1658 ts.tv_sec = -1;
1659 ASSERT_EQ(ETIMEDOUT, wait_function(&cond, &mutex, &ts));
1660 ASSERT_EQ(0, pthread_mutex_unlock(&mutex));
1661 }
1662
TEST(pthread,pthread_cond_timedwait_timeout)1663 TEST(pthread, pthread_cond_timedwait_timeout) {
1664 pthread_cond_timedwait_timeout_helper(false, CLOCK_REALTIME, pthread_cond_timedwait);
1665 }
1666
TEST(pthread,pthread_cond_timedwait_monotonic_np_timeout)1667 TEST(pthread, pthread_cond_timedwait_monotonic_np_timeout) {
1668 #if defined(__BIONIC__)
1669 pthread_cond_timedwait_timeout_helper(false, CLOCK_MONOTONIC, pthread_cond_timedwait_monotonic_np);
1670 pthread_cond_timedwait_timeout_helper(true, CLOCK_MONOTONIC, pthread_cond_timedwait_monotonic_np);
1671 #else // __BIONIC__
1672 GTEST_SKIP() << "pthread_cond_timedwait_monotonic_np not available";
1673 #endif // __BIONIC__
1674 }
1675
TEST(pthread,pthread_cond_clockwait_timeout)1676 TEST(pthread, pthread_cond_clockwait_timeout) {
1677 #if defined(__BIONIC__)
1678 pthread_cond_timedwait_timeout_helper(
1679 false, CLOCK_MONOTONIC,
1680 [](pthread_cond_t* __cond, pthread_mutex_t* __mutex, const timespec* __timeout) {
1681 return pthread_cond_clockwait(__cond, __mutex, CLOCK_MONOTONIC, __timeout);
1682 });
1683 pthread_cond_timedwait_timeout_helper(
1684 true, CLOCK_MONOTONIC,
1685 [](pthread_cond_t* __cond, pthread_mutex_t* __mutex, const timespec* __timeout) {
1686 return pthread_cond_clockwait(__cond, __mutex, CLOCK_MONOTONIC, __timeout);
1687 });
1688 pthread_cond_timedwait_timeout_helper(
1689 false, CLOCK_REALTIME,
1690 [](pthread_cond_t* __cond, pthread_mutex_t* __mutex, const timespec* __timeout) {
1691 return pthread_cond_clockwait(__cond, __mutex, CLOCK_REALTIME, __timeout);
1692 });
1693 pthread_cond_timedwait_timeout_helper(
1694 true, CLOCK_REALTIME,
1695 [](pthread_cond_t* __cond, pthread_mutex_t* __mutex, const timespec* __timeout) {
1696 return pthread_cond_clockwait(__cond, __mutex, CLOCK_REALTIME, __timeout);
1697 });
1698 #else // __BIONIC__
1699 GTEST_SKIP() << "pthread_cond_clockwait not available";
1700 #endif // __BIONIC__
1701 }
1702
TEST(pthread,pthread_cond_clockwait_invalid)1703 TEST(pthread, pthread_cond_clockwait_invalid) {
1704 #if defined(__BIONIC__)
1705 pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
1706 pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
1707 timespec ts;
1708 EXPECT_EQ(EINVAL, pthread_cond_clockwait(&cond, &mutex, CLOCK_PROCESS_CPUTIME_ID, &ts));
1709
1710 #else // __BIONIC__
1711 GTEST_SKIP() << "pthread_cond_clockwait not available";
1712 #endif // __BIONIC__
1713 }
1714
TEST(pthread,pthread_attr_getstack__main_thread)1715 TEST(pthread, pthread_attr_getstack__main_thread) {
1716 // This test is only meaningful for the main thread, so make sure we're running on it!
1717 ASSERT_EQ(getpid(), syscall(__NR_gettid));
1718
1719 // Get the main thread's attributes.
1720 pthread_attr_t attributes;
1721 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1722
1723 // Check that we correctly report that the main thread has no guard page.
1724 size_t guard_size;
1725 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
1726 ASSERT_EQ(0U, guard_size); // The main thread has no guard page.
1727
1728 // Get the stack base and the stack size (both ways).
1729 void* stack_base;
1730 size_t stack_size;
1731 ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1732 size_t stack_size2;
1733 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1734
1735 // The two methods of asking for the stack size should agree.
1736 EXPECT_EQ(stack_size, stack_size2);
1737
1738 #if defined(__BIONIC__)
1739 // Find stack in /proc/self/maps using a pointer to the stack.
1740 //
1741 // We do not use "[stack]" label because in native-bridge environment it is not
1742 // guaranteed to point to the right stack. A native bridge implementation may
1743 // keep separate stack for the guest code.
1744 void* maps_stack_hi = nullptr;
1745 std::vector<map_record> maps;
1746 ASSERT_TRUE(Maps::parse_maps(&maps));
1747 uintptr_t stack_address = reinterpret_cast<uintptr_t>(untag_address(&maps_stack_hi));
1748 for (const auto& map : maps) {
1749 if (map.addr_start <= stack_address && map.addr_end > stack_address){
1750 maps_stack_hi = reinterpret_cast<void*>(map.addr_end);
1751 break;
1752 }
1753 }
1754
1755 // The high address of the /proc/self/maps stack region should equal stack_base + stack_size.
1756 // Remember that the stack grows down (and is mapped in on demand), so the low address of the
1757 // region isn't very interesting.
1758 EXPECT_EQ(maps_stack_hi, reinterpret_cast<uint8_t*>(stack_base) + stack_size);
1759
1760 // The stack size should correspond to RLIMIT_STACK.
1761 rlimit rl;
1762 ASSERT_EQ(0, getrlimit(RLIMIT_STACK, &rl));
1763 uint64_t original_rlim_cur = rl.rlim_cur;
1764 if (rl.rlim_cur == RLIM_INFINITY) {
1765 rl.rlim_cur = 8 * 1024 * 1024; // Bionic reports unlimited stacks as 8MiB.
1766 }
1767 EXPECT_EQ(rl.rlim_cur, stack_size);
1768
1769 auto guard = android::base::make_scope_guard([&rl, original_rlim_cur]() {
1770 rl.rlim_cur = original_rlim_cur;
1771 ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1772 });
1773
1774 //
1775 // What if RLIMIT_STACK is smaller than the stack's current extent?
1776 //
1777 rl.rlim_cur = rl.rlim_max = 1024; // 1KiB. We know the stack must be at least a page already.
1778 rl.rlim_max = RLIM_INFINITY;
1779 ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1780
1781 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1782 ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1783 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1784
1785 EXPECT_EQ(stack_size, stack_size2);
1786 ASSERT_EQ(1024U, stack_size);
1787
1788 //
1789 // What if RLIMIT_STACK isn't a whole number of pages?
1790 //
1791 rl.rlim_cur = rl.rlim_max = 6666; // Not a whole number of pages.
1792 rl.rlim_max = RLIM_INFINITY;
1793 ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1794
1795 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1796 ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1797 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1798
1799 EXPECT_EQ(stack_size, stack_size2);
1800 ASSERT_EQ(6666U, stack_size);
1801 #endif
1802 }
1803
1804 struct GetStackSignalHandlerArg {
1805 volatile bool done;
1806 void* signal_stack_base;
1807 size_t signal_stack_size;
1808 void* main_stack_base;
1809 size_t main_stack_size;
1810 };
1811
1812 static GetStackSignalHandlerArg getstack_signal_handler_arg;
1813
getstack_signal_handler(int sig)1814 static void getstack_signal_handler(int sig) {
1815 ASSERT_EQ(SIGUSR1, sig);
1816 // Use sleep() to make current thread be switched out by the kernel to provoke the error.
1817 sleep(1);
1818 pthread_attr_t attr;
1819 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attr));
1820 void* stack_base;
1821 size_t stack_size;
1822 ASSERT_EQ(0, pthread_attr_getstack(&attr, &stack_base, &stack_size));
1823
1824 // Verify if the stack used by the signal handler is the alternate stack just registered.
1825 ASSERT_LE(getstack_signal_handler_arg.signal_stack_base, &attr);
1826 ASSERT_LT(static_cast<void*>(untag_address(&attr)),
1827 static_cast<char*>(getstack_signal_handler_arg.signal_stack_base) +
1828 getstack_signal_handler_arg.signal_stack_size);
1829
1830 // Verify if the main thread's stack got in the signal handler is correct.
1831 ASSERT_EQ(getstack_signal_handler_arg.main_stack_base, stack_base);
1832 ASSERT_LE(getstack_signal_handler_arg.main_stack_size, stack_size);
1833
1834 getstack_signal_handler_arg.done = true;
1835 }
1836
1837 // The previous code obtained the main thread's stack by reading the entry in
1838 // /proc/self/task/<pid>/maps that was labeled [stack]. Unfortunately, on x86/x86_64, the kernel
1839 // relies on sp0 in task state segment(tss) to label the stack map with [stack]. If the kernel
1840 // switches a process while the main thread is in an alternate stack, then the kernel will label
1841 // the wrong map with [stack]. This test verifies that when the above situation happens, the main
1842 // thread's stack is found correctly.
TEST(pthread,pthread_attr_getstack_in_signal_handler)1843 TEST(pthread, pthread_attr_getstack_in_signal_handler) {
1844 // This test is only meaningful for the main thread, so make sure we're running on it!
1845 ASSERT_EQ(getpid(), syscall(__NR_gettid));
1846
1847 const size_t sig_stack_size = 16 * 1024;
1848 void* sig_stack = mmap(nullptr, sig_stack_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS,
1849 -1, 0);
1850 ASSERT_NE(MAP_FAILED, sig_stack);
1851 stack_t ss;
1852 ss.ss_sp = sig_stack;
1853 ss.ss_size = sig_stack_size;
1854 ss.ss_flags = 0;
1855 stack_t oss;
1856 ASSERT_EQ(0, sigaltstack(&ss, &oss));
1857
1858 pthread_attr_t attr;
1859 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attr));
1860 void* main_stack_base;
1861 size_t main_stack_size;
1862 ASSERT_EQ(0, pthread_attr_getstack(&attr, &main_stack_base, &main_stack_size));
1863
1864 ScopedSignalHandler handler(SIGUSR1, getstack_signal_handler, SA_ONSTACK);
1865 getstack_signal_handler_arg.done = false;
1866 getstack_signal_handler_arg.signal_stack_base = sig_stack;
1867 getstack_signal_handler_arg.signal_stack_size = sig_stack_size;
1868 getstack_signal_handler_arg.main_stack_base = main_stack_base;
1869 getstack_signal_handler_arg.main_stack_size = main_stack_size;
1870 kill(getpid(), SIGUSR1);
1871 ASSERT_EQ(true, getstack_signal_handler_arg.done);
1872
1873 ASSERT_EQ(0, sigaltstack(&oss, nullptr));
1874 ASSERT_EQ(0, munmap(sig_stack, sig_stack_size));
1875 }
1876
pthread_attr_getstack_18908062_helper(void *)1877 static void pthread_attr_getstack_18908062_helper(void*) {
1878 char local_variable;
1879 pthread_attr_t attributes;
1880 pthread_getattr_np(pthread_self(), &attributes);
1881 void* stack_base;
1882 size_t stack_size;
1883 pthread_attr_getstack(&attributes, &stack_base, &stack_size);
1884
1885 // Test whether &local_variable is in [stack_base, stack_base + stack_size).
1886 ASSERT_LE(reinterpret_cast<char*>(stack_base), &local_variable);
1887 ASSERT_LT(untag_address(&local_variable), reinterpret_cast<char*>(stack_base) + stack_size);
1888 }
1889
1890 // Check whether something on stack is in the range of
1891 // [stack_base, stack_base + stack_size). see b/18908062.
TEST(pthread,pthread_attr_getstack_18908062)1892 TEST(pthread, pthread_attr_getstack_18908062) {
1893 pthread_t t;
1894 ASSERT_EQ(0, pthread_create(&t, nullptr,
1895 reinterpret_cast<void* (*)(void*)>(pthread_attr_getstack_18908062_helper),
1896 nullptr));
1897 ASSERT_EQ(0, pthread_join(t, nullptr));
1898 }
1899
1900 #if defined(__BIONIC__)
1901 static pthread_mutex_t pthread_gettid_np_mutex = PTHREAD_MUTEX_INITIALIZER;
1902
pthread_gettid_np_helper(void * arg)1903 static void* pthread_gettid_np_helper(void* arg) {
1904 *reinterpret_cast<pid_t*>(arg) = gettid();
1905
1906 // Wait for our parent to call pthread_gettid_np on us before exiting.
1907 pthread_mutex_lock(&pthread_gettid_np_mutex);
1908 pthread_mutex_unlock(&pthread_gettid_np_mutex);
1909 return nullptr;
1910 }
1911 #endif
1912
TEST(pthread,pthread_gettid_np)1913 TEST(pthread, pthread_gettid_np) {
1914 #if defined(__BIONIC__)
1915 ASSERT_EQ(gettid(), pthread_gettid_np(pthread_self()));
1916
1917 // Ensure the other thread doesn't exit until after we've called
1918 // pthread_gettid_np on it.
1919 pthread_mutex_lock(&pthread_gettid_np_mutex);
1920
1921 pid_t t_gettid_result;
1922 pthread_t t;
1923 pthread_create(&t, nullptr, pthread_gettid_np_helper, &t_gettid_result);
1924
1925 pid_t t_pthread_gettid_np_result = pthread_gettid_np(t);
1926
1927 // Release the other thread and wait for it to exit.
1928 pthread_mutex_unlock(&pthread_gettid_np_mutex);
1929 ASSERT_EQ(0, pthread_join(t, nullptr));
1930
1931 ASSERT_EQ(t_gettid_result, t_pthread_gettid_np_result);
1932 #else
1933 GTEST_SKIP() << "pthread_gettid_np not available";
1934 #endif
1935 }
1936
1937 static size_t cleanup_counter = 0;
1938
AbortCleanupRoutine(void *)1939 static void AbortCleanupRoutine(void*) {
1940 abort();
1941 }
1942
CountCleanupRoutine(void *)1943 static void CountCleanupRoutine(void*) {
1944 ++cleanup_counter;
1945 }
1946
PthreadCleanupTester()1947 static void PthreadCleanupTester() {
1948 pthread_cleanup_push(CountCleanupRoutine, nullptr);
1949 pthread_cleanup_push(CountCleanupRoutine, nullptr);
1950 pthread_cleanup_push(AbortCleanupRoutine, nullptr);
1951
1952 pthread_cleanup_pop(0); // Pop the abort without executing it.
1953 pthread_cleanup_pop(1); // Pop one count while executing it.
1954 ASSERT_EQ(1U, cleanup_counter);
1955 // Exit while the other count is still on the cleanup stack.
1956 pthread_exit(nullptr);
1957
1958 // Calls to pthread_cleanup_pop/pthread_cleanup_push must always be balanced.
1959 pthread_cleanup_pop(0);
1960 }
1961
PthreadCleanupStartRoutine(void *)1962 static void* PthreadCleanupStartRoutine(void*) {
1963 PthreadCleanupTester();
1964 return nullptr;
1965 }
1966
TEST(pthread,pthread_cleanup_push__pthread_cleanup_pop)1967 TEST(pthread, pthread_cleanup_push__pthread_cleanup_pop) {
1968 pthread_t t;
1969 ASSERT_EQ(0, pthread_create(&t, nullptr, PthreadCleanupStartRoutine, nullptr));
1970 ASSERT_EQ(0, pthread_join(t, nullptr));
1971 ASSERT_EQ(2U, cleanup_counter);
1972 }
1973
TEST(pthread,PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL)1974 TEST(pthread, PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL) {
1975 ASSERT_EQ(PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_DEFAULT);
1976 }
1977
TEST(pthread,pthread_mutexattr_gettype)1978 TEST(pthread, pthread_mutexattr_gettype) {
1979 pthread_mutexattr_t attr;
1980 ASSERT_EQ(0, pthread_mutexattr_init(&attr));
1981
1982 int attr_type;
1983
1984 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL));
1985 ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1986 ASSERT_EQ(PTHREAD_MUTEX_NORMAL, attr_type);
1987
1988 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK));
1989 ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1990 ASSERT_EQ(PTHREAD_MUTEX_ERRORCHECK, attr_type);
1991
1992 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE));
1993 ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1994 ASSERT_EQ(PTHREAD_MUTEX_RECURSIVE, attr_type);
1995
1996 ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
1997 }
1998
TEST(pthread,pthread_mutexattr_protocol)1999 TEST(pthread, pthread_mutexattr_protocol) {
2000 pthread_mutexattr_t attr;
2001 ASSERT_EQ(0, pthread_mutexattr_init(&attr));
2002
2003 int protocol;
2004 ASSERT_EQ(0, pthread_mutexattr_getprotocol(&attr, &protocol));
2005 ASSERT_EQ(PTHREAD_PRIO_NONE, protocol);
2006 for (size_t repeat = 0; repeat < 2; ++repeat) {
2007 for (int set_protocol : {PTHREAD_PRIO_NONE, PTHREAD_PRIO_INHERIT}) {
2008 ASSERT_EQ(0, pthread_mutexattr_setprotocol(&attr, set_protocol));
2009 ASSERT_EQ(0, pthread_mutexattr_getprotocol(&attr, &protocol));
2010 ASSERT_EQ(protocol, set_protocol);
2011 }
2012 }
2013 }
2014
2015 struct PthreadMutex {
2016 pthread_mutex_t lock;
2017
PthreadMutexPthreadMutex2018 explicit PthreadMutex(int mutex_type, int protocol = PTHREAD_PRIO_NONE) {
2019 init(mutex_type, protocol);
2020 }
2021
~PthreadMutexPthreadMutex2022 ~PthreadMutex() {
2023 destroy();
2024 }
2025
2026 private:
initPthreadMutex2027 void init(int mutex_type, int protocol) {
2028 pthread_mutexattr_t attr;
2029 ASSERT_EQ(0, pthread_mutexattr_init(&attr));
2030 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, mutex_type));
2031 ASSERT_EQ(0, pthread_mutexattr_setprotocol(&attr, protocol));
2032 ASSERT_EQ(0, pthread_mutex_init(&lock, &attr));
2033 ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
2034 }
2035
destroyPthreadMutex2036 void destroy() {
2037 ASSERT_EQ(0, pthread_mutex_destroy(&lock));
2038 }
2039
2040 DISALLOW_COPY_AND_ASSIGN(PthreadMutex);
2041 };
2042
UnlockFromAnotherThread(pthread_mutex_t * mutex)2043 static int UnlockFromAnotherThread(pthread_mutex_t* mutex) {
2044 pthread_t thread;
2045 pthread_create(&thread, nullptr, [](void* mutex_voidp) -> void* {
2046 pthread_mutex_t* mutex = static_cast<pthread_mutex_t*>(mutex_voidp);
2047 intptr_t result = pthread_mutex_unlock(mutex);
2048 return reinterpret_cast<void*>(result);
2049 }, mutex);
2050 void* result;
2051 EXPECT_EQ(0, pthread_join(thread, &result));
2052 return reinterpret_cast<intptr_t>(result);
2053 };
2054
TestPthreadMutexLockNormal(int protocol)2055 static void TestPthreadMutexLockNormal(int protocol) {
2056 PthreadMutex m(PTHREAD_MUTEX_NORMAL, protocol);
2057
2058 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
2059 if (protocol == PTHREAD_PRIO_INHERIT) {
2060 ASSERT_EQ(EPERM, UnlockFromAnotherThread(&m.lock));
2061 }
2062 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2063 ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
2064 ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock));
2065 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2066 }
2067
TestPthreadMutexLockErrorCheck(int protocol)2068 static void TestPthreadMutexLockErrorCheck(int protocol) {
2069 PthreadMutex m(PTHREAD_MUTEX_ERRORCHECK, protocol);
2070
2071 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
2072 ASSERT_EQ(EPERM, UnlockFromAnotherThread(&m.lock));
2073 ASSERT_EQ(EDEADLK, pthread_mutex_lock(&m.lock));
2074 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2075 ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
2076 if (protocol == PTHREAD_PRIO_NONE) {
2077 ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock));
2078 } else {
2079 ASSERT_EQ(EDEADLK, pthread_mutex_trylock(&m.lock));
2080 }
2081 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2082 ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
2083 }
2084
TestPthreadMutexLockRecursive(int protocol)2085 static void TestPthreadMutexLockRecursive(int protocol) {
2086 PthreadMutex m(PTHREAD_MUTEX_RECURSIVE, protocol);
2087
2088 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
2089 ASSERT_EQ(EPERM, UnlockFromAnotherThread(&m.lock));
2090 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
2091 ASSERT_EQ(EPERM, UnlockFromAnotherThread(&m.lock));
2092 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2093 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2094 ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
2095 ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
2096 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2097 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2098 ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
2099 }
2100
TEST(pthread,pthread_mutex_lock_NORMAL)2101 TEST(pthread, pthread_mutex_lock_NORMAL) {
2102 TestPthreadMutexLockNormal(PTHREAD_PRIO_NONE);
2103 }
2104
TEST(pthread,pthread_mutex_lock_ERRORCHECK)2105 TEST(pthread, pthread_mutex_lock_ERRORCHECK) {
2106 TestPthreadMutexLockErrorCheck(PTHREAD_PRIO_NONE);
2107 }
2108
TEST(pthread,pthread_mutex_lock_RECURSIVE)2109 TEST(pthread, pthread_mutex_lock_RECURSIVE) {
2110 TestPthreadMutexLockRecursive(PTHREAD_PRIO_NONE);
2111 }
2112
TEST(pthread,pthread_mutex_lock_pi)2113 TEST(pthread, pthread_mutex_lock_pi) {
2114 TestPthreadMutexLockNormal(PTHREAD_PRIO_INHERIT);
2115 TestPthreadMutexLockErrorCheck(PTHREAD_PRIO_INHERIT);
2116 TestPthreadMutexLockRecursive(PTHREAD_PRIO_INHERIT);
2117 }
2118
TEST(pthread,pthread_mutex_pi_count_limit)2119 TEST(pthread, pthread_mutex_pi_count_limit) {
2120 #if defined(__BIONIC__) && !defined(__LP64__)
2121 // Bionic only supports 65536 pi mutexes in 32-bit programs.
2122 pthread_mutexattr_t attr;
2123 ASSERT_EQ(0, pthread_mutexattr_init(&attr));
2124 ASSERT_EQ(0, pthread_mutexattr_setprotocol(&attr, PTHREAD_PRIO_INHERIT));
2125 std::vector<pthread_mutex_t> mutexes(65536);
2126 // Test if we can use 65536 pi mutexes at the same time.
2127 // Run 2 times to check if freed pi mutexes can be recycled.
2128 for (int repeat = 0; repeat < 2; ++repeat) {
2129 for (auto& m : mutexes) {
2130 ASSERT_EQ(0, pthread_mutex_init(&m, &attr));
2131 }
2132 pthread_mutex_t m;
2133 ASSERT_EQ(ENOMEM, pthread_mutex_init(&m, &attr));
2134 for (auto& m : mutexes) {
2135 ASSERT_EQ(0, pthread_mutex_lock(&m));
2136 }
2137 for (auto& m : mutexes) {
2138 ASSERT_EQ(0, pthread_mutex_unlock(&m));
2139 }
2140 for (auto& m : mutexes) {
2141 ASSERT_EQ(0, pthread_mutex_destroy(&m));
2142 }
2143 }
2144 ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
2145 #else
2146 GTEST_SKIP() << "pi mutex count not limited to 64Ki";
2147 #endif
2148 }
2149
TEST(pthread,pthread_mutex_init_same_as_static_initializers)2150 TEST(pthread, pthread_mutex_init_same_as_static_initializers) {
2151 pthread_mutex_t lock_normal = PTHREAD_MUTEX_INITIALIZER;
2152 PthreadMutex m1(PTHREAD_MUTEX_NORMAL);
2153 ASSERT_EQ(0, memcmp(&lock_normal, &m1.lock, sizeof(pthread_mutex_t)));
2154 pthread_mutex_destroy(&lock_normal);
2155
2156 pthread_mutex_t lock_errorcheck = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
2157 PthreadMutex m2(PTHREAD_MUTEX_ERRORCHECK);
2158 ASSERT_EQ(0, memcmp(&lock_errorcheck, &m2.lock, sizeof(pthread_mutex_t)));
2159 pthread_mutex_destroy(&lock_errorcheck);
2160
2161 pthread_mutex_t lock_recursive = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
2162 PthreadMutex m3(PTHREAD_MUTEX_RECURSIVE);
2163 ASSERT_EQ(0, memcmp(&lock_recursive, &m3.lock, sizeof(pthread_mutex_t)));
2164 ASSERT_EQ(0, pthread_mutex_destroy(&lock_recursive));
2165 }
2166
2167 class MutexWakeupHelper {
2168 private:
2169 PthreadMutex m;
2170 enum Progress {
2171 LOCK_INITIALIZED,
2172 LOCK_WAITING,
2173 LOCK_RELEASED,
2174 LOCK_ACCESSED
2175 };
2176 std::atomic<Progress> progress;
2177 std::atomic<pid_t> tid;
2178
thread_fn(MutexWakeupHelper * helper)2179 static void thread_fn(MutexWakeupHelper* helper) {
2180 helper->tid = gettid();
2181 ASSERT_EQ(LOCK_INITIALIZED, helper->progress);
2182 helper->progress = LOCK_WAITING;
2183
2184 ASSERT_EQ(0, pthread_mutex_lock(&helper->m.lock));
2185 ASSERT_EQ(LOCK_RELEASED, helper->progress);
2186 ASSERT_EQ(0, pthread_mutex_unlock(&helper->m.lock));
2187
2188 helper->progress = LOCK_ACCESSED;
2189 }
2190
2191 public:
MutexWakeupHelper(int mutex_type)2192 explicit MutexWakeupHelper(int mutex_type) : m(mutex_type) {
2193 }
2194
test()2195 void test() {
2196 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
2197 progress = LOCK_INITIALIZED;
2198 tid = 0;
2199
2200 pthread_t thread;
2201 ASSERT_EQ(0, pthread_create(&thread, nullptr,
2202 reinterpret_cast<void* (*)(void*)>(MutexWakeupHelper::thread_fn), this));
2203
2204 WaitUntilThreadSleep(tid);
2205 ASSERT_EQ(LOCK_WAITING, progress);
2206
2207 progress = LOCK_RELEASED;
2208 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2209
2210 ASSERT_EQ(0, pthread_join(thread, nullptr));
2211 ASSERT_EQ(LOCK_ACCESSED, progress);
2212 }
2213 };
2214
TEST(pthread,pthread_mutex_NORMAL_wakeup)2215 TEST(pthread, pthread_mutex_NORMAL_wakeup) {
2216 MutexWakeupHelper helper(PTHREAD_MUTEX_NORMAL);
2217 helper.test();
2218 }
2219
TEST(pthread,pthread_mutex_ERRORCHECK_wakeup)2220 TEST(pthread, pthread_mutex_ERRORCHECK_wakeup) {
2221 MutexWakeupHelper helper(PTHREAD_MUTEX_ERRORCHECK);
2222 helper.test();
2223 }
2224
TEST(pthread,pthread_mutex_RECURSIVE_wakeup)2225 TEST(pthread, pthread_mutex_RECURSIVE_wakeup) {
2226 MutexWakeupHelper helper(PTHREAD_MUTEX_RECURSIVE);
2227 helper.test();
2228 }
2229
GetThreadPriority(pid_t tid)2230 static int GetThreadPriority(pid_t tid) {
2231 // sched_getparam() returns the static priority of a thread, which can't reflect a thread's
2232 // priority after priority inheritance. So read /proc/<pid>/stat to get the dynamic priority.
2233 std::string filename = android::base::StringPrintf("/proc/%d/stat", tid);
2234 std::string content;
2235 int result = INT_MAX;
2236 if (!android::base::ReadFileToString(filename, &content)) {
2237 return result;
2238 }
2239 std::vector<std::string> strs = android::base::Split(content, " ");
2240 if (strs.size() < 18) {
2241 return result;
2242 }
2243 if (!android::base::ParseInt(strs[17], &result)) {
2244 return INT_MAX;
2245 }
2246 return result;
2247 }
2248
2249 class PIMutexWakeupHelper {
2250 private:
2251 PthreadMutex m;
2252 int protocol;
2253 enum Progress {
2254 LOCK_INITIALIZED,
2255 LOCK_CHILD_READY,
2256 LOCK_WAITING,
2257 LOCK_RELEASED,
2258 };
2259 std::atomic<Progress> progress;
2260 std::atomic<pid_t> main_tid;
2261 std::atomic<pid_t> child_tid;
2262 PthreadMutex start_thread_m;
2263
thread_fn(PIMutexWakeupHelper * helper)2264 static void thread_fn(PIMutexWakeupHelper* helper) {
2265 helper->child_tid = gettid();
2266 ASSERT_EQ(LOCK_INITIALIZED, helper->progress);
2267 ASSERT_EQ(0, setpriority(PRIO_PROCESS, gettid(), 1));
2268 ASSERT_EQ(21, GetThreadPriority(gettid()));
2269 ASSERT_EQ(0, pthread_mutex_lock(&helper->m.lock));
2270 helper->progress = LOCK_CHILD_READY;
2271 ASSERT_EQ(0, pthread_mutex_lock(&helper->start_thread_m.lock));
2272
2273 ASSERT_EQ(0, pthread_mutex_unlock(&helper->start_thread_m.lock));
2274 WaitUntilThreadSleep(helper->main_tid);
2275 ASSERT_EQ(LOCK_WAITING, helper->progress);
2276
2277 if (helper->protocol == PTHREAD_PRIO_INHERIT) {
2278 ASSERT_EQ(20, GetThreadPriority(gettid()));
2279 } else {
2280 ASSERT_EQ(21, GetThreadPriority(gettid()));
2281 }
2282 helper->progress = LOCK_RELEASED;
2283 ASSERT_EQ(0, pthread_mutex_unlock(&helper->m.lock));
2284 }
2285
2286 public:
PIMutexWakeupHelper(int mutex_type,int protocol)2287 explicit PIMutexWakeupHelper(int mutex_type, int protocol)
2288 : m(mutex_type, protocol), protocol(protocol), start_thread_m(PTHREAD_MUTEX_NORMAL) {
2289 }
2290
test()2291 void test() {
2292 ASSERT_EQ(0, pthread_mutex_lock(&start_thread_m.lock));
2293 main_tid = gettid();
2294 ASSERT_EQ(20, GetThreadPriority(main_tid));
2295 progress = LOCK_INITIALIZED;
2296 child_tid = 0;
2297
2298 pthread_t thread;
2299 ASSERT_EQ(0, pthread_create(&thread, nullptr,
2300 reinterpret_cast<void* (*)(void*)>(PIMutexWakeupHelper::thread_fn), this));
2301
2302 WaitUntilThreadSleep(child_tid);
2303 ASSERT_EQ(LOCK_CHILD_READY, progress);
2304 ASSERT_EQ(0, pthread_mutex_unlock(&start_thread_m.lock));
2305 progress = LOCK_WAITING;
2306 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
2307
2308 ASSERT_EQ(LOCK_RELEASED, progress);
2309 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2310 ASSERT_EQ(0, pthread_join(thread, nullptr));
2311 }
2312 };
2313
TEST(pthread,pthread_mutex_pi_wakeup)2314 TEST(pthread, pthread_mutex_pi_wakeup) {
2315 for (int type : {PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_RECURSIVE, PTHREAD_MUTEX_ERRORCHECK}) {
2316 for (int protocol : {PTHREAD_PRIO_INHERIT}) {
2317 PIMutexWakeupHelper helper(type, protocol);
2318 helper.test();
2319 }
2320 }
2321 }
2322
TEST(pthread,pthread_mutex_owner_tid_limit)2323 TEST(pthread, pthread_mutex_owner_tid_limit) {
2324 #if defined(__BIONIC__) && !defined(__LP64__)
2325 FILE* fp = fopen("/proc/sys/kernel/pid_max", "r");
2326 ASSERT_TRUE(fp != nullptr);
2327 long pid_max;
2328 ASSERT_EQ(1, fscanf(fp, "%ld", &pid_max));
2329 fclose(fp);
2330 // Bionic's pthread_mutex implementation on 32-bit devices uses 16 bits to represent owner tid.
2331 ASSERT_LE(pid_max, 65536);
2332 #else
2333 GTEST_SKIP() << "pthread_mutex supports 32-bit tid";
2334 #endif
2335 }
2336
pthread_mutex_timedlock_helper(clockid_t clock,int (* lock_function)(pthread_mutex_t * __mutex,const timespec * __timeout))2337 static void pthread_mutex_timedlock_helper(clockid_t clock,
2338 int (*lock_function)(pthread_mutex_t* __mutex,
2339 const timespec* __timeout)) {
2340 pthread_mutex_t m;
2341 ASSERT_EQ(0, pthread_mutex_init(&m, nullptr));
2342
2343 // If the mutex is already locked, pthread_mutex_timedlock should time out.
2344 ASSERT_EQ(0, pthread_mutex_lock(&m));
2345
2346 timespec ts;
2347 ASSERT_EQ(0, clock_gettime(clock, &ts));
2348 ASSERT_EQ(ETIMEDOUT, lock_function(&m, &ts));
2349 ts.tv_nsec = -1;
2350 ASSERT_EQ(EINVAL, lock_function(&m, &ts));
2351 ts.tv_nsec = NS_PER_S;
2352 ASSERT_EQ(EINVAL, lock_function(&m, &ts));
2353 ts.tv_nsec = NS_PER_S - 1;
2354 ts.tv_sec = -1;
2355 ASSERT_EQ(ETIMEDOUT, lock_function(&m, &ts));
2356
2357 // If the mutex is unlocked, pthread_mutex_timedlock should succeed.
2358 ASSERT_EQ(0, pthread_mutex_unlock(&m));
2359
2360 ASSERT_EQ(0, clock_gettime(clock, &ts));
2361 ts.tv_sec += 1;
2362 ASSERT_EQ(0, lock_function(&m, &ts));
2363
2364 ASSERT_EQ(0, pthread_mutex_unlock(&m));
2365 ASSERT_EQ(0, pthread_mutex_destroy(&m));
2366 }
2367
TEST(pthread,pthread_mutex_timedlock)2368 TEST(pthread, pthread_mutex_timedlock) {
2369 pthread_mutex_timedlock_helper(CLOCK_REALTIME, pthread_mutex_timedlock);
2370 }
2371
TEST(pthread,pthread_mutex_timedlock_monotonic_np)2372 TEST(pthread, pthread_mutex_timedlock_monotonic_np) {
2373 #if defined(__BIONIC__)
2374 pthread_mutex_timedlock_helper(CLOCK_MONOTONIC, pthread_mutex_timedlock_monotonic_np);
2375 #else // __BIONIC__
2376 GTEST_SKIP() << "pthread_mutex_timedlock_monotonic_np not available";
2377 #endif // __BIONIC__
2378 }
2379
TEST(pthread,pthread_mutex_clocklock)2380 TEST(pthread, pthread_mutex_clocklock) {
2381 #if defined(__BIONIC__)
2382 pthread_mutex_timedlock_helper(
2383 CLOCK_MONOTONIC, [](pthread_mutex_t* __mutex, const timespec* __timeout) {
2384 return pthread_mutex_clocklock(__mutex, CLOCK_MONOTONIC, __timeout);
2385 });
2386 pthread_mutex_timedlock_helper(
2387 CLOCK_REALTIME, [](pthread_mutex_t* __mutex, const timespec* __timeout) {
2388 return pthread_mutex_clocklock(__mutex, CLOCK_REALTIME, __timeout);
2389 });
2390 #else // __BIONIC__
2391 GTEST_SKIP() << "pthread_mutex_clocklock not available";
2392 #endif // __BIONIC__
2393 }
2394
pthread_mutex_timedlock_pi_helper(clockid_t clock,int (* lock_function)(pthread_mutex_t * __mutex,const timespec * __timeout))2395 static void pthread_mutex_timedlock_pi_helper(clockid_t clock,
2396 int (*lock_function)(pthread_mutex_t* __mutex,
2397 const timespec* __timeout)) {
2398 PthreadMutex m(PTHREAD_MUTEX_NORMAL, PTHREAD_PRIO_INHERIT);
2399
2400 timespec ts;
2401 clock_gettime(clock, &ts);
2402 ts.tv_sec += 1;
2403 ASSERT_EQ(0, lock_function(&m.lock, &ts));
2404
2405 struct ThreadArgs {
2406 clockid_t clock;
2407 int (*lock_function)(pthread_mutex_t* __mutex, const timespec* __timeout);
2408 PthreadMutex& m;
2409 };
2410
2411 ThreadArgs thread_args = {
2412 .clock = clock,
2413 .lock_function = lock_function,
2414 .m = m,
2415 };
2416
2417 auto ThreadFn = [](void* arg) -> void* {
2418 auto args = static_cast<ThreadArgs*>(arg);
2419 timespec ts;
2420 clock_gettime(args->clock, &ts);
2421 ts.tv_sec += 1;
2422 intptr_t result = args->lock_function(&args->m.lock, &ts);
2423 return reinterpret_cast<void*>(result);
2424 };
2425
2426 pthread_t thread;
2427 ASSERT_EQ(0, pthread_create(&thread, nullptr, ThreadFn, &thread_args));
2428 void* result;
2429 ASSERT_EQ(0, pthread_join(thread, &result));
2430 ASSERT_EQ(ETIMEDOUT, reinterpret_cast<intptr_t>(result));
2431 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2432 }
2433
TEST(pthread,pthread_mutex_timedlock_pi)2434 TEST(pthread, pthread_mutex_timedlock_pi) {
2435 pthread_mutex_timedlock_pi_helper(CLOCK_REALTIME, pthread_mutex_timedlock);
2436 }
2437
TEST(pthread,pthread_mutex_timedlock_monotonic_np_pi)2438 TEST(pthread, pthread_mutex_timedlock_monotonic_np_pi) {
2439 #if defined(__BIONIC__)
2440 pthread_mutex_timedlock_pi_helper(CLOCK_MONOTONIC, pthread_mutex_timedlock_monotonic_np);
2441 #else // __BIONIC__
2442 GTEST_SKIP() << "pthread_mutex_timedlock_monotonic_np not available";
2443 #endif // __BIONIC__
2444 }
2445
TEST(pthread,pthread_mutex_clocklock_pi)2446 TEST(pthread, pthread_mutex_clocklock_pi) {
2447 #if defined(__BIONIC__)
2448 pthread_mutex_timedlock_pi_helper(
2449 CLOCK_MONOTONIC, [](pthread_mutex_t* __mutex, const timespec* __timeout) {
2450 return pthread_mutex_clocklock(__mutex, CLOCK_MONOTONIC, __timeout);
2451 });
2452 pthread_mutex_timedlock_pi_helper(
2453 CLOCK_REALTIME, [](pthread_mutex_t* __mutex, const timespec* __timeout) {
2454 return pthread_mutex_clocklock(__mutex, CLOCK_REALTIME, __timeout);
2455 });
2456 #else // __BIONIC__
2457 GTEST_SKIP() << "pthread_mutex_clocklock not available";
2458 #endif // __BIONIC__
2459 }
2460
TEST(pthread,pthread_mutex_clocklock_invalid)2461 TEST(pthread, pthread_mutex_clocklock_invalid) {
2462 #if defined(__BIONIC__)
2463 pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
2464 timespec ts;
2465 EXPECT_EQ(EINVAL, pthread_mutex_clocklock(&mutex, CLOCK_PROCESS_CPUTIME_ID, &ts));
2466 #else // __BIONIC__
2467 GTEST_SKIP() << "pthread_mutex_clocklock not available";
2468 #endif // __BIONIC__
2469 }
2470
TEST(pthread,pthread_mutex_using_destroyed_mutex)2471 TEST(pthread, pthread_mutex_using_destroyed_mutex) {
2472 #if defined(__BIONIC__)
2473 pthread_mutex_t m;
2474 ASSERT_EQ(0, pthread_mutex_init(&m, nullptr));
2475 ASSERT_EQ(0, pthread_mutex_destroy(&m));
2476 ASSERT_EXIT(pthread_mutex_lock(&m), ::testing::KilledBySignal(SIGABRT),
2477 "pthread_mutex_lock called on a destroyed mutex");
2478 ASSERT_EXIT(pthread_mutex_unlock(&m), ::testing::KilledBySignal(SIGABRT),
2479 "pthread_mutex_unlock called on a destroyed mutex");
2480 ASSERT_EXIT(pthread_mutex_trylock(&m), ::testing::KilledBySignal(SIGABRT),
2481 "pthread_mutex_trylock called on a destroyed mutex");
2482 timespec ts;
2483 ASSERT_EXIT(pthread_mutex_timedlock(&m, &ts), ::testing::KilledBySignal(SIGABRT),
2484 "pthread_mutex_timedlock called on a destroyed mutex");
2485 ASSERT_EXIT(pthread_mutex_timedlock_monotonic_np(&m, &ts), ::testing::KilledBySignal(SIGABRT),
2486 "pthread_mutex_timedlock_monotonic_np called on a destroyed mutex");
2487 ASSERT_EXIT(pthread_mutex_clocklock(&m, CLOCK_MONOTONIC, &ts), ::testing::KilledBySignal(SIGABRT),
2488 "pthread_mutex_clocklock called on a destroyed mutex");
2489 ASSERT_EXIT(pthread_mutex_clocklock(&m, CLOCK_REALTIME, &ts), ::testing::KilledBySignal(SIGABRT),
2490 "pthread_mutex_clocklock called on a destroyed mutex");
2491 ASSERT_EXIT(pthread_mutex_clocklock(&m, CLOCK_PROCESS_CPUTIME_ID, &ts),
2492 ::testing::KilledBySignal(SIGABRT),
2493 "pthread_mutex_clocklock called on a destroyed mutex");
2494 ASSERT_EXIT(pthread_mutex_destroy(&m), ::testing::KilledBySignal(SIGABRT),
2495 "pthread_mutex_destroy called on a destroyed mutex");
2496 #else
2497 GTEST_SKIP() << "bionic-only test";
2498 #endif
2499 }
2500
2501 class StrictAlignmentAllocator {
2502 public:
allocate(size_t size,size_t alignment)2503 void* allocate(size_t size, size_t alignment) {
2504 char* p = new char[size + alignment * 2];
2505 allocated_array.push_back(p);
2506 while (!is_strict_aligned(p, alignment)) {
2507 ++p;
2508 }
2509 return p;
2510 }
2511
~StrictAlignmentAllocator()2512 ~StrictAlignmentAllocator() {
2513 for (const auto& p : allocated_array) {
2514 delete[] p;
2515 }
2516 }
2517
2518 private:
is_strict_aligned(char * p,size_t alignment)2519 bool is_strict_aligned(char* p, size_t alignment) {
2520 return (reinterpret_cast<uintptr_t>(p) % (alignment * 2)) == alignment;
2521 }
2522
2523 std::vector<char*> allocated_array;
2524 };
2525
TEST(pthread,pthread_types_allow_four_bytes_alignment)2526 TEST(pthread, pthread_types_allow_four_bytes_alignment) {
2527 #if defined(__BIONIC__)
2528 // For binary compatibility with old version, we need to allow 4-byte aligned data for pthread types.
2529 StrictAlignmentAllocator allocator;
2530 pthread_mutex_t* mutex = reinterpret_cast<pthread_mutex_t*>(
2531 allocator.allocate(sizeof(pthread_mutex_t), 4));
2532 ASSERT_EQ(0, pthread_mutex_init(mutex, nullptr));
2533 ASSERT_EQ(0, pthread_mutex_lock(mutex));
2534 ASSERT_EQ(0, pthread_mutex_unlock(mutex));
2535 ASSERT_EQ(0, pthread_mutex_destroy(mutex));
2536
2537 pthread_cond_t* cond = reinterpret_cast<pthread_cond_t*>(
2538 allocator.allocate(sizeof(pthread_cond_t), 4));
2539 ASSERT_EQ(0, pthread_cond_init(cond, nullptr));
2540 ASSERT_EQ(0, pthread_cond_signal(cond));
2541 ASSERT_EQ(0, pthread_cond_broadcast(cond));
2542 ASSERT_EQ(0, pthread_cond_destroy(cond));
2543
2544 pthread_rwlock_t* rwlock = reinterpret_cast<pthread_rwlock_t*>(
2545 allocator.allocate(sizeof(pthread_rwlock_t), 4));
2546 ASSERT_EQ(0, pthread_rwlock_init(rwlock, nullptr));
2547 ASSERT_EQ(0, pthread_rwlock_rdlock(rwlock));
2548 ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
2549 ASSERT_EQ(0, pthread_rwlock_wrlock(rwlock));
2550 ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
2551 ASSERT_EQ(0, pthread_rwlock_destroy(rwlock));
2552
2553 #else
2554 GTEST_SKIP() << "bionic-only test";
2555 #endif
2556 }
2557
TEST(pthread,pthread_mutex_lock_null_32)2558 TEST(pthread, pthread_mutex_lock_null_32) {
2559 #if defined(__BIONIC__) && !defined(__LP64__)
2560 // For LP32, the pthread lock/unlock functions allow a NULL mutex and return
2561 // EINVAL in that case: http://b/19995172.
2562 //
2563 // We decorate the public defintion with _Nonnull so that people recompiling
2564 // their code with get a warning and might fix their bug, but need to pass
2565 // NULL here to test that we remain compatible.
2566 pthread_mutex_t* null_value = nullptr;
2567 ASSERT_EQ(EINVAL, pthread_mutex_lock(null_value));
2568 #else
2569 GTEST_SKIP() << "32-bit bionic-only test";
2570 #endif
2571 }
2572
TEST(pthread,pthread_mutex_unlock_null_32)2573 TEST(pthread, pthread_mutex_unlock_null_32) {
2574 #if defined(__BIONIC__) && !defined(__LP64__)
2575 // For LP32, the pthread lock/unlock functions allow a NULL mutex and return
2576 // EINVAL in that case: http://b/19995172.
2577 //
2578 // We decorate the public defintion with _Nonnull so that people recompiling
2579 // their code with get a warning and might fix their bug, but need to pass
2580 // NULL here to test that we remain compatible.
2581 pthread_mutex_t* null_value = nullptr;
2582 ASSERT_EQ(EINVAL, pthread_mutex_unlock(null_value));
2583 #else
2584 GTEST_SKIP() << "32-bit bionic-only test";
2585 #endif
2586 }
2587
TEST_F(pthread_DeathTest,pthread_mutex_lock_null_64)2588 TEST_F(pthread_DeathTest, pthread_mutex_lock_null_64) {
2589 #if defined(__BIONIC__) && defined(__LP64__)
2590 pthread_mutex_t* null_value = nullptr;
2591 ASSERT_EXIT(pthread_mutex_lock(null_value), testing::KilledBySignal(SIGSEGV), "");
2592 #else
2593 GTEST_SKIP() << "64-bit bionic-only test";
2594 #endif
2595 }
2596
TEST_F(pthread_DeathTest,pthread_mutex_unlock_null_64)2597 TEST_F(pthread_DeathTest, pthread_mutex_unlock_null_64) {
2598 #if defined(__BIONIC__) && defined(__LP64__)
2599 pthread_mutex_t* null_value = nullptr;
2600 ASSERT_EXIT(pthread_mutex_unlock(null_value), testing::KilledBySignal(SIGSEGV), "");
2601 #else
2602 GTEST_SKIP() << "64-bit bionic-only test";
2603 #endif
2604 }
2605
2606 extern _Unwind_Reason_Code FrameCounter(_Unwind_Context* ctx, void* arg);
2607
2608 static volatile bool signal_handler_on_altstack_done;
2609
2610 __attribute__((__noinline__))
signal_handler_backtrace()2611 static void signal_handler_backtrace() {
2612 // Check if we have enough stack space for unwinding.
2613 int count = 0;
2614 _Unwind_Backtrace(FrameCounter, &count);
2615 ASSERT_GT(count, 0);
2616 }
2617
2618 __attribute__((__noinline__))
signal_handler_logging()2619 static void signal_handler_logging() {
2620 // Check if we have enough stack space for logging.
2621 std::string s(2048, '*');
2622 GTEST_LOG_(INFO) << s;
2623 signal_handler_on_altstack_done = true;
2624 }
2625
2626 __attribute__((__noinline__))
signal_handler_snprintf()2627 static void signal_handler_snprintf() {
2628 // Check if we have enough stack space for snprintf to a PATH_MAX buffer, plus some extra.
2629 char buf[PATH_MAX + 2048];
2630 ASSERT_GT(snprintf(buf, sizeof(buf), "/proc/%d/status", getpid()), 0);
2631 }
2632
SignalHandlerOnAltStack(int signo,siginfo_t *,void *)2633 static void SignalHandlerOnAltStack(int signo, siginfo_t*, void*) {
2634 ASSERT_EQ(SIGUSR1, signo);
2635 signal_handler_backtrace();
2636 signal_handler_logging();
2637 signal_handler_snprintf();
2638 }
2639
TEST(pthread,big_enough_signal_stack)2640 TEST(pthread, big_enough_signal_stack) {
2641 signal_handler_on_altstack_done = false;
2642 ScopedSignalHandler handler(SIGUSR1, SignalHandlerOnAltStack, SA_SIGINFO | SA_ONSTACK);
2643 kill(getpid(), SIGUSR1);
2644 ASSERT_TRUE(signal_handler_on_altstack_done);
2645 }
2646
TEST(pthread,pthread_barrierattr_smoke)2647 TEST(pthread, pthread_barrierattr_smoke) {
2648 pthread_barrierattr_t attr;
2649 ASSERT_EQ(0, pthread_barrierattr_init(&attr));
2650 int pshared;
2651 ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared));
2652 ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
2653 ASSERT_EQ(0, pthread_barrierattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
2654 ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared));
2655 ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
2656 ASSERT_EQ(0, pthread_barrierattr_destroy(&attr));
2657 }
2658
2659 struct BarrierTestHelperData {
2660 size_t thread_count;
2661 pthread_barrier_t barrier;
2662 std::atomic<int> finished_mask;
2663 std::atomic<int> serial_thread_count;
2664 size_t iteration_count;
2665 std::atomic<size_t> finished_iteration_count;
2666
BarrierTestHelperDataBarrierTestHelperData2667 BarrierTestHelperData(size_t thread_count, size_t iteration_count)
2668 : thread_count(thread_count), finished_mask(0), serial_thread_count(0),
2669 iteration_count(iteration_count), finished_iteration_count(0) {
2670 }
2671 };
2672
2673 struct BarrierTestHelperArg {
2674 int id;
2675 BarrierTestHelperData* data;
2676 };
2677
BarrierTestHelper(BarrierTestHelperArg * arg)2678 static void BarrierTestHelper(BarrierTestHelperArg* arg) {
2679 for (size_t i = 0; i < arg->data->iteration_count; ++i) {
2680 int result = pthread_barrier_wait(&arg->data->barrier);
2681 if (result == PTHREAD_BARRIER_SERIAL_THREAD) {
2682 arg->data->serial_thread_count++;
2683 } else {
2684 ASSERT_EQ(0, result);
2685 }
2686 int mask = arg->data->finished_mask.fetch_or(1 << arg->id);
2687 mask |= 1 << arg->id;
2688 if (mask == ((1 << arg->data->thread_count) - 1)) {
2689 ASSERT_EQ(1, arg->data->serial_thread_count);
2690 arg->data->finished_iteration_count++;
2691 arg->data->finished_mask = 0;
2692 arg->data->serial_thread_count = 0;
2693 }
2694 }
2695 }
2696
TEST(pthread,pthread_barrier_smoke)2697 TEST(pthread, pthread_barrier_smoke) {
2698 const size_t BARRIER_ITERATION_COUNT = 10;
2699 const size_t BARRIER_THREAD_COUNT = 10;
2700 BarrierTestHelperData data(BARRIER_THREAD_COUNT, BARRIER_ITERATION_COUNT);
2701 ASSERT_EQ(0, pthread_barrier_init(&data.barrier, nullptr, data.thread_count));
2702 std::vector<pthread_t> threads(data.thread_count);
2703 std::vector<BarrierTestHelperArg> args(threads.size());
2704 for (size_t i = 0; i < threads.size(); ++i) {
2705 args[i].id = i;
2706 args[i].data = &data;
2707 ASSERT_EQ(0, pthread_create(&threads[i], nullptr,
2708 reinterpret_cast<void* (*)(void*)>(BarrierTestHelper), &args[i]));
2709 }
2710 for (size_t i = 0; i < threads.size(); ++i) {
2711 ASSERT_EQ(0, pthread_join(threads[i], nullptr));
2712 }
2713 ASSERT_EQ(data.iteration_count, data.finished_iteration_count);
2714 ASSERT_EQ(0, pthread_barrier_destroy(&data.barrier));
2715 }
2716
2717 struct BarrierDestroyTestArg {
2718 std::atomic<int> tid;
2719 pthread_barrier_t* barrier;
2720 };
2721
BarrierDestroyTestHelper(BarrierDestroyTestArg * arg)2722 static void BarrierDestroyTestHelper(BarrierDestroyTestArg* arg) {
2723 arg->tid = gettid();
2724 ASSERT_EQ(0, pthread_barrier_wait(arg->barrier));
2725 }
2726
TEST(pthread,pthread_barrier_destroy)2727 TEST(pthread, pthread_barrier_destroy) {
2728 pthread_barrier_t barrier;
2729 ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, 2));
2730 pthread_t thread;
2731 BarrierDestroyTestArg arg;
2732 arg.tid = 0;
2733 arg.barrier = &barrier;
2734 ASSERT_EQ(0, pthread_create(&thread, nullptr,
2735 reinterpret_cast<void* (*)(void*)>(BarrierDestroyTestHelper), &arg));
2736 WaitUntilThreadSleep(arg.tid);
2737 ASSERT_EQ(EBUSY, pthread_barrier_destroy(&barrier));
2738 ASSERT_EQ(PTHREAD_BARRIER_SERIAL_THREAD, pthread_barrier_wait(&barrier));
2739 // Verify if the barrier can be destroyed directly after pthread_barrier_wait().
2740 ASSERT_EQ(0, pthread_barrier_destroy(&barrier));
2741 ASSERT_EQ(0, pthread_join(thread, nullptr));
2742 #if defined(__BIONIC__)
2743 ASSERT_EQ(EINVAL, pthread_barrier_destroy(&barrier));
2744 #endif
2745 }
2746
2747 struct BarrierOrderingTestHelperArg {
2748 pthread_barrier_t* barrier;
2749 size_t* array;
2750 size_t array_length;
2751 size_t id;
2752 };
2753
BarrierOrderingTestHelper(BarrierOrderingTestHelperArg * arg)2754 void BarrierOrderingTestHelper(BarrierOrderingTestHelperArg* arg) {
2755 const size_t ITERATION_COUNT = 10000;
2756 for (size_t i = 1; i <= ITERATION_COUNT; ++i) {
2757 arg->array[arg->id] = i;
2758 int result = pthread_barrier_wait(arg->barrier);
2759 ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD);
2760 for (size_t j = 0; j < arg->array_length; ++j) {
2761 ASSERT_EQ(i, arg->array[j]);
2762 }
2763 result = pthread_barrier_wait(arg->barrier);
2764 ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD);
2765 }
2766 }
2767
TEST(pthread,pthread_barrier_check_ordering)2768 TEST(pthread, pthread_barrier_check_ordering) {
2769 const size_t THREAD_COUNT = 4;
2770 pthread_barrier_t barrier;
2771 ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, THREAD_COUNT));
2772 size_t array[THREAD_COUNT];
2773 std::vector<pthread_t> threads(THREAD_COUNT);
2774 std::vector<BarrierOrderingTestHelperArg> args(THREAD_COUNT);
2775 for (size_t i = 0; i < THREAD_COUNT; ++i) {
2776 args[i].barrier = &barrier;
2777 args[i].array = array;
2778 args[i].array_length = THREAD_COUNT;
2779 args[i].id = i;
2780 ASSERT_EQ(0, pthread_create(&threads[i], nullptr,
2781 reinterpret_cast<void* (*)(void*)>(BarrierOrderingTestHelper),
2782 &args[i]));
2783 }
2784 for (size_t i = 0; i < THREAD_COUNT; ++i) {
2785 ASSERT_EQ(0, pthread_join(threads[i], nullptr));
2786 }
2787 }
2788
TEST(pthread,pthread_barrier_init_zero_count)2789 TEST(pthread, pthread_barrier_init_zero_count) {
2790 pthread_barrier_t barrier;
2791 ASSERT_EQ(EINVAL, pthread_barrier_init(&barrier, nullptr, 0));
2792 }
2793
TEST(pthread,pthread_spinlock_smoke)2794 TEST(pthread, pthread_spinlock_smoke) {
2795 pthread_spinlock_t lock;
2796 ASSERT_EQ(0, pthread_spin_init(&lock, 0));
2797 ASSERT_EQ(0, pthread_spin_trylock(&lock));
2798 ASSERT_EQ(0, pthread_spin_unlock(&lock));
2799 ASSERT_EQ(0, pthread_spin_lock(&lock));
2800 ASSERT_EQ(EBUSY, pthread_spin_trylock(&lock));
2801 ASSERT_EQ(0, pthread_spin_unlock(&lock));
2802 ASSERT_EQ(0, pthread_spin_destroy(&lock));
2803 }
2804
TEST(pthread,pthread_attr_getdetachstate__pthread_attr_setdetachstate)2805 TEST(pthread, pthread_attr_getdetachstate__pthread_attr_setdetachstate) {
2806 pthread_attr_t attr;
2807 ASSERT_EQ(0, pthread_attr_init(&attr));
2808
2809 int state;
2810 ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED));
2811 ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &state));
2812 ASSERT_EQ(PTHREAD_CREATE_DETACHED, state);
2813
2814 ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE));
2815 ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &state));
2816 ASSERT_EQ(PTHREAD_CREATE_JOINABLE, state);
2817
2818 ASSERT_EQ(EINVAL, pthread_attr_setdetachstate(&attr, 123));
2819 ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &state));
2820 ASSERT_EQ(PTHREAD_CREATE_JOINABLE, state);
2821 }
2822
TEST(pthread,pthread_create__mmap_failures)2823 TEST(pthread, pthread_create__mmap_failures) {
2824 // After thread is successfully created, native_bridge might need more memory to run it.
2825 SKIP_WITH_NATIVE_BRIDGE;
2826
2827 pthread_attr_t attr;
2828 ASSERT_EQ(0, pthread_attr_init(&attr));
2829 ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED));
2830
2831 const auto kPageSize = sysconf(_SC_PAGE_SIZE);
2832
2833 // Use up all the VMAs. By default this is 64Ki (though some will already be in use).
2834 std::vector<void*> pages;
2835 pages.reserve(64 * 1024);
2836 int prot = PROT_NONE;
2837 while (true) {
2838 void* page = mmap(nullptr, kPageSize, prot, MAP_ANON|MAP_PRIVATE, -1, 0);
2839 if (page == MAP_FAILED) break;
2840 pages.push_back(page);
2841 prot = (prot == PROT_NONE) ? PROT_READ : PROT_NONE;
2842 }
2843
2844 // Try creating threads, freeing up a page each time we fail.
2845 size_t EAGAIN_count = 0;
2846 size_t i = 0;
2847 for (; i < pages.size(); ++i) {
2848 pthread_t t;
2849 int status = pthread_create(&t, &attr, IdFn, nullptr);
2850 if (status != EAGAIN) break;
2851 ++EAGAIN_count;
2852 ASSERT_EQ(0, munmap(pages[i], kPageSize));
2853 }
2854
2855 // Creating a thread uses at least three VMAs: the combined stack and TLS, and a guard on each
2856 // side. So we should have seen at least three failures.
2857 ASSERT_GE(EAGAIN_count, 3U);
2858
2859 for (; i < pages.size(); ++i) {
2860 ASSERT_EQ(0, munmap(pages[i], kPageSize));
2861 }
2862 }
2863
TEST(pthread,pthread_setschedparam)2864 TEST(pthread, pthread_setschedparam) {
2865 sched_param p = { .sched_priority = INT_MIN };
2866 ASSERT_EQ(EINVAL, pthread_setschedparam(pthread_self(), INT_MIN, &p));
2867 }
2868
TEST(pthread,pthread_setschedprio)2869 TEST(pthread, pthread_setschedprio) {
2870 ASSERT_EQ(EINVAL, pthread_setschedprio(pthread_self(), INT_MIN));
2871 }
2872
TEST(pthread,pthread_attr_getinheritsched__pthread_attr_setinheritsched)2873 TEST(pthread, pthread_attr_getinheritsched__pthread_attr_setinheritsched) {
2874 pthread_attr_t attr;
2875 ASSERT_EQ(0, pthread_attr_init(&attr));
2876
2877 int state;
2878 ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED));
2879 ASSERT_EQ(0, pthread_attr_getinheritsched(&attr, &state));
2880 ASSERT_EQ(PTHREAD_INHERIT_SCHED, state);
2881
2882 ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED));
2883 ASSERT_EQ(0, pthread_attr_getinheritsched(&attr, &state));
2884 ASSERT_EQ(PTHREAD_EXPLICIT_SCHED, state);
2885
2886 ASSERT_EQ(EINVAL, pthread_attr_setinheritsched(&attr, 123));
2887 ASSERT_EQ(0, pthread_attr_getinheritsched(&attr, &state));
2888 ASSERT_EQ(PTHREAD_EXPLICIT_SCHED, state);
2889 }
2890
TEST(pthread,pthread_attr_setinheritsched__PTHREAD_INHERIT_SCHED__PTHREAD_EXPLICIT_SCHED)2891 TEST(pthread, pthread_attr_setinheritsched__PTHREAD_INHERIT_SCHED__PTHREAD_EXPLICIT_SCHED) {
2892 pthread_attr_t attr;
2893 ASSERT_EQ(0, pthread_attr_init(&attr));
2894
2895 // If we set invalid scheduling attributes but choose to inherit, everything's fine...
2896 sched_param param = { .sched_priority = sched_get_priority_max(SCHED_FIFO) + 1 };
2897 ASSERT_EQ(0, pthread_attr_setschedparam(&attr, ¶m));
2898 ASSERT_EQ(0, pthread_attr_setschedpolicy(&attr, SCHED_FIFO));
2899 ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED));
2900
2901 pthread_t t;
2902 ASSERT_EQ(0, pthread_create(&t, &attr, IdFn, nullptr));
2903 ASSERT_EQ(0, pthread_join(t, nullptr));
2904
2905 #if defined(__LP64__)
2906 // If we ask to use them, though, we'll see a failure...
2907 ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED));
2908 ASSERT_EQ(EINVAL, pthread_create(&t, &attr, IdFn, nullptr));
2909 #else
2910 // For backwards compatibility with broken apps, we just ignore failures
2911 // to set scheduler attributes on LP32.
2912 #endif
2913 }
2914
TEST(pthread,pthread_attr_setinheritsched_PTHREAD_INHERIT_SCHED_takes_effect)2915 TEST(pthread, pthread_attr_setinheritsched_PTHREAD_INHERIT_SCHED_takes_effect) {
2916 sched_param param = { .sched_priority = sched_get_priority_min(SCHED_FIFO) };
2917 int rc = pthread_setschedparam(pthread_self(), SCHED_FIFO, ¶m);
2918 if (rc == EPERM) GTEST_SKIP() << "pthread_setschedparam failed with EPERM";
2919 ASSERT_EQ(0, rc);
2920
2921 pthread_attr_t attr;
2922 ASSERT_EQ(0, pthread_attr_init(&attr));
2923 ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED));
2924
2925 SpinFunctionHelper spin_helper;
2926 pthread_t t;
2927 ASSERT_EQ(0, pthread_create(&t, &attr, spin_helper.GetFunction(), nullptr));
2928 int actual_policy;
2929 sched_param actual_param;
2930 ASSERT_EQ(0, pthread_getschedparam(t, &actual_policy, &actual_param));
2931 ASSERT_EQ(SCHED_FIFO, actual_policy);
2932 spin_helper.UnSpin();
2933 ASSERT_EQ(0, pthread_join(t, nullptr));
2934 }
2935
TEST(pthread,pthread_attr_setinheritsched_PTHREAD_EXPLICIT_SCHED_takes_effect)2936 TEST(pthread, pthread_attr_setinheritsched_PTHREAD_EXPLICIT_SCHED_takes_effect) {
2937 sched_param param = { .sched_priority = sched_get_priority_min(SCHED_FIFO) };
2938 int rc = pthread_setschedparam(pthread_self(), SCHED_FIFO, ¶m);
2939 if (rc == EPERM) GTEST_SKIP() << "pthread_setschedparam failed with EPERM";
2940 ASSERT_EQ(0, rc);
2941
2942 pthread_attr_t attr;
2943 ASSERT_EQ(0, pthread_attr_init(&attr));
2944 ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED));
2945 ASSERT_EQ(0, pthread_attr_setschedpolicy(&attr, SCHED_OTHER));
2946
2947 SpinFunctionHelper spin_helper;
2948 pthread_t t;
2949 ASSERT_EQ(0, pthread_create(&t, &attr, spin_helper.GetFunction(), nullptr));
2950 int actual_policy;
2951 sched_param actual_param;
2952 ASSERT_EQ(0, pthread_getschedparam(t, &actual_policy, &actual_param));
2953 ASSERT_EQ(SCHED_OTHER, actual_policy);
2954 spin_helper.UnSpin();
2955 ASSERT_EQ(0, pthread_join(t, nullptr));
2956 }
2957
TEST(pthread,pthread_attr_setinheritsched__takes_effect_despite_SCHED_RESET_ON_FORK)2958 TEST(pthread, pthread_attr_setinheritsched__takes_effect_despite_SCHED_RESET_ON_FORK) {
2959 sched_param param = { .sched_priority = sched_get_priority_min(SCHED_FIFO) };
2960 int rc = pthread_setschedparam(pthread_self(), SCHED_FIFO | SCHED_RESET_ON_FORK, ¶m);
2961 if (rc == EPERM) GTEST_SKIP() << "pthread_setschedparam failed with EPERM";
2962 ASSERT_EQ(0, rc);
2963
2964 pthread_attr_t attr;
2965 ASSERT_EQ(0, pthread_attr_init(&attr));
2966 ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED));
2967
2968 SpinFunctionHelper spin_helper;
2969 pthread_t t;
2970 ASSERT_EQ(0, pthread_create(&t, &attr, spin_helper.GetFunction(), nullptr));
2971 int actual_policy;
2972 sched_param actual_param;
2973 ASSERT_EQ(0, pthread_getschedparam(t, &actual_policy, &actual_param));
2974 ASSERT_EQ(SCHED_FIFO | SCHED_RESET_ON_FORK, actual_policy);
2975 spin_helper.UnSpin();
2976 ASSERT_EQ(0, pthread_join(t, nullptr));
2977 }
2978