/hardware/qcom/neuralnetworks/hvxservice/1.0/ |
D | HexagonModel.cpp | 261 static bool verifyOperationInputs(const std::vector<hexagon_nn_input>& inputs) { in verifyOperationInputs() argument 262 for (const hexagon_nn_input& input : inputs) { in verifyOperationInputs() 280 const std::vector<hexagon_nn_input>& inputs, in addOperationInternal() argument 282 HEXAGON_SOFT_ASSERT(verifyOperationInputs(inputs), in addOperationInternal() 287 return hexagon::Controller::getInstance().append_node(mGraphId, node, op, pad, inputs.data(), in addOperationInternal() 288 inputs.size(), outputs.data(), in addOperationInternal() 323 const std::vector<hexagon_nn_input>& inputs, in addBasicOperation() argument 326 uint32_t node = addOperationInternal(op, pad, inputs, outs); in addBasicOperation() 354 const std::vector<hexagon_nn_input>& inputs, in addFloatOperationWithActivation() argument 359 uint32_t node = addOperationInternal(op, pad, inputs, outs); in addFloatOperationWithActivation() [all …]
|
D | HexagonModel.h | 114 const std::vector<hexagon_nn_input>& inputs, 118 const std::vector<hexagon_nn_input>& inputs, 122 const std::vector<hexagon_nn_input>& inputs, 126 const std::vector<hexagon_nn_input>& inputs, 130 const std::vector<hexagon_nn_input>& inputs, 140 const std::vector<hexagon_nn_input>& inputs,
|
D | HexagonController.cpp | 127 hexagon_nn_padding_type padding, const hexagon_nn_input* inputs, in append_node() argument 130 CONTROLLER_CHECK(append_node, id, node_id, operation, padding, inputs, num_inputs, outputs, in append_node() 140 int Controller::execute_new(hexagon_nn_nn_id id, const hexagon_nn_tensordef* inputs, in execute_new() argument 142 CONTROLLER_CHECK(execute_new, id, inputs, n_inputs, outputs, n_outputs); in execute_new()
|
D | HexagonController.h | 70 hexagon_nn_padding_type padding, const hexagon_nn_input* inputs, 76 int execute_new(hexagon_nn_nn_id id, const hexagon_nn_tensordef* inputs, uint32_t n_inputs,
|
/hardware/interfaces/neuralnetworks/1.3/vts/functional/ |
D | ValidateModel.cpp | 243 size += sizeForBinder(operation.inputs); in sizeForBinder() 338 for (uint32_t input : operationObj.inputs) { in mutateExecutionOrderTest() 734 for (uint32_t input : newOperation.inputs) { in mutateOperandAddWriterTest() 854 if (operand == operation.inputs[1]) { in mutateOperationOperandTypeSkip() 868 if (operand == operation.inputs[0] && in mutateOperationOperandTypeSkip() 879 if (operand == operation.inputs[0] && in mutateOperationOperandTypeSkip() 885 if (operand == operation.inputs[0] && in mutateOperationOperandTypeSkip() 901 if (operand == operation.inputs[1] && in mutateOperationOperandTypeSkip() 908 if (operand == operation.inputs[1] && in mutateOperationOperandTypeSkip() 915 if (operand == operation.inputs[0] && in mutateOperationOperandTypeSkip() [all …]
|
D | MemoryDomainTests.cpp | 138 std::vector<uint32_t> inputs(operands.size() - 1); in createConvModel() local 139 std::iota(inputs.begin(), inputs.end(), inputIndex); in createConvModel() 141 .inputs = std::move(inputs), in createConvModel() 181 .inputs = {0, 1, 2}, in createSingleAddModel() 966 {.inputs = {deviceMemoryArg}, in TEST_P() 971 {.inputs = {deviceMemoryArg}, in TEST_P() 976 {.inputs = {sharedMemoryArg}, in TEST_P() 981 {.inputs = {sharedMemoryArg}, in TEST_P() 1003 {.inputs = {deviceMemoryArg}, in TEST_P() 1008 {.inputs = {sharedMemoryArg}, in TEST_P() [all …]
|
D | BasicTests.cpp | 163 {.type = OperationType::ADD, .inputs = {0, 4, 2}, .outputs = {3}}, in TEST_P() 164 {.type = OperationType::ADD, .inputs = {1, 3, 2}, .outputs = {4}}, in TEST_P() 165 {.type = OperationType::ADD, .inputs = {4, 0, 2}, .outputs = {5}}, in TEST_P()
|
D | GeneratedTestHarness.cpp | 247 .inputs = op.inputs, in createSubgraph() 372 hidl_vec<RequestArgument> inputs(testModel.main.inputIndexes.size()); in createRequest() local 378 inputs[i] = {.hasNoValue = true}; in createRequest() 388 inputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}}; in createRequest() 398 inputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}}; in createRequest() 459 if (!inputs[i].hasNoValue && inputs[i].location.poolIndex == kInputPoolIndex) { in createRequest() 463 std::copy(begin, end, inputPtr + inputs[i].location.offset); in createRequest() 467 .inputs = std::move(inputs), .outputs = std::move(outputs), .pools = std::move(pools)}; in createRequest()
|
/hardware/interfaces/neuralnetworks/1.2/vts/functional/ |
D | ValidateModel.cpp | 236 size += sizeForBinder(operation.inputs); in sizeForBinder() 321 for (uint32_t input : operationObj.inputs) { in mutateExecutionOrderTest() 706 for (uint32_t input : newOperation.inputs) { in mutateOperandAddWriterTest() 823 if (operand == operation.inputs[1]) { in mutateOperationOperandTypeSkip() 837 if (operand == operation.inputs[0] && in mutateOperationOperandTypeSkip() 843 if (operand == operation.inputs[0] && in mutateOperationOperandTypeSkip() 858 if (operand == operation.inputs[1] && in mutateOperationOperandTypeSkip() 916 for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) { in mutateOperationInputOperandIndexTest() 922 model->operations[operation].inputs[input] = invalidOperand; in mutateOperationInputOperandIndexTest() 993 removeValueAndDecrementGreaterValues(&operation.inputs, index); in removeOperand() [all …]
|
D | BasicTests.cpp | 222 {.type = OperationType::ADD, .inputs = {0, 4, 2}, .outputs = {3}}, in TEST_P() 223 {.type = OperationType::ADD, .inputs = {1, 3, 2}, .outputs = {4}}, in TEST_P() 224 {.type = OperationType::ADD, .inputs = {4, 0, 2}, .outputs = {5}}, in TEST_P()
|
D | ValidateRequest.cpp | 134 for (size_t input = 0; input < request.inputs.size(); ++input) { in removeInputTest() 137 [input](Request* request) { hidl_vec_removeAt(&request->inputs, input); }); in removeInputTest()
|
/hardware/libhardware_legacy/audio/ |
D | audio_policy.conf | 37 inputs { 55 inputs {
|
/hardware/interfaces/neuralnetworks/1.0/vts/functional/ |
D | Utils.cpp | 106 hidl_vec<RequestArgument> inputs(testModel.main.inputIndexes.size()); in createRequest() local 112 inputs[i] = {.hasNoValue = true}; in createRequest() 118 inputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}}; in createRequest() 162 std::copy(begin, end, inputPtr + inputs[i].location.offset); in createRequest() 166 return {.inputs = std::move(inputs), .outputs = std::move(outputs), .pools = std::move(pools)}; in createRequest()
|
D | BasicTests.cpp | 141 {.type = OperationType::ADD, .inputs = {0, 4, 2}, .outputs = {3}}, in TEST_P() 142 {.type = OperationType::ADD, .inputs = {1, 3, 2}, .outputs = {4}}, in TEST_P() 143 {.type = OperationType::ADD, .inputs = {4, 0, 2}, .outputs = {5}}, in TEST_P()
|
D | ValidateModel.cpp | 189 size += sizeForBinder(operation.inputs); in sizeForBinder() 262 for (uint32_t input : operationObj.inputs) { in mutateExecutionOrderTest() 609 for (uint32_t input : newOperation.inputs) { in mutateOperandAddWriterTest() 684 if (operation.type == OperationType::LSH_PROJECTION && operand == operation.inputs[1]) { in mutateOperationOperandTypeSkip() 741 for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) { in mutateOperationInputOperandIndexTest() 746 model->operations[operation].inputs[input] = invalidOperand; in mutateOperationInputOperandIndexTest() 812 removeValueAndDecrementGreaterValues(&operation.inputs, index); in removeOperand() 830 for (uint32_t operand : model->operations[index].inputs) { in removeOperation() 848 for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) { in removeOperationInputTest() 853 if (op.type == OperationType::CONCATENATION && op.inputs.size() > 2 && in removeOperationInputTest() [all …]
|
D | ValidateRequest.cpp | 73 for (size_t input = 0; input < request.inputs.size(); ++input) { in removeInputTest() 76 [input](Request* request) { hidl_vec_removeAt(&request->inputs, input); }); in removeInputTest()
|
/hardware/interfaces/neuralnetworks/1.1/vts/functional/ |
D | BasicTests.cpp | 148 {.type = OperationType::ADD, .inputs = {0, 4, 2}, .outputs = {3}}, in TEST_P() 149 {.type = OperationType::ADD, .inputs = {1, 3, 2}, .outputs = {4}}, in TEST_P() 150 {.type = OperationType::ADD, .inputs = {4, 0, 2}, .outputs = {5}}, in TEST_P()
|
D | ValidateRequest.cpp | 57 for (size_t input = 0; input < request.inputs.size(); ++input) { in removeInputTest() 60 [input](Request* request) { hidl_vec_removeAt(&request->inputs, input); }); in removeInputTest()
|
D | ValidateModel.cpp | 208 size += sizeForBinder(operation.inputs); in sizeForBinder() 282 for (uint32_t input : operationObj.inputs) { in mutateExecutionOrderTest() 638 for (uint32_t input : newOperation.inputs) { in mutateOperandAddWriterTest() 716 if (operation.type == OperationType::LSH_PROJECTION && operand == operation.inputs[1]) { in mutateOperationOperandTypeSkip() 775 for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) { in mutateOperationInputOperandIndexTest() 781 model->operations[operation].inputs[input] = invalidOperand; in mutateOperationInputOperandIndexTest() 852 removeValueAndDecrementGreaterValues(&operation.inputs, index); in removeOperand() 870 for (uint32_t operand : model->operations[index].inputs) { in removeOperation() 889 for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) { in removeOperationInputTest() 894 if (op.type == OperationType::CONCATENATION && op.inputs.size() > 2 && in removeOperationInputTest() [all …]
|
/hardware/qcom/neuralnetworks/hvxservice/1.0/hexagon_nn_controller/ |
D | hexagon_nn_controller.h | 88 const hexagon_nn_input* inputs, unsigned int num_inputs, const hexagon_nn_output* outputs, 98 const hexagon_nn_tensordef* inputs,
|
/hardware/interfaces/neuralnetworks/1.2/ |
D | IPreparedModel.hal | 35 * execute_1_2 must verify the inputs to the function are correct. If there is 38 * the inputs to the function are valid and there is no error, execute_1_2 must 55 * 'request' inputs. 58 * operands have fully specified dimensions, and the inputs to the function 96 * executeSynchronously must verify the inputs to the function are 98 * return with the appropriate ErrorStatus value. If the inputs to the 107 * data objects corresponding to 'request' inputs. 110 * operands have fully specified dimensions, and the inputs to the function 169 * corresponding to Request inputs. requestChannel
|
/hardware/interfaces/neuralnetworks/1.0/ |
D | IPreparedModel.hal | 30 * execute must verify the inputs to the function are correct. If there is 33 * the inputs to the function are valid and there is no error, execute must 50 * 'request' inputs. 53 * operands have fully specified dimensions, and the inputs to the function
|
D | IDevice.hal | 70 * prepareModel function must verify the inputs to the prepareModel function 73 * IPreparedModel, then return with the same ErrorStatus. If the inputs to 93 * inputs to the model. Note that the same prepared model object can be 94 * used with different shapes of inputs on different (possibly concurrent)
|
/hardware/interfaces/neuralnetworks/1.3/ |
D | IPreparedModel.hal | 39 * execute_1_3 must verify the inputs to the function are correct, and the usages 43 * the inputs to the function are valid and there is no error, execute_1_3 must 60 * 'request' inputs. 63 * operands have fully specified dimensions, and the inputs to the function 126 * executeSynchronously_1_3 must verify the inputs to the function are 129 * return with the appropriate ErrorStatus value. If the inputs to the 138 * data objects corresponding to 'request' inputs. 141 * operands have fully specified dimensions, and the inputs to the function 209 * executeFenced must verify the inputs to the function are correct, and the usages 212 * handle for syncFence, and nullptr for callback. If the inputs to the function
|
/hardware/interfaces/neuralnetworks/1.1/ |
D | IDevice.hal | 75 * prepareModel function must verify the inputs to the prepareModel function 78 * IPreparedModel, then return with the same ErrorStatus. If the inputs to 98 * inputs to the model. Note that the same prepared model object can be 99 * used with different shapes of inputs on different (possibly concurrent)
|