/hardware/interfaces/neuralnetworks/1.0/vts/functional/ |
D | ValidateModel.cpp | 127 static void becomeConstantCopy(Model* model, Operand* operand) { in becomeConstantCopy() argument 129 const size_t sizeOfOperand = sizeOfData(*operand); in becomeConstantCopy() 131 operand->location.poolIndex = 0; in becomeConstantCopy() 132 operand->location.offset = 0; in becomeConstantCopy() 133 operand->location.length = sizeOfOperand; in becomeConstantCopy() 170 size_t sizeForBinder(const Operand& operand) { in sizeForBinder() argument 173 size += sizeForBinder(operand.type); in sizeForBinder() 174 size += sizeForBinder(operand.dimensions); in sizeForBinder() 175 size += sizeForBinder(operand.numberOfConsumers); in sizeForBinder() 176 size += sizeForBinder(operand.scale); in sizeForBinder() [all …]
|
D | Utils.cpp | 211 uint32_t sizeOfData(const V1_0::Operand& operand) { in sizeOfData() argument 212 const uint32_t dataSize = sizeOfData(operand.type); in sizeOfData() 213 if (isTensor(operand.type) && operand.dimensions.size() == 0) return 0; in sizeOfData() 214 return std::accumulate(operand.dimensions.begin(), operand.dimensions.end(), dataSize, in sizeOfData()
|
/hardware/interfaces/neuralnetworks/1.1/vts/functional/ |
D | ValidateModel.cpp | 146 static void becomeConstantCopy(Model* model, Operand* operand) { in becomeConstantCopy() argument 148 const size_t sizeOfOperand = sizeOfData(*operand); in becomeConstantCopy() 150 operand->location.poolIndex = 0; in becomeConstantCopy() 151 operand->location.offset = 0; in becomeConstantCopy() 152 operand->location.length = sizeOfOperand; in becomeConstantCopy() 189 size_t sizeForBinder(const Operand& operand) { in sizeForBinder() argument 192 size += sizeForBinder(operand.type); in sizeForBinder() 193 size += sizeForBinder(operand.dimensions); in sizeForBinder() 194 size += sizeForBinder(operand.numberOfConsumers); in sizeForBinder() 195 size += sizeForBinder(operand.scale); in sizeForBinder() [all …]
|
/hardware/qcom/neuralnetworks/hvxservice/1.0/ |
D | HexagonModel.cpp | 35 const Operand& operand = model.operands[i]; in getOperandsInfo() local 37 .type = operand.type, in getOperandsInfo() 38 .dimensions = operand.dimensions, in getOperandsInfo() 39 .scale = operand.scale, in getOperandsInfo() 40 .zeroPoint = operand.zeroPoint, in getOperandsInfo() 41 .lifetime = operand.lifetime, in getOperandsInfo() 42 .buffer = const_cast<uint8_t*>(getData(operand, model.operandValues, pools)), in getOperandsInfo() 43 .length = operand.location.length, in getOperandsInfo() 104 const int32_t* Model::getPointer(uint32_t operand) { in getPointer() argument 105 return reinterpret_cast<const int32_t*>(mOperands[operand].buffer); in getPointer() [all …]
|
D | HexagonModel.h | 84 const int32_t* getPointer(uint32_t operand); 85 Shape getShape(uint32_t operand); 86 bool setShape(uint32_t operand, const Shape& shape); 87 bool isConstant(uint32_t operand); 90 const hexagon_nn_input& getTensor(uint32_t operand); 91 const hexagon_nn_input& getQuantizationMin(uint32_t operand); 92 const hexagon_nn_input& getQuantizationMax(uint32_t operand); 93 hexagon_nn_input createQuantizationValue(uint32_t operand, int32_t quant_value); 94 hexagon_nn_input createConvFilterTensor(uint32_t operand); 95 hexagon_nn_input createDepthwiseFilterTensor(uint32_t operand, int32_t depth_multiplier); [all …]
|
D | HexagonUtils.cpp | 152 const uint8_t* getData(const Operand& operand, const hidl_vec<uint8_t>& block, in getData() argument 154 switch (operand.lifetime) { in getData() 162 return getDataFromBlock(block, operand.location.offset, operand.location.length); in getData() 164 return getDataFromPool(pools[operand.location.poolIndex], operand.location.offset, in getData() 165 operand.location.length); in getData()
|
/hardware/interfaces/neuralnetworks/1.2/vts/functional/ |
D | ValidateModel.cpp | 147 static void becomeConstantCopy(Model* model, Operand* operand) { in becomeConstantCopy() argument 149 const size_t sizeOfOperand = sizeOfData(*operand); in becomeConstantCopy() 151 operand->location.poolIndex = 0; in becomeConstantCopy() 152 operand->location.offset = 0; in becomeConstantCopy() 153 operand->location.length = sizeOfOperand; in becomeConstantCopy() 216 size_t sizeForBinder(const Operand& operand) { in sizeForBinder() argument 219 size += sizeForBinder(operand.type); in sizeForBinder() 220 size += sizeForBinder(operand.dimensions); in sizeForBinder() 221 size += sizeForBinder(operand.numberOfConsumers); in sizeForBinder() 222 size += sizeForBinder(operand.scale); in sizeForBinder() [all …]
|
D | Utils.cpp | 76 uint32_t sizeOfData(const V1_2::Operand& operand) { in sizeOfData() argument 77 const uint32_t dataSize = sizeOfData(operand.type); in sizeOfData() 78 if (isTensor(operand.type) && operand.dimensions.size() == 0) return 0; in sizeOfData() 79 return std::accumulate(operand.dimensions.begin(), operand.dimensions.end(), dataSize, in sizeOfData()
|
/hardware/interfaces/neuralnetworks/1.3/vts/functional/ |
D | ValidateModel.cpp | 154 static void becomeConstantCopy(Model* model, Operand* operand) { in becomeConstantCopy() argument 156 const size_t sizeOfOperand = sizeOfData(*operand); in becomeConstantCopy() 158 operand->location.poolIndex = 0; in becomeConstantCopy() 159 operand->location.offset = 0; in becomeConstantCopy() 160 operand->location.length = sizeOfOperand; in becomeConstantCopy() 223 size_t sizeForBinder(const Operand& operand) { in sizeForBinder() argument 226 size += sizeForBinder(operand.type); in sizeForBinder() 227 size += sizeForBinder(operand.dimensions); in sizeForBinder() 228 size += sizeForBinder(operand.numberOfConsumers); in sizeForBinder() 229 size += sizeForBinder(operand.scale); in sizeForBinder() [all …]
|
D | Utils.cpp | 80 uint32_t sizeOfData(const V1_3::Operand& operand) { in sizeOfData() argument 81 const uint32_t dataSize = sizeOfData(operand.type); in sizeOfData() 82 if (isTensor(operand.type) && operand.dimensions.size() == 0) return 0; in sizeOfData() 83 return std::accumulate(operand.dimensions.begin(), operand.dimensions.end(), dataSize, in sizeOfData()
|
D | MemoryDomainTests.cpp | 68 for (auto& operand : testModel->main.operands) { in createDummyData() local 69 if (operand.data != nullptr) continue; in createDummyData() 70 switch (operand.lifetime) { in createDummyData() 76 static_cast<OperandType>(operand.type), operand.dimensions); in createDummyData() 77 operand.data = TestBuffer(size); in createDummyData() 100 TestModel createConvModel(const TestOperand& operand, uint32_t numOperations) { in createConvModel() argument 101 CHECK(isInChoices(operand.type)); in createConvModel() 103 TestOperand weight = {.type = operand.type, in createConvModel() 104 .dimensions = {operand.dimensions[3], 3, 3, operand.dimensions[3]}, in createConvModel() 106 .scale = isFloat(operand.type) ? 0.0f : 1.0f, in createConvModel() [all …]
|
/hardware/interfaces/neuralnetworks/1.0/ |
D | types.t | 67 * How an operand is used. 71 * The operand is internal to the model. It's created by an operation and 72 * consumed by other operations. It must be an output operand of 78 * The operand is an input of the model. It must not be an output 79 * operand of any operation. 81 * An operand can't be both input and output of a model. 86 * The operand is an output of the model. It must be an output 87 * operand of exactly one operation. 89 * An operand can't be both input and output of a model. 94 * The operand is a constant found in Model.operandValues. It must [all …]
|
D | types.hal | 22 * The type of an operand in a model. 1475 * How an operand is used. 1479 * The operand is internal to the model. It's created by an operation and 1480 * consumed by other operations. It must be an output operand of 1486 * The operand is an input of the model. It must not be an output 1487 * operand of any operation. 1489 * An operand can't be both input and output of a model. 1494 * The operand is an output of the model. It must be an output 1495 * operand of exactly one operation. 1497 * An operand can't be both input and output of a model. [all …]
|
/hardware/interfaces/neuralnetworks/1.3/ |
D | types.t | 39 * The range of operand values in the OperandType enum. 109 * {@link OperationType::WHILE} comes from the type of its first operand. 131 * Performance by operand type. Must be sorted by OperandType. 138 * must not report operand performance for {@link OperandType::SUBGRAPH}. 187 * How an operand is used. 191 * The operand is internal to the model. It's created by an operation and 192 * consumed by other operations. It must be an output operand of 198 * The operand is an input of a subgraph. It must not be an output 199 * operand of any operation. 201 * An operand can't be both input and output of a subgraph. [all …]
|
D | IExecutionCallback.hal | 46 * operand buffer is not large enough to store the 55 * of the output operand in the Request outputs vector.
|
D | types.hal | 75 * The range of operand values in the OperandType enum. 5113 * The operand must have fully specified dimensions. 5129 * and operand values for the first iteration of the loop. The values are 5344 * {@link OperationType::WHILE} comes from the type of its first operand. 5366 * Performance by operand type. Must be sorted by OperandType. 5373 * must not report operand performance for {@link OperandType::SUBGRAPH}. 5422 * How an operand is used. 5426 * The operand is internal to the model. It's created by an operation and 5427 * consumed by other operations. It must be an output operand of 5433 * The operand is an input of a subgraph. It must not be an output [all …]
|
/hardware/interfaces/neuralnetworks/1.2/ |
D | types.t | 48 * The range of operand values in the OperandType enum. 123 * Performance of an operation comes from the type of its first operand. 124 * This represents performance for non extension operand types. 146 * Performance by operand type. Must be sorted by OperandType. 180 * Parameters for TENSOR_QUANT8_SYMM_PER_CHANNEL operand. 190 * Describes one operand of the model's graph. 203 * Dimensions of the operand. 205 * For a scalar operand, dimensions.size() must be 0. 207 * A tensor operand with all dimensions specified has "fully 210 * operand should have (but is not required to have) fully [all …]
|
D | IExecutionCallback.hal | 43 * operand buffer is not large enough to store the 49 * of the output operand in the Request outputs vector.
|
D | types.hal | 44 * Values of this operand type are either true or false. A zero value 65 * Values of this operand type are either true or false. A zero value 138 * The range of operand values in the OperandType enum. 4725 * Performance of an operation comes from the type of its first operand. 4726 * This represents performance for non extension operand types. 4748 * Performance by operand type. Must be sorted by OperandType. 4782 * Parameters for TENSOR_QUANT8_SYMM_PER_CHANNEL operand. 4792 * Describes one operand of the model's graph. 4805 * Dimensions of the operand. 4807 * For a scalar operand, dimensions.size() must be 0. [all …]
|
/hardware/interfaces/neuralnetworks/1.1/ |
D | types.t | 94 * The operations are sorted into execution order. Every operand 103 * Each value corresponds to the index of the operand in "operands". 110 * Each value corresponds to the index of the operand in "operands". 115 * A byte buffer containing operand data that were copied into the model. 117 * An operand's value must be located here if and only if Operand::lifetime 123 * A collection of shared memory pools containing operand values. 125 * An operand's value must be located here if and only if Operand::lifetime
|
D | types.hal | 416 * The operations are sorted into execution order. Every operand 425 * Each value corresponds to the index of the operand in "operands". 432 * Each value corresponds to the index of the operand in "operands". 437 * A byte buffer containing operand data that were copied into the model. 439 * An operand's value must be located here if and only if Operand::lifetime 445 * A collection of shared memory pools containing operand values. 447 * An operand's value must be located here if and only if Operand::lifetime
|
/hardware/interfaces/neuralnetworks/1.2/vts/functional/include/1.2/ |
D | Utils.h | 36 uint32_t sizeOfData(const V1_2::Operand& operand);
|
/hardware/interfaces/neuralnetworks/1.3/vts/functional/include/1.3/ |
D | Utils.h | 37 uint32_t sizeOfData(const V1_3::Operand& operand);
|
/hardware/qcom/data/ipacfg-mgr/msm8998/ipacm/src/ |
D | Android.mk | 44 -Wno-constant-logical-operand \
|
/hardware/interfaces/neuralnetworks/1.0/vts/functional/include/1.0/ |
D | Utils.h | 140 uint32_t sizeOfData(const V1_0::Operand& operand);
|