/hardware/interfaces/neuralnetworks/1.0/vts/functional/ |
D | GeneratedTestHarness.cpp | 46 hidl_vec<Operand> operands(testModel.main.operands.size()); in createModel() local 48 for (uint32_t i = 0; i < testModel.main.operands.size(); i++) { in createModel() 49 const auto& op = testModel.main.operands[i]; in createModel() 64 operands[i] = {.type = static_cast<OperandType>(op.type), in createModel() 84 for (uint32_t i = 0; i < testModel.main.operands.size(); i++) { in createModel() 85 const auto& op = testModel.main.operands[i]; in createModel() 89 std::copy(begin, end, operandValues.data() + operands[i].location.offset); in createModel() 106 for (uint32_t i = 0; i < testModel.main.operands.size(); i++) { in createModel() 107 const auto& op = testModel.main.operands[i]; in createModel() 111 std::copy(begin, end, mappedPtr + operands[i].location.offset); in createModel() [all …]
|
D | ValidateModel.cpp | 76 return hidl_vec_push_back(&model->operands, in addOperand() 90 model->operands[index].numberOfConsumers = 1; in addOperand() 91 model->operands[index].lifetime = lifetime; in addOperand() 219 size += sizeForBinder(model.operands); in sizeForBinder() 263 if (model.operands[input].lifetime == OperandLifeTime::TEMPORARY_VARIABLE || in mutateExecutionOrderTest() 264 model.operands[input].lifetime == OperandLifeTime::MODEL_OUTPUT) { in mutateExecutionOrderTest() 281 if (model.operands[output].numberOfConsumers > 0) { in mutateExecutionOrderTest() 310 for (size_t operand = 0; operand < model.operands.size(); ++operand) { in mutateOperandTypeTest() 316 model->operands[operand].type = static_cast<OperandType>(invalidOperandType); in mutateOperandTypeTest() 340 for (size_t operand = 0; operand < model.operands.size(); ++operand) { in mutateOperandRankTest() [all …]
|
D | BasicTests.cpp | 77 const std::vector<Operand> operands = { in TEST_P() local 147 .operands = operands, in TEST_P()
|
D | Utils.cpp | 109 const auto& op = testModel.main.operands[testModel.main.inputIndexes[i]]; in createRequest() 126 const auto& op = testModel.main.operands[testModel.main.outputIndexes[i]]; in createRequest() 158 const auto& op = testModel.main.operands[testModel.main.inputIndexes[i]]; in createRequest()
|
/hardware/interfaces/neuralnetworks/1.1/vts/functional/ |
D | GeneratedTestHarness.cpp | 53 hidl_vec<Operand> operands(testModel.main.operands.size()); in createModel() local 55 for (uint32_t i = 0; i < testModel.main.operands.size(); i++) { in createModel() 56 const auto& op = testModel.main.operands[i]; in createModel() 71 operands[i] = {.type = static_cast<OperandType>(op.type), in createModel() 91 for (uint32_t i = 0; i < testModel.main.operands.size(); i++) { in createModel() 92 const auto& op = testModel.main.operands[i]; in createModel() 96 std::copy(begin, end, operandValues.data() + operands[i].location.offset); in createModel() 113 for (uint32_t i = 0; i < testModel.main.operands.size(); i++) { in createModel() 114 const auto& op = testModel.main.operands[i]; in createModel() 118 std::copy(begin, end, mappedPtr + operands[i].location.offset); in createModel() [all …]
|
D | ValidateModel.cpp | 95 return hidl_vec_push_back(&model->operands, in addOperand() 109 model->operands[index].numberOfConsumers = 1; in addOperand() 110 model->operands[index].lifetime = lifetime; in addOperand() 238 size += sizeForBinder(model.operands); in sizeForBinder() 283 if (model.operands[input].lifetime == OperandLifeTime::TEMPORARY_VARIABLE || in mutateExecutionOrderTest() 284 model.operands[input].lifetime == OperandLifeTime::MODEL_OUTPUT) { in mutateExecutionOrderTest() 301 if (model.operands[output].numberOfConsumers > 0) { in mutateExecutionOrderTest() 330 for (size_t operand = 0; operand < model.operands.size(); ++operand) { in mutateOperandTypeTest() 337 model->operands[operand].type = in mutateOperandTypeTest() 362 for (size_t operand = 0; operand < model.operands.size(); ++operand) { in mutateOperandRankTest() [all …]
|
D | BasicTests.cpp | 84 const std::vector<Operand> operands = { in TEST_P() local 154 .operands = operands, in TEST_P()
|
/hardware/interfaces/neuralnetworks/1.2/vts/functional/ |
D | ValidateModel.cpp | 96 return hidl_vec_push_back(&model->operands, in addOperand() 110 model->operands[index].numberOfConsumers = 1; in addOperand() 111 model->operands[index].lifetime = lifetime; in addOperand() 276 size += sizeForBinder(model.operands); in sizeForBinder() 322 if (model.operands[input].lifetime == OperandLifeTime::TEMPORARY_VARIABLE || in mutateExecutionOrderTest() 323 model.operands[input].lifetime == OperandLifeTime::MODEL_OUTPUT) { in mutateExecutionOrderTest() 340 if (model.operands[output].numberOfConsumers > 0) { in mutateExecutionOrderTest() 369 for (size_t operand = 0; operand < model.operands.size(); ++operand) { in mutateOperandTypeTest() 376 model->operands[operand].type = in mutateOperandTypeTest() 409 for (size_t operand = 0; operand < model.operands.size(); ++operand) { in mutateOperandRankTest() [all …]
|
D | GeneratedTestHarness.cpp | 79 hidl_vec<Operand> operands(testModel.main.operands.size()); in createModel() local 81 for (uint32_t i = 0; i < testModel.main.operands.size(); i++) { in createModel() 82 const auto& op = testModel.main.operands[i]; in createModel() 103 operands[i] = {.type = static_cast<OperandType>(op.type), in createModel() 124 for (uint32_t i = 0; i < testModel.main.operands.size(); i++) { in createModel() 125 const auto& op = testModel.main.operands[i]; in createModel() 129 std::copy(begin, end, operandValues.data() + operands[i].location.offset); in createModel() 146 for (uint32_t i = 0; i < testModel.main.operands.size(); i++) { in createModel() 147 const auto& op = testModel.main.operands[i]; in createModel() 151 std::copy(begin, end, mappedPtr + operands[i].location.offset); in createModel() [all …]
|
D | BasicTests.cpp | 158 const std::vector<Operand> operands = { in TEST_P() local 228 .operands = operands, in TEST_P()
|
D | CompilationCachingTests.cpp | 121 std::vector<TestOperand> operands(len * 2 + 2); in createLargeTestModelImpl() local 124 operands[0] = { in createLargeTestModelImpl() 160 operands[firstInputIndex] = { in createLargeTestModelImpl() 172 operands[secondInputIndex] = { in createLargeTestModelImpl() 198 operands.back() = { in createLargeTestModelImpl() 209 .main = {.operands = std::move(operands), in createLargeTestModelImpl()
|
/hardware/interfaces/neuralnetworks/1.3/vts/functional/ |
D | ValidateModel.cpp | 103 return hidl_vec_push_back(&model->main.operands, in addOperand() 117 model->main.operands[index].numberOfConsumers = 1; in addOperand() 118 model->main.operands[index].lifetime = lifetime; in addOperand() 273 size += sizeForBinder(subgraph.operands); in sizeForBinder() 339 if (model.main.operands[input].lifetime == OperandLifeTime::TEMPORARY_VARIABLE || in mutateExecutionOrderTest() 340 model.main.operands[input].lifetime == OperandLifeTime::SUBGRAPH_OUTPUT) { in mutateExecutionOrderTest() 358 if (model.main.operands[output].numberOfConsumers > 0) { in mutateExecutionOrderTest() 388 for (size_t operand = 0; operand < model.main.operands.size(); ++operand) { in mutateOperandTypeTest() 395 model->main.operands[operand].type = in mutateOperandTypeTest() 428 for (size_t operand = 0; operand < model.main.operands.size(); ++operand) { in mutateOperandRankTest() [all …]
|
D | GeneratedTestHarness.cpp | 162 kTestModel.main.operands[kTestModel.main.inputIndexes[index]].data; in allocateInternal() 197 hidl_vec<Operand> operands(testSubgraph.operands.size()); in createSubgraph() local 198 for (uint32_t i = 0; i < testSubgraph.operands.size(); i++) { in createSubgraph() 199 const auto& op = testSubgraph.operands[i]; in createSubgraph() 232 operands[i] = {.type = static_cast<OperandType>(op.type), in createSubgraph() 251 return {.operands = std::move(operands), in createSubgraph() 320 const auto byteSize = testModel.main.operands[testModel.main.outputIndexes[index]].data.size(); in isOutputSizeGreaterThanOne() 332 auto& dims = model->main.operands[i].dimensions; in makeOutputDimensionsUnspecified() 375 const auto& op = testModel.main.operands[testModel.main.inputIndexes[i]]; in createRequest() 405 const auto& op = testModel.main.operands[testModel.main.outputIndexes[i]]; in createRequest() [all …]
|
D | BasicTests.cpp | 99 const std::vector<Operand> operands = { in TEST_P() local 169 .operands = operands, in TEST_P()
|
D | MemoryDomainTests.cpp | 68 for (auto& operand : testModel->main.operands) { in createDummyData() 122 const std::vector<TestOperand> operands = { in createConvModel() local 135 model.main.operands.insert(model.main.operands.end(), operands.begin(), operands.end()); in createConvModel() 136 const uint32_t inputIndex = operands.size() * i; in createConvModel() 137 const uint32_t outputIndex = inputIndex + operands.size() - 1; in createConvModel() 138 std::vector<uint32_t> inputs(operands.size() - 1); in createConvModel() 173 .operands = in createSingleAddModel()
|
D | CompilationCachingTests.cpp | 124 std::vector<TestOperand> operands(len * 2 + 2); in createLargeTestModelImpl() local 127 operands[0] = { in createLargeTestModelImpl() 163 operands[firstInputIndex] = { in createLargeTestModelImpl() 175 operands[secondInputIndex] = { in createLargeTestModelImpl() 201 operands.back() = { in createLargeTestModelImpl() 212 .main = {.operands = std::move(operands), in createLargeTestModelImpl()
|
/hardware/interfaces/neuralnetworks/1.1/ |
D | types.t | 87 * All operands included in the model. 89 vec<Operand> operands; 103 * Each value corresponds to the index of the operand in "operands". 110 * Each value corresponds to the index of the operand in "operands".
|
D | types.hal | 71 * input operands. It starts with the trailing dimensions, and works its way 302 * input operands. It starts with the trailing dimensions, and works its way 409 * All operands included in the model. 411 vec<Operand> operands; 425 * Each value corresponds to the index of the operand in "operands". 432 * Each value corresponds to the index of the operand in "operands".
|
/hardware/interfaces/neuralnetworks/1.2/ |
D | IPreparedModel.hal | 58 * operands have fully specified dimensions, and the inputs to the function 62 * - if at execution time every operation's input operands have legal 110 * operands have fully specified dimensions, and the inputs to the function 111 * are valid, and at execution time every operation's input operands have 135 * @return outputShapes A list of shape information of model output operands. 153 * operands have fully specified dimensions, and a valid serialized Request 155 * operation's input operands have legal values, then the execution should
|
D | types.t | 302 * Only applicable to operands of type TENSOR_QUANT8_SYMM_PER_CHANNEL. 325 * All operands included in the model. 327 vec<Operand> operands; 341 * Each value corresponds to the index of the operand in "operands". 348 * Each value corresponds to the index of the operand in "operands". 511 * Number of input operands. 516 * Number of output operands. 639 * Number of returned operands.
|
/hardware/qcom/neuralnetworks/hvxservice/1.0/ |
D | HexagonModel.cpp | 33 std::vector<OperandInfo> info(model.operands.size()); in getOperandsInfo() 34 for (size_t i = 0; i < model.operands.size(); ++i) { in getOperandsInfo() 35 const Operand& operand = model.operands[i]; in getOperandsInfo() 294 std::vector<hexagon_nn_output> Model::getHexagonOutputs(const std::vector<uint32_t>& operands) { in getHexagonOutputs() argument 296 for (uint32_t index : operands) { in getHexagonOutputs() 307 bool Model::registerHexagonInputs(const std::vector<uint32_t>& operands, uint32_t node) { in registerHexagonInputs() argument 309 for (uint32_t i = 0; i < static_cast<uint32_t>(operands.size()); ++i) { in registerHexagonInputs() 310 OperandInfo& operand = mOperands[operands[i]]; in registerHexagonInputs()
|
D | HexagonModel.h | 146 std::vector<hexagon_nn_output> getHexagonOutputs(const std::vector<uint32_t>& operands); 147 bool registerHexagonInputs(const std::vector<uint32_t>& operands, uint32_t node);
|
/hardware/interfaces/neuralnetworks/1.0/ |
D | IPreparedModel.hal | 53 * operands have fully specified dimensions, and the inputs to the function 57 * - if at execution time every operation's input operands have legal
|
D | types.t | 304 * All operands included in the model. 306 vec<Operand> operands; 320 * Each value corresponds to the index of the operand in "operands". 327 * Each value corresponds to the index of the operand in "operands".
|
/hardware/interfaces/neuralnetworks/1.3/ |
D | IPreparedModel.hal | 63 * operands have fully specified dimensions, and the inputs to the function 67 * - if at execution time every operation's input operands have legal 101 * the execution, shape information of model output operands, and 141 * operands have fully specified dimensions, and the inputs to the function 142 * are valid, and at execution time every operation's input operands have 189 * @return outputShapes A list of shape information of model output operands.
|