1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "calibration/sphere_fit/sphere_fit_calibration.h"
18 
19 #include <errno.h>
20 #include <stdarg.h>
21 #include <stdio.h>
22 #include <string.h>
23 
24 #include "calibration/util/cal_log.h"
25 #include "common/math/mat.h"
26 #include "common/math/vec.h"
27 
28 // FORWARD DECLARATIONS
29 ///////////////////////////////////////////////////////////////////////////////
30 // Utility for converting solver state to a calibration data structure.
31 static void convertStateToCalStruct(const float x[SF_STATE_DIM],
32                                     struct ThreeAxisCalData *calstruct);
33 
34 static bool runCalibration(struct SphereFitCal *sphere_cal,
35                            const struct SphereFitData *data,
36                            uint64_t timestamp_nanos);
37 
38 #define MIN_VALID_DATA_NORM (1e-4f)
39 
40 // FUNCTION IMPLEMENTATIONS
41 //////////////////////////////////////////////////////////////////////////////
sphereFitInit(struct SphereFitCal * sphere_cal,const struct LmParams * lm_params,const size_t min_num_points_for_cal)42 void sphereFitInit(struct SphereFitCal *sphere_cal,
43                    const struct LmParams *lm_params,
44                    const size_t min_num_points_for_cal) {
45   ASSERT_NOT_NULL(sphere_cal);
46   ASSERT_NOT_NULL(lm_params);
47 
48   // Initialize LM solver.
49   lmSolverInit(&sphere_cal->lm_solver, lm_params,
50                &sphereFitResidAndJacobianFunc);
51 
52   // Reset other parameters.
53   sphereFitReset(sphere_cal);
54 
55   // Set num points for calibration, checking that it is above min.
56   if (min_num_points_for_cal < MIN_NUM_SPHERE_FIT_POINTS) {
57     sphere_cal->min_points_for_cal = MIN_NUM_SPHERE_FIT_POINTS;
58   } else {
59     sphere_cal->min_points_for_cal = min_num_points_for_cal;
60   }
61 }
62 
sphereFitReset(struct SphereFitCal * sphere_cal)63 void sphereFitReset(struct SphereFitCal *sphere_cal) {
64   ASSERT_NOT_NULL(sphere_cal);
65 
66   // Set state to default (diagonal scale matrix and zero offset).
67   memset(&sphere_cal->x0[0], 0, sizeof(float) * SF_STATE_DIM);
68   sphere_cal->x0[eParamScaleMatrix11] = 1.f;
69   sphere_cal->x0[eParamScaleMatrix22] = 1.f;
70   sphere_cal->x0[eParamScaleMatrix33] = 1.f;
71   memcpy(sphere_cal->x, sphere_cal->x0, sizeof(sphere_cal->x));
72 
73   // Reset time.
74   sphere_cal->estimate_time_nanos = 0;
75 }
76 
sphereFitSetSolverData(struct SphereFitCal * sphere_cal,struct LmData * lm_data)77 void sphereFitSetSolverData(struct SphereFitCal *sphere_cal,
78                             struct LmData *lm_data) {
79   ASSERT_NOT_NULL(sphere_cal);
80   ASSERT_NOT_NULL(lm_data);
81 
82   // Set solver data.
83   lmSolverSetData(&sphere_cal->lm_solver, lm_data);
84 }
85 
sphereFitRunCal(struct SphereFitCal * sphere_cal,const struct SphereFitData * data,uint64_t timestamp_nanos)86 bool sphereFitRunCal(struct SphereFitCal *sphere_cal,
87                      const struct SphereFitData *data,
88                      uint64_t timestamp_nanos) {
89   ASSERT_NOT_NULL(sphere_cal);
90   ASSERT_NOT_NULL(data);
91 
92   // Run calibration if have enough points.
93   if (data->num_fit_points >= sphere_cal->min_points_for_cal) {
94     return runCalibration(sphere_cal, data, timestamp_nanos);
95   }
96 
97   return false;
98 }
99 
sphereFitSetInitialBias(struct SphereFitCal * sphere_cal,const float initial_bias[THREE_AXIS_DIM])100 void sphereFitSetInitialBias(struct SphereFitCal *sphere_cal,
101                              const float initial_bias[THREE_AXIS_DIM]) {
102   ASSERT_NOT_NULL(sphere_cal);
103   sphere_cal->x0[eParamOffset1] = initial_bias[0];
104   sphere_cal->x0[eParamOffset2] = initial_bias[1];
105   sphere_cal->x0[eParamOffset3] = initial_bias[2];
106 }
107 
sphereFitGetLatestCal(const struct SphereFitCal * sphere_cal,struct ThreeAxisCalData * cal_data)108 void sphereFitGetLatestCal(const struct SphereFitCal *sphere_cal,
109                            struct ThreeAxisCalData *cal_data) {
110   ASSERT_NOT_NULL(sphere_cal);
111   ASSERT_NOT_NULL(cal_data);
112   convertStateToCalStruct(sphere_cal->x, cal_data);
113   cal_data->calibration_time_nanos = sphere_cal->estimate_time_nanos;
114 }
115 
sphereFitResidAndJacobianFunc(const float * state,const void * f_data,float * residual,float * jacobian)116 void sphereFitResidAndJacobianFunc(const float *state, const void *f_data,
117                                    float *residual, float *jacobian) {
118   ASSERT_NOT_NULL(state);
119   ASSERT_NOT_NULL(f_data);
120   ASSERT_NOT_NULL(residual);
121 
122   const struct SphereFitData *data = (const struct SphereFitData *)f_data;
123 
124   // Verify that expected norm is non-zero, else use default of 1.0.
125   float expected_norm = 1.0;
126   ASSERT(data->expected_norm > MIN_VALID_DATA_NORM);
127   if (data->expected_norm > MIN_VALID_DATA_NORM) {
128     expected_norm = data->expected_norm;
129   }
130 
131   // Convert parameters to calibration structure.
132   struct ThreeAxisCalData calstruct;
133   convertStateToCalStruct(state, &calstruct);
134 
135   // Compute Jacobian helper matrix if Jacobian requested.
136   //
137   // J = d(||M(x_data - bias)|| - expected_norm)/dstate
138   //   = (M(x_data - bias) / ||M(x_data - bias)||) * d(M(x_data - bias))/dstate
139   //   = x_corr / ||x_corr|| * A
140   // A = d(M(x_data - bias))/dstate
141   //   = [dy/dM11, dy/dM21, dy/dM22, dy/dM31, dy/dM32, dy/dM3,...
142   //      dy/db1, dy/db2, dy/db3]'
143   // where:
144   // dy/dM11 = [x_data[0] - bias[0], 0, 0]
145   // dy/dM21 = [0, x_data[0] - bias[0], 0]
146   // dy/dM22 = [0, x_data[1] - bias[1], 0]
147   // dy/dM31 = [0, 0, x_data[0] - bias[0]]
148   // dy/dM32 = [0, 0, x_data[1] - bias[1]]
149   // dy/dM33 = [0, 0, x_data[2] - bias[2]]
150   // dy/db1 = [-scale_factor_x, 0, 0]
151   // dy/db2 = [0, -scale_factor_y, 0]
152   // dy/db3 = [0, 0, -scale_factor_z]
153   float A[SF_STATE_DIM * THREE_AXIS_DIM];
154   if (jacobian) {
155     memset(jacobian, 0, sizeof(float) * SF_STATE_DIM * data->num_fit_points);
156     memset(A, 0, sizeof(A));
157     A[0 * SF_STATE_DIM + eParamOffset1] = -calstruct.scale_factor_x;
158     A[1 * SF_STATE_DIM + eParamOffset2] = -calstruct.scale_factor_y;
159     A[2 * SF_STATE_DIM + eParamOffset3] = -calstruct.scale_factor_z;
160   }
161 
162   // Loop over all data points to compute residual and Jacobian.
163   // TODO(dvitus): Use fit_data_std when available to weight residuals.
164   float x_corr[THREE_AXIS_DIM];
165   float x_bias_corr[THREE_AXIS_DIM];
166   size_t i;
167   for (i = 0; i < data->num_fit_points; ++i) {
168     const float *x_data = &data->fit_data[i * THREE_AXIS_DIM];
169 
170     // Compute corrected sensor data
171     calDataCorrectData(&calstruct, x_data, x_corr);
172 
173     // Compute norm of x_corr.
174     const float norm = vecNorm(x_corr, THREE_AXIS_DIM);
175 
176     // Compute residual error: f_x = norm - exp_norm
177     residual[i] = norm - data->expected_norm;
178 
179     // Compute Jacobian if valid pointer.
180     if (jacobian) {
181       if (norm < MIN_VALID_DATA_NORM) {
182         return;
183       }
184       const float scale = 1.f / norm;
185 
186       // Compute bias corrected data.
187       vecSub(x_bias_corr, x_data, calstruct.bias, THREE_AXIS_DIM);
188 
189       // Populate non-bias terms for A
190       A[0 + eParamScaleMatrix11] = x_bias_corr[0];
191       A[1 * SF_STATE_DIM + eParamScaleMatrix21] = x_bias_corr[0];
192       A[1 * SF_STATE_DIM + eParamScaleMatrix22] = x_bias_corr[1];
193       A[2 * SF_STATE_DIM + eParamScaleMatrix31] = x_bias_corr[0];
194       A[2 * SF_STATE_DIM + eParamScaleMatrix32] = x_bias_corr[1];
195       A[2 * SF_STATE_DIM + eParamScaleMatrix33] = x_bias_corr[2];
196 
197       // Compute J = x_corr / ||x_corr|| * A
198       matTransposeMultiplyVec(&jacobian[i * SF_STATE_DIM], A, x_corr,
199                               THREE_AXIS_DIM, SF_STATE_DIM);
200       vecScalarMulInPlace(&jacobian[i * SF_STATE_DIM], scale, SF_STATE_DIM);
201     }
202   }
203 }
204 
convertStateToCalStruct(const float x[SF_STATE_DIM],struct ThreeAxisCalData * calstruct)205 void convertStateToCalStruct(const float x[SF_STATE_DIM],
206                              struct ThreeAxisCalData *calstruct) {
207   memcpy(&calstruct->bias[0], &x[eParamOffset1],
208          sizeof(float) * THREE_AXIS_DIM);
209   calstruct->scale_factor_x = x[eParamScaleMatrix11];
210   calstruct->skew_yx = x[eParamScaleMatrix21];
211   calstruct->scale_factor_y = x[eParamScaleMatrix22];
212   calstruct->skew_zx = x[eParamScaleMatrix31];
213   calstruct->skew_zy = x[eParamScaleMatrix32];
214   calstruct->scale_factor_z = x[eParamScaleMatrix33];
215 }
216 
runCalibration(struct SphereFitCal * sphere_cal,const struct SphereFitData * data,uint64_t timestamp_nanos)217 bool runCalibration(struct SphereFitCal *sphere_cal,
218                     const struct SphereFitData *data,
219                     uint64_t timestamp_nanos) {
220   float x_sol[SF_STATE_DIM];
221 
222   // Run calibration
223   const enum LmStatus status =
224       lmSolverSolve(&sphere_cal->lm_solver, sphere_cal->x0, (void *)data,
225                     SF_STATE_DIM, data->num_fit_points, x_sol);
226 
227   // Check if solver was successful
228   if (status == RELATIVE_STEP_SUFFICIENTLY_SMALL ||
229       status == GRADIENT_SUFFICIENTLY_SMALL) {
230     // TODO(dvitus): Check quality of new fit before using.
231     // Store new fit.
232 #ifdef SPHERE_FIT_DBG_ENABLED
233     CAL_DEBUG_LOG("[SPHERE CAL]",
234                   "Solution found in %d iterations with status %d.\n",
235                   sphere_cal->lm_solver.num_iter, status);
236     CAL_DEBUG_LOG("[SPHERE CAL]", "Solution:\n {"
237                   CAL_FORMAT_6DIGITS " [M(1,1)], "
238                   CAL_FORMAT_6DIGITS " [M(2,1)], "
239                   CAL_FORMAT_6DIGITS " [M(2,2)], \n"
240                   CAL_FORMAT_6DIGITS " [M(3,1)], "
241                   CAL_FORMAT_6DIGITS " [M(3,2)], "
242                   CAL_FORMAT_6DIGITS " [M(3,3)], \n"
243                   CAL_FORMAT_6DIGITS " [b(1)], "
244                   CAL_FORMAT_6DIGITS " [b(2)], "
245                   CAL_FORMAT_6DIGITS " [b(3)]}.",
246                   CAL_ENCODE_FLOAT(x_sol[0], 6), CAL_ENCODE_FLOAT(x_sol[1], 6),
247                   CAL_ENCODE_FLOAT(x_sol[2], 6), CAL_ENCODE_FLOAT(x_sol[3], 6),
248                   CAL_ENCODE_FLOAT(x_sol[4], 6), CAL_ENCODE_FLOAT(x_sol[5], 6),
249                   CAL_ENCODE_FLOAT(x_sol[6], 6), CAL_ENCODE_FLOAT(x_sol[7], 6),
250                   CAL_ENCODE_FLOAT(x_sol[8], 6));
251 #endif  // SPHERE_FIT_DBG_ENABLED
252     memcpy(sphere_cal->x, x_sol, sizeof(x_sol));
253     sphere_cal->estimate_time_nanos = timestamp_nanos;
254     return true;
255   } else {
256 #ifdef SPHERE_FIT_DBG_ENABLED
257     CAL_DEBUG_LOG("[SPHERE CAL]",
258                   "Solution failed in %d iterations with status %d.\n",
259                   sphere_cal->lm_solver.num_iter, status);
260 #endif  // SPHERE_FIT_DBG_ENABLED
261   }
262 
263   return false;
264 }
265