Android中使用System.exit(0)退出后App又重新启动

System.exit(0):终止当前正在运行的 Java 虚拟机。参数用作状态码;根据惯例,非 0 的状态码表示异常终止。

System.exit(0)正常终止程序,有时候在退出安卓应用会使用到。

使用这个方法如果前面存在没有finish()掉的Activity会重新启动,导致退出失败。

MainActivity代码:

直接启动第二个Activity

NewActivity代码:

此时点击button退出应用重启,修改MainActivity:启动新的Activity,finish存在MainAcitvity

总结:

因为应用栈中还存在别的activity没有finish,导致应用重新启动。

使用System.exit(0)时,确保任务栈中所有activity已经finish。

参考链接


Android中使用System.exit(0)退出后app又重新启动

从Intel版本MacBook Pro 2013迁移到MacBook Pro 2023(Apple M2 Pro)后运行Android模拟器崩溃

MacBook Pro 2023(Apple M2 Pro)Intel 版本 MacBook Pro 2013 通过 TimeMachine 迁移后运行模拟器,启动就崩溃。

崩溃的原因是原来运行的模拟器是通过 Intel HAXM 来加速的,但是 MacBook Pro 2023(Apple M2 Pro) 已经是 ARM 指令集了。这样的组合就诱发了虚拟机的崩溃。

此处,我们需要手工卸载已经安装的 Intel x86 Emulator Accelerator(HAXM installer)Android Emulator 之后重新安装即可解决。

如下图:

继续阅读从Intel版本MacBook Pro 2013迁移到MacBook Pro 2023(Apple M2 Pro)后运行Android模拟器崩溃

Android Studio Flamingo | 2022.2.1 Patch 2 配置Robolectric-3.8/4.3.1/4.5.1/4.6.1单元测试环境

一直通过 Android Studio 3.6.3/4.0/4.1/4.2配置Robolectric-3.8/4.3.1/4.5.1/4.6.1 Powermock-1.6.6单元测试环境 配置 Powermock 进行单元测试。

虽然配置起来稍显复杂,但是也是够用的。

但是当升级到Android Studio Flamingo | 2022.2.1 Patch 2 之后,内置的 Java 版本被升级到 Java 17 ,使用这个 Java 版本执行单元测试,会报错如下:

可是 Powermock 已经长时间没有新版本发布,没有及时跟进 Java 版本的更新。

当时引入 Powermock 的原因是为了解决静态函数的测试问题,但是从 Mockito 3.4.0 版本开始,Mockito 已经支持静态函数测试。

因此,完全可以只使用 Mockto 进行测试。

待测试代码如下:

测试代码如下:

参考链接


Android之FileProvider详解

简介

Android 7.0 之前,文件的 Urifile:// 形式提供给其他 app 访问。

Android 7.0 之后,分享文件的 Uri 发生了变化。为了安全起见,file:// 形式的Uri 不能正常访问。官方提供了 FileProviderFileProvider生成的Uri会以content://的形式分享给其他app使用。

content形式的Uri可以让其他app临时获得读取(Read)和写入(Write)权限,只要我们在创建 Intent 时,使用 Intent.setFlags() 添加权限。只要接收Uriapp在接收的Activity任务栈中处于活动状态,添加的权限就会一直有效,直到app被任务栈移除。

目的

7.0 以前,为了访问 file:// 形式的 Uri,我们必须修改文件的权限。修改后的权限对所有 app 都是有效的,这样的行为是不安全的。content://形式的UriAndroid的文件系统更安全,对于分享的文件,接收方 app 只拥有临时的权限,减少了我们app内部的文件被其他 app 恶意操作的行为。

使用

创建FileProvider

manifest文件<application>标签中添加pvodier标签,配置如下。

android:name指定Provider所在的位置。官方自带的FileProvider已经相当完善,所以我们不需要像ServiceBroadcast一样自定义,直接使用自带的就行,直接输入privoder会自动出现提示。

android:authorities相当于一个用于认证的暗号,在分享文件生成Uri时,会通过它的值生成对应的Uri。值是一个域名,一般格式为<包名>.fileprovider

android:exported设置为falseFileProvider不需要公开。

android:grantUriPermissions设置为true,这样就能授权接收端的app临时访问权限了。

设置共享目录

res/xml中创建一个资源文件(如果xml目录不存在,先创建),名字随便(一般叫file_paths.xml)。

<paths>必须有1个或多个子标签,每个子标签代表要请求的私有文件目录。不同的子标签代表不同的目录类型。

<provider>标签中添加<meta-data>子标签。

设置<meta-data>的属性android:name值为android.support.FILE_PROVIDER_PATHS,属性android:resouce的值为刚才我们创建的path文件名。

配置paths

<paths>的每个子标签必须有path属性,代表content Uris的路径。name不需要和path保持一样,只是一个名称。

子标签有以下几种。

files-path

代表内部存储的files目录,与Context.getFilesDir()获取的路径对应。

最终生成的Uri格式为:authorities/pathname/filename

示例:

cache-path

代表内部存储的cache目录,与Context.getCacheDir()获取的路径对应。

external-path

代表外部存储(sdcard)的cache目录,与Environment.getExternalStorageDirectory()获取的路径对应。

external-files-path

代表app的外部存储的根目录,与Context#getExternalFilesDir(String) Context.getExternalFilesDir(null)获取的路径对应。

external-cache-path

代表app外部缓存区域的根目录,与Context.getExternalCacheDir()获取的路径对应。

external-media-path

代表app外部存储媒体区域的根目录,与Context.getExternalMediaDirs()获取的路径对应。

注意: 这个目录只在API 21(也就是Android 5.0)以上的系统上才存在。

生成Content Uri文件

为了让其他app使用Content Uri,我们的app必须提前生成Uri

这里注意获取目录,在配置paths时我们讲了,paths的子标签必须和获取目录的代码保持对应。这里我们用的是Context.getFilesDir(),所以paths文件中必须包含files-path子标签,不然别的app获取uri时会出现异常。

最终生成Uri是使用的FileProvider.getUriForFile()。第一个参数就是provider中设置的authorities属性值。

授权临时权限

分享一般只有这读取和写入2种权限,根据需要传入Intent.addFlags()中。

Uri传入Intent

有好几种传入的方式,根据不同的场景使用不同的方式。

为邮箱app分享附件文件

其他分享

使用Intent.setDateIntent.setClipData()

最后使用startActivity(intent)启动分享操作。

参考链接


Android之FileProvider详解

Android-Bitmap回收/复用机制

包括 recycle() 方法 bitmap 回收时机。

Android 系统版本的内存分配策略也有所不同,这是我们需要了解的:

系统版本 Bitmap 内存分配策略
Android 3.0 之前

Bitmap 对象存放在 Java Heap,而像素数据是存放在 native 内存中。

缺点:如果不手动调用 bitmap.recycle(),Bitmap native 内存的回收完全依赖 finalize() 回调,但是回调时机是不可控的

Android 3.0~7.0

Bitmap 对象和像素数据统一放到 Java Heap,即使不调用 bitmap.recycle(),Bitmap 像素也会随着对象一起被回收。

缺点:

1、Bitmap 全部放在 Java Heap,Bitmap 是内存消耗的大户,而 Max Heap 一般限制为 256、512MB,Bitmap 过大过多容易导致 OOM。

2、容易引起大量 GC,没有充分利用系统的可用内存

Android 8.0 及以后

1、使用了能够辅助回收 native 内存的 NativeAllocationRegistry 实现将像素数据放到 native 内存,并且可以和 Bitmap 对象一起快速释放,在 GC 的时候还可以考虑到这些 Bitmap 内存以防止被滥用。

2、新增硬件位图 Hardware Bitmap 解决图片内存占用过多和图像绘制效率过慢问题

手动调用recycle()

2.3 及以下版本,保存在 jvm + native 中,手动调用 recycle() 。

7.0 和 8.0 不需要调用 recycle(),下面是该版本下代码。

7.0 跟 8.0 nativeRecycle 实现不同。

8.0 版本 Bitmap

7.0 版本 Bitmap

  1. 8.0 中,手动调用 recycle() 方法,像素数据会立即释放;

  2. 7.0 版本中,调用 recycle() 方法像素数据不会立即释放,而是通过 DeleteWeakGlobalRef 交由 Jvm GC 处理。Java 层主动调用 recycle() 或者在 Bitmap 析构函数 freePixels() ,移除 Global 对象引用,这个对象是 Heap 内存一堆像素的空间。GC 时释放掉。二是 JNI 不再持有 Global Reference,并 native 函数执行后释放掉,但 Java 层的 Bitmap 对象还在,只是它的 mBuffer 和 mNativePtr 是无效地址,没有像素 Heap 的 Bitmap 也就几乎不消耗内存。Java 层 Bitmap 对象什么时候释放,生命周期结束自然会 free 掉。

回收机制

7.0 通过 java 层 BitmapFinalizer.finalize 实现,8.0 通过 native 层 NativeAllocationRegistry 实现。

7.0 及以下,保存在 jvm 虚拟机中,回收机制通过 BitmapFinalizer. finalize 实现。跟 BitmapFinalizer 而不跟 Bitmap 关联的原因是重写 finalize 方法的对象会被延迟回收,经过两次 gc 才会被回收。原因是重写 finalize 的对象在创建时会创建 FinalizerReference 并引用 Object,并将FR 关联到 ReferenceQueue 中,当第一次执行 gc 时候,会把 FR 放在 queue 中,其中有个守护线程持续读取 queue 中的数据,并执行 finalize 方法。

8.0 以上,保存在 jvm + native 中,NativeAllocationRegistry 中把 native 的文件描述符(句柄)跟 Cleaner 关联,Cleaner 其实是个虚应用,会在没有强应用关联的时候进行内存回收。

下面是 NativeAllocationRegistry.java 代码

NativeAllocationRegistry 内部是利用了 sun.misc.Cleaner.java 机制,简单来说:使用虚引用得知对象被GC的时机,在GC前执行额外的回收工作。

nativeGetNativeFinalizer()

nativeGetNativeFinalizer 是一个 native 函数,返回值是一个 long,这个值其实相当于 Bitmap_destruct() 函数的直接地址,Bitmap_destruct() 就是用来回收 native 层内存的。

故 NativeAllocationRegistry 利用虚引用感知 Java 对象被回收的时机,来回收 native 层内存;在 Android 8.0 (API 27) 之前,Android 通常使用Object#finalize() 调用时机来回收 native 层内存

Tips:Fresco 在 Android 4.4 及以下版本对 bitmap 内存做了优化,通过设置 BitmapFactory.Options.inPurgeable = true 使得 bitmap 保存在匿名共享内存中,减少了 Jvm 虚拟机内存占用。

继续阅读Android-Bitmap回收/复用机制

Android Cuttlefish模拟器(Android Cloud)

macOS Big Sur(11.7.5)编译Android 12.0源码过程总结

Android 11系统映像可直接将 ARM 指令转换成 x86 指令,因此以前很多需要真机测试的情况,现在只需要模拟器就可以进行操作了。

不过,根据官方博客 Run ARM apps on the Android Emulator 尾部的一段注意事项:

Note that the ARM to x86 translation technology enables the execution of intellectual property owned by Arm Limited. It will only be available on Google APIs and Play Store system images, and can only be used for application development and debug purposes on x86 desktop, laptop, customer on-premises servers, and customer-procured cloud-based environments. The technology should not be used in the provision of commercial hosted services.

这段事项说明,自己编译的镜像是没办法用上这个功能的,必须是Google编译好的镜像。

前置条件


  • macOS Big Sur(11.7.5)
  • Homebrew (1.1.9 或更高版本)
  • Xcode (13.2.1或更高版本)
  • Android Studio Electric Eel | 2022.1.1 Patch 2

注意:根据Google官方文档,2021年6月22日之后的Android系统版本不支持在macOS系统上构建,我们只能构建之前的版本,或者之后发布的以前版本的补丁修复。目前测试最高只能编译到Android 12.0,  Android  12.1编译不通过。

继续阅读macOS Big Sur(11.7.5)编译Android 12.0源码过程总结

macOS Big Sur(11.7.5)编译Android 11.0源码过程总结

Android 11系统映像可直接将 ARM 指令转换成 x86 指令,因此以前很多需要真机测试的情况,现在只需要模拟器就可以进行操作了。

不过,根据官方博客 Run ARM apps on the Android Emulator 尾部的一段注意事项:

Note that the ARM to x86 translation technology enables the execution of intellectual property owned by Arm Limited. It will only be available on Google APIs and Play Store system images, and can only be used for application development and debug purposes on x86 desktop, laptop, customer on-premises servers, and customer-procured cloud-based environments. The technology should not be used in the provision of commercial hosted services.

这段事项说明,自己编译的镜像是没办法用上这个功能的,必须是Google编译好的镜像。

前置条件


  • macOS Big Sur(11.7.5)
  • Homebrew (1.1.9 或更高版本)
  • Xcode (13.2.1或更高版本)
  • Android Studio Electric Eel | 2022.1.1 Patch 2

注意:根据Google官方文档,2021年6月22日之后的Android系统版本不支持在macOS系统上构建,我们只能构建之前的版本,或者之后发布的以前版本的补丁修复。目前测试最高只能编译到Android 12.0,  Android  12.1编译不通过。

继续阅读macOS Big Sur(11.7.5)编译Android 11.0源码过程总结

ubuntu 22.04.2编译Android 12.1源代码&模拟器

Android 11系统映像可直接将 ARM 指令转换成 x86 指令,因此以前很多需要真机测试的情况,现在只需要模拟器就可以进行操作了。

不过,根据官方博客 Run ARM apps on the Android Emulator 尾部的一段注意事项:

Note that the ARM to x86 translation technology enables the execution of intellectual property owned by Arm Limited. It will only be available on Google APIs and Play Store system images, and can only be used for application development and debug purposes on x86 desktop, laptop, customer on-premises servers, and customer-procured cloud-based environments. The technology should not be used in the provision of commercial hosted services.

这段事项说明,自己编译的镜像是没办法用上这个功能的,必须是Google编译好的镜像。

由于众所周知的原因,我们是没办法正常下载Android的源代码的,因此只能使用国内的镜像来操作了。

1.安装repo工具以及依赖

2.在需要存储代码的地方创建文件夹

3.使用镜像下载Android源代码

清华大学的镜像

4.Android 模拟器编译(可选)

编译完成之后,产生的模拟器可执行文件及库文件都位于external/qemu/objs/android目录下:

后面就可以像执行 SDK 中的模拟器那样,执行我们编译的模拟器了:

5.列出android-12全部分支

6.编译Android 12系统镜像

7.引入编译环境变量

8.设置编译目标,此处我们指定编译x86_64下的完整调试版本(镜像无法安装ARM应用)

9.如果需要跟踪调试代码,建议编译为调试类型

10.编译

注意此处如果发生编译失败,原因基本上是编译顺序导致的引用出错,也就是某些模块还没有编译完成,其他模块已经开始尝试链接,导致依赖错误,此时只要把多线程并发编译修改成单线程编译即可,即直接执行

如果由于内存不足导致的编译失败,可以增加物理内存。但是如果内存无法增加的话,那么适当增加交换分区/交换文件的大小(建议配置16GB以上的交换分区)可以解决此问题,只是编译速度会下降。

运行镜像

选择system-qemu.img和vendor-qemu.img,这两个镜像是专门为qemu运行制作的,如果选择system.img 和vendor.img,则avd运行失败。

上面运行起来的镜像是从~/AndSrc/aosp/out/debug/target/product/generic/hardware-qemu.ini即可读取配置信息的,但是这个文件直接修改无效,我们如果需要修改参数,只能从启动参数中设置。
比如我们如果需要增大内存,开启GPU的支持,则执行如下命令:

编译支持ARM应用的镜像

尽管根据

Note that the ARM to x86 translation technology enables the execution of intellectual property owned by Arm Limited. It will only be available on Google APIs and Play Store system images, and can only be used for application development and debug purposes on x86 desktop, laptop, customer on-premises servers, and customer-procured cloud-based environments. The technology should not be used in the provision of commercial hosted services.

我们自己编译的镜像是没办法直接从源代码编译支持安装运行 ARM 应用的。

但是有两个变通方案:

  1. Google官方的 Android 12 镜像中提取需要的文件塞到我们自己编译的镜像里,参考方案: Adding ARM native bridge to the AOSP11 x86 emulatorandroid_vendor_google_emu-x86
  2. 使用 Intel Houdini 实现支持,参考方案:Include Intel Houdini in Android-x86

参考链接


Gradle 都做了哪些缓存?

前言

GradleAndroid的构建工具,它的主要目标就是实现快速的编译构建,而这主要就是通过缓存实现的。本文主要介绍Gradle的缓存机制,具体包括以下内容

  1. Gradle缓存机制
  2. Gradle内存缓存
  3. Gradle项目缓存
  4. Gradle本机缓存
  5. Gradle远程缓存

继续阅读Gradle 都做了哪些缓存?