1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <inttypes.h>
18 #include <string.h>
19
20 #include <functional>
21 #include <iomanip>
22 #include <mutex>
23 #include <sstream>
24 #include <string>
25 #include <unordered_map>
26
27 #include <android-base/macros.h>
28 #include <android-base/strings.h>
29 #include <backtrace.h>
30
31 #include "Allocator.h"
32 #include "Binder.h"
33 #include "HeapWalker.h"
34 #include "Leak.h"
35 #include "LeakFolding.h"
36 #include "LeakPipe.h"
37 #include "ProcessMappings.h"
38 #include "PtracerThread.h"
39 #include "ScopedDisableMalloc.h"
40 #include "Semaphore.h"
41 #include "ThreadCapture.h"
42
43 #include "bionic.h"
44 #include "log.h"
45 #include "memunreachable/memunreachable.h"
46
47 using namespace std::chrono_literals;
48
49 namespace android {
50
51 const size_t Leak::contents_length;
52
53 class MemUnreachable {
54 public:
MemUnreachable(pid_t pid,Allocator<void> allocator)55 MemUnreachable(pid_t pid, Allocator<void> allocator)
56 : pid_(pid), allocator_(allocator), heap_walker_(allocator_) {}
57 bool CollectAllocations(const allocator::vector<ThreadInfo>& threads,
58 const allocator::vector<Mapping>& mappings,
59 const allocator::vector<uintptr_t>& refs);
60 bool GetUnreachableMemory(allocator::vector<Leak>& leaks, size_t limit, size_t* num_leaks,
61 size_t* leak_bytes);
Allocations()62 size_t Allocations() { return heap_walker_.Allocations(); }
AllocationBytes()63 size_t AllocationBytes() { return heap_walker_.AllocationBytes(); }
64
65 private:
66 bool ClassifyMappings(const allocator::vector<Mapping>& mappings,
67 allocator::vector<Mapping>& heap_mappings,
68 allocator::vector<Mapping>& anon_mappings,
69 allocator::vector<Mapping>& globals_mappings,
70 allocator::vector<Mapping>& stack_mappings);
71 DISALLOW_COPY_AND_ASSIGN(MemUnreachable);
72 pid_t pid_;
73 Allocator<void> allocator_;
74 HeapWalker heap_walker_;
75 };
76
HeapIterate(const Mapping & heap_mapping,const std::function<void (uintptr_t,size_t)> & func)77 static void HeapIterate(const Mapping& heap_mapping,
78 const std::function<void(uintptr_t, size_t)>& func) {
79 malloc_iterate(heap_mapping.begin, heap_mapping.end - heap_mapping.begin,
80 [](uintptr_t base, size_t size, void* arg) {
81 auto f = reinterpret_cast<const std::function<void(uintptr_t, size_t)>*>(arg);
82 (*f)(base, size);
83 },
84 const_cast<void*>(reinterpret_cast<const void*>(&func)));
85 }
86
CollectAllocations(const allocator::vector<ThreadInfo> & threads,const allocator::vector<Mapping> & mappings,const allocator::vector<uintptr_t> & refs)87 bool MemUnreachable::CollectAllocations(const allocator::vector<ThreadInfo>& threads,
88 const allocator::vector<Mapping>& mappings,
89 const allocator::vector<uintptr_t>& refs) {
90 MEM_ALOGI("searching process %d for allocations", pid_);
91
92 for (auto it = mappings.begin(); it != mappings.end(); it++) {
93 heap_walker_.Mapping(it->begin, it->end);
94 }
95
96 allocator::vector<Mapping> heap_mappings{mappings};
97 allocator::vector<Mapping> anon_mappings{mappings};
98 allocator::vector<Mapping> globals_mappings{mappings};
99 allocator::vector<Mapping> stack_mappings{mappings};
100 if (!ClassifyMappings(mappings, heap_mappings, anon_mappings, globals_mappings, stack_mappings)) {
101 return false;
102 }
103
104 for (auto it = heap_mappings.begin(); it != heap_mappings.end(); it++) {
105 MEM_ALOGV("Heap mapping %" PRIxPTR "-%" PRIxPTR " %s", it->begin, it->end, it->name);
106 HeapIterate(*it,
107 [&](uintptr_t base, size_t size) { heap_walker_.Allocation(base, base + size); });
108 }
109
110 for (auto it = anon_mappings.begin(); it != anon_mappings.end(); it++) {
111 MEM_ALOGV("Anon mapping %" PRIxPTR "-%" PRIxPTR " %s", it->begin, it->end, it->name);
112 heap_walker_.Allocation(it->begin, it->end);
113 }
114
115 for (auto it = globals_mappings.begin(); it != globals_mappings.end(); it++) {
116 MEM_ALOGV("Globals mapping %" PRIxPTR "-%" PRIxPTR " %s", it->begin, it->end, it->name);
117 heap_walker_.Root(it->begin, it->end);
118 }
119
120 for (auto thread_it = threads.begin(); thread_it != threads.end(); thread_it++) {
121 for (auto it = stack_mappings.begin(); it != stack_mappings.end(); it++) {
122 if (thread_it->stack.first >= it->begin && thread_it->stack.first <= it->end) {
123 MEM_ALOGV("Stack %" PRIxPTR "-%" PRIxPTR " %s", thread_it->stack.first, it->end, it->name);
124 heap_walker_.Root(thread_it->stack.first, it->end);
125 }
126 }
127 heap_walker_.Root(thread_it->regs);
128 }
129
130 heap_walker_.Root(refs);
131
132 MEM_ALOGI("searching done");
133
134 return true;
135 }
136
GetUnreachableMemory(allocator::vector<Leak> & leaks,size_t limit,size_t * num_leaks,size_t * leak_bytes)137 bool MemUnreachable::GetUnreachableMemory(allocator::vector<Leak>& leaks, size_t limit,
138 size_t* num_leaks, size_t* leak_bytes) {
139 MEM_ALOGI("sweeping process %d for unreachable memory", pid_);
140 leaks.clear();
141
142 if (!heap_walker_.DetectLeaks()) {
143 return false;
144 }
145
146 allocator::vector<Range> leaked1{allocator_};
147 heap_walker_.Leaked(leaked1, 0, num_leaks, leak_bytes);
148
149 MEM_ALOGI("sweeping done");
150
151 MEM_ALOGI("folding related leaks");
152
153 LeakFolding folding(allocator_, heap_walker_);
154 if (!folding.FoldLeaks()) {
155 return false;
156 }
157
158 allocator::vector<LeakFolding::Leak> leaked{allocator_};
159
160 if (!folding.Leaked(leaked, num_leaks, leak_bytes)) {
161 return false;
162 }
163
164 allocator::unordered_map<Leak::Backtrace, Leak*> backtrace_map{allocator_};
165
166 // Prevent reallocations of backing memory so we can store pointers into it
167 // in backtrace_map.
168 leaks.reserve(leaked.size());
169
170 for (auto& it : leaked) {
171 leaks.emplace_back();
172 Leak* leak = &leaks.back();
173
174 ssize_t num_backtrace_frames = malloc_backtrace(
175 reinterpret_cast<void*>(it.range.begin), leak->backtrace.frames, leak->backtrace.max_frames);
176 if (num_backtrace_frames > 0) {
177 leak->backtrace.num_frames = num_backtrace_frames;
178
179 auto inserted = backtrace_map.emplace(leak->backtrace, leak);
180 if (!inserted.second) {
181 // Leak with same backtrace already exists, drop this one and
182 // increment similar counts on the existing one.
183 leaks.pop_back();
184 Leak* similar_leak = inserted.first->second;
185 similar_leak->similar_count++;
186 similar_leak->similar_size += it.range.size();
187 similar_leak->similar_referenced_count += it.referenced_count;
188 similar_leak->similar_referenced_size += it.referenced_size;
189 similar_leak->total_size += it.range.size();
190 similar_leak->total_size += it.referenced_size;
191 continue;
192 }
193 }
194
195 leak->begin = it.range.begin;
196 leak->size = it.range.size();
197 leak->referenced_count = it.referenced_count;
198 leak->referenced_size = it.referenced_size;
199 leak->total_size = leak->size + leak->referenced_size;
200 memcpy(leak->contents, reinterpret_cast<void*>(it.range.begin),
201 std::min(leak->size, Leak::contents_length));
202 }
203
204 MEM_ALOGI("folding done");
205
206 std::sort(leaks.begin(), leaks.end(),
207 [](const Leak& a, const Leak& b) { return a.total_size > b.total_size; });
208
209 if (leaks.size() > limit) {
210 leaks.resize(limit);
211 }
212
213 return true;
214 }
215
has_prefix(const allocator::string & s,const char * prefix)216 static bool has_prefix(const allocator::string& s, const char* prefix) {
217 int ret = s.compare(0, strlen(prefix), prefix);
218 return ret == 0;
219 }
220
is_sanitizer_mapping(const allocator::string & s)221 static bool is_sanitizer_mapping(const allocator::string& s) {
222 return s == "[anon:low shadow]" || s == "[anon:high shadow]" || has_prefix(s, "[anon:hwasan");
223 }
224
ClassifyMappings(const allocator::vector<Mapping> & mappings,allocator::vector<Mapping> & heap_mappings,allocator::vector<Mapping> & anon_mappings,allocator::vector<Mapping> & globals_mappings,allocator::vector<Mapping> & stack_mappings)225 bool MemUnreachable::ClassifyMappings(const allocator::vector<Mapping>& mappings,
226 allocator::vector<Mapping>& heap_mappings,
227 allocator::vector<Mapping>& anon_mappings,
228 allocator::vector<Mapping>& globals_mappings,
229 allocator::vector<Mapping>& stack_mappings) {
230 heap_mappings.clear();
231 anon_mappings.clear();
232 globals_mappings.clear();
233 stack_mappings.clear();
234
235 allocator::string current_lib{allocator_};
236
237 for (auto it = mappings.begin(); it != mappings.end(); it++) {
238 if (it->execute) {
239 current_lib = it->name;
240 continue;
241 }
242
243 if (!it->read) {
244 continue;
245 }
246
247 const allocator::string mapping_name{it->name, allocator_};
248 if (mapping_name == "[anon:.bss]") {
249 // named .bss section
250 globals_mappings.emplace_back(*it);
251 } else if (mapping_name == current_lib) {
252 // .rodata or .data section
253 globals_mappings.emplace_back(*it);
254 } else if (mapping_name == "[anon:libc_malloc]" ||
255 android::base::StartsWith(mapping_name, "[anon:scudo:") ||
256 android::base::StartsWith(mapping_name, "[anon:GWP-ASan")) {
257 // named malloc mapping
258 heap_mappings.emplace_back(*it);
259 } else if (has_prefix(mapping_name, "[anon:dalvik-")) {
260 // named dalvik heap mapping
261 globals_mappings.emplace_back(*it);
262 } else if (has_prefix(mapping_name, "[stack")) {
263 // named stack mapping
264 stack_mappings.emplace_back(*it);
265 } else if (mapping_name.size() == 0) {
266 globals_mappings.emplace_back(*it);
267 } else if (has_prefix(mapping_name, "[anon:") &&
268 mapping_name != "[anon:leak_detector_malloc]" &&
269 !is_sanitizer_mapping(mapping_name)) {
270 // TODO(ccross): it would be nice to treat named anonymous mappings as
271 // possible leaks, but naming something in a .bss or .data section makes
272 // it impossible to distinguish them from mmaped and then named mappings.
273 globals_mappings.emplace_back(*it);
274 }
275 }
276
277 return true;
278 }
279
280 template <typename T>
plural(T val)281 static inline const char* plural(T val) {
282 return (val == 1) ? "" : "s";
283 }
284
GetUnreachableMemory(UnreachableMemoryInfo & info,size_t limit)285 bool GetUnreachableMemory(UnreachableMemoryInfo& info, size_t limit) {
286 if (info.version > 0) {
287 MEM_ALOGE("unsupported UnreachableMemoryInfo.version %zu in GetUnreachableMemory",
288 info.version);
289 return false;
290 }
291
292 int parent_pid = getpid();
293 int parent_tid = gettid();
294
295 Heap heap;
296
297 Semaphore continue_parent_sem;
298 LeakPipe pipe;
299
300 PtracerThread thread{[&]() -> int {
301 /////////////////////////////////////////////
302 // Collection thread
303 /////////////////////////////////////////////
304 MEM_ALOGI("collecting thread info for process %d...", parent_pid);
305
306 ThreadCapture thread_capture(parent_pid, heap);
307 allocator::vector<ThreadInfo> thread_info(heap);
308 allocator::vector<Mapping> mappings(heap);
309 allocator::vector<uintptr_t> refs(heap);
310
311 // ptrace all the threads
312 if (!thread_capture.CaptureThreads()) {
313 continue_parent_sem.Post();
314 return 1;
315 }
316
317 // collect register contents and stacks
318 if (!thread_capture.CapturedThreadInfo(thread_info)) {
319 continue_parent_sem.Post();
320 return 1;
321 }
322
323 // snapshot /proc/pid/maps
324 if (!ProcessMappings(parent_pid, mappings)) {
325 continue_parent_sem.Post();
326 return 1;
327 }
328
329 if (!BinderReferences(refs)) {
330 continue_parent_sem.Post();
331 return 1;
332 }
333
334 // malloc must be enabled to call fork, at_fork handlers take the same
335 // locks as ScopedDisableMalloc. All threads are paused in ptrace, so
336 // memory state is still consistent. Unfreeze the original thread so it
337 // can drop the malloc locks, it will block until the collection thread
338 // exits.
339 thread_capture.ReleaseThread(parent_tid);
340 continue_parent_sem.Post();
341
342 // fork a process to do the heap walking
343 int ret = fork();
344 if (ret < 0) {
345 return 1;
346 } else if (ret == 0) {
347 /////////////////////////////////////////////
348 // Heap walker process
349 /////////////////////////////////////////////
350 // Examine memory state in the child using the data collected above and
351 // the CoW snapshot of the process memory contents.
352
353 if (!pipe.OpenSender()) {
354 _exit(1);
355 }
356
357 MemUnreachable unreachable{parent_pid, heap};
358
359 if (!unreachable.CollectAllocations(thread_info, mappings, refs)) {
360 _exit(2);
361 }
362 size_t num_allocations = unreachable.Allocations();
363 size_t allocation_bytes = unreachable.AllocationBytes();
364
365 allocator::vector<Leak> leaks{heap};
366
367 size_t num_leaks = 0;
368 size_t leak_bytes = 0;
369 bool ok = unreachable.GetUnreachableMemory(leaks, limit, &num_leaks, &leak_bytes);
370
371 ok = ok && pipe.Sender().Send(num_allocations);
372 ok = ok && pipe.Sender().Send(allocation_bytes);
373 ok = ok && pipe.Sender().Send(num_leaks);
374 ok = ok && pipe.Sender().Send(leak_bytes);
375 ok = ok && pipe.Sender().SendVector(leaks);
376
377 if (!ok) {
378 _exit(3);
379 }
380
381 _exit(0);
382 } else {
383 // Nothing left to do in the collection thread, return immediately,
384 // releasing all the captured threads.
385 MEM_ALOGI("collection thread done");
386 return 0;
387 }
388 }};
389
390 /////////////////////////////////////////////
391 // Original thread
392 /////////////////////////////////////////////
393
394 {
395 // Disable malloc to get a consistent view of memory
396 ScopedDisableMalloc disable_malloc;
397
398 // Start the collection thread
399 thread.Start();
400
401 // Wait for the collection thread to signal that it is ready to fork the
402 // heap walker process.
403 continue_parent_sem.Wait(30s);
404
405 // Re-enable malloc so the collection thread can fork.
406 }
407
408 // Wait for the collection thread to exit
409 int ret = thread.Join();
410 if (ret != 0) {
411 return false;
412 }
413
414 // Get a pipe from the heap walker process. Transferring a new pipe fd
415 // ensures no other forked processes can have it open, so when the heap
416 // walker process dies the remote side of the pipe will close.
417 if (!pipe.OpenReceiver()) {
418 return false;
419 }
420
421 bool ok = true;
422 ok = ok && pipe.Receiver().Receive(&info.num_allocations);
423 ok = ok && pipe.Receiver().Receive(&info.allocation_bytes);
424 ok = ok && pipe.Receiver().Receive(&info.num_leaks);
425 ok = ok && pipe.Receiver().Receive(&info.leak_bytes);
426 ok = ok && pipe.Receiver().ReceiveVector(info.leaks);
427 if (!ok) {
428 return false;
429 }
430
431 MEM_ALOGI("unreachable memory detection done");
432 MEM_ALOGE("%zu bytes in %zu allocation%s unreachable out of %zu bytes in %zu allocation%s",
433 info.leak_bytes, info.num_leaks, plural(info.num_leaks), info.allocation_bytes,
434 info.num_allocations, plural(info.num_allocations));
435 return true;
436 }
437
ToString(bool log_contents) const438 std::string Leak::ToString(bool log_contents) const {
439 std::ostringstream oss;
440
441 oss << " " << std::dec << size;
442 oss << " bytes unreachable at ";
443 oss << std::hex << begin;
444 oss << std::endl;
445 if (referenced_count > 0) {
446 oss << std::dec;
447 oss << " referencing " << referenced_size << " unreachable bytes";
448 oss << " in " << referenced_count << " allocation" << plural(referenced_count);
449 oss << std::endl;
450 }
451 if (similar_count > 0) {
452 oss << std::dec;
453 oss << " and " << similar_size << " similar unreachable bytes";
454 oss << " in " << similar_count << " allocation" << plural(similar_count);
455 oss << std::endl;
456 if (similar_referenced_count > 0) {
457 oss << " referencing " << similar_referenced_size << " unreachable bytes";
458 oss << " in " << similar_referenced_count << " allocation" << plural(similar_referenced_count);
459 oss << std::endl;
460 }
461 }
462
463 if (log_contents) {
464 const int bytes_per_line = 16;
465 const size_t bytes = std::min(size, contents_length);
466
467 if (bytes == size) {
468 oss << " contents:" << std::endl;
469 } else {
470 oss << " first " << bytes << " bytes of contents:" << std::endl;
471 }
472
473 for (size_t i = 0; i < bytes; i += bytes_per_line) {
474 oss << " " << std::hex << begin + i << ": ";
475 size_t j;
476 oss << std::setfill('0');
477 for (j = i; j < bytes && j < i + bytes_per_line; j++) {
478 oss << std::setw(2) << static_cast<int>(contents[j]) << " ";
479 }
480 oss << std::setfill(' ');
481 for (; j < i + bytes_per_line; j++) {
482 oss << " ";
483 }
484 for (j = i; j < bytes && j < i + bytes_per_line; j++) {
485 char c = contents[j];
486 if (c < ' ' || c >= 0x7f) {
487 c = '.';
488 }
489 oss << c;
490 }
491 oss << std::endl;
492 }
493 }
494 if (backtrace.num_frames > 0) {
495 oss << backtrace_string(backtrace.frames, backtrace.num_frames);
496 }
497
498 return oss.str();
499 }
500
ToString(bool log_contents) const501 std::string UnreachableMemoryInfo::ToString(bool log_contents) const {
502 std::ostringstream oss;
503 oss << " " << leak_bytes << " bytes in ";
504 oss << num_leaks << " unreachable allocation" << plural(num_leaks);
505 oss << std::endl;
506 oss << " ABI: '" ABI_STRING "'" << std::endl;
507 oss << std::endl;
508
509 for (auto it = leaks.begin(); it != leaks.end(); it++) {
510 oss << it->ToString(log_contents);
511 oss << std::endl;
512 }
513
514 return oss.str();
515 }
516
~UnreachableMemoryInfo()517 UnreachableMemoryInfo::~UnreachableMemoryInfo() {
518 // Clear the memory that holds the leaks, otherwise the next attempt to
519 // detect leaks may find the old data (for example in the jemalloc tcache)
520 // and consider all the leaks to be referenced.
521 memset(leaks.data(), 0, leaks.capacity() * sizeof(Leak));
522
523 std::vector<Leak> tmp;
524 leaks.swap(tmp);
525
526 // Disable and re-enable malloc to flush the jemalloc tcache to make sure
527 // there are no copies of the leaked pointer addresses there.
528 malloc_disable();
529 malloc_enable();
530 }
531
GetUnreachableMemoryString(bool log_contents,size_t limit)532 std::string GetUnreachableMemoryString(bool log_contents, size_t limit) {
533 UnreachableMemoryInfo info;
534 if (!GetUnreachableMemory(info, limit)) {
535 return "Failed to get unreachable memory\n"
536 "If you are trying to get unreachable memory from a system app\n"
537 "(like com.android.systemui), disable selinux first using\n"
538 "setenforce 0\n";
539 }
540
541 return info.ToString(log_contents);
542 }
543
544 } // namespace android
545
LogUnreachableMemory(bool log_contents,size_t limit)546 bool LogUnreachableMemory(bool log_contents, size_t limit) {
547 android::UnreachableMemoryInfo info;
548 if (!android::GetUnreachableMemory(info, limit)) {
549 return false;
550 }
551
552 for (auto it = info.leaks.begin(); it != info.leaks.end(); it++) {
553 MEM_ALOGE("%s", it->ToString(log_contents).c_str());
554 }
555 return true;
556 }
557
NoLeaks()558 bool NoLeaks() {
559 android::UnreachableMemoryInfo info;
560 if (!android::GetUnreachableMemory(info, 0)) {
561 return false;
562 }
563
564 return info.num_leaks == 0;
565 }
566