1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "debugger.h"
18 
19 #include <sys/uio.h>
20 
21 #include <functional>
22 #include <memory>
23 #include <set>
24 #include <vector>
25 
26 #include "android-base/macros.h"
27 #include "android-base/stringprintf.h"
28 
29 #include "arch/context.h"
30 #include "art_field-inl.h"
31 #include "art_method-inl.h"
32 #include "base/endian_utils.h"
33 #include "base/enums.h"
34 #include "base/logging.h"
35 #include "base/memory_tool.h"
36 #include "base/safe_map.h"
37 #include "base/strlcpy.h"
38 #include "base/time_utils.h"
39 #include "class_linker-inl.h"
40 #include "class_linker.h"
41 #include "dex/descriptors_names.h"
42 #include "dex/dex_file-inl.h"
43 #include "dex/dex_file_annotations.h"
44 #include "dex/dex_file_types.h"
45 #include "dex/dex_instruction.h"
46 #include "dex/utf.h"
47 #include "entrypoints/runtime_asm_entrypoints.h"
48 #include "gc/accounting/card_table-inl.h"
49 #include "gc/allocation_record.h"
50 #include "gc/gc_cause.h"
51 #include "gc/scoped_gc_critical_section.h"
52 #include "gc/space/bump_pointer_space-walk-inl.h"
53 #include "gc/space/large_object_space.h"
54 #include "gc/space/space-inl.h"
55 #include "handle_scope-inl.h"
56 #include "instrumentation.h"
57 #include "jni/jni_internal.h"
58 #include "jvalue-inl.h"
59 #include "mirror/array-alloc-inl.h"
60 #include "mirror/class-alloc-inl.h"
61 #include "mirror/class-inl.h"
62 #include "mirror/class.h"
63 #include "mirror/class_loader.h"
64 #include "mirror/object-inl.h"
65 #include "mirror/object_array-inl.h"
66 #include "mirror/string-alloc-inl.h"
67 #include "mirror/string-inl.h"
68 #include "mirror/throwable.h"
69 #include "nativehelper/scoped_local_ref.h"
70 #include "nativehelper/scoped_primitive_array.h"
71 #include "oat_file.h"
72 #include "obj_ptr-inl.h"
73 #include "reflection.h"
74 #include "reflective_handle.h"
75 #include "reflective_handle_scope-inl.h"
76 #include "runtime-inl.h"
77 #include "runtime_callbacks.h"
78 #include "scoped_thread_state_change-inl.h"
79 #include "scoped_thread_state_change.h"
80 #include "stack.h"
81 #include "thread.h"
82 #include "thread_list.h"
83 #include "thread_pool.h"
84 #include "well_known_classes.h"
85 
86 namespace art {
87 
88 using android::base::StringPrintf;
89 
90 // Limit alloc_record_count to the 2BE value (64k-1) that is the limit of the current protocol.
CappedAllocRecordCount(size_t alloc_record_count)91 static uint16_t CappedAllocRecordCount(size_t alloc_record_count) {
92   const size_t cap = 0xffff;
93   if (alloc_record_count > cap) {
94     return cap;
95   }
96   return alloc_record_count;
97 }
98 
99 // JDWP is allowed unless the Zygote forbids it.
100 static bool gJdwpAllowed = true;
101 
102 static bool gDdmThreadNotification = false;
103 
104 // DDMS GC-related settings.
105 static Dbg::HpifWhen gDdmHpifWhen = Dbg::HPIF_WHEN_NEVER;
106 static Dbg::HpsgWhen gDdmHpsgWhen = Dbg::HPSG_WHEN_NEVER;
107 static Dbg::HpsgWhat gDdmHpsgWhat;
108 static Dbg::HpsgWhen gDdmNhsgWhen = Dbg::HPSG_WHEN_NEVER;
109 static Dbg::HpsgWhat gDdmNhsgWhat;
110 
111 Dbg::DbgThreadLifecycleCallback Dbg::thread_lifecycle_callback_;
112 
GcDidFinish()113 void Dbg::GcDidFinish() {
114   if (gDdmHpifWhen != HPIF_WHEN_NEVER) {
115     ScopedObjectAccess soa(Thread::Current());
116     VLOG(jdwp) << "Sending heap info to DDM";
117     DdmSendHeapInfo(gDdmHpifWhen);
118   }
119   if (gDdmHpsgWhen != HPSG_WHEN_NEVER) {
120     ScopedObjectAccess soa(Thread::Current());
121     VLOG(jdwp) << "Dumping heap to DDM";
122     DdmSendHeapSegments(false);
123   }
124   if (gDdmNhsgWhen != HPSG_WHEN_NEVER) {
125     ScopedObjectAccess soa(Thread::Current());
126     VLOG(jdwp) << "Dumping native heap to DDM";
127     DdmSendHeapSegments(true);
128   }
129 }
130 
SetJdwpAllowed(bool allowed)131 void Dbg::SetJdwpAllowed(bool allowed) {
132   gJdwpAllowed = allowed;
133 }
134 
IsJdwpAllowed()135 bool Dbg::IsJdwpAllowed() {
136   return gJdwpAllowed;
137 }
138 
139 // Do we need to deoptimize the stack to handle an exception?
IsForcedInterpreterNeededForExceptionImpl(Thread * thread)140 bool Dbg::IsForcedInterpreterNeededForExceptionImpl(Thread* thread) {
141   // Deoptimization is required if at least one method in the stack needs it. However we
142   // skip frames that will be unwound (thus not executed).
143   bool needs_deoptimization = false;
144   StackVisitor::WalkStack(
145       [&](art::StackVisitor* visitor) REQUIRES_SHARED(Locks::mutator_lock_) {
146         // The visitor is meant to be used when handling exception from compiled code only.
147         CHECK(!visitor->IsShadowFrame()) << "We only expect to visit compiled frame: "
148                                          << ArtMethod::PrettyMethod(visitor->GetMethod());
149         ArtMethod* method = visitor->GetMethod();
150         if (method == nullptr) {
151           // We reach an upcall and don't need to deoptimize this part of the stack (ManagedFragment)
152           // so we can stop the visit.
153           DCHECK(!needs_deoptimization);
154           return false;
155         }
156         if (Runtime::Current()->GetInstrumentation()->InterpretOnly()) {
157           // We found a compiled frame in the stack but instrumentation is set to interpret
158           // everything: we need to deoptimize.
159           needs_deoptimization = true;
160           return false;
161         }
162         if (Runtime::Current()->GetInstrumentation()->IsDeoptimized(method)) {
163           // We found a deoptimized method in the stack.
164           needs_deoptimization = true;
165           return false;
166         }
167         ShadowFrame* frame = visitor->GetThread()->FindDebuggerShadowFrame(visitor->GetFrameId());
168         if (frame != nullptr) {
169           // The debugger allocated a ShadowFrame to update a variable in the stack: we need to
170           // deoptimize the stack to execute (and deallocate) this frame.
171           needs_deoptimization = true;
172           return false;
173         }
174         return true;
175       },
176       thread,
177       /* context= */ nullptr,
178       art::StackVisitor::StackWalkKind::kIncludeInlinedFrames,
179       /* check_suspended */ true,
180       /* include_transitions */ true);
181   return needs_deoptimization;
182 }
183 
184 
DdmHandleChunk(JNIEnv * env,uint32_t type,const ArrayRef<const jbyte> & data,uint32_t * out_type,std::vector<uint8_t> * out_data)185 bool Dbg::DdmHandleChunk(JNIEnv* env,
186                          uint32_t type,
187                          const ArrayRef<const jbyte>& data,
188                          /*out*/uint32_t* out_type,
189                          /*out*/std::vector<uint8_t>* out_data) {
190   ScopedLocalRef<jbyteArray> dataArray(env, env->NewByteArray(data.size()));
191   if (dataArray.get() == nullptr) {
192     LOG(WARNING) << "byte[] allocation failed: " << data.size();
193     env->ExceptionClear();
194     return false;
195   }
196   env->SetByteArrayRegion(dataArray.get(),
197                           0,
198                           data.size(),
199                           reinterpret_cast<const jbyte*>(data.data()));
200   // Call "private static Chunk dispatch(int type, byte[] data, int offset, int length)".
201   ScopedLocalRef<jobject> chunk(
202       env,
203       env->CallStaticObjectMethod(
204           WellKnownClasses::org_apache_harmony_dalvik_ddmc_DdmServer,
205           WellKnownClasses::org_apache_harmony_dalvik_ddmc_DdmServer_dispatch,
206           type, dataArray.get(), 0, data.size()));
207   if (env->ExceptionCheck()) {
208     Thread* self = Thread::Current();
209     ScopedObjectAccess soa(self);
210     LOG(INFO) << StringPrintf("Exception thrown by dispatcher for 0x%08x", type) << std::endl
211               << self->GetException()->Dump();
212     self->ClearException();
213     return false;
214   }
215 
216   if (chunk.get() == nullptr) {
217     return false;
218   }
219 
220   /*
221    * Pull the pieces out of the chunk.  We copy the results into a
222    * newly-allocated buffer that the caller can free.  We don't want to
223    * continue using the Chunk object because nothing has a reference to it.
224    *
225    * We could avoid this by returning type/data/offset/length and having
226    * the caller be aware of the object lifetime issues, but that
227    * integrates the JDWP code more tightly into the rest of the runtime, and doesn't work
228    * if we have responses for multiple chunks.
229    *
230    * So we're pretty much stuck with copying data around multiple times.
231    */
232   ScopedLocalRef<jbyteArray> replyData(
233       env,
234       reinterpret_cast<jbyteArray>(
235           env->GetObjectField(
236               chunk.get(), WellKnownClasses::org_apache_harmony_dalvik_ddmc_Chunk_data)));
237   jint offset = env->GetIntField(chunk.get(),
238                                  WellKnownClasses::org_apache_harmony_dalvik_ddmc_Chunk_offset);
239   jint length = env->GetIntField(chunk.get(),
240                                  WellKnownClasses::org_apache_harmony_dalvik_ddmc_Chunk_length);
241   *out_type = env->GetIntField(chunk.get(),
242                                WellKnownClasses::org_apache_harmony_dalvik_ddmc_Chunk_type);
243 
244   VLOG(jdwp) << StringPrintf("DDM reply: type=0x%08x data=%p offset=%d length=%d",
245                              type,
246                              replyData.get(),
247                              offset,
248                              length);
249   out_data->resize(length);
250   env->GetByteArrayRegion(replyData.get(),
251                           offset,
252                           length,
253                           reinterpret_cast<jbyte*>(out_data->data()));
254 
255   if (env->ExceptionCheck()) {
256     Thread* self = Thread::Current();
257     ScopedObjectAccess soa(self);
258     LOG(INFO) << StringPrintf("Exception thrown when reading response data from dispatcher 0x%08x",
259                               type) << std::endl << self->GetException()->Dump();
260     self->ClearException();
261     return false;
262   }
263 
264   return true;
265 }
266 
DdmBroadcast(bool connect)267 void Dbg::DdmBroadcast(bool connect) {
268   VLOG(jdwp) << "Broadcasting DDM " << (connect ? "connect" : "disconnect") << "...";
269 
270   Thread* self = Thread::Current();
271   if (self->GetState() != kRunnable) {
272     LOG(ERROR) << "DDM broadcast in thread state " << self->GetState();
273     /* try anyway? */
274   }
275 
276   JNIEnv* env = self->GetJniEnv();
277   jint event = connect ? 1 /*DdmServer.CONNECTED*/ : 2 /*DdmServer.DISCONNECTED*/;
278   env->CallStaticVoidMethod(WellKnownClasses::org_apache_harmony_dalvik_ddmc_DdmServer,
279                             WellKnownClasses::org_apache_harmony_dalvik_ddmc_DdmServer_broadcast,
280                             event);
281   if (env->ExceptionCheck()) {
282     LOG(ERROR) << "DdmServer.broadcast " << event << " failed";
283     env->ExceptionDescribe();
284     env->ExceptionClear();
285   }
286 }
287 
DdmConnected()288 void Dbg::DdmConnected() {
289   Dbg::DdmBroadcast(true);
290 }
291 
DdmDisconnected()292 void Dbg::DdmDisconnected() {
293   Dbg::DdmBroadcast(false);
294   gDdmThreadNotification = false;
295 }
296 
297 
298 /*
299  * Send a notification when a thread starts, stops, or changes its name.
300  *
301  * Because we broadcast the full set of threads when the notifications are
302  * first enabled, it's possible for "thread" to be actively executing.
303  */
DdmSendThreadNotification(Thread * t,uint32_t type)304 void Dbg::DdmSendThreadNotification(Thread* t, uint32_t type) {
305   Locks::mutator_lock_->AssertNotExclusiveHeld(Thread::Current());
306   if (!gDdmThreadNotification) {
307     return;
308   }
309 
310   RuntimeCallbacks* cb = Runtime::Current()->GetRuntimeCallbacks();
311   if (type == CHUNK_TYPE("THDE")) {
312     uint8_t buf[4];
313     Set4BE(&buf[0], t->GetThreadId());
314     cb->DdmPublishChunk(CHUNK_TYPE("THDE"), ArrayRef<const uint8_t>(buf));
315   } else {
316     CHECK(type == CHUNK_TYPE("THCR") || type == CHUNK_TYPE("THNM")) << type;
317     StackHandleScope<1> hs(Thread::Current());
318     Handle<mirror::String> name(hs.NewHandle(t->GetThreadName()));
319     size_t char_count = (name != nullptr) ? name->GetLength() : 0;
320     const jchar* chars = (name != nullptr) ? name->GetValue() : nullptr;
321     bool is_compressed = (name != nullptr) ? name->IsCompressed() : false;
322 
323     std::vector<uint8_t> bytes;
324     Append4BE(bytes, t->GetThreadId());
325     if (is_compressed) {
326       const uint8_t* chars_compressed = name->GetValueCompressed();
327       AppendUtf16CompressedBE(bytes, chars_compressed, char_count);
328     } else {
329       AppendUtf16BE(bytes, chars, char_count);
330     }
331     CHECK_EQ(bytes.size(), char_count*2 + sizeof(uint32_t)*2);
332     cb->DdmPublishChunk(type, ArrayRef<const uint8_t>(bytes));
333   }
334 }
335 
DdmSetThreadNotification(bool enable)336 void Dbg::DdmSetThreadNotification(bool enable) {
337   // Enable/disable thread notifications.
338   gDdmThreadNotification = enable;
339   if (enable) {
340     // Use a Checkpoint to cause every currently running thread to send their own notification when
341     // able. We then wait for every thread thread active at the time to post the creation
342     // notification. Threads created later will send this themselves.
343     Thread* self = Thread::Current();
344     ScopedObjectAccess soa(self);
345     Barrier finish_barrier(0);
346     FunctionClosure fc([&](Thread* thread) REQUIRES_SHARED(Locks::mutator_lock_) {
347       Thread* cls_self = Thread::Current();
348       Locks::mutator_lock_->AssertSharedHeld(cls_self);
349       Dbg::DdmSendThreadNotification(thread, CHUNK_TYPE("THCR"));
350       finish_barrier.Pass(cls_self);
351     });
352     size_t checkpoints = Runtime::Current()->GetThreadList()->RunCheckpoint(&fc);
353     ScopedThreadSuspension sts(self, ThreadState::kWaitingForCheckPointsToRun);
354     finish_barrier.Increment(self, checkpoints);
355   }
356 }
357 
PostThreadStartOrStop(Thread * t,uint32_t type)358 void Dbg::PostThreadStartOrStop(Thread* t, uint32_t type) {
359   Dbg::DdmSendThreadNotification(t, type);
360 }
361 
PostThreadStart(Thread * t)362 void Dbg::PostThreadStart(Thread* t) {
363   Dbg::PostThreadStartOrStop(t, CHUNK_TYPE("THCR"));
364 }
365 
PostThreadDeath(Thread * t)366 void Dbg::PostThreadDeath(Thread* t) {
367   Dbg::PostThreadStartOrStop(t, CHUNK_TYPE("THDE"));
368 }
369 
DdmHandleHpifChunk(HpifWhen when)370 int Dbg::DdmHandleHpifChunk(HpifWhen when) {
371   if (when == HPIF_WHEN_NOW) {
372     DdmSendHeapInfo(when);
373     return 1;
374   }
375 
376   if (when != HPIF_WHEN_NEVER && when != HPIF_WHEN_NEXT_GC && when != HPIF_WHEN_EVERY_GC) {
377     LOG(ERROR) << "invalid HpifWhen value: " << static_cast<int>(when);
378     return 0;
379   }
380 
381   gDdmHpifWhen = when;
382   return 1;
383 }
384 
DdmHandleHpsgNhsgChunk(Dbg::HpsgWhen when,Dbg::HpsgWhat what,bool native)385 bool Dbg::DdmHandleHpsgNhsgChunk(Dbg::HpsgWhen when, Dbg::HpsgWhat what, bool native) {
386   if (when != HPSG_WHEN_NEVER && when != HPSG_WHEN_EVERY_GC) {
387     LOG(ERROR) << "invalid HpsgWhen value: " << static_cast<int>(when);
388     return false;
389   }
390 
391   if (what != HPSG_WHAT_MERGED_OBJECTS && what != HPSG_WHAT_DISTINCT_OBJECTS) {
392     LOG(ERROR) << "invalid HpsgWhat value: " << static_cast<int>(what);
393     return false;
394   }
395 
396   if (native) {
397     gDdmNhsgWhen = when;
398     gDdmNhsgWhat = what;
399   } else {
400     gDdmHpsgWhen = when;
401     gDdmHpsgWhat = what;
402   }
403   return true;
404 }
405 
DdmSendHeapInfo(HpifWhen reason)406 void Dbg::DdmSendHeapInfo(HpifWhen reason) {
407   // If there's a one-shot 'when', reset it.
408   if (reason == gDdmHpifWhen) {
409     if (gDdmHpifWhen == HPIF_WHEN_NEXT_GC) {
410       gDdmHpifWhen = HPIF_WHEN_NEVER;
411     }
412   }
413 
414   /*
415    * Chunk HPIF (client --> server)
416    *
417    * Heap Info. General information about the heap,
418    * suitable for a summary display.
419    *
420    *   [u4]: number of heaps
421    *
422    *   For each heap:
423    *     [u4]: heap ID
424    *     [u8]: timestamp in ms since Unix epoch
425    *     [u1]: capture reason (same as 'when' value from server)
426    *     [u4]: max heap size in bytes (-Xmx)
427    *     [u4]: current heap size in bytes
428    *     [u4]: current number of bytes allocated
429    *     [u4]: current number of objects allocated
430    */
431   uint8_t heap_count = 1;
432   gc::Heap* heap = Runtime::Current()->GetHeap();
433   std::vector<uint8_t> bytes;
434   Append4BE(bytes, heap_count);
435   Append4BE(bytes, 1);  // Heap id (bogus; we only have one heap).
436   Append8BE(bytes, MilliTime());
437   Append1BE(bytes, reason);
438   Append4BE(bytes, heap->GetMaxMemory());  // Max allowed heap size in bytes.
439   Append4BE(bytes, heap->GetTotalMemory());  // Current heap size in bytes.
440   Append4BE(bytes, heap->GetBytesAllocated());
441   Append4BE(bytes, heap->GetObjectsAllocated());
442   CHECK_EQ(bytes.size(), 4U + (heap_count * (4 + 8 + 1 + 4 + 4 + 4 + 4)));
443   Runtime::Current()->GetRuntimeCallbacks()->DdmPublishChunk(CHUNK_TYPE("HPIF"),
444                                                              ArrayRef<const uint8_t>(bytes));
445 }
446 
447 enum HpsgSolidity {
448   SOLIDITY_FREE = 0,
449   SOLIDITY_HARD = 1,
450   SOLIDITY_SOFT = 2,
451   SOLIDITY_WEAK = 3,
452   SOLIDITY_PHANTOM = 4,
453   SOLIDITY_FINALIZABLE = 5,
454   SOLIDITY_SWEEP = 6,
455 };
456 
457 enum HpsgKind {
458   KIND_OBJECT = 0,
459   KIND_CLASS_OBJECT = 1,
460   KIND_ARRAY_1 = 2,
461   KIND_ARRAY_2 = 3,
462   KIND_ARRAY_4 = 4,
463   KIND_ARRAY_8 = 5,
464   KIND_UNKNOWN = 6,
465   KIND_NATIVE = 7,
466 };
467 
468 #define HPSG_PARTIAL (1<<7)
469 #define HPSG_STATE(solidity, kind) ((uint8_t)((((kind) & 0x7) << 3) | ((solidity) & 0x7)))
470 
471 class HeapChunkContext {
472  public:
473   // Maximum chunk size.  Obtain this from the formula:
474   // (((maximum_heap_size / ALLOCATION_UNIT_SIZE) + 255) / 256) * 2
HeapChunkContext(bool merge,bool native)475   HeapChunkContext(bool merge, bool native)
476       : buf_(16384 - 16),
477         type_(0),
478         chunk_overhead_(0) {
479     Reset();
480     if (native) {
481       type_ = CHUNK_TYPE("NHSG");
482     } else {
483       type_ = merge ? CHUNK_TYPE("HPSG") : CHUNK_TYPE("HPSO");
484     }
485   }
486 
~HeapChunkContext()487   ~HeapChunkContext() {
488     if (p_ > &buf_[0]) {
489       Flush();
490     }
491   }
492 
SetChunkOverhead(size_t chunk_overhead)493   void SetChunkOverhead(size_t chunk_overhead) {
494     chunk_overhead_ = chunk_overhead;
495   }
496 
ResetStartOfNextChunk()497   void ResetStartOfNextChunk() {
498     startOfNextMemoryChunk_ = nullptr;
499   }
500 
EnsureHeader(const void * chunk_ptr)501   void EnsureHeader(const void* chunk_ptr) {
502     if (!needHeader_) {
503       return;
504     }
505 
506     // Start a new HPSx chunk.
507     Write4BE(&p_, 1);  // Heap id (bogus; we only have one heap).
508     Write1BE(&p_, 8);  // Size of allocation unit, in bytes.
509 
510     Write4BE(&p_, reinterpret_cast<uintptr_t>(chunk_ptr));  // virtual address of segment start.
511     Write4BE(&p_, 0);  // offset of this piece (relative to the virtual address).
512     // [u4]: length of piece, in allocation units
513     // We won't know this until we're done, so save the offset and stuff in a fake value.
514     pieceLenField_ = p_;
515     Write4BE(&p_, 0x55555555);
516     needHeader_ = false;
517   }
518 
Flush()519   void Flush() REQUIRES_SHARED(Locks::mutator_lock_) {
520     if (pieceLenField_ == nullptr) {
521       // Flush immediately post Reset (maybe back-to-back Flush). Ignore.
522       CHECK(needHeader_);
523       return;
524     }
525     // Patch the "length of piece" field.
526     CHECK_LE(&buf_[0], pieceLenField_);
527     CHECK_LE(pieceLenField_, p_);
528     Set4BE(pieceLenField_, totalAllocationUnits_);
529 
530     ArrayRef<const uint8_t> out(&buf_[0], p_ - &buf_[0]);
531     Runtime::Current()->GetRuntimeCallbacks()->DdmPublishChunk(type_, out);
532     Reset();
533   }
534 
HeapChunkJavaCallback(void * start,void * end,size_t used_bytes,void * arg)535   static void HeapChunkJavaCallback(void* start, void* end, size_t used_bytes, void* arg)
536       REQUIRES_SHARED(Locks::heap_bitmap_lock_,
537                             Locks::mutator_lock_) {
538     reinterpret_cast<HeapChunkContext*>(arg)->HeapChunkJavaCallback(start, end, used_bytes);
539   }
540 
HeapChunkNativeCallback(void * start,void * end,size_t used_bytes,void * arg)541   static void HeapChunkNativeCallback(void* start, void* end, size_t used_bytes, void* arg)
542       REQUIRES_SHARED(Locks::mutator_lock_) {
543     reinterpret_cast<HeapChunkContext*>(arg)->HeapChunkNativeCallback(start, end, used_bytes);
544   }
545 
546  private:
547   enum { ALLOCATION_UNIT_SIZE = 8 };
548 
Reset()549   void Reset() {
550     p_ = &buf_[0];
551     ResetStartOfNextChunk();
552     totalAllocationUnits_ = 0;
553     needHeader_ = true;
554     pieceLenField_ = nullptr;
555   }
556 
IsNative() const557   bool IsNative() const {
558     return type_ == CHUNK_TYPE("NHSG");
559   }
560 
561   // Returns true if the object is not an empty chunk.
ProcessRecord(void * start,size_t used_bytes)562   bool ProcessRecord(void* start, size_t used_bytes) REQUIRES_SHARED(Locks::mutator_lock_) {
563     // Note: heap call backs cannot manipulate the heap upon which they are crawling, care is taken
564     // in the following code not to allocate memory, by ensuring buf_ is of the correct size
565     if (used_bytes == 0) {
566       if (start == nullptr) {
567         // Reset for start of new heap.
568         startOfNextMemoryChunk_ = nullptr;
569         Flush();
570       }
571       // Only process in use memory so that free region information
572       // also includes dlmalloc book keeping.
573       return false;
574     }
575     if (startOfNextMemoryChunk_ != nullptr) {
576       // Transmit any pending free memory. Native free memory of over kMaxFreeLen could be because
577       // of the use of mmaps, so don't report. If not free memory then start a new segment.
578       bool flush = true;
579       if (start > startOfNextMemoryChunk_) {
580         const size_t kMaxFreeLen = 2 * kPageSize;
581         void* free_start = startOfNextMemoryChunk_;
582         void* free_end = start;
583         const size_t free_len =
584             reinterpret_cast<uintptr_t>(free_end) - reinterpret_cast<uintptr_t>(free_start);
585         if (!IsNative() || free_len < kMaxFreeLen) {
586           AppendChunk(HPSG_STATE(SOLIDITY_FREE, 0), free_start, free_len, IsNative());
587           flush = false;
588         }
589       }
590       if (flush) {
591         startOfNextMemoryChunk_ = nullptr;
592         Flush();
593       }
594     }
595     return true;
596   }
597 
HeapChunkNativeCallback(void * start,void *,size_t used_bytes)598   void HeapChunkNativeCallback(void* start, void* /*end*/, size_t used_bytes)
599       REQUIRES_SHARED(Locks::mutator_lock_) {
600     if (ProcessRecord(start, used_bytes)) {
601       uint8_t state = ExamineNativeObject(start);
602       AppendChunk(state, start, used_bytes + chunk_overhead_, /*is_native=*/ true);
603       startOfNextMemoryChunk_ = reinterpret_cast<char*>(start) + used_bytes + chunk_overhead_;
604     }
605   }
606 
HeapChunkJavaCallback(void * start,void *,size_t used_bytes)607   void HeapChunkJavaCallback(void* start, void* /*end*/, size_t used_bytes)
608       REQUIRES_SHARED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
609     if (ProcessRecord(start, used_bytes)) {
610       // Determine the type of this chunk.
611       // OLD-TODO: if context.merge, see if this chunk is different from the last chunk.
612       // If it's the same, we should combine them.
613       uint8_t state = ExamineJavaObject(reinterpret_cast<mirror::Object*>(start));
614       AppendChunk(state, start, used_bytes + chunk_overhead_, /*is_native=*/ false);
615       startOfNextMemoryChunk_ = reinterpret_cast<char*>(start) + used_bytes + chunk_overhead_;
616     }
617   }
618 
AppendChunk(uint8_t state,void * ptr,size_t length,bool is_native)619   void AppendChunk(uint8_t state, void* ptr, size_t length, bool is_native)
620       REQUIRES_SHARED(Locks::mutator_lock_) {
621     // Make sure there's enough room left in the buffer.
622     // We need to use two bytes for every fractional 256 allocation units used by the chunk plus
623     // 17 bytes for any header.
624     const size_t needed = ((RoundUp(length / ALLOCATION_UNIT_SIZE, 256) / 256) * 2) + 17;
625     size_t byte_left = &buf_.back() - p_;
626     if (byte_left < needed) {
627       if (is_native) {
628       // Cannot trigger memory allocation while walking native heap.
629         return;
630       }
631       Flush();
632     }
633 
634     byte_left = &buf_.back() - p_;
635     if (byte_left < needed) {
636       LOG(WARNING) << "Chunk is too big to transmit (chunk_len=" << length << ", "
637           << needed << " bytes)";
638       return;
639     }
640     EnsureHeader(ptr);
641     // Write out the chunk description.
642     length /= ALLOCATION_UNIT_SIZE;   // Convert to allocation units.
643     totalAllocationUnits_ += length;
644     while (length > 256) {
645       *p_++ = state | HPSG_PARTIAL;
646       *p_++ = 255;     // length - 1
647       length -= 256;
648     }
649     *p_++ = state;
650     *p_++ = length - 1;
651   }
652 
ExamineNativeObject(const void * p)653   uint8_t ExamineNativeObject(const void* p) REQUIRES_SHARED(Locks::mutator_lock_) {
654     return p == nullptr ? HPSG_STATE(SOLIDITY_FREE, 0) : HPSG_STATE(SOLIDITY_HARD, KIND_NATIVE);
655   }
656 
ExamineJavaObject(ObjPtr<mirror::Object> o)657   uint8_t ExamineJavaObject(ObjPtr<mirror::Object> o)
658       REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
659     if (o == nullptr) {
660       return HPSG_STATE(SOLIDITY_FREE, 0);
661     }
662     // It's an allocated chunk. Figure out what it is.
663     gc::Heap* heap = Runtime::Current()->GetHeap();
664     if (!heap->IsLiveObjectLocked(o)) {
665       LOG(ERROR) << "Invalid object in managed heap: " << o;
666       return HPSG_STATE(SOLIDITY_HARD, KIND_NATIVE);
667     }
668     ObjPtr<mirror::Class> c = o->GetClass();
669     if (c == nullptr) {
670       // The object was probably just created but hasn't been initialized yet.
671       return HPSG_STATE(SOLIDITY_HARD, KIND_OBJECT);
672     }
673     if (!heap->IsValidObjectAddress(c.Ptr())) {
674       LOG(ERROR) << "Invalid class for managed heap object: " << o << " " << c;
675       return HPSG_STATE(SOLIDITY_HARD, KIND_UNKNOWN);
676     }
677     if (c->GetClass() == nullptr) {
678       LOG(ERROR) << "Null class of class " << c << " for object " << o;
679       return HPSG_STATE(SOLIDITY_HARD, KIND_UNKNOWN);
680     }
681     if (c->IsClassClass()) {
682       return HPSG_STATE(SOLIDITY_HARD, KIND_CLASS_OBJECT);
683     }
684     if (c->IsArrayClass()) {
685       switch (c->GetComponentSize()) {
686       case 1: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_1);
687       case 2: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_2);
688       case 4: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_4);
689       case 8: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_8);
690       }
691     }
692     return HPSG_STATE(SOLIDITY_HARD, KIND_OBJECT);
693   }
694 
695   std::vector<uint8_t> buf_;
696   uint8_t* p_;
697   uint8_t* pieceLenField_;
698   void* startOfNextMemoryChunk_;
699   size_t totalAllocationUnits_;
700   uint32_t type_;
701   bool needHeader_;
702   size_t chunk_overhead_;
703 
704   DISALLOW_COPY_AND_ASSIGN(HeapChunkContext);
705 };
706 
707 
DdmSendHeapSegments(bool native)708 void Dbg::DdmSendHeapSegments(bool native) {
709   Dbg::HpsgWhen when = native ? gDdmNhsgWhen : gDdmHpsgWhen;
710   Dbg::HpsgWhat what = native ? gDdmNhsgWhat : gDdmHpsgWhat;
711   if (when == HPSG_WHEN_NEVER) {
712     return;
713   }
714   RuntimeCallbacks* cb = Runtime::Current()->GetRuntimeCallbacks();
715   // Figure out what kind of chunks we'll be sending.
716   CHECK(what == HPSG_WHAT_MERGED_OBJECTS || what == HPSG_WHAT_DISTINCT_OBJECTS)
717       << static_cast<int>(what);
718 
719   // First, send a heap start chunk.
720   uint8_t heap_id[4];
721   Set4BE(&heap_id[0], 1);  // Heap id (bogus; we only have one heap).
722   cb->DdmPublishChunk(native ? CHUNK_TYPE("NHST") : CHUNK_TYPE("HPST"),
723                       ArrayRef<const uint8_t>(heap_id));
724   Thread* self = Thread::Current();
725   Locks::mutator_lock_->AssertSharedHeld(self);
726 
727   // Send a series of heap segment chunks.
728   HeapChunkContext context(what == HPSG_WHAT_MERGED_OBJECTS, native);
729   auto bump_pointer_space_visitor = [&](mirror::Object* obj)
730       REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
731     const size_t size = RoundUp(obj->SizeOf(), kObjectAlignment);
732     HeapChunkContext::HeapChunkJavaCallback(
733         obj, reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(obj) + size), size, &context);
734   };
735   if (native) {
736     UNIMPLEMENTED(WARNING) << "Native heap inspection is not supported";
737   } else {
738     gc::Heap* heap = Runtime::Current()->GetHeap();
739     for (const auto& space : heap->GetContinuousSpaces()) {
740       if (space->IsDlMallocSpace()) {
741         ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
742         // dlmalloc's chunk header is 2 * sizeof(size_t), but if the previous chunk is in use for an
743         // allocation then the first sizeof(size_t) may belong to it.
744         context.SetChunkOverhead(sizeof(size_t));
745         space->AsDlMallocSpace()->Walk(HeapChunkContext::HeapChunkJavaCallback, &context);
746       } else if (space->IsRosAllocSpace()) {
747         context.SetChunkOverhead(0);
748         // Need to acquire the mutator lock before the heap bitmap lock with exclusive access since
749         // RosAlloc's internal logic doesn't know to release and reacquire the heap bitmap lock.
750         ScopedThreadSuspension sts(self, kSuspended);
751         ScopedSuspendAll ssa(__FUNCTION__);
752         ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
753         space->AsRosAllocSpace()->Walk(HeapChunkContext::HeapChunkJavaCallback, &context);
754       } else if (space->IsBumpPointerSpace()) {
755         ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
756         context.SetChunkOverhead(0);
757         space->AsBumpPointerSpace()->Walk(bump_pointer_space_visitor);
758         HeapChunkContext::HeapChunkJavaCallback(nullptr, nullptr, 0, &context);
759       } else if (space->IsRegionSpace()) {
760         heap->IncrementDisableMovingGC(self);
761         {
762           ScopedThreadSuspension sts(self, kSuspended);
763           ScopedSuspendAll ssa(__FUNCTION__);
764           ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
765           context.SetChunkOverhead(0);
766           space->AsRegionSpace()->Walk(bump_pointer_space_visitor);
767           HeapChunkContext::HeapChunkJavaCallback(nullptr, nullptr, 0, &context);
768         }
769         heap->DecrementDisableMovingGC(self);
770       } else {
771         UNIMPLEMENTED(WARNING) << "Not counting objects in space " << *space;
772       }
773       context.ResetStartOfNextChunk();
774     }
775     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
776     // Walk the large objects, these are not in the AllocSpace.
777     context.SetChunkOverhead(0);
778     heap->GetLargeObjectsSpace()->Walk(HeapChunkContext::HeapChunkJavaCallback, &context);
779   }
780 
781   // Finally, send a heap end chunk.
782   cb->DdmPublishChunk(native ? CHUNK_TYPE("NHEN") : CHUNK_TYPE("HPEN"),
783                       ArrayRef<const uint8_t>(heap_id));
784 }
785 
SetAllocTrackingEnabled(bool enable)786 void Dbg::SetAllocTrackingEnabled(bool enable) {
787   gc::AllocRecordObjectMap::SetAllocTrackingEnabled(enable);
788 }
789 
790 class StringTable {
791  private:
792   struct Entry {
Entryart::StringTable::Entry793     explicit Entry(const char* data_in)
794         : data(data_in), hash(ComputeModifiedUtf8Hash(data_in)), index(0) {
795     }
796     Entry(const Entry& entry) = default;
797     Entry(Entry&& entry) = default;
798 
799     // Pointer to the actual string data.
800     const char* data;
801 
802     // The hash of the data.
803     const uint32_t hash;
804 
805     // The index. This will be filled in on Finish and is not part of the ordering, so mark it
806     // mutable.
807     mutable uint32_t index;
808 
operator ==art::StringTable::Entry809     bool operator==(const Entry& other) const {
810       return strcmp(data, other.data) == 0;
811     }
812   };
813   struct EntryHash {
operator ()art::StringTable::EntryHash814     size_t operator()(const Entry& entry) const {
815       return entry.hash;
816     }
817   };
818 
819  public:
StringTable()820   StringTable() : finished_(false) {
821   }
822 
Add(const char * str,bool copy_string)823   void Add(const char* str, bool copy_string) {
824     DCHECK(!finished_);
825     if (UNLIKELY(copy_string)) {
826       // Check whether it's already there.
827       Entry entry(str);
828       if (table_.find(entry) != table_.end()) {
829         return;
830       }
831 
832       // Make a copy.
833       size_t str_len = strlen(str);
834       char* copy = new char[str_len + 1];
835       strlcpy(copy, str, str_len + 1);
836       string_backup_.emplace_back(copy);
837       str = copy;
838     }
839     Entry entry(str);
840     table_.insert(entry);
841   }
842 
843   // Update all entries and give them an index. Note that this is likely not the insertion order,
844   // as the set will with high likelihood reorder elements. Thus, Add must not be called after
845   // Finish, and Finish must be called before IndexOf. In that case, WriteTo will walk in
846   // the same order as Finish, and indices will agree. The order invariant, as well as indices,
847   // are enforced through debug checks.
Finish()848   void Finish() {
849     DCHECK(!finished_);
850     finished_ = true;
851     uint32_t index = 0;
852     for (auto& entry : table_) {
853       entry.index = index;
854       ++index;
855     }
856   }
857 
IndexOf(const char * s) const858   size_t IndexOf(const char* s) const {
859     DCHECK(finished_);
860     Entry entry(s);
861     auto it = table_.find(entry);
862     if (it == table_.end()) {
863       LOG(FATAL) << "IndexOf(\"" << s << "\") failed";
864     }
865     return it->index;
866   }
867 
Size() const868   size_t Size() const {
869     return table_.size();
870   }
871 
WriteTo(std::vector<uint8_t> & bytes) const872   void WriteTo(std::vector<uint8_t>& bytes) const {
873     DCHECK(finished_);
874     uint32_t cur_index = 0;
875     for (const auto& entry : table_) {
876       DCHECK_EQ(cur_index++, entry.index);
877 
878       size_t s_len = CountModifiedUtf8Chars(entry.data);
879       std::unique_ptr<uint16_t[]> s_utf16(new uint16_t[s_len]);
880       ConvertModifiedUtf8ToUtf16(s_utf16.get(), entry.data);
881       AppendUtf16BE(bytes, s_utf16.get(), s_len);
882     }
883   }
884 
885  private:
886   std::unordered_set<Entry, EntryHash> table_;
887   std::vector<std::unique_ptr<char[]>> string_backup_;
888 
889   bool finished_;
890 
891   DISALLOW_COPY_AND_ASSIGN(StringTable);
892 };
893 
894 
GetMethodSourceFile(ArtMethod * method)895 static const char* GetMethodSourceFile(ArtMethod* method)
896     REQUIRES_SHARED(Locks::mutator_lock_) {
897   DCHECK(method != nullptr);
898   const char* source_file = method->GetDeclaringClassSourceFile();
899   return (source_file != nullptr) ? source_file : "";
900 }
901 
902 /*
903  * The data we send to DDMS contains everything we have recorded.
904  *
905  * Message header (all values big-endian):
906  * (1b) message header len (to allow future expansion); includes itself
907  * (1b) entry header len
908  * (1b) stack frame len
909  * (2b) number of entries
910  * (4b) offset to string table from start of message
911  * (2b) number of class name strings
912  * (2b) number of method name strings
913  * (2b) number of source file name strings
914  * For each entry:
915  *   (4b) total allocation size
916  *   (2b) thread id
917  *   (2b) allocated object's class name index
918  *   (1b) stack depth
919  *   For each stack frame:
920  *     (2b) method's class name
921  *     (2b) method name
922  *     (2b) method source file
923  *     (2b) line number, clipped to 32767; -2 if native; -1 if no source
924  * (xb) class name strings
925  * (xb) method name strings
926  * (xb) source file strings
927  *
928  * As with other DDM traffic, strings are sent as a 4-byte length
929  * followed by UTF-16 data.
930  *
931  * We send up 16-bit unsigned indexes into string tables.  In theory there
932  * can be (kMaxAllocRecordStackDepth * alloc_record_max_) unique strings in
933  * each table, but in practice there should be far fewer.
934  *
935  * The chief reason for using a string table here is to keep the size of
936  * the DDMS message to a minimum.  This is partly to make the protocol
937  * efficient, but also because we have to form the whole thing up all at
938  * once in a memory buffer.
939  *
940  * We use separate string tables for class names, method names, and source
941  * files to keep the indexes small.  There will generally be no overlap
942  * between the contents of these tables.
943  */
GetRecentAllocations()944 jbyteArray Dbg::GetRecentAllocations() {
945   if ((false)) {
946     DumpRecentAllocations();
947   }
948 
949   Thread* self = Thread::Current();
950   std::vector<uint8_t> bytes;
951   {
952     MutexLock mu(self, *Locks::alloc_tracker_lock_);
953     gc::AllocRecordObjectMap* records = Runtime::Current()->GetHeap()->GetAllocationRecords();
954     // In case this method is called when allocation tracker is not enabled,
955     // we should still send some data back.
956     gc::AllocRecordObjectMap fallback_record_map;
957     if (records == nullptr) {
958       CHECK(!Runtime::Current()->GetHeap()->IsAllocTrackingEnabled());
959       records = &fallback_record_map;
960     }
961     // We don't need to wait on the condition variable records->new_record_condition_, because this
962     // function only reads the class objects, which are already marked so it doesn't change their
963     // reachability.
964 
965     //
966     // Part 1: generate string tables.
967     //
968     StringTable class_names;
969     StringTable method_names;
970     StringTable filenames;
971 
972     VLOG(jdwp) << "Collecting StringTables.";
973 
974     const uint16_t capped_count = CappedAllocRecordCount(records->GetRecentAllocationSize());
975     uint16_t count = capped_count;
976     size_t alloc_byte_count = 0;
977     for (auto it = records->RBegin(), end = records->REnd();
978          count > 0 && it != end; count--, it++) {
979       const gc::AllocRecord* record = &it->second;
980       std::string temp;
981       const char* class_descr = record->GetClassDescriptor(&temp);
982       class_names.Add(class_descr, !temp.empty());
983 
984       // Size + tid + class name index + stack depth.
985       alloc_byte_count += 4u + 2u + 2u + 1u;
986 
987       for (size_t i = 0, depth = record->GetDepth(); i < depth; i++) {
988         ArtMethod* m = record->StackElement(i).GetMethod();
989         class_names.Add(m->GetDeclaringClassDescriptor(), false);
990         method_names.Add(m->GetName(), false);
991         filenames.Add(GetMethodSourceFile(m), false);
992       }
993 
994       // Depth * (class index + method name index + file name index + line number).
995       alloc_byte_count += record->GetDepth() * (2u + 2u + 2u + 2u);
996     }
997 
998     class_names.Finish();
999     method_names.Finish();
1000     filenames.Finish();
1001     VLOG(jdwp) << "Done collecting StringTables:" << std::endl
1002                << "  ClassNames: " << class_names.Size() << std::endl
1003                << "  MethodNames: " << method_names.Size() << std::endl
1004                << "  Filenames: " << filenames.Size();
1005 
1006     LOG(INFO) << "recent allocation records: " << capped_count;
1007     LOG(INFO) << "allocation records all objects: " << records->Size();
1008 
1009     //
1010     // Part 2: Generate the output and store it in the buffer.
1011     //
1012 
1013     // (1b) message header len (to allow future expansion); includes itself
1014     // (1b) entry header len
1015     // (1b) stack frame len
1016     const int kMessageHeaderLen = 15;
1017     const int kEntryHeaderLen = 9;
1018     const int kStackFrameLen = 8;
1019     Append1BE(bytes, kMessageHeaderLen);
1020     Append1BE(bytes, kEntryHeaderLen);
1021     Append1BE(bytes, kStackFrameLen);
1022 
1023     // (2b) number of entries
1024     // (4b) offset to string table from start of message
1025     // (2b) number of class name strings
1026     // (2b) number of method name strings
1027     // (2b) number of source file name strings
1028     Append2BE(bytes, capped_count);
1029     size_t string_table_offset = bytes.size();
1030     Append4BE(bytes, 0);  // We'll patch this later...
1031     Append2BE(bytes, class_names.Size());
1032     Append2BE(bytes, method_names.Size());
1033     Append2BE(bytes, filenames.Size());
1034 
1035     VLOG(jdwp) << "Dumping allocations with stacks";
1036 
1037     // Enlarge the vector for the allocation data.
1038     size_t reserve_size = bytes.size() + alloc_byte_count;
1039     bytes.reserve(reserve_size);
1040 
1041     std::string temp;
1042     count = capped_count;
1043     // The last "count" number of allocation records in "records" are the most recent "count" number
1044     // of allocations. Reverse iterate to get them. The most recent allocation is sent first.
1045     for (auto it = records->RBegin(), end = records->REnd();
1046          count > 0 && it != end; count--, it++) {
1047       // For each entry:
1048       // (4b) total allocation size
1049       // (2b) thread id
1050       // (2b) allocated object's class name index
1051       // (1b) stack depth
1052       const gc::AllocRecord* record = &it->second;
1053       size_t stack_depth = record->GetDepth();
1054       size_t allocated_object_class_name_index =
1055           class_names.IndexOf(record->GetClassDescriptor(&temp));
1056       Append4BE(bytes, record->ByteCount());
1057       Append2BE(bytes, static_cast<uint16_t>(record->GetTid()));
1058       Append2BE(bytes, allocated_object_class_name_index);
1059       Append1BE(bytes, stack_depth);
1060 
1061       for (size_t stack_frame = 0; stack_frame < stack_depth; ++stack_frame) {
1062         // For each stack frame:
1063         // (2b) method's class name
1064         // (2b) method name
1065         // (2b) method source file
1066         // (2b) line number, clipped to 32767; -2 if native; -1 if no source
1067         ArtMethod* m = record->StackElement(stack_frame).GetMethod();
1068         size_t class_name_index = class_names.IndexOf(m->GetDeclaringClassDescriptor());
1069         size_t method_name_index = method_names.IndexOf(m->GetName());
1070         size_t file_name_index = filenames.IndexOf(GetMethodSourceFile(m));
1071         Append2BE(bytes, class_name_index);
1072         Append2BE(bytes, method_name_index);
1073         Append2BE(bytes, file_name_index);
1074         Append2BE(bytes, record->StackElement(stack_frame).ComputeLineNumber());
1075       }
1076     }
1077 
1078     CHECK_EQ(bytes.size(), reserve_size);
1079     VLOG(jdwp) << "Dumping tables.";
1080 
1081     // (xb) class name strings
1082     // (xb) method name strings
1083     // (xb) source file strings
1084     Set4BE(&bytes[string_table_offset], bytes.size());
1085     class_names.WriteTo(bytes);
1086     method_names.WriteTo(bytes);
1087     filenames.WriteTo(bytes);
1088 
1089     VLOG(jdwp) << "GetRecentAllocations: data created. " << bytes.size();
1090   }
1091   JNIEnv* env = self->GetJniEnv();
1092   jbyteArray result = env->NewByteArray(bytes.size());
1093   if (result != nullptr) {
1094     env->SetByteArrayRegion(result, 0, bytes.size(), reinterpret_cast<const jbyte*>(&bytes[0]));
1095   }
1096   return result;
1097 }
1098 
ThreadStart(Thread * self)1099 void Dbg::DbgThreadLifecycleCallback::ThreadStart(Thread* self) {
1100   Dbg::PostThreadStart(self);
1101 }
1102 
ThreadDeath(Thread * self)1103 void Dbg::DbgThreadLifecycleCallback::ThreadDeath(Thread* self) {
1104   Dbg::PostThreadDeath(self);
1105 }
1106 
1107 }  // namespace art
1108