/frameworks/native/services/inputflinger/reader/mapper/ |
D | JoystickInputMapper.cpp | 35 const Axis& axis = mAxes.valueAt(i); in populateDeviceInfo() local 36 addMotionRange(axis.axisInfo.axis, axis, info); in populateDeviceInfo() 38 if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) { in populateDeviceInfo() 39 addMotionRange(axis.axisInfo.highAxis, axis, info); in populateDeviceInfo() 44 void JoystickInputMapper::addMotionRange(int32_t axisId, const Axis& axis, InputDeviceInfo* info) { in addMotionRange() argument 45 info->addMotionRange(axisId, AINPUT_SOURCE_JOYSTICK, axis.min, axis.max, axis.flat, axis.fuzz, in addMotionRange() 46 axis.resolution); in addMotionRange() 52 info->addMotionRange(compatAxis, AINPUT_SOURCE_JOYSTICK, axis.min, axis.max, axis.flat, in addMotionRange() 53 axis.fuzz, axis.resolution); in addMotionRange() 60 int32_t JoystickInputMapper::getCompatAxis(int32_t axis) { in getCompatAxis() argument [all …]
|
D | InputMapper.cpp | 76 status_t InputMapper::getAbsoluteAxisInfo(int32_t axis, RawAbsoluteAxisInfo* axisInfo) { in getAbsoluteAxisInfo() argument 77 return getEventHub()->getAbsoluteAxisInfo(getDeviceId(), axis, axisInfo); in getAbsoluteAxisInfo() 84 void InputMapper::dumpRawAbsoluteAxisInfo(std::string& dump, const RawAbsoluteAxisInfo& axis, in dumpRawAbsoluteAxisInfo() argument 86 if (axis.valid) { in dumpRawAbsoluteAxisInfo() 88 axis.minValue, axis.maxValue, axis.flat, axis.fuzz, axis.resolution); in dumpRawAbsoluteAxisInfo()
|
/frameworks/ml/nn/common/operations/ |
D | L2Normalization.cpp | 47 inline bool l2normFloat32Impl(const float* inputData, const Shape& inputShape, int32_t axis, in l2normFloat32Impl() argument 51 const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis); in l2normFloat32Impl() 52 const uint32_t axisSize = getSizeOfDimension(inputShape, axis); in l2normFloat32Impl() 54 getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape)); in l2normFloat32Impl() 75 inline bool l2normQuant8Impl(const uint8_t* inputData, const Shape& inputShape, int32_t axis, in l2normQuant8Impl() argument 78 const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis); in l2normQuant8Impl() 79 const uint32_t axisSize = getSizeOfDimension(inputShape, axis); in l2normQuant8Impl() 81 getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape)); in l2normQuant8Impl() 107 inline bool l2normQuant8SignedImpl(const int8_t* inputData, const Shape& inputShape, int32_t axis, in l2normQuant8SignedImpl() argument 110 const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis); in l2normQuant8SignedImpl() [all …]
|
D | Split.cpp | 30 bool splitGeneric(const Scalar* inputData, const Shape& inputShape, int32_t axis, in splitGeneric() argument 33 NN_CHECK(handleNegativeAxis(inputShape, &axis)); in splitGeneric() 35 for (int i = 0; i < axis; ++i) { in splitGeneric() 40 for (int i = axis + 1; i < concatDimensions; ++i) { in splitGeneric() 47 const int copySize = outputShapes[i].dimensions[axis] * baseInnerSize; in splitGeneric() 56 bool splitFloat16(const _Float16* inputData, const Shape& inputShape, int32_t axis, in splitFloat16() argument 60 return splitGeneric<_Float16>(inputData, inputShape, axis, outputDataPtrs, outputShapes); in splitFloat16() 63 bool splitFloat32(const float* inputData, const Shape& inputShape, int32_t axis, in splitFloat32() argument 67 return splitGeneric<float>(inputData, inputShape, axis, outputDataPtrs, outputShapes); in splitFloat32() 70 bool splitQuant8(const uint8_t* inputData, const Shape& inputShape, int32_t axis, in splitQuant8() argument [all …]
|
D | Gather.cpp | 43 inline bool eval(const T* inputData, const Shape& inputShape, int32_t axis, in eval() argument 45 const auto outerSize = getNumberOfElements(inputShape, 0, axis); in eval() 46 const auto axisSize = getSizeOfDimension(inputShape, axis); in eval() 48 getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape)); in eval() 87 int32_t axis = context->getInputValue<int32_t>(kInputAxis); in prepare() local 88 NN_RET_CHECK(handleNegativeAxis(input, &axis)); in prepare() 95 input.dimensions.begin() + axis); in prepare() 98 output.dimensions.insert(output.dimensions.end(), input.dimensions.begin() + axis + 1, in prepare() 105 int32_t axis = context->getInputValue<int32_t>(kInputAxis); in execute() local 106 NN_RET_CHECK(handleNegativeAxis(context->getInputShape(kInputTensor), &axis)); in execute() [all …]
|
D | ChannelShuffle.cpp | 41 inline bool eval(const T* inputData, const Shape& inputShape, int32_t numGroups, int32_t axis, in eval() argument 43 const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis); in eval() 44 const uint32_t axisSize = getSizeOfDimension(inputShape, axis); in eval() 46 getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape)); in eval() 88 int32_t axis = context->getInputValue<int32_t>(kInputAxis); in prepare() local 89 NN_RET_CHECK(handleNegativeAxis(input, &axis)); in prepare() 91 NN_RET_CHECK(getSizeOfDimension(input, axis) % numGroups == 0); in prepare() 97 int32_t axis = context->getInputValue<int32_t>(kInputAxis); in execute() local 98 NN_RET_CHECK(handleNegativeAxis(context->getInputShape(kInputTensor), &axis)); in execute() 102 context->getInputShape(kInputTensor), numGroups, axis, in execute() [all …]
|
D | LocalResponseNormalization.cpp | 52 int32_t axis, float* outputData, in localResponseNormFloat32Impl() argument 55 const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis); in localResponseNormFloat32Impl() 56 const uint32_t axisSize = getSizeOfDimension(inputShape, axis); in localResponseNormFloat32Impl() 58 getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape)); in localResponseNormFloat32Impl() 82 T beta, int32_t axis, T* outputData, const Shape& outputShape); 86 float bias, float alpha, float beta, int32_t axis, float* outputData, in localResponseNorm() argument 89 NN_CHECK(handleNegativeAxis(inputShape, &axis)); in localResponseNorm() 91 if (axis == ndim - 1) { in localResponseNorm() 100 return localResponseNormFloat32Impl(inputData, inputShape, radius, bias, alpha, beta, axis, in localResponseNorm() 107 _Float16 bias, _Float16 alpha, _Float16 beta, int32_t axis, in localResponseNorm() argument [all …]
|
D | Softmax.cpp | 52 int32_t axis, float* outputData, const Shape& outputShape) { in softmaxSlowFloat32() argument 54 const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis); in softmaxSlowFloat32() 55 const uint32_t axisSize = getSizeOfDimension(inputShape, axis); in softmaxSlowFloat32() 57 getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape)); in softmaxSlowFloat32() 83 bool softmaxFloat32(const float* inputData, const Shape& inputShape, const float beta, int32_t axis, in softmaxFloat32() argument 86 NN_CHECK(handleNegativeAxis(inputShape, &axis)); in softmaxFloat32() 88 if (axis == ndim - 1) { in softmaxFloat32() 95 return softmaxSlowFloat32(inputData, inputShape, beta, axis, outputData, outputShape); in softmaxFloat32() 100 int32_t axis, _Float16* outputData, const Shape& outputShape) { in softmaxFloat16() argument 106 softmaxFloat32(inputData_float32.data(), inputShape, beta, axis, outputData_float32.data(), in softmaxFloat16() [all …]
|
/frameworks/base/data/keyboards/ |
D | Vendor_054c_Product_0268.kl | 36 axis 0x00 X 37 axis 0x01 Y 40 axis 0x02 Z 41 axis 0x05 RZ 44 # axis 0x2c -HAT_Y 45 # axis 0x2d +HAT_X 46 # axis 0x2e +HAT_Y 47 # axis 0x2f -HAT_X 50 axis 0x30 LTRIGGER 53 axis 0x31 RTRIGGER [all …]
|
D | Vendor_045e_Product_02e0.kl | 30 # LT axis 31 axis 0x02 LTRIGGER 32 # RT axis 33 axis 0x05 RTRIGGER 37 axis 0x00 X 38 axis 0x01 Y 40 axis 0x03 Z 41 axis 0x04 RZ 49 axis 0x10 HAT_X 50 axis 0x11 HAT_Y
|
D | Vendor_2e95_Product_7725.kl | 35 # L2 Trigger axis 36 axis 0x03 LTRIGGER 37 # R2 Trigger axis 38 axis 0x04 RTRIGGER 41 axis 0x00 X 42 axis 0x01 Y 44 axis 0x02 Z 45 axis 0x05 RZ 53 axis 0x10 HAT_X 54 axis 0x11 HAT_Y
|
D | Vendor_2378_Product_100a.kl | 28 axis 0x00 X 29 axis 0x01 Y 30 axis 0x03 Z 31 axis 0x04 RZ 32 axis 0x05 RTRIGGER 33 axis 0x02 LTRIGGER 34 axis 0x10 HAT_X 35 axis 0x11 HAT_Y
|
D | Vendor_046d_Product_c21f.kl | 29 axis 0x00 X 30 axis 0x01 Y 31 axis 0x03 Z 32 axis 0x04 RZ 33 axis 0x05 RTRIGGER 34 axis 0x02 LTRIGGER 35 axis 0x10 HAT_X 36 axis 0x11 HAT_Y
|
D | Vendor_046d_Product_c21d.kl | 29 axis 0x00 X 30 axis 0x01 Y 31 axis 0x03 Z 32 axis 0x04 RZ 33 axis 0x05 GAS 34 axis 0x02 BRAKE 35 axis 0x10 HAT_X 36 axis 0x11 HAT_Y
|
D | Vendor_2378_Product_1008.kl | 28 axis 0x00 X 29 axis 0x01 Y 30 axis 0x03 Z 31 axis 0x04 RZ 32 axis 0x05 RTRIGGER 33 axis 0x02 LTRIGGER 34 axis 0x10 HAT_X 35 axis 0x11 HAT_Y
|
D | Vendor_1689_Product_fd01.kl | 29 axis 0x00 X 30 axis 0x01 Y 31 axis 0x03 Z 32 axis 0x04 RZ 33 axis 0x05 RTRIGGER 34 axis 0x02 LTRIGGER 35 axis 0x10 HAT_X 36 axis 0x11 HAT_Y
|
D | Vendor_0a5c_Product_8502.kl | 30 axis 0x00 X 31 axis 0x01 Y 32 axis 0x02 Z 33 axis 0x03 RX 34 axis 0x04 RY 35 axis 0x05 RZ 36 axis 0x10 HAT_X 37 axis 0x11 HAT_Y
|
D | Vendor_1bad_Product_f036.kl | 29 axis 0x00 X 30 axis 0x01 Y 31 axis 0x03 Z 32 axis 0x04 RZ 33 axis 0x05 RTRIGGER 34 axis 0x02 LTRIGGER 35 axis 0x10 HAT_X 36 axis 0x11 HAT_Y
|
D | Vendor_1689_Product_fe00.kl | 29 axis 0x00 X 30 axis 0x01 Y 31 axis 0x03 Z 32 axis 0x04 RZ 33 axis 0x05 RTRIGGER 34 axis 0x02 LTRIGGER 35 axis 0x10 HAT_X 36 axis 0x11 HAT_Y
|
/frameworks/base/startop/scripts/app_startup/ |
D | analyze_metrics.py | 209 print("Mean: ", np_data_2d.mean(axis=0)) 210 print("Std: ", np_data_2d.std(axis=0)) 212 print("SEM: ", stats_standard_error_one(np_data_2d, axis=0)) 215 sem = stats_standard_error_one(np_data_2d, axis=0)[_PLOT_DATA_INDEX] 216 mean = np_data_2d.mean(axis=0)[_PLOT_DATA_INDEX] 220 … csv_writer.writerow(label_list + [mean, np_data_2d.std(axis=0)[_PLOT_DATA_INDEX], ci[0], ci[1]]) 281 def stats_standard_error_one(a, axis): argument 282 a_std = a.std(axis=axis, ddof=0) 283 a_len = a.shape[axis] 287 def stats_standard_error(a, b, axis): argument [all …]
|
/frameworks/ml/nn/runtime/test/specs/V1_3/ |
D | gather_quant8_signed.mod.py | 18 axis = 1 variable 22 model = Model().Operation("GATHER", input0, axis, indices).To(output0) 46 def test(input0, axis, indices, output0, input_data, output_data): argument 47 model = Model().Operation("GATHER", input0, axis, indices).To(output0) 61 axis=0, 72 axis=0, 82 axis=0, 91 axis=0, 100 axis=0, 113 axis=0, [all …]
|
D | split_quant8_signed.mod.py | 18 axis = Int32Scalar("axis", 0) variable 24 model = Model().Operation("SPLIT", input0, axis, num_splits).To( 41 axis = Int32Scalar("axis", 0) variable 46 model = Model().Operation("SPLIT", input0, axis, num_splits).To( 62 axis = Int32Scalar("axis", 1) variable 68 model = Model().Operation("SPLIT", input0, axis, num_splits).To( 85 axis = Int32Scalar("axis", 1) variable 92 model = Model().Operation("SPLIT", input0, axis, num_splits).To(
|
/frameworks/ml/nn/runtime/test/specs/V1_2/ |
D | gather.mod.py | 17 def test(input0, axis, indices, output0, input_data, output_data): argument 18 model = Model().Operation("GATHER", input0, axis, indices).To(output0) 42 axis=0, 53 axis=0, 63 axis=0, 72 axis=0, 81 axis=0, 94 axis=0, 103 axis=1, 114 axis=-1,
|
D | l2_normalization_axis.mod.py | 20 axis = Int32Scalar("axis", -1) # last axis variable 47 Model().Operation("L2_NORMALIZATION", i1, axis).To(o1) 48 Example(example0).AddAllDimsAndAxis(i1, o1, axis).AddVariations("relaxed", "float16", quant8) 54 axis = Int32Scalar("axis", -1) # last axis variable 56 Model("corner_case").Operation("L2_NORMALIZATION", i2, axis).To(o2) 60 }).AddAllDimsAndAxis(i2, o2, axis)
|
/frameworks/native/libs/vr/libdvrcommon/tests/ |
D | pose_test.cpp | 56 for (int axis = 0; axis < 3; ++axis) { in TYPED_TEST() local 58 start_position[axis] = FT(1.0); in TYPED_TEST() 81 for (int axis = 0; axis < 3; ++axis) { in TYPED_TEST() local 83 start_position[axis] = FT(1.0); in TYPED_TEST() 110 for (int axis = 0; axis < 3; ++axis) { in TYPED_TEST() local 112 start_position[axis] = FT(1.0); in TYPED_TEST() 136 for (int axis = 0; axis < 3; ++axis) { in TYPED_TEST() local 138 start_position[axis] = FT(1.0); in TYPED_TEST()
|