1 /*
2  * Copyright (C) 2020 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "Operations"
18 
19 #include <tensorflow/lite/kernels/internal/optimized/optimized_ops.h>
20 
21 #include <algorithm>
22 #include <vector>
23 
24 #include "CpuOperationUtils.h"
25 #include "HalInterfaces.h"
26 #include "OperationResolver.h"
27 #include "Tracing.h"
28 
29 namespace android {
30 namespace nn {
31 namespace local_response_norm {
32 
33 constexpr char kOperationName[] = "LOCAL_RESPONSE_NORMALIZATION";
34 
35 constexpr uint32_t kNumInputs = 6;
36 constexpr uint32_t kInputTensor = 0;
37 constexpr uint32_t kRadiusScalar = 1;
38 constexpr uint32_t kBiasScalar = 2;
39 constexpr uint32_t kAlphaScalar = 3;
40 constexpr uint32_t kBetaScalar = 4;
41 constexpr uint32_t kAxisScalar = 5;
42 
43 constexpr uint32_t kNumOutputs = 1;
44 constexpr uint32_t kOutputTensor = 0;
45 
46 namespace {
47 
48 using namespace hal;
49 
localResponseNormFloat32Impl(const float * inputData,const Shape & inputShape,int32_t radius,float bias,float alpha,float beta,int32_t axis,float * outputData,const Shape & outputShape)50 inline bool localResponseNormFloat32Impl(const float* inputData, const Shape& inputShape,
51                                          int32_t radius, float bias, float alpha, float beta,
52                                          int32_t axis, float* outputData,
53                                          const Shape& outputShape) {
54     NNTRACE_TRANS("localResponseNormFloat32");
55     const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis);
56     const uint32_t axisSize = getSizeOfDimension(inputShape, axis);
57     const uint32_t innerSize =
58             getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape));
59     for (uint32_t outer = 0; outer < outerSize; ++outer) {
60         const float* inputBase = inputData + outer * axisSize * innerSize;
61         float* outputBase = outputData + outer * axisSize * innerSize;
62         for (uint32_t inner = 0; inner < innerSize; ++inner, ++inputBase, ++outputBase) {
63             for (int32_t i = 0; i < axisSize; i++) {
64                 const int32_t dBegin = std::max(0, i - radius);
65                 // Add 1 on dEnd to comply with optimized_ops in TFLite
66                 const int32_t dEnd = std::min(static_cast<int32_t>(axisSize), i + radius + 1);
67                 float sum = 0.0f;
68                 for (int32_t d = dBegin; d < dEnd; d++) {
69                     float val = inputBase[d * innerSize];
70                     sum += val * val;
71                 }
72                 float multiplier = std::pow(bias + alpha * sum, -beta);
73                 outputBase[i * innerSize] = inputBase[i * innerSize] * multiplier;
74             }
75         }
76     }
77     return true;
78 }
79 
80 template <typename T>
81 bool localResponseNorm(const T* inputData, const Shape& inputShape, int32_t radius, T bias, T alpha,
82                        T beta, int32_t axis, T* outputData, const Shape& outputShape);
83 
84 template <>
localResponseNorm(const float * inputData,const Shape & inputShape,int32_t radius,float bias,float alpha,float beta,int32_t axis,float * outputData,const Shape & outputShape)85 bool localResponseNorm<float>(const float* inputData, const Shape& inputShape, int32_t radius,
86                               float bias, float alpha, float beta, int32_t axis, float* outputData,
87                               const Shape& outputShape) {
88     int32_t ndim = getNumberOfDimensions(inputShape);
89     NN_CHECK(handleNegativeAxis(inputShape, &axis));
90     // TFLite optimized implementation only supports computation along the last axis
91     if (axis == ndim - 1) {
92         NNTRACE_COMP("optimized_ops::LocalResponseNormalization::float");
93         tflite::LocalResponseNormalizationParams param = {
94                 .range = radius, .bias = bias, .alpha = alpha, .beta = beta};
95         tflite::optimized_ops::LocalResponseNormalization(
96                 param, convertShapeToTflshape(inputShape), inputData,
97                 convertShapeToTflshape(outputShape), outputData);
98         return true;
99     } else {
100         return localResponseNormFloat32Impl(inputData, inputShape, radius, bias, alpha, beta, axis,
101                                             outputData, outputShape);
102     }
103 }
104 
105 template <>
localResponseNorm(const _Float16 * inputData,const Shape & inputShape,int32_t radius,_Float16 bias,_Float16 alpha,_Float16 beta,int32_t axis,_Float16 * outputData,const Shape & outputShape)106 bool localResponseNorm<_Float16>(const _Float16* inputData, const Shape& inputShape, int32_t radius,
107                                  _Float16 bias, _Float16 alpha, _Float16 beta, int32_t axis,
108                                  _Float16* outputData, const Shape& outputShape) {
109     NNTRACE_TRANS("localResponseNormFloat16");
110     std::vector<float> inputDataFloat32(getNumberOfElements(inputShape));
111     convertFloat16ToFloat32(inputData, &inputDataFloat32);
112     std::vector<float> outputDataFloat32(getNumberOfElements(outputShape));
113 
114     localResponseNorm<float>(inputDataFloat32.data(), inputShape, radius, bias, alpha, beta, axis,
115                              outputDataFloat32.data(), outputShape);
116     convertFloat32ToFloat16(outputDataFloat32, outputData);
117 
118     return true;
119 }
120 
121 template <typename T>
executeTyped(IOperationExecutionContext * context)122 bool executeTyped(IOperationExecutionContext* context) {
123     int32_t axis = context->getNumInputs() == kNumInputs
124                            ? context->getInputValue<int32_t>(kAxisScalar)
125                            : -1;
126     NN_RET_CHECK(handleNegativeAxis(context->getInputShape(kInputTensor), &axis));
127     return localResponseNorm<T>(
128             context->getInputBuffer<T>(kInputTensor), context->getInputShape(kInputTensor),
129             context->getInputValue<int32_t>(kRadiusScalar), context->getInputValue<T>(kBiasScalar),
130             context->getInputValue<T>(kAlphaScalar), context->getInputValue<T>(kBetaScalar), axis,
131             context->getOutputBuffer<T>(kOutputTensor), context->getOutputShape(kOutputTensor));
132 }
133 
134 }  // namespace
135 
validate(const IOperationValidationContext * context)136 bool validate(const IOperationValidationContext* context) {
137     NN_RET_CHECK(context->getNumInputs() == kNumInputs ||
138                  context->getNumInputs() == kNumInputs - 1);
139     NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
140 
141     const OperandType inputType = context->getInputType(kInputTensor);
142     std::vector<OperandType> inExpectedTypes;
143     std::vector<OperandType> outExpectedTypes;
144     if (inputType == OperandType::TENSOR_FLOAT32) {
145         NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_0));
146         inExpectedTypes = {
147                 OperandType::TENSOR_FLOAT32, OperandType::INT32,   OperandType::FLOAT32,
148                 OperandType::FLOAT32,        OperandType::FLOAT32,
149         };
150         outExpectedTypes = {OperandType::TENSOR_FLOAT32};
151     } else if (inputType == OperandType::TENSOR_FLOAT16) {
152         NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_2));
153         inExpectedTypes = {
154                 OperandType::TENSOR_FLOAT16, OperandType::INT32,   OperandType::FLOAT16,
155                 OperandType::FLOAT16,        OperandType::FLOAT16,
156         };
157         outExpectedTypes = {OperandType::TENSOR_FLOAT16};
158     } else {
159         NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
160     }
161 
162     if (context->getNumInputs() == kNumInputs) {
163         inExpectedTypes.push_back(OperandType::INT32);
164         NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_2));
165     } else if (context->getInputShape(kInputTensor).dimensions.size() != 4) {
166         NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_2));
167     }
168 
169     const Shape& input = context->getInputShape(kInputTensor);
170     if (hasKnownRank(input)) {
171         NN_RET_CHECK_LE(getNumberOfDimensions(input), 4);
172     }
173     return validateInputTypes(context, inExpectedTypes) &&
174            validateOutputTypes(context, {inputType});
175 }
176 
prepare(IOperationExecutionContext * context)177 bool prepare(IOperationExecutionContext* context) {
178     const Shape& input = context->getInputShape(kInputTensor);
179     int32_t numDimensions = getNumberOfDimensions(input);
180     int32_t axis = context->getNumInputs() == kNumInputs
181                            ? context->getInputValue<int32_t>(kAxisScalar)
182                            : -1;
183     NN_RET_CHECK_LE(numDimensions, 4);
184     NN_RET_CHECK_GE(axis, -numDimensions);
185     NN_RET_CHECK_LT(axis, numDimensions);
186     return context->setOutputShape(kOutputTensor, input);
187 }
188 
execute(IOperationExecutionContext * context)189 bool execute(IOperationExecutionContext* context) {
190     switch (context->getInputType(kInputTensor)) {
191         case OperandType::TENSOR_FLOAT32:
192             return executeTyped<float>(context);
193         case OperandType::TENSOR_FLOAT16:
194             return executeTyped<_Float16>(context);
195         default:
196             NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
197     }
198 }
199 
200 }  // namespace local_response_norm
201 
202 NN_REGISTER_OPERATION(LOCAL_RESPONSE_NORMALIZATION, local_response_norm::kOperationName,
203                       local_response_norm::validate, local_response_norm::prepare,
204                       local_response_norm::execute);
205 
206 }  // namespace nn
207 }  // namespace android
208