/frameworks/base/cmds/statsd/tests/external/ |
D | puller_util_test.cpp | 62 vector<shared_ptr<LogEvent>> inputData; in TEST() local 69 inputData.push_back(event); in TEST() 77 inputData.push_back(event); in TEST() 84 mapAndMergeIsolatedUidsToHostUid(inputData, uidMap, uidAtomTagId); in TEST() 87 extractIntoVector(inputData, actual); in TEST() 94 vector<shared_ptr<LogEvent>> inputData; in TEST() local 101 inputData.push_back(event); in TEST() 109 inputData.push_back(event); in TEST() 117 inputData.push_back(event); in TEST() 124 mapAndMergeIsolatedUidsToHostUid(inputData, uidMap, uidAtomTagId); in TEST() [all …]
|
/frameworks/ml/nn/common/operations/ |
D | Reshape.cpp | 34 bool copyData(const void* inputData, const Shape& inputShape, void* outputData, in copyData() argument 38 memcpy(outputData, inputData, count); in copyData() 43 bool depthToSpaceGeneric(const T* inputData, const Shape& inputShape, int32_t blockSize, in depthToSpaceGeneric() argument 46 tflite::optimized_ops::DepthToSpace(inputData, convertShapeToDims(inputShape), blockSize, in depthToSpaceGeneric() 50 template bool depthToSpaceGeneric<float>(const float* inputData, const Shape& inputShape, 53 template bool depthToSpaceGeneric<_Float16>(const _Float16* inputData, const Shape& inputShape, 56 template bool depthToSpaceGeneric<uint8_t>(const uint8_t* inputData, const Shape& inputShape, 59 template bool depthToSpaceGeneric<int8_t>(const int8_t* inputData, const Shape& inputShape, 64 bool spaceToDepthGeneric(const T* inputData, const Shape& inputShape, int32_t blockSize, in spaceToDepthGeneric() argument 67 tflite::optimized_ops::SpaceToDepth(inputData, convertShapeToDims(inputShape), blockSize, in spaceToDepthGeneric() [all …]
|
D | Activation.cpp | 52 bool reluFloat(const T* inputData, const Shape& inputShape, T* outputData, const Shape& outputShape, in reluFloat() argument 56 for (int i = 0; i < numElements; i++, inputData++, outputData++) { in reluFloat() 58 std::min(std::max(reluMin, static_cast<float>(*inputData)), reluMax)); in reluFloat() 62 template bool reluFloat<float>(const float* inputData, const Shape& inputShape, float* outputData, 64 template bool reluFloat<_Float16>(const _Float16* inputData, const Shape& inputShape, 69 bool relu1Float(const T* inputData, const Shape& inputShape, T* outputData, in relu1Float() argument 71 return reluFloat(inputData, inputShape, outputData, outputShape, -1.f, 1.f); in relu1Float() 73 template bool relu1Float<float>(const float* inputData, const Shape& inputShape, float* outputData, 75 template bool relu1Float<_Float16>(const _Float16* inputData, const Shape& inputShape, 79 bool relu6Float(const T* inputData, const Shape& inputShape, T* outputData, in relu6Float() argument [all …]
|
D | Split.cpp | 30 bool splitGeneric(const Scalar* inputData, const Shape& inputShape, int32_t axis, in splitGeneric() argument 44 const Scalar* inputPtr = inputData; in splitGeneric() 56 bool splitFloat16(const _Float16* inputData, const Shape& inputShape, int32_t axis, in splitFloat16() argument 60 return splitGeneric<_Float16>(inputData, inputShape, axis, outputDataPtrs, outputShapes); in splitFloat16() 63 bool splitFloat32(const float* inputData, const Shape& inputShape, int32_t axis, in splitFloat32() argument 67 return splitGeneric<float>(inputData, inputShape, axis, outputDataPtrs, outputShapes); in splitFloat32() 70 bool splitQuant8(const uint8_t* inputData, const Shape& inputShape, int32_t axis, in splitQuant8() argument 74 return splitGeneric<uint8_t>(inputData, inputShape, axis, outputDataPtrs, outputShapes); in splitQuant8() 77 bool splitQuant8Signed(const int8_t* inputData, const Shape& inputShape, int32_t axis, in splitQuant8Signed() argument 81 return splitGeneric<int8_t>(inputData, inputShape, axis, outputDataPtrs, outputShapes); in splitQuant8Signed() [all …]
|
D | Pooling.cpp | 139 bool averagePoolNhwc(const float* inputData, const Shape& inputShape, const PoolingParam& param, in averagePoolNhwc() argument 144 tflite::optimized_ops::AveragePool(op_params, convertShapeToTflshape(inputShape), inputData, in averagePoolNhwc() 149 bool averagePoolNhwc(const _Float16* inputData, const Shape& inputShape, const PoolingParam& param, in averagePoolNhwc() argument 155 convertFloat16ToFloat32(inputData, &inputDataFloat32); in averagePoolNhwc() 162 bool averagePoolNhwc(const uint8_t* inputData, const Shape& inputShape, const PoolingParam& param, in averagePoolNhwc() argument 167 tflite::optimized_ops::AveragePool(op_params, convertShapeToTflshape(inputShape), inputData, in averagePoolNhwc() 172 bool averagePoolNhwc(const int8_t* inputData, const Shape& inputShape, const PoolingParam& param, in averagePoolNhwc() argument 180 inputData, convertShapeToTflshape(outputShape), in averagePoolNhwc() 185 bool l2PoolNhwc(const float* inputData, const Shape& inputShape, const PoolingParam& param, in l2PoolNhwc() argument 190 tflite::optimized_ops::L2Pool(op_params, convertShapeToTflshape(inputShape), inputData, in l2PoolNhwc() [all …]
|
D | SimpleMath.cpp | 33 bool meanFloat16(_Float16* inputData, const Shape& inputShape, const int32_t* axis, in meanFloat16() argument 38 convertFloat16ToFloat32(inputData, &inputDataFloat32); in meanFloat16() 48 bool meanGeneric(T* inputData, const Shape& inputShape, const int32_t* axis, const Shape& axisShape, in meanGeneric() argument 66 inputData, reinterpret_cast<const int*>(inputShape.dimensions.data()), in meanGeneric() 77 template bool meanGeneric<float, float>(float* inputData, const Shape& inputShape, 80 template bool meanGeneric<uint8_t, int32_t>(uint8_t* inputData, const Shape& inputShape, 84 template bool meanGeneric<int8_t, int32_t>(int8_t* inputData, const Shape& inputShape,
|
D | L2Normalization.cpp | 47 inline bool l2normFloat32Impl(const float* inputData, const Shape& inputShape, int32_t axis, in l2normFloat32Impl() argument 56 const float* inputBeg = inputData + outer * axisSize * innerSize; in l2normFloat32Impl() 75 inline bool l2normQuant8Impl(const uint8_t* inputData, const Shape& inputShape, int32_t axis, in l2normQuant8Impl() argument 83 const uint8_t* inputBeg = inputData + outer * axisSize * innerSize; in l2normQuant8Impl() 107 inline bool l2normQuant8SignedImpl(const int8_t* inputData, const Shape& inputShape, int32_t axis, in l2normQuant8SignedImpl() argument 115 const int8_t* inputBeg = inputData + outer * axisSize * innerSize; in l2normQuant8SignedImpl() 138 bool l2normFloat32(const float* inputData, const Shape& inputShape, int32_t axis, float* outputData, in l2normFloat32() argument 146 tflite::optimized_ops::L2Normalization(param, convertShapeToTflshape(inputShape), inputData, in l2normFloat32() 150 return l2normFloat32Impl(inputData, inputShape, axis, outputData, outputShape); in l2normFloat32() 154 bool l2normFloat16(const _Float16* inputData, const Shape& inputShape, int32_t axis, in l2normFloat16() argument [all …]
|
D | ArgMinMax.cpp | 33 static void argMinMaxImpl(const In* inputData, const Shape& inputShape, int32_t axis, bool isArgMin, in argMinMaxImpl() argument 41 auto minMaxValue = inputData[outer * axisSize * innerSize + inner]; in argMinMaxImpl() 44 const auto& value = inputData[(outer * axisSize + i) * innerSize + inner]; in argMinMaxImpl() 55 bool argMinMaxGeneric(const uint8_t* inputData, const Shape& inputShape, int32 axis, bool isArgMin, in argMinMaxGeneric() argument 63 argMinMaxImpl(reinterpret_cast<const dataType*>(inputData), inputShape, axis, isArgMin, \ in argMinMaxGeneric()
|
D | Cast.cpp | 47 bool copyToTensor(const FromT* inputData, int numElements, uint8_t* outputData, in copyToTensor() argument 52 copyCast(inputData, reinterpret_cast<dataType*>(outputData), numElements); \ in copyToTensor() 75 bool eval(const uint8_t* inputData, const Shape& inputShape, uint8_t* outputData, in eval() argument 83 copyToTensor(reinterpret_cast<const dataType*>(inputData), numElements, outputData, \ in eval() 95 return copyData(inputData, inputShape, outputData, outputShape); in eval()
|
D | LocalResponseNormalization.cpp | 50 inline bool localResponseNormFloat32Impl(const float* inputData, const Shape& inputShape, in localResponseNormFloat32Impl() argument 60 const float* inputBase = inputData + outer * axisSize * innerSize; in localResponseNormFloat32Impl() 81 bool localResponseNorm(const T* inputData, const Shape& inputShape, int32_t radius, T bias, T alpha, 85 bool localResponseNorm<float>(const float* inputData, const Shape& inputShape, int32_t radius, in localResponseNorm() argument 96 param, convertShapeToTflshape(inputShape), inputData, in localResponseNorm() 100 return localResponseNormFloat32Impl(inputData, inputShape, radius, bias, alpha, beta, axis, in localResponseNorm() 106 bool localResponseNorm<_Float16>(const _Float16* inputData, const Shape& inputShape, int32_t radius, in localResponseNorm() argument 111 convertFloat16ToFloat32(inputData, &inputDataFloat32); in localResponseNorm()
|
D | Softmax.cpp | 51 inline bool softmaxSlowFloat32(const float* inputData, const Shape& inputShape, const float beta, in softmaxSlowFloat32() argument 59 const float* inputBeg = inputData + outer * axisSize * innerSize; in softmaxSlowFloat32() 83 bool softmaxFloat32(const float* inputData, const Shape& inputShape, const float beta, int32_t axis, in softmaxFloat32() argument 91 tflite::optimized_ops::Softmax(param, convertShapeToTflshape(inputShape), inputData, in softmaxFloat32() 95 return softmaxSlowFloat32(inputData, inputShape, beta, axis, outputData, outputShape); in softmaxFloat32() 99 bool softmaxFloat16(const _Float16* inputData, const Shape& inputShape, const float beta, in softmaxFloat16() argument 103 convertFloat16ToFloat32(inputData, &inputData_float32); in softmaxFloat16() 114 bool softmaxQuant8Impl(const T* inputData, const Shape& inputShape, const float beta, int32_t axis, in softmaxQuant8Impl() argument 134 const T* inputBeg = inputData + outer * axisSize * innerSize; in softmaxQuant8Impl() 201 bool softmaxQuant8(const T* inputData, const Shape& inputShape, const float beta, int32_t axis, in softmaxQuant8() argument [all …]
|
D | InstanceNormalization.cpp | 48 inline bool instanceNormNhwc(const T* inputData, const Shape& inputShape, T gamma, T beta, in instanceNormNhwc() argument 63 T val = inputData[indexBase + (h * width + w) * depth]; in instanceNormNhwc() 72 T val = inputData[indexBase + (h * width + w) * depth] - mean; in instanceNormNhwc() 82 outputData[ind] = (inputData[ind] - mean) * gamma / sigma + beta; in instanceNormNhwc() 91 inline bool instanceNorm(const T* inputData, const Shape& inputShape, T gamma, T beta, T epsilon, in instanceNorm() argument 95 NN_RET_CHECK(input.initialize(inputData, inputShape)); in instanceNorm()
|
D | RNN.cpp | 120 bool RNN::RNNStep(const T* inputData, const Shape& inputShape, const T* hiddenStateInputData, in RNNStep() argument 128 return RNNStep<T>(inputData, inputShape, /*auxInputData=*/nullptr, /*auxInputShape=*/dummyShape, in RNNStep() 140 bool RNN::RNNStep(const T* inputData, const Shape& inputShape, const T* auxInputData, in RNNStep() argument 166 const T* input_ptr_batch = inputData + b * input_size; in RNNStep() 227 template bool RNN::RNNStep<_Float16>(const _Float16* inputData, const Shape& inputShape, 233 template bool RNN::RNNStep<_Float16>(const _Float16* inputData, const Shape& inputShape, 243 template bool RNN::RNNStep<float>(const float* inputData, const Shape& inputShape, 249 template bool RNN::RNNStep<float>(const float* inputData, const Shape& inputShape,
|
D | GroupedConv2D.cpp | 46 bool groupedConvFloat32(const float* inputData, const Shape& inputShape, const float* filterData, in groupedConvFloat32() argument 58 const float* inputBase = inputData; in groupedConvFloat32() 104 bool groupedConvQuant8(const T* inputData, const Shape& inputShape, const T* filterData, in groupedConvQuant8() argument 130 const T* inputBase = inputData; in groupedConvQuant8() 181 template bool groupedConvQuant8<int8_t>(const int8_t* inputData, const Shape& inputShape, 190 template bool groupedConvQuant8<uint8_t>(const uint8_t* inputData, const Shape& inputShape, 200 bool groupedConvQuant8PerChannel(const T* inputData, const Shape& inputShape, in groupedConvQuant8PerChannel() argument 234 const T* inputBase = inputData; in groupedConvQuant8PerChannel() 285 bool groupedConvFloat16(const _Float16* inputData, const Shape& inputShape, in groupedConvFloat16() argument 298 convertFloat16ToFloat32(inputData, &inputData_float32); in groupedConvFloat16() [all …]
|
D | FullyConnected.cpp | 55 bool fullyConnectedFloat32(const float* inputData, const Shape& inputShape, in fullyConnectedFloat32() argument 69 tflite::reference_ops::FullyConnected(inputData, convertShapeToDims(inputShape), in fullyConnectedFloat32() 76 tflite::optimized_ops::FullyConnected(inputData, convertShapeToDims(inputShape), in fullyConnectedFloat32() 85 bool fullyConnectedFloat16(const _Float16* inputData, const Shape& inputShape, in fullyConnectedFloat16() argument 91 convertFloat16ToFloat32(inputData, &inputDataFloat32); in fullyConnectedFloat16() 106 bool fullyConnectedQuant8(const uint8_t* inputData, const Shape& inputShape, in fullyConnectedQuant8() argument 137 tflite::optimized_ops::FullyConnected(inputData, convertShapeToDims(inputShape), inputOffset, in fullyConnectedQuant8() 147 bool fullyConnectedQuant8(const int8_t* inputData, const Shape& inputShape, in fullyConnectedQuant8() argument 176 params, convertShapeToTflshape(inputShape), inputData, in fullyConnectedQuant8()
|
D | Tile.cpp | 71 void tileImpl(const T* inputData, const Shape& inputShape, const int32_t* multiples, T* outputData, in tileImpl() argument 73 TileOneDimension(inputShape, inputData, multiples, outputData, 0); in tileImpl() 92 bool eval(const uint8_t* inputData, const Shape& inputShape, const int32_t* multiples, in eval() argument 98 tileImpl(reinterpret_cast<const dataType*>(inputData), inputShape, multiples, \ in eval()
|
D | ResizeImageOps.cpp | 66 bool resizeNearestNeighbor(const T* inputData, const Shape& inputShape, bool alignCorners, in resizeNearestNeighbor() argument 96 std::copy_n(inputData + b * inHeight * inWidth * channels + in resizeNearestNeighbor() 109 bool resizeImageOpNhwc(OperationType opType, const T* inputData, const Shape& inputShape, in resizeImageOpNhwc() argument 124 convertShapeToTflshape(inputShape), inputData, convertShapeToTflshape(outDimShape), in resizeImageOpNhwc() 129 resizeNearestNeighbor(inputData, inputShape, alignCorners, halfPixelCenters, outputData, in resizeImageOpNhwc() 136 bool resizeImageOpNhwc<_Float16>(OperationType opType, const _Float16* inputData, in resizeImageOpNhwc() argument 141 convertFloat16ToFloat32(inputData, &inputData_float32); in resizeImageOpNhwc() 150 bool resizeImageOp(OperationType opType, const T* inputData, const Shape& inputShape, bool useNchw, in resizeImageOp() argument 155 NN_RET_CHECK(input.initialize(inputData, inputShape)); in resizeImageOp()
|
D | Quantize.cpp | 43 bool quantizeToQuant8(const T* inputData, uint8_t* outputData, const Shape& outputShape) { in quantizeToQuant8() argument 48 0.0f, std::min<float>(255.0f, outputShape.offset + std::round(inputData[i] / in quantizeToQuant8() 55 bool quantizeToQuant8Signed(const T* inputData, int8_t* outputData, const Shape& outputShape) { in quantizeToQuant8Signed() argument 62 std::round(inputData[i] / outputShape.scale)))); in quantizeToQuant8Signed()
|
D | ExpandDims.cpp | 40 bool eval(const uint8_t* inputData, const Shape& inputShape, int32_t axis, uint8_t* outputData, in eval() argument 42 memcpy(outputData, inputData, in eval()
|
D | RoiPooling.cpp | 54 inline bool roiPoolingNhwc(const T_Input* inputData, const Shape& inputShape, const T_Roi* roiData, in roiPoolingNhwc() argument 106 const T_Input* batchBase = inputData + batchId * inHeight * inWidth * inDepth; in roiPoolingNhwc() 143 inline bool roiPooling(const T_Input* inputData, const Shape& inputShape, const T_Roi* roiData, in roiPooling() argument 149 NN_RET_CHECK(input.initialize(inputData, inputShape)); in roiPooling() 159 inline bool roiPooling<uint8_t, uint16_t>(const uint8_t* inputData, const Shape& inputShape, in roiPooling() argument 167 NN_RET_CHECK(roiPooling(inputData, inputShape, roi_float32.data(), roiShape, batchSplitData, in roiPooling() 174 inline bool roiPooling<int8_t, uint16_t>(const int8_t* inputData, const Shape& inputShape, in roiPooling() argument 182 NN_RET_CHECK(roiPooling(inputData, inputShape, roi_float32.data(), roiShape, batchSplitData, in roiPooling()
|
/frameworks/ml/nn/common/include/ |
D | Operations.h | 45 bool floorFloat16(const _Float16* inputData, _Float16* outputData, const Shape& shape); 46 bool floorFloat32(const float* inputData, float* outputData, const Shape& shape); 48 bool depthwiseConvFloat16(const _Float16* inputData, const Shape& inputShape, 55 bool depthwiseConvFloat32(const float* inputData, const Shape& inputShape, const float* filterData, 62 bool depthwiseConvQuant8(const uint8_t* inputData, const Shape& inputShape, 69 bool depthwiseConvQuant8PerChannel(const uint8_t* inputData, const Shape& inputShape, 79 bool localResponseNormFloat16(const _Float16* inputData, const Shape& inputShape, int32_t radius, 82 bool localResponseNormFloat32(const float* inputData, const Shape& inputShape, int32_t radius, 86 bool copyData(const void* inputData, const Shape& inputShape, void* outputData, 90 bool depthToSpaceGeneric(const T* inputData, const Shape& inputShape, int32_t blockSize, [all …]
|
/frameworks/base/startop/iorap/tests/src/com/google/android/startop/iorap/ |
D | ParcelablesTest.kt | 32 class ParcelablesTest<T : Parcelable>(private val inputData: InputData<T>) { in <lambda>() constant in com.google.android.startop.iorap.ParcelablesTest 100 assertThat(inputData.valid).isEqualTo(inputData.valid) in <lambda>() 101 assertThat(inputData.valid).isEqualTo(inputData.validCopy) in <lambda>() 102 assertThat(inputData.valid).isNotEqualTo(inputData.validOther) in <lambda>() 119 assertParcels(inputData.valid, inputData) in <lambda>() 120 assertParcels(inputData.validCopy, inputData) in <lambda>() 121 assertParcels(inputData.validOther, inputData) in <lambda>()
|
/frameworks/base/core/java/com/android/internal/ml/clustering/ |
D | KMeans.java | 63 public List<Mean> predict(final int k, final float[][] inputData) { in predict() argument 64 checkDataSetSanity(inputData); in predict() 65 int dimension = inputData[0].length; in predict() 79 converged = step(means, inputData); in predict() 115 public void checkDataSetSanity(float[][] inputData) { in checkDataSetSanity() argument 116 if (inputData == null) { in checkDataSetSanity() 118 } else if (inputData.length == 0) { in checkDataSetSanity() 120 } else if (inputData[0] == null) { in checkDataSetSanity() 124 final int dimension = inputData[0].length; in checkDataSetSanity() 125 final int length = inputData.length; in checkDataSetSanity() [all …]
|
/frameworks/av/media/libaaudio/examples/loopback/src/ |
D | LoopbackAnalyzer.h | 313 int32_t write(int16_t *inputData, int32_t inputChannelCount, int32_t numFrames) { in write() argument 319 mData[mFrameCounter++] = inputData[i * inputChannelCount] * (1.0f / 32768); in write() 325 int32_t write(float *inputData, int32_t inputChannelCount, int32_t numFrames) { in write() argument 331 mData[mFrameCounter++] = inputData[i * inputChannelCount]; in write() 453 virtual process_result process(float *inputData, int inputChannelCount, 493 static float measurePeakAmplitude(float *inputData, int inputChannelCount, int numFrames) { in measurePeakAmplitude() argument 496 const float pos = fabs(*inputData); in measurePeakAmplitude() 500 inputData += inputChannelCount; in measurePeakAmplitude() 647 process_result process(float *inputData, int inputChannelCount, in process() argument 674 peak = measurePeakAmplitude(inputData, inputChannelCount, numFrames); in process() [all …]
|
/frameworks/av/media/libstagefright/codecs/m4v_h263/enc/ |
D | SoftMPEG4Encoder.cpp | 445 const uint8_t *inputData = NULL; in onQueueFilled() local 447 inputData = in onQueueFilled() 452 if (inputData == NULL) { in onQueueFilled() 459 inputData = (const uint8_t *)inHeader->pBuffer + inHeader->nOffset; in onQueueFilled() 462 inputData, mInputFrameData, mWidth, mHeight); in onQueueFilled() 463 inputData = mInputFrameData; in onQueueFilled() 467 CHECK(inputData != NULL); in onQueueFilled() 475 vin.yChan = (uint8_t *)inputData; in onQueueFilled()
|