/frameworks/ml/nn/runtime/test/specs/V1_3/ |
D | fully_connected_quant8_signed.mod.py | 23 bias = Parameter("b0", "TENSOR_INT32", "{3}, 0.25f, 0", [4, 8, 12]) variable 26 model = model.Operation("FULLY_CONNECTED", in0, weights, bias, act_relu).To(out0) 43 bias = Parameter("b0", "TENSOR_INT32", "{1}, 0.04, 0", [10]) variable 46 model = model.Operation("FULLY_CONNECTED", in0, weights, bias, act).To(out0) 62 bias = Input("b0", "TENSOR_INT32", "{1}, 0.04, 0") variable 65 model = model.Operation("FULLY_CONNECTED", in0, weights, bias, act).To(out0) 72 bias: 85 bias = Parameter("b0", "TENSOR_INT32", "{1}, 0.25f, 0", [4]) variable 88 model = model.Operation("FULLY_CONNECTED", in0, weights, bias, act).To(out0) 104 bias = Input("b0", "TENSOR_INT32", "{1}, 0.25f, 0") variable [all …]
|
D | unidirectional_sequence_rnn.mod.py | 19 def test(name, input, weights, recurrent_weights, bias, hidden_state, argument 26 recurrent_weights, bias, hidden_state, activation, 33 bias: bias_data, 185 bias=Input("bias", "TENSOR_FLOAT32", "{{{}}}".format(num_units)), 211 bias=Input("bias", "TENSOR_FLOAT32", "{{{}}}".format(num_units)),
|
/frameworks/ml/nn/runtime/test/fuzzing/ |
D | TestRandomGraph.cpp | 481 .float32 = {.bias = 1e-7f, .mse = 1e-10f, .atol = 1e-6f, .rtol = 1e-6f}, 482 .float16 = {.bias = 1e-4f, .mse = 1e-8f, .atol = 1e-3f, .rtol = 1e-3f}, 484 .quant8Asymm = {.bias = 0.1f, .mse = 0.1f, .atol = 1}, 485 .quant8AsymmSigned = {.bias = 0.1f, .mse = 0.1f, .atol = 1}, 486 .quant8Symm = {.bias = 0.1f, .mse = 0.1f, .atol = 1}, 487 .quant16Asymm = {.bias = 0.1f, .mse = 0.1f, .atol = 1}, 488 .quant16Symm = {.bias = 0.1f, .mse = 0.1f, .atol = 1}, 495 .float32 = {.bias = 1e-6f, .mse = 1e-8f, .atol = 1e-5f, .rtol = 1e-5f}, 496 .float16 = {.bias = 1e-3f, .mse = 1e-5f, .atol = 1e-2f, .rtol = 1e-2f}, 498 .quant8Asymm = {.bias = 1.2, .mse = 1.2, .atol = 2}, [all …]
|
/frameworks/ml/nn/runtime/test/specs/V1_2/ |
D | unidirectional_sequence_rnn.mod.py | 19 def test(name, input, weights, recurrent_weights, bias, hidden_state, argument 25 recurrent_weights, bias, hidden_state, activation, 31 bias: bias_data, 147 bias=Input("bias", "TENSOR_FLOAT32", "{{{}}}".format(num_units)), 169 bias=Input("bias", "TENSOR_FLOAT32", "{{{}}}".format(num_units)),
|
D | svdf_state_float16.mod.py | 27 bias = Input("bias", "TENSOR_FLOAT16", "{%d}" % (units)) variable 34 model = model.Operation("SVDF", input, weights_feature, weights_time, bias, state_in, 56 bias: [],
|
D | svdf_float16.mod.py | 29 bias = Input("bias", "TENSOR_FLOAT16", "{%d}" % (units)) variable 36 model = model.Operation("SVDF", input, weights_feature, weights_time, bias, state_in, 59 bias: [],
|
/frameworks/native/services/sensorservice/ |
D | CorrectedGyroSensor.cpp | 59 const vec3_t bias(mSensorFusion.getGyroBias()); in process() local 61 outEvent->data[0] -= bias.x; in process() 62 outEvent->data[1] -= bias.y; in process() 63 outEvent->data[2] -= bias.z; in process()
|
/frameworks/ml/nn/common/operations/ |
D | LocalResponseNormalization.cpp | 51 int32_t radius, float bias, float alpha, float beta, in localResponseNormFloat32Impl() argument 72 float multiplier = std::pow(bias + alpha * sum, -beta); in localResponseNormFloat32Impl() 81 bool localResponseNorm(const T* inputData, const Shape& inputShape, int32_t radius, T bias, T alpha, 86 float bias, float alpha, float beta, int32_t axis, float* outputData, in localResponseNorm() argument 94 .range = radius, .bias = bias, .alpha = alpha, .beta = beta}; in localResponseNorm() 100 return localResponseNormFloat32Impl(inputData, inputShape, radius, bias, alpha, beta, axis, in localResponseNorm() 107 _Float16 bias, _Float16 alpha, _Float16 beta, int32_t axis, in localResponseNorm() argument 114 localResponseNorm<float>(inputDataFloat32.data(), inputShape, radius, bias, alpha, beta, axis, in localResponseNorm()
|
D | QuantizedLSTM.cpp | 301 auto checkBiasShape = [&](const RunTimeOperandInfo* bias) -> bool { in prepare() argument 302 NN_RET_CHECK_EQ(NumDimensions(bias), 1); in prepare() 303 NN_RET_CHECK_EQ(SizeOfDimension(bias, 0), outputSize); in prepare() 304 NN_RET_CHECK_EQ(bias->scale, biasScale); in prepare() 305 NN_RET_CHECK_EQ(bias->zeroPoint, biasZeroPoint); in prepare() 368 void QuantizedLSTMCell::concatenateBiases(uint32_t outputSize, int32_t* bias) { in concatenateBiases() argument 369 memcpy(bias + 0 * outputSize, GetBuffer<int32_t>(inputGateBias_), sizeof(int32_t) * outputSize); in concatenateBiases() 370 memcpy(bias + 1 * outputSize, GetBuffer<int32_t>(cellGateBias_), sizeof(int32_t) * outputSize); in concatenateBiases() 371 memcpy(bias + 2 * outputSize, GetBuffer<int32_t>(forgetGateBias_), in concatenateBiases() 373 memcpy(bias + 3 * outputSize, GetBuffer<int32_t>(outputGateBias_), in concatenateBiases() [all …]
|
D | FullyConnected.cpp | 183 bool validateShapes(const Shape& input, const Shape& weights, const Shape& bias, in validateShapes() argument 190 NN_RET_CHECK(bias.type == OperandType::TENSOR_INT32); in validateShapes() 192 NN_RET_CHECK(bias.type == input.type); in validateShapes() 199 NN_RET_CHECK_EQ(getNumberOfDimensions(bias), 1); in validateShapes() 203 uint32_t bias_len = getSizeOfDimension(bias, 0); in validateShapes() 284 Shape bias = context->getInputShape(kBiasTensor); in validate() local 285 if (hasKnownRank(input) && hasKnownRank(weights) && hasKnownRank(bias)) { in validate() 286 NN_RET_CHECK(validateShapes(input, weights, bias)); in validate() 295 Shape bias = context->getInputShape(kBiasTensor); in prepare() local 297 NN_RET_CHECK(validateShapes(input, weights, bias, &output)); in prepare()
|
/frameworks/ml/nn/runtime/test/specs/V1_0/ |
D | fully_connected_quant8_large_weights_as_inputs.mod.py | 20 bias = Input("b0", "TENSOR_INT32", "{1}, 0.04, 0") variable 23 model = model.Operation("FULLY_CONNECTED", in0, weights, bias, act).To(out0) 30 bias:
|
D | fully_connected_float_large_weights_as_inputs.mod.py | 20 bias = Input("b0", "TENSOR_FLOAT32", "{1}") variable 23 model = model.Operation("FULLY_CONNECTED", in0, weights, bias, act).To(out0) 30 bias:
|
D | fully_connected_quant8_weights_as_inputs.mod.py | 20 bias = Input("b0", "TENSOR_INT32", "{1}, 0.25f, 0") variable 23 model = model.Operation("FULLY_CONNECTED", in0, weights, bias, act).To(out0) 29 bias: [4]}
|
D | fully_connected_float_weights_as_inputs.mod.py | 20 bias = Input("b0", "TENSOR_FLOAT32", "{1}") variable 23 model = model.Operation("FULLY_CONNECTED", in0, weights, bias, act).To(out0) 29 bias: [4]}
|
D | rnn_state.mod.py | 26 bias = Input("bias", "TENSOR_FLOAT32", "{%d}" % (units)) variable 34 model = model.Operation("RNN", input, weights, recurrent_weights, bias, hidden_state_in, 80 bias: [
|
D | svdf_state.mod.py | 27 bias = Input("bias", "TENSOR_FLOAT32", "{%d}" % (units)) variable 34 model = model.Operation("SVDF", input, weights_feature, weights_time, bias, state_in, 56 bias: [],
|
D | svdf_bias_present.mod.py | 29 bias = Input("bias", "TENSOR_FLOAT32", "{%d}" % (units)) variable 36 model = model.Operation("SVDF", input, weights_feature, weights_time, bias, state_in, 59 bias: [1.0, 2.0, 3.0, 4.0],
|
D | rnn.mod.py | 26 bias = Input("bias", "TENSOR_FLOAT32", "{%d}" % (units)) variable 34 model = model.Operation("RNN", input, weights, recurrent_weights, bias, hidden_state_in, 80 bias: [
|
D | svdf2.mod.py | 29 bias = Input("bias", "TENSOR_FLOAT32", "{%d}" % (units)) variable 36 model = model.Operation("SVDF", input, weights_feature, weights_time, bias, state_in, 74 bias: [],
|
D | svdf.mod.py | 29 bias = Input("bias", "TENSOR_FLOAT32", "{%d}" % (units)) variable 36 model = model.Operation("SVDF", input, weights_feature, weights_time, bias, state_in, 59 bias: [],
|
/frameworks/ml/nn/runtime/test/specs/V1_1/ |
D | fully_connected_float_large_weights_as_inputs_relaxed.mod.py | 20 bias = Input("b0", "TENSOR_FLOAT32", "{1}") variable 23 model = model.Operation("FULLY_CONNECTED", in0, weights, bias, act).To(out0) 31 bias:
|
D | fully_connected_float_weights_as_inputs_relaxed.mod.py | 20 bias = Input("b0", "TENSOR_FLOAT32", "{1}") variable 23 model = model.Operation("FULLY_CONNECTED", in0, weights, bias, act).To(out0) 30 bias: [4]}
|
D | rnn_state_relaxed.mod.py | 26 bias = Input("bias", "TENSOR_FLOAT32", "{%d}" % (units)) variable 34 model = model.Operation("RNN", input, weights, recurrent_weights, bias, hidden_state_in, 81 bias: [
|
D | svdf_state_relaxed.mod.py | 27 bias = Input("bias", "TENSOR_FLOAT32", "{%d}" % (units)) variable 34 model = model.Operation("SVDF", input, weights_feature, weights_time, bias, state_in, 57 bias: [],
|
/frameworks/base/services/core/java/com/android/server/display/whitebalance/ |
D | DisplayWhiteBalanceController.java | 368 float bias = mLowLightAmbientBrightnessToBiasSpline.interpolate(ambientBrightness); in updateAmbientColorTemperature() local 370 bias * ambientColorTemperature + (1.0f - bias) in updateAmbientColorTemperature() 372 mLatestLowLightBias = bias; in updateAmbientColorTemperature() 376 float bias = mHighLightAmbientBrightnessToBiasSpline.interpolate(ambientBrightness); in updateAmbientColorTemperature() local 378 (1.0f - bias) * ambientColorTemperature + bias in updateAmbientColorTemperature() 380 mLatestHighLightBias = bias; in updateAmbientColorTemperature()
|