1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "bounds_check_elimination.h"
18 
19 #include <limits>
20 
21 #include "base/scoped_arena_allocator.h"
22 #include "base/scoped_arena_containers.h"
23 #include "induction_var_range.h"
24 #include "nodes.h"
25 #include "side_effects_analysis.h"
26 
27 namespace art {
28 
29 class MonotonicValueRange;
30 
31 /**
32  * A value bound is represented as a pair of value and constant,
33  * e.g. array.length - 1.
34  */
35 class ValueBound : public ValueObject {
36  public:
ValueBound(HInstruction * instruction,int32_t constant)37   ValueBound(HInstruction* instruction, int32_t constant) {
38     if (instruction != nullptr && instruction->IsIntConstant()) {
39       // Normalize ValueBound with constant instruction.
40       int32_t instr_const = instruction->AsIntConstant()->GetValue();
41       if (!WouldAddOverflowOrUnderflow(instr_const, constant)) {
42         instruction_ = nullptr;
43         constant_ = instr_const + constant;
44         return;
45       }
46     }
47     instruction_ = instruction;
48     constant_ = constant;
49   }
50 
51   // Return whether (left + right) overflows or underflows.
WouldAddOverflowOrUnderflow(int32_t left,int32_t right)52   static bool WouldAddOverflowOrUnderflow(int32_t left, int32_t right) {
53     if (right == 0) {
54       return false;
55     }
56     if ((right > 0) && (left <= (std::numeric_limits<int32_t>::max() - right))) {
57       // No overflow.
58       return false;
59     }
60     if ((right < 0) && (left >= (std::numeric_limits<int32_t>::min() - right))) {
61       // No underflow.
62       return false;
63     }
64     return true;
65   }
66 
67   // Return true if instruction can be expressed as "left_instruction + right_constant".
IsAddOrSubAConstant(HInstruction * instruction,HInstruction ** left_instruction,int32_t * right_constant)68   static bool IsAddOrSubAConstant(HInstruction* instruction,
69                                   /* out */ HInstruction** left_instruction,
70                                   /* out */ int32_t* right_constant) {
71     HInstruction* left_so_far = nullptr;
72     int32_t right_so_far = 0;
73     while (instruction->IsAdd() || instruction->IsSub()) {
74       HBinaryOperation* bin_op = instruction->AsBinaryOperation();
75       HInstruction* left = bin_op->GetLeft();
76       HInstruction* right = bin_op->GetRight();
77       if (right->IsIntConstant()) {
78         int32_t v = right->AsIntConstant()->GetValue();
79         int32_t c = instruction->IsAdd() ? v : -v;
80         if (!WouldAddOverflowOrUnderflow(right_so_far, c)) {
81           instruction = left;
82           left_so_far = left;
83           right_so_far += c;
84           continue;
85         }
86       }
87       break;
88     }
89     // Return result: either false and "null+0" or true and "instr+constant".
90     *left_instruction = left_so_far;
91     *right_constant = right_so_far;
92     return left_so_far != nullptr;
93   }
94 
95   // Expresses any instruction as a value bound.
AsValueBound(HInstruction * instruction)96   static ValueBound AsValueBound(HInstruction* instruction) {
97     if (instruction->IsIntConstant()) {
98       return ValueBound(nullptr, instruction->AsIntConstant()->GetValue());
99     }
100     HInstruction *left;
101     int32_t right;
102     if (IsAddOrSubAConstant(instruction, &left, &right)) {
103       return ValueBound(left, right);
104     }
105     return ValueBound(instruction, 0);
106   }
107 
108   // Try to detect useful value bound format from an instruction, e.g.
109   // a constant or array length related value.
DetectValueBoundFromValue(HInstruction * instruction,bool * found)110   static ValueBound DetectValueBoundFromValue(HInstruction* instruction, /* out */ bool* found) {
111     DCHECK(instruction != nullptr);
112     if (instruction->IsIntConstant()) {
113       *found = true;
114       return ValueBound(nullptr, instruction->AsIntConstant()->GetValue());
115     }
116 
117     if (instruction->IsArrayLength()) {
118       *found = true;
119       return ValueBound(instruction, 0);
120     }
121     // Try to detect (array.length + c) format.
122     HInstruction *left;
123     int32_t right;
124     if (IsAddOrSubAConstant(instruction, &left, &right)) {
125       if (left->IsArrayLength()) {
126         *found = true;
127         return ValueBound(left, right);
128       }
129     }
130 
131     // No useful bound detected.
132     *found = false;
133     return ValueBound::Max();
134   }
135 
GetInstruction() const136   HInstruction* GetInstruction() const { return instruction_; }
GetConstant() const137   int32_t GetConstant() const { return constant_; }
138 
IsRelatedToArrayLength() const139   bool IsRelatedToArrayLength() const {
140     // Some bounds are created with HNewArray* as the instruction instead
141     // of HArrayLength*. They are treated the same.
142     return (instruction_ != nullptr) &&
143            (instruction_->IsArrayLength() || instruction_->IsNewArray());
144   }
145 
IsConstant() const146   bool IsConstant() const {
147     return instruction_ == nullptr;
148   }
149 
Min()150   static ValueBound Min() { return ValueBound(nullptr, std::numeric_limits<int32_t>::min()); }
Max()151   static ValueBound Max() { return ValueBound(nullptr, std::numeric_limits<int32_t>::max()); }
152 
Equals(ValueBound bound) const153   bool Equals(ValueBound bound) const {
154     return instruction_ == bound.instruction_ && constant_ == bound.constant_;
155   }
156 
Equal(HInstruction * instruction1,HInstruction * instruction2)157   static bool Equal(HInstruction* instruction1, HInstruction* instruction2) {
158     if (instruction1 == instruction2) {
159       return true;
160     }
161     if (instruction1 == nullptr || instruction2 == nullptr) {
162       return false;
163     }
164     instruction1 = HuntForDeclaration(instruction1);
165     instruction2 = HuntForDeclaration(instruction2);
166     return instruction1 == instruction2;
167   }
168 
169   // Returns if it's certain this->bound >= `bound`.
GreaterThanOrEqualTo(ValueBound bound) const170   bool GreaterThanOrEqualTo(ValueBound bound) const {
171     if (Equal(instruction_, bound.instruction_)) {
172       return constant_ >= bound.constant_;
173     }
174     // Not comparable. Just return false.
175     return false;
176   }
177 
178   // Returns if it's certain this->bound <= `bound`.
LessThanOrEqualTo(ValueBound bound) const179   bool LessThanOrEqualTo(ValueBound bound) const {
180     if (Equal(instruction_, bound.instruction_)) {
181       return constant_ <= bound.constant_;
182     }
183     // Not comparable. Just return false.
184     return false;
185   }
186 
187   // Returns if it's certain this->bound > `bound`.
GreaterThan(ValueBound bound) const188   bool GreaterThan(ValueBound bound) const {
189     if (Equal(instruction_, bound.instruction_)) {
190       return constant_ > bound.constant_;
191     }
192     // Not comparable. Just return false.
193     return false;
194   }
195 
196   // Returns if it's certain this->bound < `bound`.
LessThan(ValueBound bound) const197   bool LessThan(ValueBound bound) const {
198     if (Equal(instruction_, bound.instruction_)) {
199       return constant_ < bound.constant_;
200     }
201     // Not comparable. Just return false.
202     return false;
203   }
204 
205   // Try to narrow lower bound. Returns the greatest of the two if possible.
206   // Pick one if they are not comparable.
NarrowLowerBound(ValueBound bound1,ValueBound bound2)207   static ValueBound NarrowLowerBound(ValueBound bound1, ValueBound bound2) {
208     if (bound1.GreaterThanOrEqualTo(bound2)) {
209       return bound1;
210     }
211     if (bound2.GreaterThanOrEqualTo(bound1)) {
212       return bound2;
213     }
214 
215     // Not comparable. Just pick one. We may lose some info, but that's ok.
216     // Favor constant as lower bound.
217     return bound1.IsConstant() ? bound1 : bound2;
218   }
219 
220   // Try to narrow upper bound. Returns the lowest of the two if possible.
221   // Pick one if they are not comparable.
NarrowUpperBound(ValueBound bound1,ValueBound bound2)222   static ValueBound NarrowUpperBound(ValueBound bound1, ValueBound bound2) {
223     if (bound1.LessThanOrEqualTo(bound2)) {
224       return bound1;
225     }
226     if (bound2.LessThanOrEqualTo(bound1)) {
227       return bound2;
228     }
229 
230     // Not comparable. Just pick one. We may lose some info, but that's ok.
231     // Favor array length as upper bound.
232     return bound1.IsRelatedToArrayLength() ? bound1 : bound2;
233   }
234 
235   // Add a constant to a ValueBound.
236   // `overflow` or `underflow` will return whether the resulting bound may
237   // overflow or underflow an int.
Add(int32_t c,bool * overflow,bool * underflow) const238   ValueBound Add(int32_t c, /* out */ bool* overflow, /* out */ bool* underflow) const {
239     *overflow = *underflow = false;
240     if (c == 0) {
241       return *this;
242     }
243 
244     int32_t new_constant;
245     if (c > 0) {
246       if (constant_ > (std::numeric_limits<int32_t>::max() - c)) {
247         *overflow = true;
248         return Max();
249       }
250 
251       new_constant = constant_ + c;
252       // (array.length + non-positive-constant) won't overflow an int.
253       if (IsConstant() || (IsRelatedToArrayLength() && new_constant <= 0)) {
254         return ValueBound(instruction_, new_constant);
255       }
256       // Be conservative.
257       *overflow = true;
258       return Max();
259     } else {
260       if (constant_ < (std::numeric_limits<int32_t>::min() - c)) {
261         *underflow = true;
262         return Min();
263       }
264 
265       new_constant = constant_ + c;
266       // Regardless of the value new_constant, (array.length+new_constant) will
267       // never underflow since array.length is no less than 0.
268       if (IsConstant() || IsRelatedToArrayLength()) {
269         return ValueBound(instruction_, new_constant);
270       }
271       // Be conservative.
272       *underflow = true;
273       return Min();
274     }
275   }
276 
277  private:
278   HInstruction* instruction_;
279   int32_t constant_;
280 };
281 
282 /**
283  * Represent a range of lower bound and upper bound, both being inclusive.
284  * Currently a ValueRange may be generated as a result of the following:
285  * comparisons related to array bounds, array bounds check, add/sub on top
286  * of an existing value range, NewArray or a loop phi corresponding to an
287  * incrementing/decrementing array index (MonotonicValueRange).
288  */
289 class ValueRange : public ArenaObject<kArenaAllocBoundsCheckElimination> {
290  public:
ValueRange(ScopedArenaAllocator * allocator,ValueBound lower,ValueBound upper)291   ValueRange(ScopedArenaAllocator* allocator, ValueBound lower, ValueBound upper)
292       : allocator_(allocator), lower_(lower), upper_(upper) {}
293 
~ValueRange()294   virtual ~ValueRange() {}
295 
AsMonotonicValueRange()296   virtual MonotonicValueRange* AsMonotonicValueRange() { return nullptr; }
IsMonotonicValueRange()297   bool IsMonotonicValueRange() {
298     return AsMonotonicValueRange() != nullptr;
299   }
300 
GetAllocator() const301   ScopedArenaAllocator* GetAllocator() const { return allocator_; }
GetLower() const302   ValueBound GetLower() const { return lower_; }
GetUpper() const303   ValueBound GetUpper() const { return upper_; }
304 
IsConstantValueRange() const305   bool IsConstantValueRange() const { return lower_.IsConstant() && upper_.IsConstant(); }
306 
307   // If it's certain that this value range fits in other_range.
FitsIn(ValueRange * other_range) const308   virtual bool FitsIn(ValueRange* other_range) const {
309     if (other_range == nullptr) {
310       return true;
311     }
312     DCHECK(!other_range->IsMonotonicValueRange());
313     return lower_.GreaterThanOrEqualTo(other_range->lower_) &&
314            upper_.LessThanOrEqualTo(other_range->upper_);
315   }
316 
317   // Returns the intersection of this and range.
318   // If it's not possible to do intersection because some
319   // bounds are not comparable, it's ok to pick either bound.
Narrow(ValueRange * range)320   virtual ValueRange* Narrow(ValueRange* range) {
321     if (range == nullptr) {
322       return this;
323     }
324 
325     if (range->IsMonotonicValueRange()) {
326       return this;
327     }
328 
329     return new (allocator_) ValueRange(
330         allocator_,
331         ValueBound::NarrowLowerBound(lower_, range->lower_),
332         ValueBound::NarrowUpperBound(upper_, range->upper_));
333   }
334 
335   // Shift a range by a constant.
Add(int32_t constant) const336   ValueRange* Add(int32_t constant) const {
337     bool overflow, underflow;
338     ValueBound lower = lower_.Add(constant, &overflow, &underflow);
339     if (underflow) {
340       // Lower bound underflow will wrap around to positive values
341       // and invalidate the upper bound.
342       return nullptr;
343     }
344     ValueBound upper = upper_.Add(constant, &overflow, &underflow);
345     if (overflow) {
346       // Upper bound overflow will wrap around to negative values
347       // and invalidate the lower bound.
348       return nullptr;
349     }
350     return new (allocator_) ValueRange(allocator_, lower, upper);
351   }
352 
353  private:
354   ScopedArenaAllocator* const allocator_;
355   const ValueBound lower_;  // inclusive
356   const ValueBound upper_;  // inclusive
357 
358   DISALLOW_COPY_AND_ASSIGN(ValueRange);
359 };
360 
361 /**
362  * A monotonically incrementing/decrementing value range, e.g.
363  * the variable i in "for (int i=0; i<array.length; i++)".
364  * Special care needs to be taken to account for overflow/underflow
365  * of such value ranges.
366  */
367 class MonotonicValueRange : public ValueRange {
368  public:
MonotonicValueRange(ScopedArenaAllocator * allocator,HPhi * induction_variable,HInstruction * initial,int32_t increment,ValueBound bound)369   MonotonicValueRange(ScopedArenaAllocator* allocator,
370                       HPhi* induction_variable,
371                       HInstruction* initial,
372                       int32_t increment,
373                       ValueBound bound)
374       // To be conservative, give it full range [Min(), Max()] in case it's
375       // used as a regular value range, due to possible overflow/underflow.
376       : ValueRange(allocator, ValueBound::Min(), ValueBound::Max()),
377         induction_variable_(induction_variable),
378         initial_(initial),
379         increment_(increment),
380         bound_(bound) {}
381 
~MonotonicValueRange()382   virtual ~MonotonicValueRange() {}
383 
GetIncrement() const384   int32_t GetIncrement() const { return increment_; }
GetBound() const385   ValueBound GetBound() const { return bound_; }
GetLoopHeader() const386   HBasicBlock* GetLoopHeader() const {
387     DCHECK(induction_variable_->GetBlock()->IsLoopHeader());
388     return induction_variable_->GetBlock();
389   }
390 
AsMonotonicValueRange()391   MonotonicValueRange* AsMonotonicValueRange() override { return this; }
392 
393   // If it's certain that this value range fits in other_range.
FitsIn(ValueRange * other_range) const394   bool FitsIn(ValueRange* other_range) const override {
395     if (other_range == nullptr) {
396       return true;
397     }
398     DCHECK(!other_range->IsMonotonicValueRange());
399     return false;
400   }
401 
402   // Try to narrow this MonotonicValueRange given another range.
403   // Ideally it will return a normal ValueRange. But due to
404   // possible overflow/underflow, that may not be possible.
Narrow(ValueRange * range)405   ValueRange* Narrow(ValueRange* range) override {
406     if (range == nullptr) {
407       return this;
408     }
409     DCHECK(!range->IsMonotonicValueRange());
410 
411     if (increment_ > 0) {
412       // Monotonically increasing.
413       ValueBound lower = ValueBound::NarrowLowerBound(bound_, range->GetLower());
414       if (!lower.IsConstant() || lower.GetConstant() == std::numeric_limits<int32_t>::min()) {
415         // Lower bound isn't useful. Leave it to deoptimization.
416         return this;
417       }
418 
419       // We currently conservatively assume max array length is Max().
420       // If we can make assumptions about the max array length, e.g. due to the max heap size,
421       // divided by the element size (such as 4 bytes for each integer array), we can
422       // lower this number and rule out some possible overflows.
423       int32_t max_array_len = std::numeric_limits<int32_t>::max();
424 
425       // max possible integer value of range's upper value.
426       int32_t upper = std::numeric_limits<int32_t>::max();
427       // Try to lower upper.
428       ValueBound upper_bound = range->GetUpper();
429       if (upper_bound.IsConstant()) {
430         upper = upper_bound.GetConstant();
431       } else if (upper_bound.IsRelatedToArrayLength() && upper_bound.GetConstant() <= 0) {
432         // Normal case. e.g. <= array.length - 1.
433         upper = max_array_len + upper_bound.GetConstant();
434       }
435 
436       // If we can prove for the last number in sequence of initial_,
437       // initial_ + increment_, initial_ + 2 x increment_, ...
438       // that's <= upper, (last_num_in_sequence + increment_) doesn't trigger overflow,
439       // then this MonoticValueRange is narrowed to a normal value range.
440 
441       // Be conservative first, assume last number in the sequence hits upper.
442       int32_t last_num_in_sequence = upper;
443       if (initial_->IsIntConstant()) {
444         int32_t initial_constant = initial_->AsIntConstant()->GetValue();
445         if (upper <= initial_constant) {
446           last_num_in_sequence = upper;
447         } else {
448           // Cast to int64_t for the substraction part to avoid int32_t overflow.
449           last_num_in_sequence = initial_constant +
450               ((int64_t)upper - (int64_t)initial_constant) / increment_ * increment_;
451         }
452       }
453       if (last_num_in_sequence <= (std::numeric_limits<int32_t>::max() - increment_)) {
454         // No overflow. The sequence will be stopped by the upper bound test as expected.
455         return new (GetAllocator()) ValueRange(GetAllocator(), lower, range->GetUpper());
456       }
457 
458       // There might be overflow. Give up narrowing.
459       return this;
460     } else {
461       DCHECK_NE(increment_, 0);
462       // Monotonically decreasing.
463       ValueBound upper = ValueBound::NarrowUpperBound(bound_, range->GetUpper());
464       if ((!upper.IsConstant() || upper.GetConstant() == std::numeric_limits<int32_t>::max()) &&
465           !upper.IsRelatedToArrayLength()) {
466         // Upper bound isn't useful. Leave it to deoptimization.
467         return this;
468       }
469 
470       // Need to take care of underflow. Try to prove underflow won't happen
471       // for common cases.
472       if (range->GetLower().IsConstant()) {
473         int32_t constant = range->GetLower().GetConstant();
474         if (constant >= (std::numeric_limits<int32_t>::min() - increment_)) {
475           return new (GetAllocator()) ValueRange(GetAllocator(), range->GetLower(), upper);
476         }
477       }
478 
479       // For non-constant lower bound, just assume might be underflow. Give up narrowing.
480       return this;
481     }
482   }
483 
484  private:
485   HPhi* const induction_variable_;  // Induction variable for this monotonic value range.
486   HInstruction* const initial_;     // Initial value.
487   const int32_t increment_;         // Increment for each loop iteration.
488   const ValueBound bound_;          // Additional value bound info for initial_.
489 
490   DISALLOW_COPY_AND_ASSIGN(MonotonicValueRange);
491 };
492 
493 class BCEVisitor : public HGraphVisitor {
494  public:
495   // The least number of bounds checks that should be eliminated by triggering
496   // the deoptimization technique.
497   static constexpr size_t kThresholdForAddingDeoptimize = 2;
498 
499   // Very large lengths are considered an anomaly. This is a threshold beyond which we don't
500   // bother to apply the deoptimization technique since it's likely, or sometimes certain,
501   // an AIOOBE will be thrown.
502   static constexpr uint32_t kMaxLengthForAddingDeoptimize =
503       std::numeric_limits<int32_t>::max() - 1024 * 1024;
504 
505   // Added blocks for loop body entry test.
IsAddedBlock(HBasicBlock * block) const506   bool IsAddedBlock(HBasicBlock* block) const {
507     return block->GetBlockId() >= initial_block_size_;
508   }
509 
BCEVisitor(HGraph * graph,const SideEffectsAnalysis & side_effects,HInductionVarAnalysis * induction_analysis)510   BCEVisitor(HGraph* graph,
511              const SideEffectsAnalysis& side_effects,
512              HInductionVarAnalysis* induction_analysis)
513       : HGraphVisitor(graph),
514         allocator_(graph->GetArenaStack()),
515         maps_(graph->GetBlocks().size(),
516               ScopedArenaSafeMap<int, ValueRange*>(
517                   std::less<int>(),
518                   allocator_.Adapter(kArenaAllocBoundsCheckElimination)),
519               allocator_.Adapter(kArenaAllocBoundsCheckElimination)),
520         first_index_bounds_check_map_(std::less<int>(),
521                                       allocator_.Adapter(kArenaAllocBoundsCheckElimination)),
522         early_exit_loop_(std::less<uint32_t>(),
523                          allocator_.Adapter(kArenaAllocBoundsCheckElimination)),
524         taken_test_loop_(std::less<uint32_t>(),
525                          allocator_.Adapter(kArenaAllocBoundsCheckElimination)),
526         finite_loop_(allocator_.Adapter(kArenaAllocBoundsCheckElimination)),
527         has_dom_based_dynamic_bce_(false),
528         initial_block_size_(graph->GetBlocks().size()),
529         side_effects_(side_effects),
530         induction_range_(induction_analysis),
531         next_(nullptr) {}
532 
VisitBasicBlock(HBasicBlock * block)533   void VisitBasicBlock(HBasicBlock* block) override {
534     DCHECK(!IsAddedBlock(block));
535     first_index_bounds_check_map_.clear();
536     // Visit phis and instructions using a safe iterator. The iteration protects
537     // against deleting the current instruction during iteration. However, it
538     // must advance next_ if that instruction is deleted during iteration.
539     for (HInstruction* instruction = block->GetFirstPhi(); instruction != nullptr;) {
540       DCHECK(instruction->IsInBlock());
541       next_ = instruction->GetNext();
542       instruction->Accept(this);
543       instruction = next_;
544     }
545     for (HInstruction* instruction = block->GetFirstInstruction(); instruction != nullptr;) {
546       DCHECK(instruction->IsInBlock());
547       next_ = instruction->GetNext();
548       instruction->Accept(this);
549       instruction = next_;
550     }
551     // We should never deoptimize from an osr method, otherwise we might wrongly optimize
552     // code dominated by the deoptimization.
553     if (!GetGraph()->IsCompilingOsr()) {
554       AddComparesWithDeoptimization(block);
555     }
556   }
557 
Finish()558   void Finish() {
559     // Preserve SSA structure which may have been broken by adding one or more
560     // new taken-test structures (see TransformLoopForDeoptimizationIfNeeded()).
561     InsertPhiNodes();
562 
563     // Clear the loop data structures.
564     early_exit_loop_.clear();
565     taken_test_loop_.clear();
566     finite_loop_.clear();
567   }
568 
569  private:
570   // Return the map of proven value ranges at the beginning of a basic block.
GetValueRangeMap(HBasicBlock * basic_block)571   ScopedArenaSafeMap<int, ValueRange*>* GetValueRangeMap(HBasicBlock* basic_block) {
572     if (IsAddedBlock(basic_block)) {
573       // Added blocks don't keep value ranges.
574       return nullptr;
575     }
576     return &maps_[basic_block->GetBlockId()];
577   }
578 
579   // Traverse up the dominator tree to look for value range info.
LookupValueRange(HInstruction * instruction,HBasicBlock * basic_block)580   ValueRange* LookupValueRange(HInstruction* instruction, HBasicBlock* basic_block) {
581     while (basic_block != nullptr) {
582       ScopedArenaSafeMap<int, ValueRange*>* map = GetValueRangeMap(basic_block);
583       if (map != nullptr) {
584         if (map->find(instruction->GetId()) != map->end()) {
585           return map->Get(instruction->GetId());
586         }
587       } else {
588         DCHECK(IsAddedBlock(basic_block));
589       }
590       basic_block = basic_block->GetDominator();
591     }
592     // Didn't find any.
593     return nullptr;
594   }
595 
596   // Helper method to assign a new range to an instruction in given basic block.
AssignRange(HBasicBlock * basic_block,HInstruction * instruction,ValueRange * range)597   void AssignRange(HBasicBlock* basic_block, HInstruction* instruction, ValueRange* range) {
598     DCHECK(!range->IsMonotonicValueRange() || instruction->IsLoopHeaderPhi());
599     GetValueRangeMap(basic_block)->Overwrite(instruction->GetId(), range);
600   }
601 
602   // Narrow the value range of `instruction` at the end of `basic_block` with `range`,
603   // and push the narrowed value range to `successor`.
ApplyRangeFromComparison(HInstruction * instruction,HBasicBlock * basic_block,HBasicBlock * successor,ValueRange * range)604   void ApplyRangeFromComparison(HInstruction* instruction, HBasicBlock* basic_block,
605                                 HBasicBlock* successor, ValueRange* range) {
606     ValueRange* existing_range = LookupValueRange(instruction, basic_block);
607     if (existing_range == nullptr) {
608       if (range != nullptr) {
609         AssignRange(successor, instruction, range);
610       }
611       return;
612     }
613     if (existing_range->IsMonotonicValueRange()) {
614       DCHECK(instruction->IsLoopHeaderPhi());
615       // Make sure the comparison is in the loop header so each increment is
616       // checked with a comparison.
617       if (instruction->GetBlock() != basic_block) {
618         return;
619       }
620     }
621     AssignRange(successor, instruction, existing_range->Narrow(range));
622   }
623 
624   // Special case that we may simultaneously narrow two MonotonicValueRange's to
625   // regular value ranges.
HandleIfBetweenTwoMonotonicValueRanges(HIf * instruction,HInstruction * left,HInstruction * right,IfCondition cond,MonotonicValueRange * left_range,MonotonicValueRange * right_range)626   void HandleIfBetweenTwoMonotonicValueRanges(HIf* instruction,
627                                               HInstruction* left,
628                                               HInstruction* right,
629                                               IfCondition cond,
630                                               MonotonicValueRange* left_range,
631                                               MonotonicValueRange* right_range) {
632     DCHECK(left->IsLoopHeaderPhi());
633     DCHECK(right->IsLoopHeaderPhi());
634     if (instruction->GetBlock() != left->GetBlock()) {
635       // Comparison needs to be in loop header to make sure it's done after each
636       // increment/decrement.
637       return;
638     }
639 
640     // Handle common cases which also don't have overflow/underflow concerns.
641     if (left_range->GetIncrement() == 1 &&
642         left_range->GetBound().IsConstant() &&
643         right_range->GetIncrement() == -1 &&
644         right_range->GetBound().IsRelatedToArrayLength() &&
645         right_range->GetBound().GetConstant() < 0) {
646       HBasicBlock* successor = nullptr;
647       int32_t left_compensation = 0;
648       int32_t right_compensation = 0;
649       if (cond == kCondLT) {
650         left_compensation = -1;
651         right_compensation = 1;
652         successor = instruction->IfTrueSuccessor();
653       } else if (cond == kCondLE) {
654         successor = instruction->IfTrueSuccessor();
655       } else if (cond == kCondGT) {
656         successor = instruction->IfFalseSuccessor();
657       } else if (cond == kCondGE) {
658         left_compensation = -1;
659         right_compensation = 1;
660         successor = instruction->IfFalseSuccessor();
661       } else {
662         // We don't handle '=='/'!=' test in case left and right can cross and
663         // miss each other.
664         return;
665       }
666 
667       if (successor != nullptr) {
668         bool overflow;
669         bool underflow;
670         ValueRange* new_left_range = new (&allocator_) ValueRange(
671             &allocator_,
672             left_range->GetBound(),
673             right_range->GetBound().Add(left_compensation, &overflow, &underflow));
674         if (!overflow && !underflow) {
675           ApplyRangeFromComparison(left, instruction->GetBlock(), successor,
676                                    new_left_range);
677         }
678 
679         ValueRange* new_right_range = new (&allocator_) ValueRange(
680             &allocator_,
681             left_range->GetBound().Add(right_compensation, &overflow, &underflow),
682             right_range->GetBound());
683         if (!overflow && !underflow) {
684           ApplyRangeFromComparison(right, instruction->GetBlock(), successor,
685                                    new_right_range);
686         }
687       }
688     }
689   }
690 
691   // Handle "if (left cmp_cond right)".
HandleIf(HIf * instruction,HInstruction * left,HInstruction * right,IfCondition cond)692   void HandleIf(HIf* instruction, HInstruction* left, HInstruction* right, IfCondition cond) {
693     HBasicBlock* block = instruction->GetBlock();
694 
695     HBasicBlock* true_successor = instruction->IfTrueSuccessor();
696     // There should be no critical edge at this point.
697     DCHECK_EQ(true_successor->GetPredecessors().size(), 1u);
698 
699     HBasicBlock* false_successor = instruction->IfFalseSuccessor();
700     // There should be no critical edge at this point.
701     DCHECK_EQ(false_successor->GetPredecessors().size(), 1u);
702 
703     ValueRange* left_range = LookupValueRange(left, block);
704     MonotonicValueRange* left_monotonic_range = nullptr;
705     if (left_range != nullptr) {
706       left_monotonic_range = left_range->AsMonotonicValueRange();
707       if (left_monotonic_range != nullptr) {
708         HBasicBlock* loop_head = left_monotonic_range->GetLoopHeader();
709         if (instruction->GetBlock() != loop_head) {
710           // For monotonic value range, don't handle `instruction`
711           // if it's not defined in the loop header.
712           return;
713         }
714       }
715     }
716 
717     bool found;
718     ValueBound bound = ValueBound::DetectValueBoundFromValue(right, &found);
719     // Each comparison can establish a lower bound and an upper bound
720     // for the left hand side.
721     ValueBound lower = bound;
722     ValueBound upper = bound;
723     if (!found) {
724       // No constant or array.length+c format bound found.
725       // For i<j, we can still use j's upper bound as i's upper bound. Same for lower.
726       ValueRange* right_range = LookupValueRange(right, block);
727       if (right_range != nullptr) {
728         if (right_range->IsMonotonicValueRange()) {
729           if (left_range != nullptr && left_range->IsMonotonicValueRange()) {
730             HandleIfBetweenTwoMonotonicValueRanges(instruction, left, right, cond,
731                                                    left_range->AsMonotonicValueRange(),
732                                                    right_range->AsMonotonicValueRange());
733             return;
734           }
735         }
736         lower = right_range->GetLower();
737         upper = right_range->GetUpper();
738       } else {
739         lower = ValueBound::Min();
740         upper = ValueBound::Max();
741       }
742     }
743 
744     bool overflow, underflow;
745     if (cond == kCondLT || cond == kCondLE) {
746       if (!upper.Equals(ValueBound::Max())) {
747         int32_t compensation = (cond == kCondLT) ? -1 : 0;  // upper bound is inclusive
748         ValueBound new_upper = upper.Add(compensation, &overflow, &underflow);
749         if (overflow || underflow) {
750           return;
751         }
752         ValueRange* new_range = new (&allocator_) ValueRange(
753             &allocator_, ValueBound::Min(), new_upper);
754         ApplyRangeFromComparison(left, block, true_successor, new_range);
755       }
756 
757       // array.length as a lower bound isn't considered useful.
758       if (!lower.Equals(ValueBound::Min()) && !lower.IsRelatedToArrayLength()) {
759         int32_t compensation = (cond == kCondLE) ? 1 : 0;  // lower bound is inclusive
760         ValueBound new_lower = lower.Add(compensation, &overflow, &underflow);
761         if (overflow || underflow) {
762           return;
763         }
764         ValueRange* new_range = new (&allocator_) ValueRange(
765             &allocator_, new_lower, ValueBound::Max());
766         ApplyRangeFromComparison(left, block, false_successor, new_range);
767       }
768     } else if (cond == kCondGT || cond == kCondGE) {
769       // array.length as a lower bound isn't considered useful.
770       if (!lower.Equals(ValueBound::Min()) && !lower.IsRelatedToArrayLength()) {
771         int32_t compensation = (cond == kCondGT) ? 1 : 0;  // lower bound is inclusive
772         ValueBound new_lower = lower.Add(compensation, &overflow, &underflow);
773         if (overflow || underflow) {
774           return;
775         }
776         ValueRange* new_range = new (&allocator_) ValueRange(
777             &allocator_, new_lower, ValueBound::Max());
778         ApplyRangeFromComparison(left, block, true_successor, new_range);
779       }
780 
781       if (!upper.Equals(ValueBound::Max())) {
782         int32_t compensation = (cond == kCondGE) ? -1 : 0;  // upper bound is inclusive
783         ValueBound new_upper = upper.Add(compensation, &overflow, &underflow);
784         if (overflow || underflow) {
785           return;
786         }
787         ValueRange* new_range = new (&allocator_) ValueRange(
788             &allocator_, ValueBound::Min(), new_upper);
789         ApplyRangeFromComparison(left, block, false_successor, new_range);
790       }
791     } else if (cond == kCondNE || cond == kCondEQ) {
792       if (left->IsArrayLength()) {
793         if (lower.IsConstant() && upper.IsConstant()) {
794           // Special case:
795           //   length == [c,d] yields [c, d] along true
796           //   length != [c,d] yields [c, d] along false
797           if (!lower.Equals(ValueBound::Min()) || !upper.Equals(ValueBound::Max())) {
798             ValueRange* new_range = new (&allocator_) ValueRange(&allocator_, lower, upper);
799             ApplyRangeFromComparison(
800                 left, block, cond == kCondEQ ? true_successor : false_successor, new_range);
801           }
802           // In addition:
803           //   length == 0 yields [1, max] along false
804           //   length != 0 yields [1, max] along true
805           if (lower.GetConstant() == 0 && upper.GetConstant() == 0) {
806             ValueRange* new_range = new (&allocator_) ValueRange(
807                 &allocator_, ValueBound(nullptr, 1), ValueBound::Max());
808             ApplyRangeFromComparison(
809                 left, block, cond == kCondEQ ? false_successor : true_successor, new_range);
810           }
811         }
812       } else if (lower.IsRelatedToArrayLength() && lower.Equals(upper)) {
813         // Special aliasing case, with x not array length itself:
814         //   x == [length,length] yields x == length along true
815         //   x != [length,length] yields x == length along false
816         ValueRange* new_range = new (&allocator_) ValueRange(&allocator_, lower, upper);
817         ApplyRangeFromComparison(
818             left, block, cond == kCondEQ ? true_successor : false_successor, new_range);
819       }
820     }
821   }
822 
VisitBoundsCheck(HBoundsCheck * bounds_check)823   void VisitBoundsCheck(HBoundsCheck* bounds_check) override {
824     HBasicBlock* block = bounds_check->GetBlock();
825     HInstruction* index = bounds_check->InputAt(0);
826     HInstruction* array_length = bounds_check->InputAt(1);
827     DCHECK(array_length->IsIntConstant() ||
828            array_length->IsArrayLength() ||
829            array_length->IsPhi());
830     bool try_dynamic_bce = true;
831     // Analyze index range.
832     if (!index->IsIntConstant()) {
833       // Non-constant index.
834       ValueBound lower = ValueBound(nullptr, 0);        // constant 0
835       ValueBound upper = ValueBound(array_length, -1);  // array_length - 1
836       ValueRange array_range(&allocator_, lower, upper);
837       // Try index range obtained by dominator-based analysis.
838       ValueRange* index_range = LookupValueRange(index, block);
839       if (index_range != nullptr) {
840         if (index_range->FitsIn(&array_range)) {
841           ReplaceInstruction(bounds_check, index);
842           return;
843         } else if (index_range->IsConstantValueRange()) {
844           // If the non-constant index turns out to have a constant range,
845           // make one more attempt to get a constant in the array range.
846           ValueRange* existing_range = LookupValueRange(array_length, block);
847           if (existing_range != nullptr &&
848               existing_range->IsConstantValueRange() &&
849               existing_range->GetLower().GetConstant() > 0) {
850             ValueBound constant_upper(nullptr, existing_range->GetLower().GetConstant() - 1);
851             ValueRange constant_array_range(&allocator_, lower, constant_upper);
852             if (index_range->FitsIn(&constant_array_range)) {
853               ReplaceInstruction(bounds_check, index);
854               return;
855             }
856           }
857         }
858       }
859       // Try index range obtained by induction variable analysis.
860       // Disables dynamic bce if OOB is certain.
861       if (InductionRangeFitsIn(&array_range, bounds_check, &try_dynamic_bce)) {
862         ReplaceInstruction(bounds_check, index);
863         return;
864       }
865     } else {
866       // Constant index.
867       int32_t constant = index->AsIntConstant()->GetValue();
868       if (constant < 0) {
869         // Will always throw exception.
870         return;
871       } else if (array_length->IsIntConstant()) {
872         if (constant < array_length->AsIntConstant()->GetValue()) {
873           ReplaceInstruction(bounds_check, index);
874         }
875         return;
876       }
877       // Analyze array length range.
878       DCHECK(array_length->IsArrayLength());
879       ValueRange* existing_range = LookupValueRange(array_length, block);
880       if (existing_range != nullptr) {
881         ValueBound lower = existing_range->GetLower();
882         DCHECK(lower.IsConstant());
883         if (constant < lower.GetConstant()) {
884           ReplaceInstruction(bounds_check, index);
885           return;
886         } else {
887           // Existing range isn't strong enough to eliminate the bounds check.
888           // Fall through to update the array_length range with info from this
889           // bounds check.
890         }
891       }
892       // Once we have an array access like 'array[5] = 1', we record array.length >= 6.
893       // We currently don't do it for non-constant index since a valid array[i] can't prove
894       // a valid array[i-1] yet due to the lower bound side.
895       if (constant == std::numeric_limits<int32_t>::max()) {
896         // Max() as an index will definitely throw AIOOBE.
897         return;
898       } else {
899         ValueBound lower = ValueBound(nullptr, constant + 1);
900         ValueBound upper = ValueBound::Max();
901         ValueRange* range = new (&allocator_) ValueRange(&allocator_, lower, upper);
902         AssignRange(block, array_length, range);
903       }
904     }
905 
906     // If static analysis fails, and OOB is not certain, try dynamic elimination.
907     if (try_dynamic_bce) {
908       // Try loop-based dynamic elimination.
909       HLoopInformation* loop = bounds_check->GetBlock()->GetLoopInformation();
910       bool needs_finite_test = false;
911       bool needs_taken_test = false;
912       if (DynamicBCESeemsProfitable(loop, bounds_check->GetBlock()) &&
913           induction_range_.CanGenerateRange(
914               bounds_check, index, &needs_finite_test, &needs_taken_test) &&
915           CanHandleInfiniteLoop(loop, index, needs_finite_test) &&
916           // Do this test last, since it may generate code.
917           CanHandleLength(loop, array_length, needs_taken_test)) {
918         TransformLoopForDeoptimizationIfNeeded(loop, needs_taken_test);
919         TransformLoopForDynamicBCE(loop, bounds_check);
920         return;
921       }
922       // Otherwise, prepare dominator-based dynamic elimination.
923       if (first_index_bounds_check_map_.find(array_length->GetId()) ==
924           first_index_bounds_check_map_.end()) {
925         // Remember the first bounds check against each array_length. That bounds check
926         // instruction has an associated HEnvironment where we may add an HDeoptimize
927         // to eliminate subsequent bounds checks against the same array_length.
928         first_index_bounds_check_map_.Put(array_length->GetId(), bounds_check);
929       }
930     }
931   }
932 
HasSameInputAtBackEdges(HPhi * phi)933   static bool HasSameInputAtBackEdges(HPhi* phi) {
934     DCHECK(phi->IsLoopHeaderPhi());
935     HConstInputsRef inputs = phi->GetInputs();
936     // Start with input 1. Input 0 is from the incoming block.
937     const HInstruction* input1 = inputs[1];
938     DCHECK(phi->GetBlock()->GetLoopInformation()->IsBackEdge(
939         *phi->GetBlock()->GetPredecessors()[1]));
940     for (size_t i = 2; i < inputs.size(); ++i) {
941       DCHECK(phi->GetBlock()->GetLoopInformation()->IsBackEdge(
942           *phi->GetBlock()->GetPredecessors()[i]));
943       if (input1 != inputs[i]) {
944         return false;
945       }
946     }
947     return true;
948   }
949 
VisitPhi(HPhi * phi)950   void VisitPhi(HPhi* phi) override {
951     if (phi->IsLoopHeaderPhi()
952         && (phi->GetType() == DataType::Type::kInt32)
953         && HasSameInputAtBackEdges(phi)) {
954       HInstruction* instruction = phi->InputAt(1);
955       HInstruction *left;
956       int32_t increment;
957       if (ValueBound::IsAddOrSubAConstant(instruction, &left, &increment)) {
958         if (left == phi) {
959           HInstruction* initial_value = phi->InputAt(0);
960           ValueRange* range = nullptr;
961           if (increment == 0) {
962             // Add constant 0. It's really a fixed value.
963             range = new (&allocator_) ValueRange(
964                 &allocator_,
965                 ValueBound(initial_value, 0),
966                 ValueBound(initial_value, 0));
967           } else {
968             // Monotonically increasing/decreasing.
969             bool found;
970             ValueBound bound = ValueBound::DetectValueBoundFromValue(
971                 initial_value, &found);
972             if (!found) {
973               // No constant or array.length+c bound found.
974               // For i=j, we can still use j's upper bound as i's upper bound.
975               // Same for lower.
976               ValueRange* initial_range = LookupValueRange(initial_value, phi->GetBlock());
977               if (initial_range != nullptr) {
978                 bound = increment > 0 ? initial_range->GetLower() :
979                                         initial_range->GetUpper();
980               } else {
981                 bound = increment > 0 ? ValueBound::Min() : ValueBound::Max();
982               }
983             }
984             range = new (&allocator_) MonotonicValueRange(
985                 &allocator_,
986                 phi,
987                 initial_value,
988                 increment,
989                 bound);
990           }
991           AssignRange(phi->GetBlock(), phi, range);
992         }
993       }
994     }
995   }
996 
VisitIf(HIf * instruction)997   void VisitIf(HIf* instruction) override {
998     if (instruction->InputAt(0)->IsCondition()) {
999       HCondition* cond = instruction->InputAt(0)->AsCondition();
1000       HandleIf(instruction, cond->GetLeft(), cond->GetRight(), cond->GetCondition());
1001     }
1002   }
1003 
1004   // Check whether HSub is a result of the HRem optimization of:
1005   //   q = Div(dividend, const_divisor)
1006   //   r = Rem(dividend, const_divisor)
1007   // into
1008   //   q = Div(dividend, const_divisor)
1009   //   t = Mul(q, const_divisor)
1010   //   r = Sub(dividend, t)
1011   // or for divisors 2^n + 1 into
1012   //   q  = Div(dividend, const_divisor)
1013   //   t1 = Shl(q, n)
1014   //   t2 = Add(q, t1)
1015   //   r  = Sub(dividend, t2)
1016   // or for divisors 2^n - 1 into
1017   //   q  = Div(dividend, const_divisor)
1018   //   t1 = Shl(q, n)
1019   //   t2 = Sub(t1, q)
1020   //   r  = Sub(dividend, t2)
1021   //
1022   // If it is the case, the value range for the instruction is
1023   // [1 - abs(const_divisor), abs(const_divisor) - 1] merged with
1024   // the range of the left input is assigned and true is returned. Otherwise,
1025   // no range is assigned and false is returned.
TryToAssignRangeIfOptimizedRemWithConstantDivisor(HSub * instruction)1026   bool TryToAssignRangeIfOptimizedRemWithConstantDivisor(HSub* instruction) {
1027     if (instruction->GetResultType() != DataType::Type::kInt32) {
1028       return false;
1029     }
1030 
1031     auto is_needed_shl = [](HShl* shl) {
1032       return shl != nullptr && shl->GetRight()->IsConstant() && shl->GetLeft()->IsDiv();
1033     };
1034 
1035     HDiv* div = nullptr;
1036     int64_t const_divisor = 0;
1037     if (HMul* mul = instruction->GetRight()->AsMul()) {
1038       if (!mul->GetLeft()->IsDiv() || !mul->GetRight()->IsConstant()) {
1039         return false;
1040       }
1041       div = mul->GetLeft()->AsDiv();
1042       const_divisor = Int64FromConstant(mul->GetRight()->AsConstant());
1043     } else if (HAdd* add = instruction->GetRight()->AsAdd()) {
1044       HShl* shl = add->GetRight()->AsShl();
1045       if (!is_needed_shl(shl)) {
1046         return false;
1047       }
1048 
1049       div = shl->GetLeft()->AsDiv();
1050       if (add->GetLeft() != div) {
1051         return false;
1052       }
1053 
1054       int32_t n = shl->GetRight()->AsIntConstant()->GetValue();
1055       if (n == BitSizeOf<int32_t>() - 1) {
1056         // 2^n + 1 will be negative.
1057         return false;
1058       }
1059       const_divisor = (1LL << n) + 1;
1060     } else if (HSub* sub = instruction->GetRight()->AsSub()) {
1061       HShl* shl = sub->GetLeft()->AsShl();
1062       if (!is_needed_shl(shl)) {
1063         return false;
1064       }
1065 
1066       div = shl->GetLeft()->AsDiv();
1067       if (sub->GetRight() != div) {
1068         return false;
1069       }
1070 
1071       int32_t n = shl->GetRight()->AsIntConstant()->GetValue();
1072       const_divisor = (1LL << n) - 1;
1073     }
1074 
1075     if (div == nullptr || !IsInt64Value(div->GetRight()->AsConstant(), const_divisor) ||
1076         div->GetLeft() != instruction->GetLeft()) {
1077       return false;
1078     }
1079 
1080     ValueRange* range = nullptr;
1081     if (const_divisor == DataType::MinValueOfIntegralType(DataType::Type::kInt32)) {
1082       range = new (&allocator_) ValueRange(&allocator_,
1083           ValueBound(nullptr, DataType::MinValueOfIntegralType(DataType::Type::kInt32) + 1),
1084           ValueBound(nullptr, DataType::MaxValueOfIntegralType(DataType::Type::kInt32)));
1085     } else {
1086       DCHECK_GT(const_divisor, DataType::MinValueOfIntegralType(DataType::Type::kInt32));
1087       DCHECK_LE(const_divisor, DataType::MaxValueOfIntegralType(DataType::Type::kInt32));
1088       int32_t abs_const_divisor = static_cast<int32_t>(std::abs(const_divisor));
1089       range = new (&allocator_) ValueRange(&allocator_,
1090                                            ValueBound(nullptr, 1 - abs_const_divisor),
1091                                            ValueBound(nullptr, abs_const_divisor - 1));
1092     }
1093     HBasicBlock* basic_block = instruction->GetBlock();
1094     if (ValueRange* left_range = LookupValueRange(instruction->GetLeft(), basic_block)) {
1095       range = range->Narrow(left_range);
1096     }
1097     AssignRange(basic_block, instruction, range);
1098     return true;
1099   }
1100 
VisitAdd(HAdd * add)1101   void VisitAdd(HAdd* add) override {
1102     HInstruction* right = add->GetRight();
1103     if (right->IsIntConstant()) {
1104       ValueRange* left_range = LookupValueRange(add->GetLeft(), add->GetBlock());
1105       if (left_range == nullptr) {
1106         return;
1107       }
1108       ValueRange* range = left_range->Add(right->AsIntConstant()->GetValue());
1109       if (range != nullptr) {
1110         AssignRange(add->GetBlock(), add, range);
1111       }
1112     }
1113   }
1114 
VisitSub(HSub * sub)1115   void VisitSub(HSub* sub) override {
1116     if (TryToAssignRangeIfOptimizedRemWithConstantDivisor(sub)) {
1117       return;
1118     }
1119 
1120     HInstruction* left = sub->GetLeft();
1121     HInstruction* right = sub->GetRight();
1122     if (right->IsIntConstant()) {
1123       ValueRange* left_range = LookupValueRange(left, sub->GetBlock());
1124       if (left_range == nullptr) {
1125         return;
1126       }
1127       ValueRange* range = left_range->Add(-right->AsIntConstant()->GetValue());
1128       if (range != nullptr) {
1129         AssignRange(sub->GetBlock(), sub, range);
1130         return;
1131       }
1132     }
1133 
1134     // Here we are interested in the typical triangular case of nested loops,
1135     // such as the inner loop 'for (int j=0; j<array.length-i; j++)' where i
1136     // is the index for outer loop. In this case, we know j is bounded by array.length-1.
1137 
1138     // Try to handle (array.length - i) or (array.length + c - i) format.
1139     HInstruction* left_of_left;  // left input of left.
1140     int32_t right_const = 0;
1141     if (ValueBound::IsAddOrSubAConstant(left, &left_of_left, &right_const)) {
1142       left = left_of_left;
1143     }
1144     // The value of left input of the sub equals (left + right_const).
1145 
1146     if (left->IsArrayLength()) {
1147       HInstruction* array_length = left->AsArrayLength();
1148       ValueRange* right_range = LookupValueRange(right, sub->GetBlock());
1149       if (right_range != nullptr) {
1150         ValueBound lower = right_range->GetLower();
1151         ValueBound upper = right_range->GetUpper();
1152         if (lower.IsConstant() && upper.IsRelatedToArrayLength()) {
1153           HInstruction* upper_inst = upper.GetInstruction();
1154           // Make sure it's the same array.
1155           if (ValueBound::Equal(array_length, upper_inst)) {
1156             int32_t c0 = right_const;
1157             int32_t c1 = lower.GetConstant();
1158             int32_t c2 = upper.GetConstant();
1159             // (array.length + c0 - v) where v is in [c1, array.length + c2]
1160             // gets [c0 - c2, array.length + c0 - c1] as its value range.
1161             if (!ValueBound::WouldAddOverflowOrUnderflow(c0, -c2) &&
1162                 !ValueBound::WouldAddOverflowOrUnderflow(c0, -c1)) {
1163               if ((c0 - c1) <= 0) {
1164                 // array.length + (c0 - c1) won't overflow/underflow.
1165                 ValueRange* range = new (&allocator_) ValueRange(
1166                     &allocator_,
1167                     ValueBound(nullptr, right_const - upper.GetConstant()),
1168                     ValueBound(array_length, right_const - lower.GetConstant()));
1169                 AssignRange(sub->GetBlock(), sub, range);
1170               }
1171             }
1172           }
1173         }
1174       }
1175     }
1176   }
1177 
FindAndHandlePartialArrayLength(HBinaryOperation * instruction)1178   void FindAndHandlePartialArrayLength(HBinaryOperation* instruction) {
1179     DCHECK(instruction->IsDiv() || instruction->IsShr() || instruction->IsUShr());
1180     HInstruction* right = instruction->GetRight();
1181     int32_t right_const;
1182     if (right->IsIntConstant()) {
1183       right_const = right->AsIntConstant()->GetValue();
1184       // Detect division by two or more.
1185       if ((instruction->IsDiv() && right_const <= 1) ||
1186           (instruction->IsShr() && right_const < 1) ||
1187           (instruction->IsUShr() && right_const < 1)) {
1188         return;
1189       }
1190     } else {
1191       return;
1192     }
1193 
1194     // Try to handle array.length/2 or (array.length-1)/2 format.
1195     HInstruction* left = instruction->GetLeft();
1196     HInstruction* left_of_left;  // left input of left.
1197     int32_t c = 0;
1198     if (ValueBound::IsAddOrSubAConstant(left, &left_of_left, &c)) {
1199       left = left_of_left;
1200     }
1201     // The value of left input of instruction equals (left + c).
1202 
1203     // (array_length + 1) or smaller divided by two or more
1204     // always generate a value in [Min(), array_length].
1205     // This is true even if array_length is Max().
1206     if (left->IsArrayLength() && c <= 1) {
1207       if (instruction->IsUShr() && c < 0) {
1208         // Make sure for unsigned shift, left side is not negative.
1209         // e.g. if array_length is 2, ((array_length - 3) >>> 2) is way bigger
1210         // than array_length.
1211         return;
1212       }
1213       ValueRange* range = new (&allocator_) ValueRange(
1214           &allocator_,
1215           ValueBound(nullptr, std::numeric_limits<int32_t>::min()),
1216           ValueBound(left, 0));
1217       AssignRange(instruction->GetBlock(), instruction, range);
1218     }
1219   }
1220 
VisitDiv(HDiv * div)1221   void VisitDiv(HDiv* div) override {
1222     FindAndHandlePartialArrayLength(div);
1223   }
1224 
VisitShr(HShr * shr)1225   void VisitShr(HShr* shr) override {
1226     FindAndHandlePartialArrayLength(shr);
1227   }
1228 
VisitUShr(HUShr * ushr)1229   void VisitUShr(HUShr* ushr) override {
1230     FindAndHandlePartialArrayLength(ushr);
1231   }
1232 
VisitAnd(HAnd * instruction)1233   void VisitAnd(HAnd* instruction) override {
1234     if (instruction->GetRight()->IsIntConstant()) {
1235       int32_t constant = instruction->GetRight()->AsIntConstant()->GetValue();
1236       if (constant > 0) {
1237         // constant serves as a mask so any number masked with it
1238         // gets a [0, constant] value range.
1239         ValueRange* range = new (&allocator_) ValueRange(
1240             &allocator_,
1241             ValueBound(nullptr, 0),
1242             ValueBound(nullptr, constant));
1243         AssignRange(instruction->GetBlock(), instruction, range);
1244       }
1245     }
1246   }
1247 
VisitRem(HRem * instruction)1248   void VisitRem(HRem* instruction) override {
1249     HInstruction* left = instruction->GetLeft();
1250     HInstruction* right = instruction->GetRight();
1251 
1252     // Handle 'i % CONST' format expression in array index, e.g:
1253     //   array[i % 20];
1254     if (right->IsIntConstant()) {
1255       int32_t right_const = std::abs(right->AsIntConstant()->GetValue());
1256       if (right_const == 0) {
1257         return;
1258       }
1259       // The sign of divisor CONST doesn't affect the sign final value range.
1260       // For example:
1261       // if (i > 0) {
1262       //   array[i % 10];  // index value range [0, 9]
1263       //   array[i % -10]; // index value range [0, 9]
1264       // }
1265       ValueRange* right_range = new (&allocator_) ValueRange(
1266           &allocator_,
1267           ValueBound(nullptr, 1 - right_const),
1268           ValueBound(nullptr, right_const - 1));
1269 
1270       ValueRange* left_range = LookupValueRange(left, instruction->GetBlock());
1271       if (left_range != nullptr) {
1272         right_range = right_range->Narrow(left_range);
1273       }
1274       AssignRange(instruction->GetBlock(), instruction, right_range);
1275       return;
1276     }
1277 
1278     // Handle following pattern:
1279     // i0 NullCheck
1280     // i1 ArrayLength[i0]
1281     // i2 DivByZeroCheck [i1]  <-- right
1282     // i3 Rem [i5, i2]         <-- we are here.
1283     // i4 BoundsCheck [i3,i1]
1284     if (right->IsDivZeroCheck()) {
1285       // if array_length can pass div-by-zero check,
1286       // array_length must be > 0.
1287       right = right->AsDivZeroCheck()->InputAt(0);
1288     }
1289 
1290     // Handle 'i % array.length' format expression in array index, e.g:
1291     //   array[(i+7) % array.length];
1292     if (right->IsArrayLength()) {
1293       ValueBound lower = ValueBound::Min();  // ideally, lower should be '1-array_length'.
1294       ValueBound upper = ValueBound(right, -1);  // array_length - 1
1295       ValueRange* right_range = new (&allocator_) ValueRange(
1296           &allocator_,
1297           lower,
1298           upper);
1299       ValueRange* left_range = LookupValueRange(left, instruction->GetBlock());
1300       if (left_range != nullptr) {
1301         right_range = right_range->Narrow(left_range);
1302       }
1303       AssignRange(instruction->GetBlock(), instruction, right_range);
1304       return;
1305     }
1306   }
1307 
VisitNewArray(HNewArray * new_array)1308   void VisitNewArray(HNewArray* new_array) override {
1309     HInstruction* len = new_array->GetLength();
1310     if (!len->IsIntConstant()) {
1311       HInstruction *left;
1312       int32_t right_const;
1313       if (ValueBound::IsAddOrSubAConstant(len, &left, &right_const)) {
1314         // (left + right_const) is used as size to new the array.
1315         // We record "-right_const <= left <= new_array - right_const";
1316         ValueBound lower = ValueBound(nullptr, -right_const);
1317         // We use new_array for the bound instead of new_array.length,
1318         // which isn't available as an instruction yet. new_array will
1319         // be treated the same as new_array.length when it's used in a ValueBound.
1320         ValueBound upper = ValueBound(new_array, -right_const);
1321         ValueRange* range = new (&allocator_) ValueRange(&allocator_, lower, upper);
1322         ValueRange* existing_range = LookupValueRange(left, new_array->GetBlock());
1323         if (existing_range != nullptr) {
1324           range = existing_range->Narrow(range);
1325         }
1326         AssignRange(new_array->GetBlock(), left, range);
1327       }
1328     }
1329   }
1330 
1331   /**
1332     * After null/bounds checks are eliminated, some invariant array references
1333     * may be exposed underneath which can be hoisted out of the loop to the
1334     * preheader or, in combination with dynamic bce, the deoptimization block.
1335     *
1336     * for (int i = 0; i < n; i++) {
1337     *                                <-------+
1338     *   for (int j = 0; j < n; j++)          |
1339     *     a[i][j] = 0;               --a[i]--+
1340     * }
1341     *
1342     * Note: this optimization is no longer applied after dominator-based dynamic deoptimization
1343     * has occurred (see AddCompareWithDeoptimization()), since in those cases it would be
1344     * unsafe to hoist array references across their deoptimization instruction inside a loop.
1345     */
VisitArrayGet(HArrayGet * array_get)1346   void VisitArrayGet(HArrayGet* array_get) override {
1347     if (!has_dom_based_dynamic_bce_ && array_get->IsInLoop()) {
1348       HLoopInformation* loop = array_get->GetBlock()->GetLoopInformation();
1349       if (loop->IsDefinedOutOfTheLoop(array_get->InputAt(0)) &&
1350           loop->IsDefinedOutOfTheLoop(array_get->InputAt(1))) {
1351         SideEffects loop_effects = side_effects_.GetLoopEffects(loop->GetHeader());
1352         if (!array_get->GetSideEffects().MayDependOn(loop_effects)) {
1353           // We can hoist ArrayGet only if its execution is guaranteed on every iteration.
1354           // In other words only if array_get_bb dominates all back branches.
1355           if (loop->DominatesAllBackEdges(array_get->GetBlock())) {
1356             HoistToPreHeaderOrDeoptBlock(loop, array_get);
1357           }
1358         }
1359       }
1360     }
1361   }
1362 
1363   /** Performs dominator-based dynamic elimination on suitable set of bounds checks. */
AddCompareWithDeoptimization(HBasicBlock * block,HInstruction * array_length,HInstruction * base,int32_t min_c,int32_t max_c)1364   void AddCompareWithDeoptimization(HBasicBlock* block,
1365                                     HInstruction* array_length,
1366                                     HInstruction* base,
1367                                     int32_t min_c, int32_t max_c) {
1368     HBoundsCheck* bounds_check =
1369         first_index_bounds_check_map_.Get(array_length->GetId())->AsBoundsCheck();
1370     // Construct deoptimization on single or double bounds on range [base-min_c,base+max_c],
1371     // for example either for a[0]..a[3] just 3 or for a[base-1]..a[base+3] both base-1
1372     // and base+3, since we made the assumption any in between value may occur too.
1373     // In code, using unsigned comparisons:
1374     // (1) constants only
1375     //       if (max_c >= a.length) deoptimize;
1376     // (2) general case
1377     //       if (base-min_c >  base+max_c) deoptimize;
1378     //       if (base+max_c >= a.length  ) deoptimize;
1379     static_assert(kMaxLengthForAddingDeoptimize < std::numeric_limits<int32_t>::max(),
1380                   "Incorrect max length may be subject to arithmetic wrap-around");
1381     HInstruction* upper = GetGraph()->GetIntConstant(max_c);
1382     if (base == nullptr) {
1383       DCHECK_GE(min_c, 0);
1384     } else {
1385       HInstruction* lower = new (GetGraph()->GetAllocator())
1386           HAdd(DataType::Type::kInt32, base, GetGraph()->GetIntConstant(min_c));
1387       upper = new (GetGraph()->GetAllocator()) HAdd(DataType::Type::kInt32, base, upper);
1388       block->InsertInstructionBefore(lower, bounds_check);
1389       block->InsertInstructionBefore(upper, bounds_check);
1390       InsertDeoptInBlock(bounds_check, new (GetGraph()->GetAllocator()) HAbove(lower, upper));
1391     }
1392     InsertDeoptInBlock(
1393         bounds_check, new (GetGraph()->GetAllocator()) HAboveOrEqual(upper, array_length));
1394     // Flag that this kind of deoptimization has occurred.
1395     has_dom_based_dynamic_bce_ = true;
1396   }
1397 
1398   /** Attempts dominator-based dynamic elimination on remaining candidates. */
AddComparesWithDeoptimization(HBasicBlock * block)1399   void AddComparesWithDeoptimization(HBasicBlock* block) {
1400     for (const auto& entry : first_index_bounds_check_map_) {
1401       HBoundsCheck* bounds_check = entry.second;
1402       HInstruction* index = bounds_check->InputAt(0);
1403       HInstruction* array_length = bounds_check->InputAt(1);
1404       if (!array_length->IsArrayLength()) {
1405         continue;  // disregard phis and constants
1406       }
1407       // Collect all bounds checks that are still there and that are related as "a[base + constant]"
1408       // for a base instruction (possibly absent) and various constants. Note that no attempt
1409       // is made to partition the set into matching subsets (viz. a[0], a[1] and a[base+1] and
1410       // a[base+2] are considered as one set).
1411       // TODO: would such a partitioning be worthwhile?
1412       ValueBound value = ValueBound::AsValueBound(index);
1413       HInstruction* base = value.GetInstruction();
1414       int32_t min_c = base == nullptr ? 0 : value.GetConstant();
1415       int32_t max_c = value.GetConstant();
1416       ScopedArenaVector<HBoundsCheck*> candidates(
1417           allocator_.Adapter(kArenaAllocBoundsCheckElimination));
1418       ScopedArenaVector<HBoundsCheck*> standby(
1419           allocator_.Adapter(kArenaAllocBoundsCheckElimination));
1420       for (const HUseListNode<HInstruction*>& use : array_length->GetUses()) {
1421         // Another bounds check in same or dominated block?
1422         HInstruction* user = use.GetUser();
1423         HBasicBlock* other_block = user->GetBlock();
1424         if (user->IsBoundsCheck() && block->Dominates(other_block)) {
1425           HBoundsCheck* other_bounds_check = user->AsBoundsCheck();
1426           HInstruction* other_index = other_bounds_check->InputAt(0);
1427           HInstruction* other_array_length = other_bounds_check->InputAt(1);
1428           ValueBound other_value = ValueBound::AsValueBound(other_index);
1429           if (array_length == other_array_length && base == other_value.GetInstruction()) {
1430             // Reject certain OOB if BoundsCheck(l, l) occurs on considered subset.
1431             if (array_length == other_index) {
1432               candidates.clear();
1433               standby.clear();
1434               break;
1435             }
1436             // Since a subsequent dominated block could be under a conditional, only accept
1437             // the other bounds check if it is in same block or both blocks dominate the exit.
1438             // TODO: we could improve this by testing proper post-dominance, or even if this
1439             //       constant is seen along *all* conditional paths that follow.
1440             HBasicBlock* exit = GetGraph()->GetExitBlock();
1441             if (block == user->GetBlock() ||
1442                 (block->Dominates(exit) && other_block->Dominates(exit))) {
1443               int32_t other_c = other_value.GetConstant();
1444               min_c = std::min(min_c, other_c);
1445               max_c = std::max(max_c, other_c);
1446               candidates.push_back(other_bounds_check);
1447             } else {
1448               // Add this candidate later only if it falls into the range.
1449               standby.push_back(other_bounds_check);
1450             }
1451           }
1452         }
1453       }
1454       // Add standby candidates that fall in selected range.
1455       for (HBoundsCheck* other_bounds_check : standby) {
1456         HInstruction* other_index = other_bounds_check->InputAt(0);
1457         int32_t other_c = ValueBound::AsValueBound(other_index).GetConstant();
1458         if (min_c <= other_c && other_c <= max_c) {
1459           candidates.push_back(other_bounds_check);
1460         }
1461       }
1462       // Perform dominator-based deoptimization if it seems profitable, where we eliminate
1463       // bounds checks and replace these with deopt checks that guard against any possible
1464       // OOB. Note that we reject cases where the distance min_c:max_c range gets close to
1465       // the maximum possible array length, since those cases are likely to always deopt
1466       // (such situations do not necessarily go OOB, though, since the array could be really
1467       // large, or the programmer could rely on arithmetic wrap-around from max to min).
1468       size_t threshold = kThresholdForAddingDeoptimize + (base == nullptr ? 0 : 1);  // extra test?
1469       uint32_t distance = static_cast<uint32_t>(max_c) - static_cast<uint32_t>(min_c);
1470       if (candidates.size() >= threshold &&
1471           (base != nullptr || min_c >= 0) &&  // reject certain OOB
1472            distance <= kMaxLengthForAddingDeoptimize) {  // reject likely/certain deopt
1473         AddCompareWithDeoptimization(block, array_length, base, min_c, max_c);
1474         for (HBoundsCheck* other_bounds_check : candidates) {
1475           // Only replace if still in the graph. This avoids visiting the same
1476           // bounds check twice if it occurred multiple times in the use list.
1477           if (other_bounds_check->IsInBlock()) {
1478             ReplaceInstruction(other_bounds_check, other_bounds_check->InputAt(0));
1479           }
1480         }
1481       }
1482     }
1483   }
1484 
1485   /**
1486    * Returns true if static range analysis based on induction variables can determine the bounds
1487    * check on the given array range is always satisfied with the computed index range. The output
1488    * parameter try_dynamic_bce is set to false if OOB is certain.
1489    */
InductionRangeFitsIn(ValueRange * array_range,HBoundsCheck * context,bool * try_dynamic_bce)1490   bool InductionRangeFitsIn(ValueRange* array_range,
1491                             HBoundsCheck* context,
1492                             bool* try_dynamic_bce) {
1493     InductionVarRange::Value v1;
1494     InductionVarRange::Value v2;
1495     bool needs_finite_test = false;
1496     HInstruction* index = context->InputAt(0);
1497     HInstruction* hint = HuntForDeclaration(context->InputAt(1));
1498     if (induction_range_.GetInductionRange(context, index, hint, &v1, &v2, &needs_finite_test)) {
1499       if (v1.is_known && (v1.a_constant == 0 || v1.a_constant == 1) &&
1500           v2.is_known && (v2.a_constant == 0 || v2.a_constant == 1)) {
1501         DCHECK(v1.a_constant == 1 || v1.instruction == nullptr);
1502         DCHECK(v2.a_constant == 1 || v2.instruction == nullptr);
1503         ValueRange index_range(&allocator_,
1504                                ValueBound(v1.instruction, v1.b_constant),
1505                                ValueBound(v2.instruction, v2.b_constant));
1506         // If analysis reveals a certain OOB, disable dynamic BCE. Otherwise,
1507         // use analysis for static bce only if loop is finite.
1508         if (index_range.GetLower().LessThan(array_range->GetLower()) ||
1509             index_range.GetUpper().GreaterThan(array_range->GetUpper())) {
1510           *try_dynamic_bce = false;
1511         } else if (!needs_finite_test && index_range.FitsIn(array_range)) {
1512           return true;
1513         }
1514       }
1515     }
1516     return false;
1517   }
1518 
1519   /**
1520    * Performs loop-based dynamic elimination on a bounds check. In order to minimize the
1521    * number of eventually generated tests, related bounds checks with tests that can be
1522    * combined with tests for the given bounds check are collected first.
1523    */
TransformLoopForDynamicBCE(HLoopInformation * loop,HBoundsCheck * bounds_check)1524   void TransformLoopForDynamicBCE(HLoopInformation* loop, HBoundsCheck* bounds_check) {
1525     HInstruction* index = bounds_check->InputAt(0);
1526     HInstruction* array_length = bounds_check->InputAt(1);
1527     DCHECK(loop->IsDefinedOutOfTheLoop(array_length));  // pre-checked
1528     DCHECK(loop->DominatesAllBackEdges(bounds_check->GetBlock()));
1529     // Collect all bounds checks in the same loop that are related as "a[base + constant]"
1530     // for a base instruction (possibly absent) and various constants.
1531     ValueBound value = ValueBound::AsValueBound(index);
1532     HInstruction* base = value.GetInstruction();
1533     int32_t min_c = base == nullptr ? 0 : value.GetConstant();
1534     int32_t max_c = value.GetConstant();
1535     ScopedArenaVector<HBoundsCheck*> candidates(
1536         allocator_.Adapter(kArenaAllocBoundsCheckElimination));
1537     ScopedArenaVector<HBoundsCheck*> standby(
1538         allocator_.Adapter(kArenaAllocBoundsCheckElimination));
1539     for (const HUseListNode<HInstruction*>& use : array_length->GetUses()) {
1540       HInstruction* user = use.GetUser();
1541       if (user->IsBoundsCheck() && loop == user->GetBlock()->GetLoopInformation()) {
1542         HBoundsCheck* other_bounds_check = user->AsBoundsCheck();
1543         HInstruction* other_index = other_bounds_check->InputAt(0);
1544         HInstruction* other_array_length = other_bounds_check->InputAt(1);
1545         ValueBound other_value = ValueBound::AsValueBound(other_index);
1546         int32_t other_c = other_value.GetConstant();
1547         if (array_length == other_array_length && base == other_value.GetInstruction()) {
1548           // Ensure every candidate could be picked for code generation.
1549           bool b1 = false, b2 = false;
1550           if (!induction_range_.CanGenerateRange(other_bounds_check, other_index, &b1, &b2)) {
1551             continue;
1552           }
1553           // Does the current basic block dominate all back edges? If not,
1554           // add this candidate later only if it falls into the range.
1555           if (!loop->DominatesAllBackEdges(user->GetBlock())) {
1556             standby.push_back(other_bounds_check);
1557             continue;
1558           }
1559           min_c = std::min(min_c, other_c);
1560           max_c = std::max(max_c, other_c);
1561           candidates.push_back(other_bounds_check);
1562         }
1563       }
1564     }
1565     // Add standby candidates that fall in selected range.
1566     for (HBoundsCheck* other_bounds_check : standby) {
1567       HInstruction* other_index = other_bounds_check->InputAt(0);
1568       int32_t other_c = ValueBound::AsValueBound(other_index).GetConstant();
1569       if (min_c <= other_c && other_c <= max_c) {
1570         candidates.push_back(other_bounds_check);
1571       }
1572     }
1573     // Perform loop-based deoptimization if it seems profitable, where we eliminate bounds
1574     // checks and replace these with deopt checks that guard against any possible OOB.
1575     DCHECK_LT(0u, candidates.size());
1576     uint32_t distance = static_cast<uint32_t>(max_c) - static_cast<uint32_t>(min_c);
1577     if ((base != nullptr || min_c >= 0) &&  // reject certain OOB
1578         distance <= kMaxLengthForAddingDeoptimize) {  // reject likely/certain deopt
1579       HBasicBlock* block = GetPreHeader(loop, bounds_check);
1580       HInstruction* min_lower = nullptr;
1581       HInstruction* min_upper = nullptr;
1582       HInstruction* max_lower = nullptr;
1583       HInstruction* max_upper = nullptr;
1584       // Iterate over all bounds checks.
1585       for (HBoundsCheck* other_bounds_check : candidates) {
1586         // Only handle if still in the graph. This avoids visiting the same
1587         // bounds check twice if it occurred multiple times in the use list.
1588         if (other_bounds_check->IsInBlock()) {
1589           HInstruction* other_index = other_bounds_check->InputAt(0);
1590           int32_t other_c = ValueBound::AsValueBound(other_index).GetConstant();
1591           // Generate code for either the maximum or minimum. Range analysis already was queried
1592           // whether code generation on the original and, thus, related bounds check was possible.
1593           // It handles either loop invariants (lower is not set) or unit strides.
1594           if (other_c == max_c) {
1595             induction_range_.GenerateRange(
1596                 other_bounds_check, other_index, GetGraph(), block, &max_lower, &max_upper);
1597           } else if (other_c == min_c && base != nullptr) {
1598             induction_range_.GenerateRange(
1599                 other_bounds_check, other_index, GetGraph(), block, &min_lower, &min_upper);
1600           }
1601           ReplaceInstruction(other_bounds_check, other_index);
1602         }
1603       }
1604       // In code, using unsigned comparisons:
1605       // (1) constants only
1606       //       if (max_upper >= a.length ) deoptimize;
1607       // (2) two symbolic invariants
1608       //       if (min_upper >  max_upper) deoptimize;   unless min_c == max_c
1609       //       if (max_upper >= a.length ) deoptimize;
1610       // (3) general case, unit strides (where lower would exceed upper for arithmetic wrap-around)
1611       //       if (min_lower >  max_lower) deoptimize;   unless min_c == max_c
1612       //       if (max_lower >  max_upper) deoptimize;
1613       //       if (max_upper >= a.length ) deoptimize;
1614       if (base == nullptr) {
1615         // Constants only.
1616         DCHECK_GE(min_c, 0);
1617         DCHECK(min_lower == nullptr && min_upper == nullptr &&
1618                max_lower == nullptr && max_upper != nullptr);
1619       } else if (max_lower == nullptr) {
1620         // Two symbolic invariants.
1621         if (min_c != max_c) {
1622           DCHECK(min_lower == nullptr && min_upper != nullptr &&
1623                  max_lower == nullptr && max_upper != nullptr);
1624           InsertDeoptInLoop(
1625               loop, block, new (GetGraph()->GetAllocator()) HAbove(min_upper, max_upper));
1626         } else {
1627           DCHECK(min_lower == nullptr && min_upper == nullptr &&
1628                  max_lower == nullptr && max_upper != nullptr);
1629         }
1630       } else {
1631         // General case, unit strides.
1632         if (min_c != max_c) {
1633           DCHECK(min_lower != nullptr && min_upper != nullptr &&
1634                  max_lower != nullptr && max_upper != nullptr);
1635           InsertDeoptInLoop(
1636               loop, block, new (GetGraph()->GetAllocator()) HAbove(min_lower, max_lower));
1637         } else {
1638           DCHECK(min_lower == nullptr && min_upper == nullptr &&
1639                  max_lower != nullptr && max_upper != nullptr);
1640         }
1641         InsertDeoptInLoop(
1642             loop, block, new (GetGraph()->GetAllocator()) HAbove(max_lower, max_upper));
1643       }
1644       InsertDeoptInLoop(
1645           loop, block, new (GetGraph()->GetAllocator()) HAboveOrEqual(max_upper, array_length));
1646     } else {
1647       // TODO: if rejected, avoid doing this again for subsequent instructions in this set?
1648     }
1649   }
1650 
1651   /**
1652    * Returns true if heuristics indicate that dynamic bce may be profitable.
1653    */
DynamicBCESeemsProfitable(HLoopInformation * loop,HBasicBlock * block)1654   bool DynamicBCESeemsProfitable(HLoopInformation* loop, HBasicBlock* block) {
1655     if (loop != nullptr) {
1656       // The loop preheader of an irreducible loop does not dominate all the blocks in
1657       // the loop. We would need to find the common dominator of all blocks in the loop.
1658       if (loop->IsIrreducible()) {
1659         return false;
1660       }
1661       // We should never deoptimize from an osr method, otherwise we might wrongly optimize
1662       // code dominated by the deoptimization.
1663       if (GetGraph()->IsCompilingOsr()) {
1664         return false;
1665       }
1666       // A try boundary preheader is hard to handle.
1667       // TODO: remove this restriction.
1668       if (loop->GetPreHeader()->GetLastInstruction()->IsTryBoundary()) {
1669         return false;
1670       }
1671       // Does loop have early-exits? If so, the full range may not be covered by the loop
1672       // at runtime and testing the range may apply deoptimization unnecessarily.
1673       if (IsEarlyExitLoop(loop)) {
1674         return false;
1675       }
1676       // Does the current basic block dominate all back edges? If not,
1677       // don't apply dynamic bce to something that may not be executed.
1678       return loop->DominatesAllBackEdges(block);
1679     }
1680     return false;
1681   }
1682 
1683   /**
1684    * Returns true if the loop has early exits, which implies it may not cover
1685    * the full range computed by range analysis based on induction variables.
1686    */
IsEarlyExitLoop(HLoopInformation * loop)1687   bool IsEarlyExitLoop(HLoopInformation* loop) {
1688     const uint32_t loop_id = loop->GetHeader()->GetBlockId();
1689     // If loop has been analyzed earlier for early-exit, don't repeat the analysis.
1690     auto it = early_exit_loop_.find(loop_id);
1691     if (it != early_exit_loop_.end()) {
1692       return it->second;
1693     }
1694     // First time early-exit analysis for this loop. Since analysis requires scanning
1695     // the full loop-body, results of the analysis is stored for subsequent queries.
1696     HBlocksInLoopReversePostOrderIterator it_loop(*loop);
1697     for (it_loop.Advance(); !it_loop.Done(); it_loop.Advance()) {
1698       for (HBasicBlock* successor : it_loop.Current()->GetSuccessors()) {
1699         if (!loop->Contains(*successor)) {
1700           early_exit_loop_.Put(loop_id, true);
1701           return true;
1702         }
1703       }
1704     }
1705     early_exit_loop_.Put(loop_id, false);
1706     return false;
1707   }
1708 
1709   /**
1710    * Returns true if the array length is already loop invariant, or can be made so
1711    * by handling the null check under the hood of the array length operation.
1712    */
CanHandleLength(HLoopInformation * loop,HInstruction * length,bool needs_taken_test)1713   bool CanHandleLength(HLoopInformation* loop, HInstruction* length, bool needs_taken_test) {
1714     if (loop->IsDefinedOutOfTheLoop(length)) {
1715       return true;
1716     } else if (length->IsArrayLength() && length->GetBlock()->GetLoopInformation() == loop) {
1717       if (CanHandleNullCheck(loop, length->InputAt(0), needs_taken_test)) {
1718         HoistToPreHeaderOrDeoptBlock(loop, length);
1719         return true;
1720       }
1721     }
1722     return false;
1723   }
1724 
1725   /**
1726    * Returns true if the null check is already loop invariant, or can be made so
1727    * by generating a deoptimization test.
1728    */
CanHandleNullCheck(HLoopInformation * loop,HInstruction * check,bool needs_taken_test)1729   bool CanHandleNullCheck(HLoopInformation* loop, HInstruction* check, bool needs_taken_test) {
1730     if (loop->IsDefinedOutOfTheLoop(check)) {
1731       return true;
1732     } else if (check->IsNullCheck() && check->GetBlock()->GetLoopInformation() == loop) {
1733       HInstruction* array = check->InputAt(0);
1734       if (loop->IsDefinedOutOfTheLoop(array)) {
1735         // Generate: if (array == null) deoptimize;
1736         TransformLoopForDeoptimizationIfNeeded(loop, needs_taken_test);
1737         HBasicBlock* block = GetPreHeader(loop, check);
1738         HInstruction* cond =
1739             new (GetGraph()->GetAllocator()) HEqual(array, GetGraph()->GetNullConstant());
1740         InsertDeoptInLoop(loop, block, cond, /* is_null_check= */ true);
1741         ReplaceInstruction(check, array);
1742         return true;
1743       }
1744     }
1745     return false;
1746   }
1747 
1748   /**
1749    * Returns true if compiler can apply dynamic bce to loops that may be infinite
1750    * (e.g. for (int i = 0; i <= U; i++) with U = MAX_INT), which would invalidate
1751    * the range analysis evaluation code by "overshooting" the computed range.
1752    * Since deoptimization would be a bad choice, and there is no other version
1753    * of the loop to use, dynamic bce in such cases is only allowed if other tests
1754    * ensure the loop is finite.
1755    */
CanHandleInfiniteLoop(HLoopInformation * loop,HInstruction * index,bool needs_infinite_test)1756   bool CanHandleInfiniteLoop(HLoopInformation* loop, HInstruction* index, bool needs_infinite_test) {
1757     if (needs_infinite_test) {
1758       // If we already forced the loop to be finite, allow directly.
1759       const uint32_t loop_id = loop->GetHeader()->GetBlockId();
1760       if (finite_loop_.find(loop_id) != finite_loop_.end()) {
1761         return true;
1762       }
1763       // Otherwise, allow dynamic bce if the index (which is necessarily an induction at
1764       // this point) is the direct loop index (viz. a[i]), since then the runtime tests
1765       // ensure upper bound cannot cause an infinite loop.
1766       HInstruction* control = loop->GetHeader()->GetLastInstruction();
1767       if (control->IsIf()) {
1768         HInstruction* if_expr = control->AsIf()->InputAt(0);
1769         if (if_expr->IsCondition()) {
1770           HCondition* condition = if_expr->AsCondition();
1771           if (index == condition->InputAt(0) ||
1772               index == condition->InputAt(1)) {
1773             finite_loop_.insert(loop_id);
1774             return true;
1775           }
1776         }
1777       }
1778       return false;
1779     }
1780     return true;
1781   }
1782 
1783   /**
1784    * Returns appropriate preheader for the loop, depending on whether the
1785    * instruction appears in the loop header or proper loop-body.
1786    */
GetPreHeader(HLoopInformation * loop,HInstruction * instruction)1787   HBasicBlock* GetPreHeader(HLoopInformation* loop, HInstruction* instruction) {
1788     // Use preheader unless there is an earlier generated deoptimization block since
1789     // hoisted expressions may depend on and/or used by the deoptimization tests.
1790     HBasicBlock* header = loop->GetHeader();
1791     const uint32_t loop_id = header->GetBlockId();
1792     auto it = taken_test_loop_.find(loop_id);
1793     if (it != taken_test_loop_.end()) {
1794       HBasicBlock* block = it->second;
1795       // If always taken, keep it that way by returning the original preheader,
1796       // which can be found by following the predecessor of the true-block twice.
1797       if (instruction->GetBlock() == header) {
1798         return block->GetSinglePredecessor()->GetSinglePredecessor();
1799       }
1800       return block;
1801     }
1802     return loop->GetPreHeader();
1803   }
1804 
1805   /** Inserts a deoptimization test in a loop preheader. */
InsertDeoptInLoop(HLoopInformation * loop,HBasicBlock * block,HInstruction * condition,bool is_null_check=false)1806   void InsertDeoptInLoop(HLoopInformation* loop,
1807                          HBasicBlock* block,
1808                          HInstruction* condition,
1809                          bool is_null_check = false) {
1810     HInstruction* suspend = loop->GetSuspendCheck();
1811     block->InsertInstructionBefore(condition, block->GetLastInstruction());
1812     DeoptimizationKind kind =
1813         is_null_check ? DeoptimizationKind::kLoopNullBCE : DeoptimizationKind::kLoopBoundsBCE;
1814     HDeoptimize* deoptimize = new (GetGraph()->GetAllocator()) HDeoptimize(
1815         GetGraph()->GetAllocator(), condition, kind, suspend->GetDexPc());
1816     block->InsertInstructionBefore(deoptimize, block->GetLastInstruction());
1817     if (suspend->HasEnvironment()) {
1818       deoptimize->CopyEnvironmentFromWithLoopPhiAdjustment(
1819           suspend->GetEnvironment(), loop->GetHeader());
1820     }
1821   }
1822 
1823   /** Inserts a deoptimization test right before a bounds check. */
InsertDeoptInBlock(HBoundsCheck * bounds_check,HInstruction * condition)1824   void InsertDeoptInBlock(HBoundsCheck* bounds_check, HInstruction* condition) {
1825     HBasicBlock* block = bounds_check->GetBlock();
1826     block->InsertInstructionBefore(condition, bounds_check);
1827     HDeoptimize* deoptimize = new (GetGraph()->GetAllocator()) HDeoptimize(
1828         GetGraph()->GetAllocator(),
1829         condition,
1830         DeoptimizationKind::kBlockBCE,
1831         bounds_check->GetDexPc());
1832     block->InsertInstructionBefore(deoptimize, bounds_check);
1833     deoptimize->CopyEnvironmentFrom(bounds_check->GetEnvironment());
1834   }
1835 
1836   /** Hoists instruction out of the loop to preheader or deoptimization block. */
HoistToPreHeaderOrDeoptBlock(HLoopInformation * loop,HInstruction * instruction)1837   void HoistToPreHeaderOrDeoptBlock(HLoopInformation* loop, HInstruction* instruction) {
1838     HBasicBlock* block = GetPreHeader(loop, instruction);
1839     DCHECK(!instruction->HasEnvironment());
1840     instruction->MoveBefore(block->GetLastInstruction());
1841   }
1842 
1843   /**
1844    * Adds a new taken-test structure to a loop if needed and not already done.
1845    * The taken-test protects range analysis evaluation code to avoid any
1846    * deoptimization caused by incorrect trip-count evaluation in non-taken loops.
1847    *
1848    *          old_preheader
1849    *               |
1850    *            if_block          <- taken-test protects deoptimization block
1851    *            /      \
1852    *     true_block  false_block  <- deoptimizations/invariants are placed in true_block
1853    *            \       /
1854    *          new_preheader       <- may require phi nodes to preserve SSA structure
1855    *                |
1856    *             header
1857    *
1858    * For example, this loop:
1859    *
1860    *   for (int i = lower; i < upper; i++) {
1861    *     array[i] = 0;
1862    *   }
1863    *
1864    * will be transformed to:
1865    *
1866    *   if (lower < upper) {
1867    *     if (array == null) deoptimize;
1868    *     array_length = array.length;
1869    *     if (lower > upper)         deoptimize;  // unsigned
1870    *     if (upper >= array_length) deoptimize;  // unsigned
1871    *   } else {
1872    *     array_length = 0;
1873    *   }
1874    *   for (int i = lower; i < upper; i++) {
1875    *     // Loop without null check and bounds check, and any array.length replaced with array_length.
1876    *     array[i] = 0;
1877    *   }
1878    */
TransformLoopForDeoptimizationIfNeeded(HLoopInformation * loop,bool needs_taken_test)1879   void TransformLoopForDeoptimizationIfNeeded(HLoopInformation* loop, bool needs_taken_test) {
1880     // Not needed (can use preheader) or already done (can reuse)?
1881     const uint32_t loop_id = loop->GetHeader()->GetBlockId();
1882     if (!needs_taken_test || taken_test_loop_.find(loop_id) != taken_test_loop_.end()) {
1883       return;
1884     }
1885 
1886     // Generate top test structure.
1887     HBasicBlock* header = loop->GetHeader();
1888     GetGraph()->TransformLoopHeaderForBCE(header);
1889     HBasicBlock* new_preheader = loop->GetPreHeader();
1890     HBasicBlock* if_block = new_preheader->GetDominator();
1891     HBasicBlock* true_block = if_block->GetSuccessors()[0];  // True successor.
1892     HBasicBlock* false_block = if_block->GetSuccessors()[1];  // False successor.
1893 
1894     // Goto instructions.
1895     true_block->AddInstruction(new (GetGraph()->GetAllocator()) HGoto());
1896     false_block->AddInstruction(new (GetGraph()->GetAllocator()) HGoto());
1897     new_preheader->AddInstruction(new (GetGraph()->GetAllocator()) HGoto());
1898 
1899     // Insert the taken-test to see if the loop body is entered. If the
1900     // loop isn't entered at all, it jumps around the deoptimization block.
1901     if_block->AddInstruction(new (GetGraph()->GetAllocator()) HGoto());  // placeholder
1902     HInstruction* condition = induction_range_.GenerateTakenTest(
1903         header->GetLastInstruction(), GetGraph(), if_block);
1904     DCHECK(condition != nullptr);
1905     if_block->RemoveInstruction(if_block->GetLastInstruction());
1906     if_block->AddInstruction(new (GetGraph()->GetAllocator()) HIf(condition));
1907 
1908     taken_test_loop_.Put(loop_id, true_block);
1909   }
1910 
1911   /**
1912    * Inserts phi nodes that preserve SSA structure in generated top test structures.
1913    * All uses of instructions in the deoptimization block that reach the loop need
1914    * a phi node in the new loop preheader to fix the dominance relation.
1915    *
1916    * Example:
1917    *           if_block
1918    *            /      \
1919    *         x_0 = ..  false_block
1920    *            \       /
1921    *           x_1 = phi(x_0, null)   <- synthetic phi
1922    *               |
1923    *          new_preheader
1924    */
InsertPhiNodes()1925   void InsertPhiNodes() {
1926     // Scan all new deoptimization blocks.
1927     for (const auto& entry : taken_test_loop_) {
1928       HBasicBlock* true_block = entry.second;
1929       HBasicBlock* new_preheader = true_block->GetSingleSuccessor();
1930       // Scan all instructions in a new deoptimization block.
1931       for (HInstructionIterator it(true_block->GetInstructions()); !it.Done(); it.Advance()) {
1932         HInstruction* instruction = it.Current();
1933         DataType::Type type = instruction->GetType();
1934         HPhi* phi = nullptr;
1935         // Scan all uses of an instruction and replace each later use with a phi node.
1936         const HUseList<HInstruction*>& uses = instruction->GetUses();
1937         for (auto it2 = uses.begin(), end2 = uses.end(); it2 != end2; /* ++it2 below */) {
1938           HInstruction* user = it2->GetUser();
1939           size_t index = it2->GetIndex();
1940           // Increment `it2` now because `*it2` may disappear thanks to user->ReplaceInput().
1941           ++it2;
1942           if (user->GetBlock() != true_block) {
1943             if (phi == nullptr) {
1944               phi = NewPhi(new_preheader, instruction, type);
1945             }
1946             user->ReplaceInput(phi, index);  // Removes the use node from the list.
1947             induction_range_.Replace(user, instruction, phi);  // update induction
1948           }
1949         }
1950         // Scan all environment uses of an instruction and replace each later use with a phi node.
1951         const HUseList<HEnvironment*>& env_uses = instruction->GetEnvUses();
1952         for (auto it2 = env_uses.begin(), end2 = env_uses.end(); it2 != end2; /* ++it2 below */) {
1953           HEnvironment* user = it2->GetUser();
1954           size_t index = it2->GetIndex();
1955           // Increment `it2` now because `*it2` may disappear thanks to user->RemoveAsUserOfInput().
1956           ++it2;
1957           if (user->GetHolder()->GetBlock() != true_block) {
1958             if (phi == nullptr) {
1959               phi = NewPhi(new_preheader, instruction, type);
1960             }
1961             user->RemoveAsUserOfInput(index);
1962             user->SetRawEnvAt(index, phi);
1963             phi->AddEnvUseAt(user, index);
1964           }
1965         }
1966       }
1967     }
1968   }
1969 
1970   /**
1971    * Construct a phi(instruction, 0) in the new preheader to fix the dominance relation.
1972    * These are synthetic phi nodes without a virtual register.
1973    */
NewPhi(HBasicBlock * new_preheader,HInstruction * instruction,DataType::Type type)1974   HPhi* NewPhi(HBasicBlock* new_preheader,
1975                HInstruction* instruction,
1976                DataType::Type type) {
1977     HGraph* graph = GetGraph();
1978     HInstruction* zero;
1979     switch (type) {
1980       case DataType::Type::kReference: zero = graph->GetNullConstant(); break;
1981       case DataType::Type::kFloat32: zero = graph->GetFloatConstant(0); break;
1982       case DataType::Type::kFloat64: zero = graph->GetDoubleConstant(0); break;
1983       default: zero = graph->GetConstant(type, 0); break;
1984     }
1985     HPhi* phi = new (graph->GetAllocator())
1986         HPhi(graph->GetAllocator(), kNoRegNumber, /*number_of_inputs*/ 2, HPhi::ToPhiType(type));
1987     phi->SetRawInputAt(0, instruction);
1988     phi->SetRawInputAt(1, zero);
1989     if (type == DataType::Type::kReference) {
1990       phi->SetReferenceTypeInfo(instruction->GetReferenceTypeInfo());
1991     }
1992     new_preheader->AddPhi(phi);
1993     return phi;
1994   }
1995 
1996   /** Helper method to replace an instruction with another instruction. */
ReplaceInstruction(HInstruction * instruction,HInstruction * replacement)1997   void ReplaceInstruction(HInstruction* instruction, HInstruction* replacement) {
1998     // Safe iteration.
1999     if (instruction == next_) {
2000       next_ = next_->GetNext();
2001     }
2002     // Replace and remove.
2003     instruction->ReplaceWith(replacement);
2004     instruction->GetBlock()->RemoveInstruction(instruction);
2005   }
2006 
2007   // Use local allocator for allocating memory.
2008   ScopedArenaAllocator allocator_;
2009 
2010   // A set of maps, one per basic block, from instruction to range.
2011   ScopedArenaVector<ScopedArenaSafeMap<int, ValueRange*>> maps_;
2012 
2013   // Map an HArrayLength instruction's id to the first HBoundsCheck instruction
2014   // in a block that checks an index against that HArrayLength.
2015   ScopedArenaSafeMap<int, HBoundsCheck*> first_index_bounds_check_map_;
2016 
2017   // Early-exit loop bookkeeping.
2018   ScopedArenaSafeMap<uint32_t, bool> early_exit_loop_;
2019 
2020   // Taken-test loop bookkeeping.
2021   ScopedArenaSafeMap<uint32_t, HBasicBlock*> taken_test_loop_;
2022 
2023   // Finite loop bookkeeping.
2024   ScopedArenaSet<uint32_t> finite_loop_;
2025 
2026   // Flag that denotes whether dominator-based dynamic elimination has occurred.
2027   bool has_dom_based_dynamic_bce_;
2028 
2029   // Initial number of blocks.
2030   uint32_t initial_block_size_;
2031 
2032   // Side effects.
2033   const SideEffectsAnalysis& side_effects_;
2034 
2035   // Range analysis based on induction variables.
2036   InductionVarRange induction_range_;
2037 
2038   // Safe iteration.
2039   HInstruction* next_;
2040 
2041   DISALLOW_COPY_AND_ASSIGN(BCEVisitor);
2042 };
2043 
Run()2044 bool BoundsCheckElimination::Run() {
2045   if (!graph_->HasBoundsChecks()) {
2046     return false;
2047   }
2048 
2049   // Reverse post order guarantees a node's dominators are visited first.
2050   // We want to visit in the dominator-based order since if a value is known to
2051   // be bounded by a range at one instruction, it must be true that all uses of
2052   // that value dominated by that instruction fits in that range. Range of that
2053   // value can be narrowed further down in the dominator tree.
2054   BCEVisitor visitor(graph_, side_effects_, induction_analysis_);
2055   for (size_t i = 0, size = graph_->GetReversePostOrder().size(); i != size; ++i) {
2056     HBasicBlock* current = graph_->GetReversePostOrder()[i];
2057     if (visitor.IsAddedBlock(current)) {
2058       // Skip added blocks. Their effects are already taken care of.
2059       continue;
2060     }
2061     visitor.VisitBasicBlock(current);
2062     // Skip forward to the current block in case new basic blocks were inserted
2063     // (which always appear earlier in reverse post order) to avoid visiting the
2064     // same basic block twice.
2065     size_t new_size = graph_->GetReversePostOrder().size();
2066     DCHECK_GE(new_size, size);
2067     i += new_size - size;
2068     DCHECK_EQ(current, graph_->GetReversePostOrder()[i]);
2069     size = new_size;
2070   }
2071 
2072   // Perform cleanup.
2073   visitor.Finish();
2074 
2075   return true;
2076 }
2077 
2078 }  // namespace art
2079