1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "code_generator_arm64.h"
18
19 #include "arch/arm64/asm_support_arm64.h"
20 #include "arch/arm64/instruction_set_features_arm64.h"
21 #include "arch/arm64/jni_frame_arm64.h"
22 #include "art_method-inl.h"
23 #include "base/bit_utils.h"
24 #include "base/bit_utils_iterator.h"
25 #include "class_table.h"
26 #include "code_generator_utils.h"
27 #include "compiled_method.h"
28 #include "entrypoints/quick/quick_entrypoints.h"
29 #include "entrypoints/quick/quick_entrypoints_enum.h"
30 #include "gc/accounting/card_table.h"
31 #include "gc/space/image_space.h"
32 #include "heap_poisoning.h"
33 #include "intrinsics.h"
34 #include "intrinsics_arm64.h"
35 #include "linker/linker_patch.h"
36 #include "lock_word.h"
37 #include "mirror/array-inl.h"
38 #include "mirror/class-inl.h"
39 #include "offsets.h"
40 #include "thread.h"
41 #include "utils/arm64/assembler_arm64.h"
42 #include "utils/assembler.h"
43 #include "utils/stack_checks.h"
44
45 using namespace vixl::aarch64; // NOLINT(build/namespaces)
46 using vixl::ExactAssemblyScope;
47 using vixl::CodeBufferCheckScope;
48 using vixl::EmissionCheckScope;
49
50 #ifdef __
51 #error "ARM64 Codegen VIXL macro-assembler macro already defined."
52 #endif
53
54 namespace art {
55
56 template<class MirrorType>
57 class GcRoot;
58
59 namespace arm64 {
60
61 using helpers::ARM64EncodableConstantOrRegister;
62 using helpers::ArtVixlRegCodeCoherentForRegSet;
63 using helpers::CPURegisterFrom;
64 using helpers::DRegisterFrom;
65 using helpers::FPRegisterFrom;
66 using helpers::HeapOperand;
67 using helpers::HeapOperandFrom;
68 using helpers::InputCPURegisterOrZeroRegAt;
69 using helpers::InputFPRegisterAt;
70 using helpers::InputOperandAt;
71 using helpers::InputRegisterAt;
72 using helpers::Int64FromLocation;
73 using helpers::IsConstantZeroBitPattern;
74 using helpers::LocationFrom;
75 using helpers::OperandFromMemOperand;
76 using helpers::OutputCPURegister;
77 using helpers::OutputFPRegister;
78 using helpers::OutputRegister;
79 using helpers::RegisterFrom;
80 using helpers::StackOperandFrom;
81 using helpers::VIXLRegCodeFromART;
82 using helpers::WRegisterFrom;
83 using helpers::XRegisterFrom;
84
85 // The compare/jump sequence will generate about (1.5 * num_entries + 3) instructions. While jump
86 // table version generates 7 instructions and num_entries literals. Compare/jump sequence will
87 // generates less code/data with a small num_entries.
88 static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7;
89
90 // Reference load (except object array loads) is using LDR Wt, [Xn, #offset] which can handle
91 // offset < 16KiB. For offsets >= 16KiB, the load shall be emitted as two or more instructions.
92 // For the Baker read barrier implementation using link-time generated thunks we need to split
93 // the offset explicitly.
94 constexpr uint32_t kReferenceLoadMinFarOffset = 16 * KB;
95
ARM64Condition(IfCondition cond)96 inline Condition ARM64Condition(IfCondition cond) {
97 switch (cond) {
98 case kCondEQ: return eq;
99 case kCondNE: return ne;
100 case kCondLT: return lt;
101 case kCondLE: return le;
102 case kCondGT: return gt;
103 case kCondGE: return ge;
104 case kCondB: return lo;
105 case kCondBE: return ls;
106 case kCondA: return hi;
107 case kCondAE: return hs;
108 }
109 LOG(FATAL) << "Unreachable";
110 UNREACHABLE();
111 }
112
ARM64FPCondition(IfCondition cond,bool gt_bias)113 inline Condition ARM64FPCondition(IfCondition cond, bool gt_bias) {
114 // The ARM64 condition codes can express all the necessary branches, see the
115 // "Meaning (floating-point)" column in the table C1-1 in the ARMv8 reference manual.
116 // There is no dex instruction or HIR that would need the missing conditions
117 // "equal or unordered" or "not equal".
118 switch (cond) {
119 case kCondEQ: return eq;
120 case kCondNE: return ne /* unordered */;
121 case kCondLT: return gt_bias ? cc : lt /* unordered */;
122 case kCondLE: return gt_bias ? ls : le /* unordered */;
123 case kCondGT: return gt_bias ? hi /* unordered */ : gt;
124 case kCondGE: return gt_bias ? cs /* unordered */ : ge;
125 default:
126 LOG(FATAL) << "UNREACHABLE";
127 UNREACHABLE();
128 }
129 }
130
ARM64ReturnLocation(DataType::Type return_type)131 Location ARM64ReturnLocation(DataType::Type return_type) {
132 // Note that in practice, `LocationFrom(x0)` and `LocationFrom(w0)` create the
133 // same Location object, and so do `LocationFrom(d0)` and `LocationFrom(s0)`,
134 // but we use the exact registers for clarity.
135 if (return_type == DataType::Type::kFloat32) {
136 return LocationFrom(s0);
137 } else if (return_type == DataType::Type::kFloat64) {
138 return LocationFrom(d0);
139 } else if (return_type == DataType::Type::kInt64) {
140 return LocationFrom(x0);
141 } else if (return_type == DataType::Type::kVoid) {
142 return Location::NoLocation();
143 } else {
144 return LocationFrom(w0);
145 }
146 }
147
GetReturnLocation(DataType::Type return_type)148 Location InvokeRuntimeCallingConvention::GetReturnLocation(DataType::Type return_type) {
149 return ARM64ReturnLocation(return_type);
150 }
151
OneRegInReferenceOutSaveEverythingCallerSaves()152 static RegisterSet OneRegInReferenceOutSaveEverythingCallerSaves() {
153 InvokeRuntimeCallingConvention calling_convention;
154 RegisterSet caller_saves = RegisterSet::Empty();
155 caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode()));
156 DCHECK_EQ(calling_convention.GetRegisterAt(0).GetCode(),
157 RegisterFrom(calling_convention.GetReturnLocation(DataType::Type::kReference),
158 DataType::Type::kReference).GetCode());
159 return caller_saves;
160 }
161
162 // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
163 #define __ down_cast<CodeGeneratorARM64*>(codegen)->GetVIXLAssembler()-> // NOLINT
164 #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArm64PointerSize, x).Int32Value()
165
166 // Calculate memory accessing operand for save/restore live registers.
SaveRestoreLiveRegistersHelper(CodeGenerator * codegen,LocationSummary * locations,int64_t spill_offset,bool is_save)167 static void SaveRestoreLiveRegistersHelper(CodeGenerator* codegen,
168 LocationSummary* locations,
169 int64_t spill_offset,
170 bool is_save) {
171 const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true);
172 const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false);
173 DCHECK(ArtVixlRegCodeCoherentForRegSet(core_spills,
174 codegen->GetNumberOfCoreRegisters(),
175 fp_spills,
176 codegen->GetNumberOfFloatingPointRegisters()));
177
178 CPURegList core_list = CPURegList(CPURegister::kRegister, kXRegSize, core_spills);
179 const unsigned v_reg_size_in_bits = codegen->GetSlowPathFPWidth() * 8;
180 DCHECK_LE(codegen->GetSIMDRegisterWidth(), kQRegSizeInBytes);
181 CPURegList fp_list = CPURegList(CPURegister::kVRegister, v_reg_size_in_bits, fp_spills);
182
183 MacroAssembler* masm = down_cast<CodeGeneratorARM64*>(codegen)->GetVIXLAssembler();
184 UseScratchRegisterScope temps(masm);
185
186 Register base = masm->StackPointer();
187 int64_t core_spill_size = core_list.GetTotalSizeInBytes();
188 int64_t fp_spill_size = fp_list.GetTotalSizeInBytes();
189 int64_t reg_size = kXRegSizeInBytes;
190 int64_t max_ls_pair_offset = spill_offset + core_spill_size + fp_spill_size - 2 * reg_size;
191 uint32_t ls_access_size = WhichPowerOf2(reg_size);
192 if (((core_list.GetCount() > 1) || (fp_list.GetCount() > 1)) &&
193 !masm->IsImmLSPair(max_ls_pair_offset, ls_access_size)) {
194 // If the offset does not fit in the instruction's immediate field, use an alternate register
195 // to compute the base address(float point registers spill base address).
196 Register new_base = temps.AcquireSameSizeAs(base);
197 __ Add(new_base, base, Operand(spill_offset + core_spill_size));
198 base = new_base;
199 spill_offset = -core_spill_size;
200 int64_t new_max_ls_pair_offset = fp_spill_size - 2 * reg_size;
201 DCHECK(masm->IsImmLSPair(spill_offset, ls_access_size));
202 DCHECK(masm->IsImmLSPair(new_max_ls_pair_offset, ls_access_size));
203 }
204
205 if (is_save) {
206 __ StoreCPURegList(core_list, MemOperand(base, spill_offset));
207 __ StoreCPURegList(fp_list, MemOperand(base, spill_offset + core_spill_size));
208 } else {
209 __ LoadCPURegList(core_list, MemOperand(base, spill_offset));
210 __ LoadCPURegList(fp_list, MemOperand(base, spill_offset + core_spill_size));
211 }
212 }
213
SaveLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)214 void SlowPathCodeARM64::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
215 size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
216 const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true);
217 for (uint32_t i : LowToHighBits(core_spills)) {
218 // If the register holds an object, update the stack mask.
219 if (locations->RegisterContainsObject(i)) {
220 locations->SetStackBit(stack_offset / kVRegSize);
221 }
222 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
223 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
224 saved_core_stack_offsets_[i] = stack_offset;
225 stack_offset += kXRegSizeInBytes;
226 }
227
228 const size_t fp_reg_size = codegen->GetSlowPathFPWidth();
229 const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false);
230 for (uint32_t i : LowToHighBits(fp_spills)) {
231 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
232 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
233 saved_fpu_stack_offsets_[i] = stack_offset;
234 stack_offset += fp_reg_size;
235 }
236
237 SaveRestoreLiveRegistersHelper(codegen,
238 locations,
239 codegen->GetFirstRegisterSlotInSlowPath(), /* is_save= */ true);
240 }
241
RestoreLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)242 void SlowPathCodeARM64::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
243 SaveRestoreLiveRegistersHelper(codegen,
244 locations,
245 codegen->GetFirstRegisterSlotInSlowPath(), /* is_save= */ false);
246 }
247
248 class BoundsCheckSlowPathARM64 : public SlowPathCodeARM64 {
249 public:
BoundsCheckSlowPathARM64(HBoundsCheck * instruction)250 explicit BoundsCheckSlowPathARM64(HBoundsCheck* instruction) : SlowPathCodeARM64(instruction) {}
251
EmitNativeCode(CodeGenerator * codegen)252 void EmitNativeCode(CodeGenerator* codegen) override {
253 LocationSummary* locations = instruction_->GetLocations();
254 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
255
256 __ Bind(GetEntryLabel());
257 if (instruction_->CanThrowIntoCatchBlock()) {
258 // Live registers will be restored in the catch block if caught.
259 SaveLiveRegisters(codegen, instruction_->GetLocations());
260 }
261 // We're moving two locations to locations that could overlap, so we need a parallel
262 // move resolver.
263 InvokeRuntimeCallingConvention calling_convention;
264 codegen->EmitParallelMoves(locations->InAt(0),
265 LocationFrom(calling_convention.GetRegisterAt(0)),
266 DataType::Type::kInt32,
267 locations->InAt(1),
268 LocationFrom(calling_convention.GetRegisterAt(1)),
269 DataType::Type::kInt32);
270 QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt()
271 ? kQuickThrowStringBounds
272 : kQuickThrowArrayBounds;
273 arm64_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this);
274 CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>();
275 CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
276 }
277
IsFatal() const278 bool IsFatal() const override { return true; }
279
GetDescription() const280 const char* GetDescription() const override { return "BoundsCheckSlowPathARM64"; }
281
282 private:
283 DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARM64);
284 };
285
286 class DivZeroCheckSlowPathARM64 : public SlowPathCodeARM64 {
287 public:
DivZeroCheckSlowPathARM64(HDivZeroCheck * instruction)288 explicit DivZeroCheckSlowPathARM64(HDivZeroCheck* instruction) : SlowPathCodeARM64(instruction) {}
289
EmitNativeCode(CodeGenerator * codegen)290 void EmitNativeCode(CodeGenerator* codegen) override {
291 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
292 __ Bind(GetEntryLabel());
293 arm64_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this);
294 CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
295 }
296
IsFatal() const297 bool IsFatal() const override { return true; }
298
GetDescription() const299 const char* GetDescription() const override { return "DivZeroCheckSlowPathARM64"; }
300
301 private:
302 DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARM64);
303 };
304
305 class LoadClassSlowPathARM64 : public SlowPathCodeARM64 {
306 public:
LoadClassSlowPathARM64(HLoadClass * cls,HInstruction * at)307 LoadClassSlowPathARM64(HLoadClass* cls, HInstruction* at)
308 : SlowPathCodeARM64(at), cls_(cls) {
309 DCHECK(at->IsLoadClass() || at->IsClinitCheck());
310 DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_);
311 }
312
EmitNativeCode(CodeGenerator * codegen)313 void EmitNativeCode(CodeGenerator* codegen) override {
314 LocationSummary* locations = instruction_->GetLocations();
315 Location out = locations->Out();
316 const uint32_t dex_pc = instruction_->GetDexPc();
317 bool must_resolve_type = instruction_->IsLoadClass() && cls_->MustResolveTypeOnSlowPath();
318 bool must_do_clinit = instruction_->IsClinitCheck() || cls_->MustGenerateClinitCheck();
319
320 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
321 __ Bind(GetEntryLabel());
322 SaveLiveRegisters(codegen, locations);
323
324 InvokeRuntimeCallingConvention calling_convention;
325 if (must_resolve_type) {
326 DCHECK(IsSameDexFile(cls_->GetDexFile(), arm64_codegen->GetGraph()->GetDexFile()));
327 dex::TypeIndex type_index = cls_->GetTypeIndex();
328 __ Mov(calling_convention.GetRegisterAt(0).W(), type_index.index_);
329 arm64_codegen->InvokeRuntime(kQuickResolveType, instruction_, dex_pc, this);
330 CheckEntrypointTypes<kQuickResolveType, void*, uint32_t>();
331 // If we also must_do_clinit, the resolved type is now in the correct register.
332 } else {
333 DCHECK(must_do_clinit);
334 Location source = instruction_->IsLoadClass() ? out : locations->InAt(0);
335 arm64_codegen->MoveLocation(LocationFrom(calling_convention.GetRegisterAt(0)),
336 source,
337 cls_->GetType());
338 }
339 if (must_do_clinit) {
340 arm64_codegen->InvokeRuntime(kQuickInitializeStaticStorage, instruction_, dex_pc, this);
341 CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, mirror::Class*>();
342 }
343
344 // Move the class to the desired location.
345 if (out.IsValid()) {
346 DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
347 DataType::Type type = instruction_->GetType();
348 arm64_codegen->MoveLocation(out, calling_convention.GetReturnLocation(type), type);
349 }
350 RestoreLiveRegisters(codegen, locations);
351 __ B(GetExitLabel());
352 }
353
GetDescription() const354 const char* GetDescription() const override { return "LoadClassSlowPathARM64"; }
355
356 private:
357 // The class this slow path will load.
358 HLoadClass* const cls_;
359
360 DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARM64);
361 };
362
363 class LoadStringSlowPathARM64 : public SlowPathCodeARM64 {
364 public:
LoadStringSlowPathARM64(HLoadString * instruction)365 explicit LoadStringSlowPathARM64(HLoadString* instruction)
366 : SlowPathCodeARM64(instruction) {}
367
EmitNativeCode(CodeGenerator * codegen)368 void EmitNativeCode(CodeGenerator* codegen) override {
369 LocationSummary* locations = instruction_->GetLocations();
370 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
371 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
372
373 __ Bind(GetEntryLabel());
374 SaveLiveRegisters(codegen, locations);
375
376 InvokeRuntimeCallingConvention calling_convention;
377 const dex::StringIndex string_index = instruction_->AsLoadString()->GetStringIndex();
378 __ Mov(calling_convention.GetRegisterAt(0).W(), string_index.index_);
379 arm64_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this);
380 CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
381 DataType::Type type = instruction_->GetType();
382 arm64_codegen->MoveLocation(locations->Out(), calling_convention.GetReturnLocation(type), type);
383
384 RestoreLiveRegisters(codegen, locations);
385
386 __ B(GetExitLabel());
387 }
388
GetDescription() const389 const char* GetDescription() const override { return "LoadStringSlowPathARM64"; }
390
391 private:
392 DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARM64);
393 };
394
395 class NullCheckSlowPathARM64 : public SlowPathCodeARM64 {
396 public:
NullCheckSlowPathARM64(HNullCheck * instr)397 explicit NullCheckSlowPathARM64(HNullCheck* instr) : SlowPathCodeARM64(instr) {}
398
EmitNativeCode(CodeGenerator * codegen)399 void EmitNativeCode(CodeGenerator* codegen) override {
400 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
401 __ Bind(GetEntryLabel());
402 if (instruction_->CanThrowIntoCatchBlock()) {
403 // Live registers will be restored in the catch block if caught.
404 SaveLiveRegisters(codegen, instruction_->GetLocations());
405 }
406 arm64_codegen->InvokeRuntime(kQuickThrowNullPointer,
407 instruction_,
408 instruction_->GetDexPc(),
409 this);
410 CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
411 }
412
IsFatal() const413 bool IsFatal() const override { return true; }
414
GetDescription() const415 const char* GetDescription() const override { return "NullCheckSlowPathARM64"; }
416
417 private:
418 DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARM64);
419 };
420
421 class SuspendCheckSlowPathARM64 : public SlowPathCodeARM64 {
422 public:
SuspendCheckSlowPathARM64(HSuspendCheck * instruction,HBasicBlock * successor)423 SuspendCheckSlowPathARM64(HSuspendCheck* instruction, HBasicBlock* successor)
424 : SlowPathCodeARM64(instruction), successor_(successor) {}
425
EmitNativeCode(CodeGenerator * codegen)426 void EmitNativeCode(CodeGenerator* codegen) override {
427 LocationSummary* locations = instruction_->GetLocations();
428 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
429 __ Bind(GetEntryLabel());
430 SaveLiveRegisters(codegen, locations); // Only saves live vector regs for SIMD.
431 arm64_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this);
432 CheckEntrypointTypes<kQuickTestSuspend, void, void>();
433 RestoreLiveRegisters(codegen, locations); // Only restores live vector regs for SIMD.
434 if (successor_ == nullptr) {
435 __ B(GetReturnLabel());
436 } else {
437 __ B(arm64_codegen->GetLabelOf(successor_));
438 }
439 }
440
GetReturnLabel()441 vixl::aarch64::Label* GetReturnLabel() {
442 DCHECK(successor_ == nullptr);
443 return &return_label_;
444 }
445
GetSuccessor() const446 HBasicBlock* GetSuccessor() const {
447 return successor_;
448 }
449
GetDescription() const450 const char* GetDescription() const override { return "SuspendCheckSlowPathARM64"; }
451
452 private:
453 // If not null, the block to branch to after the suspend check.
454 HBasicBlock* const successor_;
455
456 // If `successor_` is null, the label to branch to after the suspend check.
457 vixl::aarch64::Label return_label_;
458
459 DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARM64);
460 };
461
462 class TypeCheckSlowPathARM64 : public SlowPathCodeARM64 {
463 public:
TypeCheckSlowPathARM64(HInstruction * instruction,bool is_fatal)464 TypeCheckSlowPathARM64(HInstruction* instruction, bool is_fatal)
465 : SlowPathCodeARM64(instruction), is_fatal_(is_fatal) {}
466
EmitNativeCode(CodeGenerator * codegen)467 void EmitNativeCode(CodeGenerator* codegen) override {
468 LocationSummary* locations = instruction_->GetLocations();
469
470 DCHECK(instruction_->IsCheckCast()
471 || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
472 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
473 uint32_t dex_pc = instruction_->GetDexPc();
474
475 __ Bind(GetEntryLabel());
476
477 if (!is_fatal_ || instruction_->CanThrowIntoCatchBlock()) {
478 SaveLiveRegisters(codegen, locations);
479 }
480
481 // We're moving two locations to locations that could overlap, so we need a parallel
482 // move resolver.
483 InvokeRuntimeCallingConvention calling_convention;
484 codegen->EmitParallelMoves(locations->InAt(0),
485 LocationFrom(calling_convention.GetRegisterAt(0)),
486 DataType::Type::kReference,
487 locations->InAt(1),
488 LocationFrom(calling_convention.GetRegisterAt(1)),
489 DataType::Type::kReference);
490 if (instruction_->IsInstanceOf()) {
491 arm64_codegen->InvokeRuntime(kQuickInstanceofNonTrivial, instruction_, dex_pc, this);
492 CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>();
493 DataType::Type ret_type = instruction_->GetType();
494 Location ret_loc = calling_convention.GetReturnLocation(ret_type);
495 arm64_codegen->MoveLocation(locations->Out(), ret_loc, ret_type);
496 } else {
497 DCHECK(instruction_->IsCheckCast());
498 arm64_codegen->InvokeRuntime(kQuickCheckInstanceOf, instruction_, dex_pc, this);
499 CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>();
500 }
501
502 if (!is_fatal_) {
503 RestoreLiveRegisters(codegen, locations);
504 __ B(GetExitLabel());
505 }
506 }
507
GetDescription() const508 const char* GetDescription() const override { return "TypeCheckSlowPathARM64"; }
IsFatal() const509 bool IsFatal() const override { return is_fatal_; }
510
511 private:
512 const bool is_fatal_;
513
514 DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARM64);
515 };
516
517 class DeoptimizationSlowPathARM64 : public SlowPathCodeARM64 {
518 public:
DeoptimizationSlowPathARM64(HDeoptimize * instruction)519 explicit DeoptimizationSlowPathARM64(HDeoptimize* instruction)
520 : SlowPathCodeARM64(instruction) {}
521
EmitNativeCode(CodeGenerator * codegen)522 void EmitNativeCode(CodeGenerator* codegen) override {
523 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
524 __ Bind(GetEntryLabel());
525 LocationSummary* locations = instruction_->GetLocations();
526 SaveLiveRegisters(codegen, locations);
527 InvokeRuntimeCallingConvention calling_convention;
528 __ Mov(calling_convention.GetRegisterAt(0),
529 static_cast<uint32_t>(instruction_->AsDeoptimize()->GetDeoptimizationKind()));
530 arm64_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this);
531 CheckEntrypointTypes<kQuickDeoptimize, void, DeoptimizationKind>();
532 }
533
GetDescription() const534 const char* GetDescription() const override { return "DeoptimizationSlowPathARM64"; }
535
536 private:
537 DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARM64);
538 };
539
540 class ArraySetSlowPathARM64 : public SlowPathCodeARM64 {
541 public:
ArraySetSlowPathARM64(HInstruction * instruction)542 explicit ArraySetSlowPathARM64(HInstruction* instruction) : SlowPathCodeARM64(instruction) {}
543
EmitNativeCode(CodeGenerator * codegen)544 void EmitNativeCode(CodeGenerator* codegen) override {
545 LocationSummary* locations = instruction_->GetLocations();
546 __ Bind(GetEntryLabel());
547 SaveLiveRegisters(codegen, locations);
548
549 InvokeRuntimeCallingConvention calling_convention;
550 HParallelMove parallel_move(codegen->GetGraph()->GetAllocator());
551 parallel_move.AddMove(
552 locations->InAt(0),
553 LocationFrom(calling_convention.GetRegisterAt(0)),
554 DataType::Type::kReference,
555 nullptr);
556 parallel_move.AddMove(
557 locations->InAt(1),
558 LocationFrom(calling_convention.GetRegisterAt(1)),
559 DataType::Type::kInt32,
560 nullptr);
561 parallel_move.AddMove(
562 locations->InAt(2),
563 LocationFrom(calling_convention.GetRegisterAt(2)),
564 DataType::Type::kReference,
565 nullptr);
566 codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
567
568 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
569 arm64_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this);
570 CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
571 RestoreLiveRegisters(codegen, locations);
572 __ B(GetExitLabel());
573 }
574
GetDescription() const575 const char* GetDescription() const override { return "ArraySetSlowPathARM64"; }
576
577 private:
578 DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARM64);
579 };
580
EmitTable(CodeGeneratorARM64 * codegen)581 void JumpTableARM64::EmitTable(CodeGeneratorARM64* codegen) {
582 uint32_t num_entries = switch_instr_->GetNumEntries();
583 DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold);
584
585 // We are about to use the assembler to place literals directly. Make sure we have enough
586 // underlying code buffer and we have generated the jump table with right size.
587 EmissionCheckScope scope(codegen->GetVIXLAssembler(),
588 num_entries * sizeof(int32_t),
589 CodeBufferCheckScope::kExactSize);
590
591 __ Bind(&table_start_);
592 const ArenaVector<HBasicBlock*>& successors = switch_instr_->GetBlock()->GetSuccessors();
593 for (uint32_t i = 0; i < num_entries; i++) {
594 vixl::aarch64::Label* target_label = codegen->GetLabelOf(successors[i]);
595 DCHECK(target_label->IsBound());
596 ptrdiff_t jump_offset = target_label->GetLocation() - table_start_.GetLocation();
597 DCHECK_GT(jump_offset, std::numeric_limits<int32_t>::min());
598 DCHECK_LE(jump_offset, std::numeric_limits<int32_t>::max());
599 Literal<int32_t> literal(jump_offset);
600 __ place(&literal);
601 }
602 }
603
604 // Slow path generating a read barrier for a heap reference.
605 class ReadBarrierForHeapReferenceSlowPathARM64 : public SlowPathCodeARM64 {
606 public:
ReadBarrierForHeapReferenceSlowPathARM64(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)607 ReadBarrierForHeapReferenceSlowPathARM64(HInstruction* instruction,
608 Location out,
609 Location ref,
610 Location obj,
611 uint32_t offset,
612 Location index)
613 : SlowPathCodeARM64(instruction),
614 out_(out),
615 ref_(ref),
616 obj_(obj),
617 offset_(offset),
618 index_(index) {
619 DCHECK(kEmitCompilerReadBarrier);
620 // If `obj` is equal to `out` or `ref`, it means the initial object
621 // has been overwritten by (or after) the heap object reference load
622 // to be instrumented, e.g.:
623 //
624 // __ Ldr(out, HeapOperand(out, class_offset);
625 // codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
626 //
627 // In that case, we have lost the information about the original
628 // object, and the emitted read barrier cannot work properly.
629 DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
630 DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
631 }
632
EmitNativeCode(CodeGenerator * codegen)633 void EmitNativeCode(CodeGenerator* codegen) override {
634 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
635 LocationSummary* locations = instruction_->GetLocations();
636 DataType::Type type = DataType::Type::kReference;
637 DCHECK(locations->CanCall());
638 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg()));
639 DCHECK(instruction_->IsInstanceFieldGet() ||
640 instruction_->IsStaticFieldGet() ||
641 instruction_->IsArrayGet() ||
642 instruction_->IsInstanceOf() ||
643 instruction_->IsCheckCast() ||
644 (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()))
645 << "Unexpected instruction in read barrier for heap reference slow path: "
646 << instruction_->DebugName();
647 // The read barrier instrumentation of object ArrayGet
648 // instructions does not support the HIntermediateAddress
649 // instruction.
650 DCHECK(!(instruction_->IsArrayGet() &&
651 instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress()));
652
653 __ Bind(GetEntryLabel());
654
655 SaveLiveRegisters(codegen, locations);
656
657 // We may have to change the index's value, but as `index_` is a
658 // constant member (like other "inputs" of this slow path),
659 // introduce a copy of it, `index`.
660 Location index = index_;
661 if (index_.IsValid()) {
662 // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics.
663 if (instruction_->IsArrayGet()) {
664 // Compute the actual memory offset and store it in `index`.
665 Register index_reg = RegisterFrom(index_, DataType::Type::kInt32);
666 DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_.reg()));
667 if (codegen->IsCoreCalleeSaveRegister(index_.reg())) {
668 // We are about to change the value of `index_reg` (see the
669 // calls to vixl::MacroAssembler::Lsl and
670 // vixl::MacroAssembler::Mov below), but it has
671 // not been saved by the previous call to
672 // art::SlowPathCode::SaveLiveRegisters, as it is a
673 // callee-save register --
674 // art::SlowPathCode::SaveLiveRegisters does not consider
675 // callee-save registers, as it has been designed with the
676 // assumption that callee-save registers are supposed to be
677 // handled by the called function. So, as a callee-save
678 // register, `index_reg` _would_ eventually be saved onto
679 // the stack, but it would be too late: we would have
680 // changed its value earlier. Therefore, we manually save
681 // it here into another freely available register,
682 // `free_reg`, chosen of course among the caller-save
683 // registers (as a callee-save `free_reg` register would
684 // exhibit the same problem).
685 //
686 // Note we could have requested a temporary register from
687 // the register allocator instead; but we prefer not to, as
688 // this is a slow path, and we know we can find a
689 // caller-save register that is available.
690 Register free_reg = FindAvailableCallerSaveRegister(codegen);
691 __ Mov(free_reg.W(), index_reg);
692 index_reg = free_reg;
693 index = LocationFrom(index_reg);
694 } else {
695 // The initial register stored in `index_` has already been
696 // saved in the call to art::SlowPathCode::SaveLiveRegisters
697 // (as it is not a callee-save register), so we can freely
698 // use it.
699 }
700 // Shifting the index value contained in `index_reg` by the scale
701 // factor (2) cannot overflow in practice, as the runtime is
702 // unable to allocate object arrays with a size larger than
703 // 2^26 - 1 (that is, 2^28 - 4 bytes).
704 __ Lsl(index_reg, index_reg, DataType::SizeShift(type));
705 static_assert(
706 sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
707 "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
708 __ Add(index_reg, index_reg, Operand(offset_));
709 } else {
710 // In the case of the UnsafeGetObject/UnsafeGetObjectVolatile
711 // intrinsics, `index_` is not shifted by a scale factor of 2
712 // (as in the case of ArrayGet), as it is actually an offset
713 // to an object field within an object.
714 DCHECK(instruction_->IsInvoke()) << instruction_->DebugName();
715 DCHECK(instruction_->GetLocations()->Intrinsified());
716 DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) ||
717 (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile))
718 << instruction_->AsInvoke()->GetIntrinsic();
719 DCHECK_EQ(offset_, 0u);
720 DCHECK(index_.IsRegister());
721 }
722 }
723
724 // We're moving two or three locations to locations that could
725 // overlap, so we need a parallel move resolver.
726 InvokeRuntimeCallingConvention calling_convention;
727 HParallelMove parallel_move(codegen->GetGraph()->GetAllocator());
728 parallel_move.AddMove(ref_,
729 LocationFrom(calling_convention.GetRegisterAt(0)),
730 type,
731 nullptr);
732 parallel_move.AddMove(obj_,
733 LocationFrom(calling_convention.GetRegisterAt(1)),
734 type,
735 nullptr);
736 if (index.IsValid()) {
737 parallel_move.AddMove(index,
738 LocationFrom(calling_convention.GetRegisterAt(2)),
739 DataType::Type::kInt32,
740 nullptr);
741 codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
742 } else {
743 codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
744 arm64_codegen->MoveConstant(LocationFrom(calling_convention.GetRegisterAt(2)), offset_);
745 }
746 arm64_codegen->InvokeRuntime(kQuickReadBarrierSlow,
747 instruction_,
748 instruction_->GetDexPc(),
749 this);
750 CheckEntrypointTypes<
751 kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
752 arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type);
753
754 RestoreLiveRegisters(codegen, locations);
755
756 __ B(GetExitLabel());
757 }
758
GetDescription() const759 const char* GetDescription() const override { return "ReadBarrierForHeapReferenceSlowPathARM64"; }
760
761 private:
FindAvailableCallerSaveRegister(CodeGenerator * codegen)762 Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
763 size_t ref = static_cast<int>(XRegisterFrom(ref_).GetCode());
764 size_t obj = static_cast<int>(XRegisterFrom(obj_).GetCode());
765 for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
766 if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) {
767 return Register(VIXLRegCodeFromART(i), kXRegSize);
768 }
769 }
770 // We shall never fail to find a free caller-save register, as
771 // there are more than two core caller-save registers on ARM64
772 // (meaning it is possible to find one which is different from
773 // `ref` and `obj`).
774 DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
775 LOG(FATAL) << "Could not find a free register";
776 UNREACHABLE();
777 }
778
779 const Location out_;
780 const Location ref_;
781 const Location obj_;
782 const uint32_t offset_;
783 // An additional location containing an index to an array.
784 // Only used for HArrayGet and the UnsafeGetObject &
785 // UnsafeGetObjectVolatile intrinsics.
786 const Location index_;
787
788 DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARM64);
789 };
790
791 // Slow path generating a read barrier for a GC root.
792 class ReadBarrierForRootSlowPathARM64 : public SlowPathCodeARM64 {
793 public:
ReadBarrierForRootSlowPathARM64(HInstruction * instruction,Location out,Location root)794 ReadBarrierForRootSlowPathARM64(HInstruction* instruction, Location out, Location root)
795 : SlowPathCodeARM64(instruction), out_(out), root_(root) {
796 DCHECK(kEmitCompilerReadBarrier);
797 }
798
EmitNativeCode(CodeGenerator * codegen)799 void EmitNativeCode(CodeGenerator* codegen) override {
800 LocationSummary* locations = instruction_->GetLocations();
801 DataType::Type type = DataType::Type::kReference;
802 DCHECK(locations->CanCall());
803 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg()));
804 DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString())
805 << "Unexpected instruction in read barrier for GC root slow path: "
806 << instruction_->DebugName();
807
808 __ Bind(GetEntryLabel());
809 SaveLiveRegisters(codegen, locations);
810
811 InvokeRuntimeCallingConvention calling_convention;
812 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
813 // The argument of the ReadBarrierForRootSlow is not a managed
814 // reference (`mirror::Object*`), but a `GcRoot<mirror::Object>*`;
815 // thus we need a 64-bit move here, and we cannot use
816 //
817 // arm64_codegen->MoveLocation(
818 // LocationFrom(calling_convention.GetRegisterAt(0)),
819 // root_,
820 // type);
821 //
822 // which would emit a 32-bit move, as `type` is a (32-bit wide)
823 // reference type (`DataType::Type::kReference`).
824 __ Mov(calling_convention.GetRegisterAt(0), XRegisterFrom(out_));
825 arm64_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow,
826 instruction_,
827 instruction_->GetDexPc(),
828 this);
829 CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
830 arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type);
831
832 RestoreLiveRegisters(codegen, locations);
833 __ B(GetExitLabel());
834 }
835
GetDescription() const836 const char* GetDescription() const override { return "ReadBarrierForRootSlowPathARM64"; }
837
838 private:
839 const Location out_;
840 const Location root_;
841
842 DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARM64);
843 };
844
845 #undef __
846
GetNextLocation(DataType::Type type)847 Location InvokeDexCallingConventionVisitorARM64::GetNextLocation(DataType::Type type) {
848 Location next_location;
849 if (type == DataType::Type::kVoid) {
850 LOG(FATAL) << "Unreachable type " << type;
851 }
852
853 if (DataType::IsFloatingPointType(type) &&
854 (float_index_ < calling_convention.GetNumberOfFpuRegisters())) {
855 next_location = LocationFrom(calling_convention.GetFpuRegisterAt(float_index_++));
856 } else if (!DataType::IsFloatingPointType(type) &&
857 (gp_index_ < calling_convention.GetNumberOfRegisters())) {
858 next_location = LocationFrom(calling_convention.GetRegisterAt(gp_index_++));
859 } else {
860 size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
861 next_location = DataType::Is64BitType(type) ? Location::DoubleStackSlot(stack_offset)
862 : Location::StackSlot(stack_offset);
863 }
864
865 // Space on the stack is reserved for all arguments.
866 stack_index_ += DataType::Is64BitType(type) ? 2 : 1;
867 return next_location;
868 }
869
GetMethodLocation() const870 Location InvokeDexCallingConventionVisitorARM64::GetMethodLocation() const {
871 return LocationFrom(kArtMethodRegister);
872 }
873
GetNextLocation(DataType::Type type)874 Location CriticalNativeCallingConventionVisitorARM64::GetNextLocation(DataType::Type type) {
875 DCHECK_NE(type, DataType::Type::kReference);
876
877 Location location = Location::NoLocation();
878 if (DataType::IsFloatingPointType(type)) {
879 if (fpr_index_ < kParameterFPRegistersLength) {
880 location = LocationFrom(kParameterFPRegisters[fpr_index_]);
881 ++fpr_index_;
882 }
883 } else {
884 // Native ABI uses the same registers as managed, except that the method register x0
885 // is a normal argument.
886 if (gpr_index_ < 1u + kParameterCoreRegistersLength) {
887 location = LocationFrom(gpr_index_ == 0u ? x0 : kParameterCoreRegisters[gpr_index_ - 1u]);
888 ++gpr_index_;
889 }
890 }
891 if (location.IsInvalid()) {
892 if (DataType::Is64BitType(type)) {
893 location = Location::DoubleStackSlot(stack_offset_);
894 } else {
895 location = Location::StackSlot(stack_offset_);
896 }
897 stack_offset_ += kFramePointerSize;
898
899 if (for_register_allocation_) {
900 location = Location::Any();
901 }
902 }
903 return location;
904 }
905
GetReturnLocation(DataType::Type type) const906 Location CriticalNativeCallingConventionVisitorARM64::GetReturnLocation(DataType::Type type) const {
907 // We perform conversion to the managed ABI return register after the call if needed.
908 InvokeDexCallingConventionVisitorARM64 dex_calling_convention;
909 return dex_calling_convention.GetReturnLocation(type);
910 }
911
GetMethodLocation() const912 Location CriticalNativeCallingConventionVisitorARM64::GetMethodLocation() const {
913 // Pass the method in the hidden argument x15.
914 return Location::RegisterLocation(x15.GetCode());
915 }
916
CodeGeneratorARM64(HGraph * graph,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats)917 CodeGeneratorARM64::CodeGeneratorARM64(HGraph* graph,
918 const CompilerOptions& compiler_options,
919 OptimizingCompilerStats* stats)
920 : CodeGenerator(graph,
921 kNumberOfAllocatableRegisters,
922 kNumberOfAllocatableFPRegisters,
923 kNumberOfAllocatableRegisterPairs,
924 callee_saved_core_registers.GetList(),
925 callee_saved_fp_registers.GetList(),
926 compiler_options,
927 stats),
928 block_labels_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
929 jump_tables_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
930 location_builder_neon_(graph, this),
931 instruction_visitor_neon_(graph, this),
932 location_builder_sve_(graph, this),
933 instruction_visitor_sve_(graph, this),
934 move_resolver_(graph->GetAllocator(), this),
935 assembler_(graph->GetAllocator(),
936 compiler_options.GetInstructionSetFeatures()->AsArm64InstructionSetFeatures()),
937 boot_image_method_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
938 method_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
939 boot_image_type_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
940 type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
941 boot_image_string_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
942 string_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
943 boot_image_other_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
944 call_entrypoint_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
945 baker_read_barrier_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
946 uint32_literals_(std::less<uint32_t>(),
947 graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
948 uint64_literals_(std::less<uint64_t>(),
949 graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
950 jit_string_patches_(StringReferenceValueComparator(),
951 graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
952 jit_class_patches_(TypeReferenceValueComparator(),
953 graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
954 jit_baker_read_barrier_slow_paths_(std::less<uint32_t>(),
955 graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)) {
956 // Save the link register (containing the return address) to mimic Quick.
957 AddAllocatedRegister(LocationFrom(lr));
958
959 bool use_sve = ShouldUseSVE();
960 if (use_sve) {
961 location_builder_ = &location_builder_sve_;
962 instruction_visitor_ = &instruction_visitor_sve_;
963 } else {
964 location_builder_ = &location_builder_neon_;
965 instruction_visitor_ = &instruction_visitor_neon_;
966 }
967 }
968
ShouldUseSVE() const969 bool CodeGeneratorARM64::ShouldUseSVE() const {
970 return kArm64AllowSVE && GetInstructionSetFeatures().HasSVE();
971 }
972
973 #define __ GetVIXLAssembler()->
974
EmitJumpTables()975 void CodeGeneratorARM64::EmitJumpTables() {
976 for (auto&& jump_table : jump_tables_) {
977 jump_table->EmitTable(this);
978 }
979 }
980
Finalize(CodeAllocator * allocator)981 void CodeGeneratorARM64::Finalize(CodeAllocator* allocator) {
982 EmitJumpTables();
983
984 // Emit JIT baker read barrier slow paths.
985 DCHECK(GetCompilerOptions().IsJitCompiler() || jit_baker_read_barrier_slow_paths_.empty());
986 for (auto& entry : jit_baker_read_barrier_slow_paths_) {
987 uint32_t encoded_data = entry.first;
988 vixl::aarch64::Label* slow_path_entry = &entry.second.label;
989 __ Bind(slow_path_entry);
990 CompileBakerReadBarrierThunk(*GetAssembler(), encoded_data, /* debug_name= */ nullptr);
991 }
992
993 // Ensure we emit the literal pool.
994 __ FinalizeCode();
995
996 CodeGenerator::Finalize(allocator);
997
998 // Verify Baker read barrier linker patches.
999 if (kIsDebugBuild) {
1000 ArrayRef<const uint8_t> code = allocator->GetMemory();
1001 for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) {
1002 DCHECK(info.label.IsBound());
1003 uint32_t literal_offset = info.label.GetLocation();
1004 DCHECK_ALIGNED(literal_offset, 4u);
1005
1006 auto GetInsn = [&code](uint32_t offset) {
1007 DCHECK_ALIGNED(offset, 4u);
1008 return
1009 (static_cast<uint32_t>(code[offset + 0]) << 0) +
1010 (static_cast<uint32_t>(code[offset + 1]) << 8) +
1011 (static_cast<uint32_t>(code[offset + 2]) << 16)+
1012 (static_cast<uint32_t>(code[offset + 3]) << 24);
1013 };
1014
1015 const uint32_t encoded_data = info.custom_data;
1016 BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data);
1017 // Check that the next instruction matches the expected LDR.
1018 switch (kind) {
1019 case BakerReadBarrierKind::kField:
1020 case BakerReadBarrierKind::kAcquire: {
1021 DCHECK_GE(code.size() - literal_offset, 8u);
1022 uint32_t next_insn = GetInsn(literal_offset + 4u);
1023 CheckValidReg(next_insn & 0x1fu); // Check destination register.
1024 const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
1025 if (kind == BakerReadBarrierKind::kField) {
1026 // LDR (immediate) with correct base_reg.
1027 CHECK_EQ(next_insn & 0xffc003e0u, 0xb9400000u | (base_reg << 5));
1028 } else {
1029 DCHECK(kind == BakerReadBarrierKind::kAcquire);
1030 // LDAR with correct base_reg.
1031 CHECK_EQ(next_insn & 0xffffffe0u, 0x88dffc00u | (base_reg << 5));
1032 }
1033 break;
1034 }
1035 case BakerReadBarrierKind::kArray: {
1036 DCHECK_GE(code.size() - literal_offset, 8u);
1037 uint32_t next_insn = GetInsn(literal_offset + 4u);
1038 // LDR (register) with the correct base_reg, size=10 (32-bit), option=011 (extend = LSL),
1039 // and S=1 (shift amount = 2 for 32-bit version), i.e. LDR Wt, [Xn, Xm, LSL #2].
1040 CheckValidReg(next_insn & 0x1fu); // Check destination register.
1041 const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
1042 CHECK_EQ(next_insn & 0xffe0ffe0u, 0xb8607800u | (base_reg << 5));
1043 CheckValidReg((next_insn >> 16) & 0x1f); // Check index register
1044 break;
1045 }
1046 case BakerReadBarrierKind::kGcRoot: {
1047 DCHECK_GE(literal_offset, 4u);
1048 uint32_t prev_insn = GetInsn(literal_offset - 4u);
1049 const uint32_t root_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
1050 // Usually LDR (immediate) with correct root_reg but
1051 // we may have a "MOV marked, old_value" for UnsafeCASObject.
1052 if ((prev_insn & 0xffe0ffff) != (0x2a0003e0 | root_reg)) { // MOV?
1053 CHECK_EQ(prev_insn & 0xffc0001fu, 0xb9400000u | root_reg); // LDR?
1054 }
1055 break;
1056 }
1057 default:
1058 LOG(FATAL) << "Unexpected kind: " << static_cast<uint32_t>(kind);
1059 UNREACHABLE();
1060 }
1061 }
1062 }
1063 }
1064
PrepareForEmitNativeCode()1065 void ParallelMoveResolverARM64::PrepareForEmitNativeCode() {
1066 // Note: There are 6 kinds of moves:
1067 // 1. constant -> GPR/FPR (non-cycle)
1068 // 2. constant -> stack (non-cycle)
1069 // 3. GPR/FPR -> GPR/FPR
1070 // 4. GPR/FPR -> stack
1071 // 5. stack -> GPR/FPR
1072 // 6. stack -> stack (non-cycle)
1073 // Case 1, 2 and 6 should never be included in a dependency cycle on ARM64. For case 3, 4, and 5
1074 // VIXL uses at most 1 GPR. VIXL has 2 GPR and 1 FPR temps, and there should be no intersecting
1075 // cycles on ARM64, so we always have 1 GPR and 1 FPR available VIXL temps to resolve the
1076 // dependency.
1077 vixl_temps_.Open(GetVIXLAssembler());
1078 }
1079
FinishEmitNativeCode()1080 void ParallelMoveResolverARM64::FinishEmitNativeCode() {
1081 vixl_temps_.Close();
1082 }
1083
AllocateScratchLocationFor(Location::Kind kind)1084 Location ParallelMoveResolverARM64::AllocateScratchLocationFor(Location::Kind kind) {
1085 DCHECK(kind == Location::kRegister || kind == Location::kFpuRegister
1086 || kind == Location::kStackSlot || kind == Location::kDoubleStackSlot
1087 || kind == Location::kSIMDStackSlot);
1088 kind = (kind == Location::kFpuRegister || kind == Location::kSIMDStackSlot)
1089 ? Location::kFpuRegister
1090 : Location::kRegister;
1091 Location scratch = GetScratchLocation(kind);
1092 if (!scratch.Equals(Location::NoLocation())) {
1093 return scratch;
1094 }
1095 // Allocate from VIXL temp registers.
1096 if (kind == Location::kRegister) {
1097 scratch = LocationFrom(vixl_temps_.AcquireX());
1098 } else {
1099 DCHECK_EQ(kind, Location::kFpuRegister);
1100 scratch = codegen_->GetGraph()->HasSIMD()
1101 ? codegen_->GetInstructionCodeGeneratorArm64()->AllocateSIMDScratchLocation(&vixl_temps_)
1102 : LocationFrom(vixl_temps_.AcquireD());
1103 }
1104 AddScratchLocation(scratch);
1105 return scratch;
1106 }
1107
FreeScratchLocation(Location loc)1108 void ParallelMoveResolverARM64::FreeScratchLocation(Location loc) {
1109 if (loc.IsRegister()) {
1110 vixl_temps_.Release(XRegisterFrom(loc));
1111 } else {
1112 DCHECK(loc.IsFpuRegister());
1113 if (codegen_->GetGraph()->HasSIMD()) {
1114 codegen_->GetInstructionCodeGeneratorArm64()->FreeSIMDScratchLocation(loc, &vixl_temps_);
1115 } else {
1116 vixl_temps_.Release(DRegisterFrom(loc));
1117 }
1118 }
1119 RemoveScratchLocation(loc);
1120 }
1121
EmitMove(size_t index)1122 void ParallelMoveResolverARM64::EmitMove(size_t index) {
1123 MoveOperands* move = moves_[index];
1124 codegen_->MoveLocation(move->GetDestination(), move->GetSource(), DataType::Type::kVoid);
1125 }
1126
MaybeIncrementHotness(bool is_frame_entry)1127 void CodeGeneratorARM64::MaybeIncrementHotness(bool is_frame_entry) {
1128 MacroAssembler* masm = GetVIXLAssembler();
1129 if (GetCompilerOptions().CountHotnessInCompiledCode()) {
1130 UseScratchRegisterScope temps(masm);
1131 Register counter = temps.AcquireX();
1132 Register method = is_frame_entry ? kArtMethodRegister : temps.AcquireX();
1133 if (!is_frame_entry) {
1134 __ Ldr(method, MemOperand(sp, 0));
1135 }
1136 __ Ldrh(counter, MemOperand(method, ArtMethod::HotnessCountOffset().Int32Value()));
1137 __ Add(counter, counter, 1);
1138 // Subtract one if the counter would overflow.
1139 __ Sub(counter, counter, Operand(counter, LSR, 16));
1140 __ Strh(counter, MemOperand(method, ArtMethod::HotnessCountOffset().Int32Value()));
1141 }
1142
1143 if (GetGraph()->IsCompilingBaseline() && !Runtime::Current()->IsAotCompiler()) {
1144 ScopedObjectAccess soa(Thread::Current());
1145 ProfilingInfo* info = GetGraph()->GetArtMethod()->GetProfilingInfo(kRuntimePointerSize);
1146 if (info != nullptr) {
1147 uint64_t address = reinterpret_cast64<uint64_t>(info);
1148 vixl::aarch64::Label done;
1149 UseScratchRegisterScope temps(masm);
1150 Register temp = temps.AcquireX();
1151 Register counter = temps.AcquireW();
1152 __ Mov(temp, address);
1153 __ Ldrh(counter, MemOperand(temp, ProfilingInfo::BaselineHotnessCountOffset().Int32Value()));
1154 __ Add(counter, counter, 1);
1155 __ Strh(counter, MemOperand(temp, ProfilingInfo::BaselineHotnessCountOffset().Int32Value()));
1156 __ Tst(counter, 0xffff);
1157 __ B(ne, &done);
1158 if (is_frame_entry) {
1159 if (HasEmptyFrame()) {
1160 // The entrypoint expects the method at the bottom of the stack. We
1161 // claim stack space necessary for alignment.
1162 IncreaseFrame(kStackAlignment);
1163 __ Stp(kArtMethodRegister, lr, MemOperand(sp, 0));
1164 } else if (!RequiresCurrentMethod()) {
1165 __ Str(kArtMethodRegister, MemOperand(sp, 0));
1166 }
1167 } else {
1168 CHECK(RequiresCurrentMethod());
1169 }
1170 uint32_t entrypoint_offset =
1171 GetThreadOffset<kArm64PointerSize>(kQuickCompileOptimized).Int32Value();
1172 __ Ldr(lr, MemOperand(tr, entrypoint_offset));
1173 // Note: we don't record the call here (and therefore don't generate a stack
1174 // map), as the entrypoint should never be suspended.
1175 __ Blr(lr);
1176 if (HasEmptyFrame()) {
1177 CHECK(is_frame_entry);
1178 __ Ldr(lr, MemOperand(sp, 8));
1179 DecreaseFrame(kStackAlignment);
1180 }
1181 __ Bind(&done);
1182 }
1183 }
1184 }
1185
GenerateFrameEntry()1186 void CodeGeneratorARM64::GenerateFrameEntry() {
1187 MacroAssembler* masm = GetVIXLAssembler();
1188 __ Bind(&frame_entry_label_);
1189
1190 bool do_overflow_check =
1191 FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kArm64) || !IsLeafMethod();
1192 if (do_overflow_check) {
1193 UseScratchRegisterScope temps(masm);
1194 Register temp = temps.AcquireX();
1195 DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
1196 __ Sub(temp, sp, static_cast<int32_t>(GetStackOverflowReservedBytes(InstructionSet::kArm64)));
1197 {
1198 // Ensure that between load and RecordPcInfo there are no pools emitted.
1199 ExactAssemblyScope eas(GetVIXLAssembler(),
1200 kInstructionSize,
1201 CodeBufferCheckScope::kExactSize);
1202 __ ldr(wzr, MemOperand(temp, 0));
1203 RecordPcInfo(nullptr, 0);
1204 }
1205 }
1206
1207 if (!HasEmptyFrame()) {
1208 // Stack layout:
1209 // sp[frame_size - 8] : lr.
1210 // ... : other preserved core registers.
1211 // ... : other preserved fp registers.
1212 // ... : reserved frame space.
1213 // sp[0] : current method.
1214 int32_t frame_size = dchecked_integral_cast<int32_t>(GetFrameSize());
1215 uint32_t core_spills_offset = frame_size - GetCoreSpillSize();
1216 CPURegList preserved_core_registers = GetFramePreservedCoreRegisters();
1217 DCHECK(!preserved_core_registers.IsEmpty());
1218 uint32_t fp_spills_offset = frame_size - FrameEntrySpillSize();
1219 CPURegList preserved_fp_registers = GetFramePreservedFPRegisters();
1220
1221 // Save the current method if we need it, or if using STP reduces code
1222 // size. Note that we do not do this in HCurrentMethod, as the
1223 // instruction might have been removed in the SSA graph.
1224 CPURegister lowest_spill;
1225 if (core_spills_offset == kXRegSizeInBytes) {
1226 // If there is no gap between the method and the lowest core spill, use
1227 // aligned STP pre-index to store both. Max difference is 512. We do
1228 // that to reduce code size even if we do not have to save the method.
1229 DCHECK_LE(frame_size, 512); // 32 core registers are only 256 bytes.
1230 lowest_spill = preserved_core_registers.PopLowestIndex();
1231 __ Stp(kArtMethodRegister, lowest_spill, MemOperand(sp, -frame_size, PreIndex));
1232 } else if (RequiresCurrentMethod()) {
1233 __ Str(kArtMethodRegister, MemOperand(sp, -frame_size, PreIndex));
1234 } else {
1235 __ Claim(frame_size);
1236 }
1237 GetAssembler()->cfi().AdjustCFAOffset(frame_size);
1238 if (lowest_spill.IsValid()) {
1239 GetAssembler()->cfi().RelOffset(DWARFReg(lowest_spill), core_spills_offset);
1240 core_spills_offset += kXRegSizeInBytes;
1241 }
1242 GetAssembler()->SpillRegisters(preserved_core_registers, core_spills_offset);
1243 GetAssembler()->SpillRegisters(preserved_fp_registers, fp_spills_offset);
1244
1245 if (GetGraph()->HasShouldDeoptimizeFlag()) {
1246 // Initialize should_deoptimize flag to 0.
1247 Register wzr = Register(VIXLRegCodeFromART(WZR), kWRegSize);
1248 __ Str(wzr, MemOperand(sp, GetStackOffsetOfShouldDeoptimizeFlag()));
1249 }
1250 }
1251 MaybeIncrementHotness(/* is_frame_entry= */ true);
1252 MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
1253 }
1254
GenerateFrameExit()1255 void CodeGeneratorARM64::GenerateFrameExit() {
1256 GetAssembler()->cfi().RememberState();
1257 if (!HasEmptyFrame()) {
1258 int32_t frame_size = dchecked_integral_cast<int32_t>(GetFrameSize());
1259 uint32_t core_spills_offset = frame_size - GetCoreSpillSize();
1260 CPURegList preserved_core_registers = GetFramePreservedCoreRegisters();
1261 DCHECK(!preserved_core_registers.IsEmpty());
1262 uint32_t fp_spills_offset = frame_size - FrameEntrySpillSize();
1263 CPURegList preserved_fp_registers = GetFramePreservedFPRegisters();
1264
1265 CPURegister lowest_spill;
1266 if (core_spills_offset == kXRegSizeInBytes) {
1267 // If there is no gap between the method and the lowest core spill, use
1268 // aligned LDP pre-index to pop both. Max difference is 504. We do
1269 // that to reduce code size even though the loaded method is unused.
1270 DCHECK_LE(frame_size, 504); // 32 core registers are only 256 bytes.
1271 lowest_spill = preserved_core_registers.PopLowestIndex();
1272 core_spills_offset += kXRegSizeInBytes;
1273 }
1274 GetAssembler()->UnspillRegisters(preserved_fp_registers, fp_spills_offset);
1275 GetAssembler()->UnspillRegisters(preserved_core_registers, core_spills_offset);
1276 if (lowest_spill.IsValid()) {
1277 __ Ldp(xzr, lowest_spill, MemOperand(sp, frame_size, PostIndex));
1278 GetAssembler()->cfi().Restore(DWARFReg(lowest_spill));
1279 } else {
1280 __ Drop(frame_size);
1281 }
1282 GetAssembler()->cfi().AdjustCFAOffset(-frame_size);
1283 }
1284 __ Ret();
1285 GetAssembler()->cfi().RestoreState();
1286 GetAssembler()->cfi().DefCFAOffset(GetFrameSize());
1287 }
1288
GetFramePreservedCoreRegisters() const1289 CPURegList CodeGeneratorARM64::GetFramePreservedCoreRegisters() const {
1290 DCHECK(ArtVixlRegCodeCoherentForRegSet(core_spill_mask_, GetNumberOfCoreRegisters(), 0, 0));
1291 return CPURegList(CPURegister::kRegister, kXRegSize,
1292 core_spill_mask_);
1293 }
1294
GetFramePreservedFPRegisters() const1295 CPURegList CodeGeneratorARM64::GetFramePreservedFPRegisters() const {
1296 DCHECK(ArtVixlRegCodeCoherentForRegSet(0, 0, fpu_spill_mask_,
1297 GetNumberOfFloatingPointRegisters()));
1298 return CPURegList(CPURegister::kVRegister, kDRegSize,
1299 fpu_spill_mask_);
1300 }
1301
Bind(HBasicBlock * block)1302 void CodeGeneratorARM64::Bind(HBasicBlock* block) {
1303 __ Bind(GetLabelOf(block));
1304 }
1305
MoveConstant(Location location,int32_t value)1306 void CodeGeneratorARM64::MoveConstant(Location location, int32_t value) {
1307 DCHECK(location.IsRegister());
1308 __ Mov(RegisterFrom(location, DataType::Type::kInt32), value);
1309 }
1310
AddLocationAsTemp(Location location,LocationSummary * locations)1311 void CodeGeneratorARM64::AddLocationAsTemp(Location location, LocationSummary* locations) {
1312 if (location.IsRegister()) {
1313 locations->AddTemp(location);
1314 } else {
1315 UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
1316 }
1317 }
1318
MarkGCCard(Register object,Register value,bool value_can_be_null)1319 void CodeGeneratorARM64::MarkGCCard(Register object, Register value, bool value_can_be_null) {
1320 UseScratchRegisterScope temps(GetVIXLAssembler());
1321 Register card = temps.AcquireX();
1322 Register temp = temps.AcquireW(); // Index within the CardTable - 32bit.
1323 vixl::aarch64::Label done;
1324 if (value_can_be_null) {
1325 __ Cbz(value, &done);
1326 }
1327 // Load the address of the card table into `card`.
1328 __ Ldr(card, MemOperand(tr, Thread::CardTableOffset<kArm64PointerSize>().Int32Value()));
1329 // Calculate the offset (in the card table) of the card corresponding to
1330 // `object`.
1331 __ Lsr(temp, object, gc::accounting::CardTable::kCardShift);
1332 // Write the `art::gc::accounting::CardTable::kCardDirty` value into the
1333 // `object`'s card.
1334 //
1335 // Register `card` contains the address of the card table. Note that the card
1336 // table's base is biased during its creation so that it always starts at an
1337 // address whose least-significant byte is equal to `kCardDirty` (see
1338 // art::gc::accounting::CardTable::Create). Therefore the STRB instruction
1339 // below writes the `kCardDirty` (byte) value into the `object`'s card
1340 // (located at `card + object >> kCardShift`).
1341 //
1342 // This dual use of the value in register `card` (1. to calculate the location
1343 // of the card to mark; and 2. to load the `kCardDirty` value) saves a load
1344 // (no need to explicitly load `kCardDirty` as an immediate value).
1345 __ Strb(card, MemOperand(card, temp.X()));
1346 if (value_can_be_null) {
1347 __ Bind(&done);
1348 }
1349 }
1350
SetupBlockedRegisters() const1351 void CodeGeneratorARM64::SetupBlockedRegisters() const {
1352 // Blocked core registers:
1353 // lr : Runtime reserved.
1354 // tr : Runtime reserved.
1355 // mr : Runtime reserved.
1356 // ip1 : VIXL core temp.
1357 // ip0 : VIXL core temp.
1358 // x18 : Platform register.
1359 //
1360 // Blocked fp registers:
1361 // d31 : VIXL fp temp.
1362 CPURegList reserved_core_registers = vixl_reserved_core_registers;
1363 reserved_core_registers.Combine(runtime_reserved_core_registers);
1364 while (!reserved_core_registers.IsEmpty()) {
1365 blocked_core_registers_[reserved_core_registers.PopLowestIndex().GetCode()] = true;
1366 }
1367 blocked_core_registers_[X18] = true;
1368
1369 CPURegList reserved_fp_registers = vixl_reserved_fp_registers;
1370 while (!reserved_fp_registers.IsEmpty()) {
1371 blocked_fpu_registers_[reserved_fp_registers.PopLowestIndex().GetCode()] = true;
1372 }
1373
1374 if (GetGraph()->IsDebuggable()) {
1375 // Stubs do not save callee-save floating point registers. If the graph
1376 // is debuggable, we need to deal with these registers differently. For
1377 // now, just block them.
1378 CPURegList reserved_fp_registers_debuggable = callee_saved_fp_registers;
1379 while (!reserved_fp_registers_debuggable.IsEmpty()) {
1380 blocked_fpu_registers_[reserved_fp_registers_debuggable.PopLowestIndex().GetCode()] = true;
1381 }
1382 }
1383 }
1384
SaveCoreRegister(size_t stack_index,uint32_t reg_id)1385 size_t CodeGeneratorARM64::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
1386 Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize);
1387 __ Str(reg, MemOperand(sp, stack_index));
1388 return kArm64WordSize;
1389 }
1390
RestoreCoreRegister(size_t stack_index,uint32_t reg_id)1391 size_t CodeGeneratorARM64::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
1392 Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize);
1393 __ Ldr(reg, MemOperand(sp, stack_index));
1394 return kArm64WordSize;
1395 }
1396
SaveFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,uint32_t reg_id ATTRIBUTE_UNUSED)1397 size_t CodeGeneratorARM64::SaveFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,
1398 uint32_t reg_id ATTRIBUTE_UNUSED) {
1399 LOG(FATAL) << "FP registers shouldn't be saved/restored individually, "
1400 << "use SaveRestoreLiveRegistersHelper";
1401 UNREACHABLE();
1402 }
1403
RestoreFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,uint32_t reg_id ATTRIBUTE_UNUSED)1404 size_t CodeGeneratorARM64::RestoreFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,
1405 uint32_t reg_id ATTRIBUTE_UNUSED) {
1406 LOG(FATAL) << "FP registers shouldn't be saved/restored individually, "
1407 << "use SaveRestoreLiveRegistersHelper";
1408 UNREACHABLE();
1409 }
1410
DumpCoreRegister(std::ostream & stream,int reg) const1411 void CodeGeneratorARM64::DumpCoreRegister(std::ostream& stream, int reg) const {
1412 stream << XRegister(reg);
1413 }
1414
DumpFloatingPointRegister(std::ostream & stream,int reg) const1415 void CodeGeneratorARM64::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
1416 stream << DRegister(reg);
1417 }
1418
GetInstructionSetFeatures() const1419 const Arm64InstructionSetFeatures& CodeGeneratorARM64::GetInstructionSetFeatures() const {
1420 return *GetCompilerOptions().GetInstructionSetFeatures()->AsArm64InstructionSetFeatures();
1421 }
1422
MoveConstant(CPURegister destination,HConstant * constant)1423 void CodeGeneratorARM64::MoveConstant(CPURegister destination, HConstant* constant) {
1424 if (constant->IsIntConstant()) {
1425 __ Mov(Register(destination), constant->AsIntConstant()->GetValue());
1426 } else if (constant->IsLongConstant()) {
1427 __ Mov(Register(destination), constant->AsLongConstant()->GetValue());
1428 } else if (constant->IsNullConstant()) {
1429 __ Mov(Register(destination), 0);
1430 } else if (constant->IsFloatConstant()) {
1431 __ Fmov(VRegister(destination), constant->AsFloatConstant()->GetValue());
1432 } else {
1433 DCHECK(constant->IsDoubleConstant());
1434 __ Fmov(VRegister(destination), constant->AsDoubleConstant()->GetValue());
1435 }
1436 }
1437
1438
CoherentConstantAndType(Location constant,DataType::Type type)1439 static bool CoherentConstantAndType(Location constant, DataType::Type type) {
1440 DCHECK(constant.IsConstant());
1441 HConstant* cst = constant.GetConstant();
1442 return (cst->IsIntConstant() && type == DataType::Type::kInt32) ||
1443 // Null is mapped to a core W register, which we associate with kPrimInt.
1444 (cst->IsNullConstant() && type == DataType::Type::kInt32) ||
1445 (cst->IsLongConstant() && type == DataType::Type::kInt64) ||
1446 (cst->IsFloatConstant() && type == DataType::Type::kFloat32) ||
1447 (cst->IsDoubleConstant() && type == DataType::Type::kFloat64);
1448 }
1449
1450 // Allocate a scratch register from the VIXL pool, querying first
1451 // the floating-point register pool, and then the core register
1452 // pool. This is essentially a reimplementation of
1453 // vixl::aarch64::UseScratchRegisterScope::AcquireCPURegisterOfSize
1454 // using a different allocation strategy.
AcquireFPOrCoreCPURegisterOfSize(vixl::aarch64::MacroAssembler * masm,vixl::aarch64::UseScratchRegisterScope * temps,int size_in_bits)1455 static CPURegister AcquireFPOrCoreCPURegisterOfSize(vixl::aarch64::MacroAssembler* masm,
1456 vixl::aarch64::UseScratchRegisterScope* temps,
1457 int size_in_bits) {
1458 return masm->GetScratchVRegisterList()->IsEmpty()
1459 ? CPURegister(temps->AcquireRegisterOfSize(size_in_bits))
1460 : CPURegister(temps->AcquireVRegisterOfSize(size_in_bits));
1461 }
1462
MoveLocation(Location destination,Location source,DataType::Type dst_type)1463 void CodeGeneratorARM64::MoveLocation(Location destination,
1464 Location source,
1465 DataType::Type dst_type) {
1466 if (source.Equals(destination)) {
1467 return;
1468 }
1469
1470 // A valid move can always be inferred from the destination and source
1471 // locations. When moving from and to a register, the argument type can be
1472 // used to generate 32bit instead of 64bit moves. In debug mode we also
1473 // checks the coherency of the locations and the type.
1474 bool unspecified_type = (dst_type == DataType::Type::kVoid);
1475
1476 if (destination.IsRegister() || destination.IsFpuRegister()) {
1477 if (unspecified_type) {
1478 HConstant* src_cst = source.IsConstant() ? source.GetConstant() : nullptr;
1479 if (source.IsStackSlot() ||
1480 (src_cst != nullptr && (src_cst->IsIntConstant()
1481 || src_cst->IsFloatConstant()
1482 || src_cst->IsNullConstant()))) {
1483 // For stack slots and 32bit constants, a 64bit type is appropriate.
1484 dst_type = destination.IsRegister() ? DataType::Type::kInt32 : DataType::Type::kFloat32;
1485 } else {
1486 // If the source is a double stack slot or a 64bit constant, a 64bit
1487 // type is appropriate. Else the source is a register, and since the
1488 // type has not been specified, we chose a 64bit type to force a 64bit
1489 // move.
1490 dst_type = destination.IsRegister() ? DataType::Type::kInt64 : DataType::Type::kFloat64;
1491 }
1492 }
1493 DCHECK((destination.IsFpuRegister() && DataType::IsFloatingPointType(dst_type)) ||
1494 (destination.IsRegister() && !DataType::IsFloatingPointType(dst_type)));
1495 CPURegister dst = CPURegisterFrom(destination, dst_type);
1496 if (source.IsStackSlot() || source.IsDoubleStackSlot()) {
1497 DCHECK(dst.Is64Bits() == source.IsDoubleStackSlot());
1498 __ Ldr(dst, StackOperandFrom(source));
1499 } else if (source.IsSIMDStackSlot()) {
1500 GetInstructionCodeGeneratorArm64()->LoadSIMDRegFromStack(destination, source);
1501 } else if (source.IsConstant()) {
1502 DCHECK(CoherentConstantAndType(source, dst_type));
1503 MoveConstant(dst, source.GetConstant());
1504 } else if (source.IsRegister()) {
1505 if (destination.IsRegister()) {
1506 __ Mov(Register(dst), RegisterFrom(source, dst_type));
1507 } else {
1508 DCHECK(destination.IsFpuRegister());
1509 DataType::Type source_type = DataType::Is64BitType(dst_type)
1510 ? DataType::Type::kInt64
1511 : DataType::Type::kInt32;
1512 __ Fmov(FPRegisterFrom(destination, dst_type), RegisterFrom(source, source_type));
1513 }
1514 } else {
1515 DCHECK(source.IsFpuRegister());
1516 if (destination.IsRegister()) {
1517 DataType::Type source_type = DataType::Is64BitType(dst_type)
1518 ? DataType::Type::kFloat64
1519 : DataType::Type::kFloat32;
1520 __ Fmov(RegisterFrom(destination, dst_type), FPRegisterFrom(source, source_type));
1521 } else {
1522 DCHECK(destination.IsFpuRegister());
1523 if (GetGraph()->HasSIMD()) {
1524 GetInstructionCodeGeneratorArm64()->MoveSIMDRegToSIMDReg(destination, source);
1525 } else {
1526 __ Fmov(VRegister(dst), FPRegisterFrom(source, dst_type));
1527 }
1528 }
1529 }
1530 } else if (destination.IsSIMDStackSlot()) {
1531 GetInstructionCodeGeneratorArm64()->MoveToSIMDStackSlot(destination, source);
1532 } else { // The destination is not a register. It must be a stack slot.
1533 DCHECK(destination.IsStackSlot() || destination.IsDoubleStackSlot());
1534 if (source.IsRegister() || source.IsFpuRegister()) {
1535 if (unspecified_type) {
1536 if (source.IsRegister()) {
1537 dst_type = destination.IsStackSlot() ? DataType::Type::kInt32 : DataType::Type::kInt64;
1538 } else {
1539 dst_type =
1540 destination.IsStackSlot() ? DataType::Type::kFloat32 : DataType::Type::kFloat64;
1541 }
1542 }
1543 DCHECK((destination.IsDoubleStackSlot() == DataType::Is64BitType(dst_type)) &&
1544 (source.IsFpuRegister() == DataType::IsFloatingPointType(dst_type)));
1545 __ Str(CPURegisterFrom(source, dst_type), StackOperandFrom(destination));
1546 } else if (source.IsConstant()) {
1547 DCHECK(unspecified_type || CoherentConstantAndType(source, dst_type))
1548 << source << " " << dst_type;
1549 UseScratchRegisterScope temps(GetVIXLAssembler());
1550 HConstant* src_cst = source.GetConstant();
1551 CPURegister temp;
1552 if (src_cst->IsZeroBitPattern()) {
1553 temp = (src_cst->IsLongConstant() || src_cst->IsDoubleConstant())
1554 ? Register(xzr)
1555 : Register(wzr);
1556 } else {
1557 if (src_cst->IsIntConstant()) {
1558 temp = temps.AcquireW();
1559 } else if (src_cst->IsLongConstant()) {
1560 temp = temps.AcquireX();
1561 } else if (src_cst->IsFloatConstant()) {
1562 temp = temps.AcquireS();
1563 } else {
1564 DCHECK(src_cst->IsDoubleConstant());
1565 temp = temps.AcquireD();
1566 }
1567 MoveConstant(temp, src_cst);
1568 }
1569 __ Str(temp, StackOperandFrom(destination));
1570 } else {
1571 DCHECK(source.IsStackSlot() || source.IsDoubleStackSlot());
1572 DCHECK(source.IsDoubleStackSlot() == destination.IsDoubleStackSlot());
1573 UseScratchRegisterScope temps(GetVIXLAssembler());
1574 // Use any scratch register (a core or a floating-point one)
1575 // from VIXL scratch register pools as a temporary.
1576 //
1577 // We used to only use the FP scratch register pool, but in some
1578 // rare cases the only register from this pool (D31) would
1579 // already be used (e.g. within a ParallelMove instruction, when
1580 // a move is blocked by a another move requiring a scratch FP
1581 // register, which would reserve D31). To prevent this issue, we
1582 // ask for a scratch register of any type (core or FP).
1583 //
1584 // Also, we start by asking for a FP scratch register first, as the
1585 // demand of scratch core registers is higher. This is why we
1586 // use AcquireFPOrCoreCPURegisterOfSize instead of
1587 // UseScratchRegisterScope::AcquireCPURegisterOfSize, which
1588 // allocates core scratch registers first.
1589 CPURegister temp = AcquireFPOrCoreCPURegisterOfSize(
1590 GetVIXLAssembler(),
1591 &temps,
1592 (destination.IsDoubleStackSlot() ? kXRegSize : kWRegSize));
1593 __ Ldr(temp, StackOperandFrom(source));
1594 __ Str(temp, StackOperandFrom(destination));
1595 }
1596 }
1597 }
1598
Load(DataType::Type type,CPURegister dst,const MemOperand & src)1599 void CodeGeneratorARM64::Load(DataType::Type type,
1600 CPURegister dst,
1601 const MemOperand& src) {
1602 switch (type) {
1603 case DataType::Type::kBool:
1604 case DataType::Type::kUint8:
1605 __ Ldrb(Register(dst), src);
1606 break;
1607 case DataType::Type::kInt8:
1608 __ Ldrsb(Register(dst), src);
1609 break;
1610 case DataType::Type::kUint16:
1611 __ Ldrh(Register(dst), src);
1612 break;
1613 case DataType::Type::kInt16:
1614 __ Ldrsh(Register(dst), src);
1615 break;
1616 case DataType::Type::kInt32:
1617 case DataType::Type::kReference:
1618 case DataType::Type::kInt64:
1619 case DataType::Type::kFloat32:
1620 case DataType::Type::kFloat64:
1621 DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type));
1622 __ Ldr(dst, src);
1623 break;
1624 case DataType::Type::kUint32:
1625 case DataType::Type::kUint64:
1626 case DataType::Type::kVoid:
1627 LOG(FATAL) << "Unreachable type " << type;
1628 }
1629 }
1630
LoadAcquire(HInstruction * instruction,CPURegister dst,const MemOperand & src,bool needs_null_check)1631 void CodeGeneratorARM64::LoadAcquire(HInstruction* instruction,
1632 CPURegister dst,
1633 const MemOperand& src,
1634 bool needs_null_check) {
1635 MacroAssembler* masm = GetVIXLAssembler();
1636 UseScratchRegisterScope temps(masm);
1637 Register temp_base = temps.AcquireX();
1638 DataType::Type type = instruction->GetType();
1639
1640 DCHECK(!src.IsPreIndex());
1641 DCHECK(!src.IsPostIndex());
1642
1643 // TODO(vixl): Let the MacroAssembler handle MemOperand.
1644 __ Add(temp_base, src.GetBaseRegister(), OperandFromMemOperand(src));
1645 {
1646 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
1647 MemOperand base = MemOperand(temp_base);
1648 switch (type) {
1649 case DataType::Type::kBool:
1650 case DataType::Type::kUint8:
1651 case DataType::Type::kInt8:
1652 {
1653 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1654 __ ldarb(Register(dst), base);
1655 if (needs_null_check) {
1656 MaybeRecordImplicitNullCheck(instruction);
1657 }
1658 }
1659 if (type == DataType::Type::kInt8) {
1660 __ Sbfx(Register(dst), Register(dst), 0, DataType::Size(type) * kBitsPerByte);
1661 }
1662 break;
1663 case DataType::Type::kUint16:
1664 case DataType::Type::kInt16:
1665 {
1666 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1667 __ ldarh(Register(dst), base);
1668 if (needs_null_check) {
1669 MaybeRecordImplicitNullCheck(instruction);
1670 }
1671 }
1672 if (type == DataType::Type::kInt16) {
1673 __ Sbfx(Register(dst), Register(dst), 0, DataType::Size(type) * kBitsPerByte);
1674 }
1675 break;
1676 case DataType::Type::kInt32:
1677 case DataType::Type::kReference:
1678 case DataType::Type::kInt64:
1679 DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type));
1680 {
1681 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1682 __ ldar(Register(dst), base);
1683 if (needs_null_check) {
1684 MaybeRecordImplicitNullCheck(instruction);
1685 }
1686 }
1687 break;
1688 case DataType::Type::kFloat32:
1689 case DataType::Type::kFloat64: {
1690 DCHECK(dst.IsFPRegister());
1691 DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type));
1692
1693 Register temp = dst.Is64Bits() ? temps.AcquireX() : temps.AcquireW();
1694 {
1695 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1696 __ ldar(temp, base);
1697 if (needs_null_check) {
1698 MaybeRecordImplicitNullCheck(instruction);
1699 }
1700 }
1701 __ Fmov(VRegister(dst), temp);
1702 break;
1703 }
1704 case DataType::Type::kUint32:
1705 case DataType::Type::kUint64:
1706 case DataType::Type::kVoid:
1707 LOG(FATAL) << "Unreachable type " << type;
1708 }
1709 }
1710 }
1711
Store(DataType::Type type,CPURegister src,const MemOperand & dst)1712 void CodeGeneratorARM64::Store(DataType::Type type,
1713 CPURegister src,
1714 const MemOperand& dst) {
1715 switch (type) {
1716 case DataType::Type::kBool:
1717 case DataType::Type::kUint8:
1718 case DataType::Type::kInt8:
1719 __ Strb(Register(src), dst);
1720 break;
1721 case DataType::Type::kUint16:
1722 case DataType::Type::kInt16:
1723 __ Strh(Register(src), dst);
1724 break;
1725 case DataType::Type::kInt32:
1726 case DataType::Type::kReference:
1727 case DataType::Type::kInt64:
1728 case DataType::Type::kFloat32:
1729 case DataType::Type::kFloat64:
1730 DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type));
1731 __ Str(src, dst);
1732 break;
1733 case DataType::Type::kUint32:
1734 case DataType::Type::kUint64:
1735 case DataType::Type::kVoid:
1736 LOG(FATAL) << "Unreachable type " << type;
1737 }
1738 }
1739
StoreRelease(HInstruction * instruction,DataType::Type type,CPURegister src,const MemOperand & dst,bool needs_null_check)1740 void CodeGeneratorARM64::StoreRelease(HInstruction* instruction,
1741 DataType::Type type,
1742 CPURegister src,
1743 const MemOperand& dst,
1744 bool needs_null_check) {
1745 MacroAssembler* masm = GetVIXLAssembler();
1746 UseScratchRegisterScope temps(GetVIXLAssembler());
1747 Register temp_base = temps.AcquireX();
1748
1749 DCHECK(!dst.IsPreIndex());
1750 DCHECK(!dst.IsPostIndex());
1751
1752 // TODO(vixl): Let the MacroAssembler handle this.
1753 Operand op = OperandFromMemOperand(dst);
1754 __ Add(temp_base, dst.GetBaseRegister(), op);
1755 MemOperand base = MemOperand(temp_base);
1756 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
1757 switch (type) {
1758 case DataType::Type::kBool:
1759 case DataType::Type::kUint8:
1760 case DataType::Type::kInt8:
1761 {
1762 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1763 __ stlrb(Register(src), base);
1764 if (needs_null_check) {
1765 MaybeRecordImplicitNullCheck(instruction);
1766 }
1767 }
1768 break;
1769 case DataType::Type::kUint16:
1770 case DataType::Type::kInt16:
1771 {
1772 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1773 __ stlrh(Register(src), base);
1774 if (needs_null_check) {
1775 MaybeRecordImplicitNullCheck(instruction);
1776 }
1777 }
1778 break;
1779 case DataType::Type::kInt32:
1780 case DataType::Type::kReference:
1781 case DataType::Type::kInt64:
1782 DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type));
1783 {
1784 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1785 __ stlr(Register(src), base);
1786 if (needs_null_check) {
1787 MaybeRecordImplicitNullCheck(instruction);
1788 }
1789 }
1790 break;
1791 case DataType::Type::kFloat32:
1792 case DataType::Type::kFloat64: {
1793 DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type));
1794 Register temp_src;
1795 if (src.IsZero()) {
1796 // The zero register is used to avoid synthesizing zero constants.
1797 temp_src = Register(src);
1798 } else {
1799 DCHECK(src.IsFPRegister());
1800 temp_src = src.Is64Bits() ? temps.AcquireX() : temps.AcquireW();
1801 __ Fmov(temp_src, VRegister(src));
1802 }
1803 {
1804 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1805 __ stlr(temp_src, base);
1806 if (needs_null_check) {
1807 MaybeRecordImplicitNullCheck(instruction);
1808 }
1809 }
1810 break;
1811 }
1812 case DataType::Type::kUint32:
1813 case DataType::Type::kUint64:
1814 case DataType::Type::kVoid:
1815 LOG(FATAL) << "Unreachable type " << type;
1816 }
1817 }
1818
InvokeRuntime(QuickEntrypointEnum entrypoint,HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path)1819 void CodeGeneratorARM64::InvokeRuntime(QuickEntrypointEnum entrypoint,
1820 HInstruction* instruction,
1821 uint32_t dex_pc,
1822 SlowPathCode* slow_path) {
1823 ValidateInvokeRuntime(entrypoint, instruction, slow_path);
1824
1825 ThreadOffset64 entrypoint_offset = GetThreadOffset<kArm64PointerSize>(entrypoint);
1826 // Reduce code size for AOT by using shared trampolines for slow path runtime calls across the
1827 // entire oat file. This adds an extra branch and we do not want to slow down the main path.
1828 // For JIT, thunk sharing is per-method, so the gains would be smaller or even negative.
1829 if (slow_path == nullptr || GetCompilerOptions().IsJitCompiler()) {
1830 __ Ldr(lr, MemOperand(tr, entrypoint_offset.Int32Value()));
1831 // Ensure the pc position is recorded immediately after the `blr` instruction.
1832 ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize);
1833 __ blr(lr);
1834 if (EntrypointRequiresStackMap(entrypoint)) {
1835 RecordPcInfo(instruction, dex_pc, slow_path);
1836 }
1837 } else {
1838 // Ensure the pc position is recorded immediately after the `bl` instruction.
1839 ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize);
1840 EmitEntrypointThunkCall(entrypoint_offset);
1841 if (EntrypointRequiresStackMap(entrypoint)) {
1842 RecordPcInfo(instruction, dex_pc, slow_path);
1843 }
1844 }
1845 }
1846
InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,HInstruction * instruction,SlowPathCode * slow_path)1847 void CodeGeneratorARM64::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,
1848 HInstruction* instruction,
1849 SlowPathCode* slow_path) {
1850 ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path);
1851 __ Ldr(lr, MemOperand(tr, entry_point_offset));
1852 __ Blr(lr);
1853 }
1854
GenerateClassInitializationCheck(SlowPathCodeARM64 * slow_path,Register class_reg)1855 void InstructionCodeGeneratorARM64::GenerateClassInitializationCheck(SlowPathCodeARM64* slow_path,
1856 Register class_reg) {
1857 UseScratchRegisterScope temps(GetVIXLAssembler());
1858 Register temp = temps.AcquireW();
1859 constexpr size_t status_lsb_position = SubtypeCheckBits::BitStructSizeOf();
1860 const size_t status_byte_offset =
1861 mirror::Class::StatusOffset().SizeValue() + (status_lsb_position / kBitsPerByte);
1862 constexpr uint32_t shifted_visibly_initialized_value =
1863 enum_cast<uint32_t>(ClassStatus::kVisiblyInitialized) << (status_lsb_position % kBitsPerByte);
1864
1865 // CMP (immediate) is limited to imm12 or imm12<<12, so we would need to materialize
1866 // the constant 0xf0000000 for comparison with the full 32-bit field. To reduce the code
1867 // size, load only the high byte of the field and compare with 0xf0.
1868 // Note: The same code size could be achieved with LDR+MNV(asr #24)+CBNZ but benchmarks
1869 // show that this pattern is slower (tested on little cores).
1870 __ Ldrb(temp, HeapOperand(class_reg, status_byte_offset));
1871 __ Cmp(temp, shifted_visibly_initialized_value);
1872 __ B(lo, slow_path->GetEntryLabel());
1873 __ Bind(slow_path->GetExitLabel());
1874 }
1875
GenerateBitstringTypeCheckCompare(HTypeCheckInstruction * check,vixl::aarch64::Register temp)1876 void InstructionCodeGeneratorARM64::GenerateBitstringTypeCheckCompare(
1877 HTypeCheckInstruction* check, vixl::aarch64::Register temp) {
1878 uint32_t path_to_root = check->GetBitstringPathToRoot();
1879 uint32_t mask = check->GetBitstringMask();
1880 DCHECK(IsPowerOfTwo(mask + 1));
1881 size_t mask_bits = WhichPowerOf2(mask + 1);
1882
1883 if (mask_bits == 16u) {
1884 // Load only the bitstring part of the status word.
1885 __ Ldrh(temp, HeapOperand(temp, mirror::Class::StatusOffset()));
1886 } else {
1887 // /* uint32_t */ temp = temp->status_
1888 __ Ldr(temp, HeapOperand(temp, mirror::Class::StatusOffset()));
1889 // Extract the bitstring bits.
1890 __ Ubfx(temp, temp, 0, mask_bits);
1891 }
1892 // Compare the bitstring bits to `path_to_root`.
1893 __ Cmp(temp, path_to_root);
1894 }
1895
GenerateMemoryBarrier(MemBarrierKind kind)1896 void CodeGeneratorARM64::GenerateMemoryBarrier(MemBarrierKind kind) {
1897 BarrierType type = BarrierAll;
1898
1899 switch (kind) {
1900 case MemBarrierKind::kAnyAny:
1901 case MemBarrierKind::kAnyStore: {
1902 type = BarrierAll;
1903 break;
1904 }
1905 case MemBarrierKind::kLoadAny: {
1906 type = BarrierReads;
1907 break;
1908 }
1909 case MemBarrierKind::kStoreStore: {
1910 type = BarrierWrites;
1911 break;
1912 }
1913 default:
1914 LOG(FATAL) << "Unexpected memory barrier " << kind;
1915 }
1916 __ Dmb(InnerShareable, type);
1917 }
1918
GenerateSuspendCheck(HSuspendCheck * instruction,HBasicBlock * successor)1919 void InstructionCodeGeneratorARM64::GenerateSuspendCheck(HSuspendCheck* instruction,
1920 HBasicBlock* successor) {
1921 SuspendCheckSlowPathARM64* slow_path =
1922 down_cast<SuspendCheckSlowPathARM64*>(instruction->GetSlowPath());
1923 if (slow_path == nullptr) {
1924 slow_path =
1925 new (codegen_->GetScopedAllocator()) SuspendCheckSlowPathARM64(instruction, successor);
1926 instruction->SetSlowPath(slow_path);
1927 codegen_->AddSlowPath(slow_path);
1928 if (successor != nullptr) {
1929 DCHECK(successor->IsLoopHeader());
1930 }
1931 } else {
1932 DCHECK_EQ(slow_path->GetSuccessor(), successor);
1933 }
1934
1935 UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
1936 Register temp = temps.AcquireW();
1937
1938 __ Ldrh(temp, MemOperand(tr, Thread::ThreadFlagsOffset<kArm64PointerSize>().SizeValue()));
1939 if (successor == nullptr) {
1940 __ Cbnz(temp, slow_path->GetEntryLabel());
1941 __ Bind(slow_path->GetReturnLabel());
1942 } else {
1943 __ Cbz(temp, codegen_->GetLabelOf(successor));
1944 __ B(slow_path->GetEntryLabel());
1945 // slow_path will return to GetLabelOf(successor).
1946 }
1947 }
1948
InstructionCodeGeneratorARM64(HGraph * graph,CodeGeneratorARM64 * codegen)1949 InstructionCodeGeneratorARM64::InstructionCodeGeneratorARM64(HGraph* graph,
1950 CodeGeneratorARM64* codegen)
1951 : InstructionCodeGenerator(graph, codegen),
1952 assembler_(codegen->GetAssembler()),
1953 codegen_(codegen) {}
1954
HandleBinaryOp(HBinaryOperation * instr)1955 void LocationsBuilderARM64::HandleBinaryOp(HBinaryOperation* instr) {
1956 DCHECK_EQ(instr->InputCount(), 2U);
1957 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr);
1958 DataType::Type type = instr->GetResultType();
1959 switch (type) {
1960 case DataType::Type::kInt32:
1961 case DataType::Type::kInt64:
1962 locations->SetInAt(0, Location::RequiresRegister());
1963 locations->SetInAt(1, ARM64EncodableConstantOrRegister(instr->InputAt(1), instr));
1964 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
1965 break;
1966
1967 case DataType::Type::kFloat32:
1968 case DataType::Type::kFloat64:
1969 locations->SetInAt(0, Location::RequiresFpuRegister());
1970 locations->SetInAt(1, Location::RequiresFpuRegister());
1971 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
1972 break;
1973
1974 default:
1975 LOG(FATAL) << "Unexpected " << instr->DebugName() << " type " << type;
1976 }
1977 }
1978
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)1979 void LocationsBuilderARM64::HandleFieldGet(HInstruction* instruction,
1980 const FieldInfo& field_info) {
1981 DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
1982
1983 bool object_field_get_with_read_barrier =
1984 kEmitCompilerReadBarrier && (instruction->GetType() == DataType::Type::kReference);
1985 LocationSummary* locations =
1986 new (GetGraph()->GetAllocator()) LocationSummary(instruction,
1987 object_field_get_with_read_barrier
1988 ? LocationSummary::kCallOnSlowPath
1989 : LocationSummary::kNoCall);
1990 if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
1991 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
1992 // We need a temporary register for the read barrier load in
1993 // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier()
1994 // only if the field is volatile or the offset is too big.
1995 if (field_info.IsVolatile() ||
1996 field_info.GetFieldOffset().Uint32Value() >= kReferenceLoadMinFarOffset) {
1997 locations->AddTemp(FixedTempLocation());
1998 }
1999 }
2000 locations->SetInAt(0, Location::RequiresRegister());
2001 if (DataType::IsFloatingPointType(instruction->GetType())) {
2002 locations->SetOut(Location::RequiresFpuRegister());
2003 } else {
2004 // The output overlaps for an object field get when read barriers
2005 // are enabled: we do not want the load to overwrite the object's
2006 // location, as we need it to emit the read barrier.
2007 locations->SetOut(
2008 Location::RequiresRegister(),
2009 object_field_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap);
2010 }
2011 }
2012
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)2013 void InstructionCodeGeneratorARM64::HandleFieldGet(HInstruction* instruction,
2014 const FieldInfo& field_info) {
2015 DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
2016 LocationSummary* locations = instruction->GetLocations();
2017 Location base_loc = locations->InAt(0);
2018 Location out = locations->Out();
2019 uint32_t offset = field_info.GetFieldOffset().Uint32Value();
2020 DCHECK_EQ(DataType::Size(field_info.GetFieldType()), DataType::Size(instruction->GetType()));
2021 DataType::Type load_type = instruction->GetType();
2022 MemOperand field = HeapOperand(InputRegisterAt(instruction, 0), field_info.GetFieldOffset());
2023
2024 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier &&
2025 load_type == DataType::Type::kReference) {
2026 // Object FieldGet with Baker's read barrier case.
2027 // /* HeapReference<Object> */ out = *(base + offset)
2028 Register base = RegisterFrom(base_loc, DataType::Type::kReference);
2029 Location maybe_temp =
2030 (locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location::NoLocation();
2031 // Note that potential implicit null checks are handled in this
2032 // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier call.
2033 codegen_->GenerateFieldLoadWithBakerReadBarrier(
2034 instruction,
2035 out,
2036 base,
2037 offset,
2038 maybe_temp,
2039 /* needs_null_check= */ true,
2040 field_info.IsVolatile());
2041 } else {
2042 // General case.
2043 if (field_info.IsVolatile()) {
2044 // Note that a potential implicit null check is handled in this
2045 // CodeGeneratorARM64::LoadAcquire call.
2046 // NB: LoadAcquire will record the pc info if needed.
2047 codegen_->LoadAcquire(
2048 instruction, OutputCPURegister(instruction), field, /* needs_null_check= */ true);
2049 } else {
2050 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
2051 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2052 codegen_->Load(load_type, OutputCPURegister(instruction), field);
2053 codegen_->MaybeRecordImplicitNullCheck(instruction);
2054 }
2055 if (load_type == DataType::Type::kReference) {
2056 // If read barriers are enabled, emit read barriers other than
2057 // Baker's using a slow path (and also unpoison the loaded
2058 // reference, if heap poisoning is enabled).
2059 codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset);
2060 }
2061 }
2062 }
2063
HandleFieldSet(HInstruction * instruction)2064 void LocationsBuilderARM64::HandleFieldSet(HInstruction* instruction) {
2065 LocationSummary* locations =
2066 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
2067 locations->SetInAt(0, Location::RequiresRegister());
2068 if (IsConstantZeroBitPattern(instruction->InputAt(1))) {
2069 locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant()));
2070 } else if (DataType::IsFloatingPointType(instruction->InputAt(1)->GetType())) {
2071 locations->SetInAt(1, Location::RequiresFpuRegister());
2072 } else {
2073 locations->SetInAt(1, Location::RequiresRegister());
2074 }
2075 }
2076
HandleFieldSet(HInstruction * instruction,const FieldInfo & field_info,bool value_can_be_null)2077 void InstructionCodeGeneratorARM64::HandleFieldSet(HInstruction* instruction,
2078 const FieldInfo& field_info,
2079 bool value_can_be_null) {
2080 DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
2081
2082 Register obj = InputRegisterAt(instruction, 0);
2083 CPURegister value = InputCPURegisterOrZeroRegAt(instruction, 1);
2084 CPURegister source = value;
2085 Offset offset = field_info.GetFieldOffset();
2086 DataType::Type field_type = field_info.GetFieldType();
2087
2088 {
2089 // We use a block to end the scratch scope before the write barrier, thus
2090 // freeing the temporary registers so they can be used in `MarkGCCard`.
2091 UseScratchRegisterScope temps(GetVIXLAssembler());
2092
2093 if (kPoisonHeapReferences && field_type == DataType::Type::kReference) {
2094 DCHECK(value.IsW());
2095 Register temp = temps.AcquireW();
2096 __ Mov(temp, value.W());
2097 GetAssembler()->PoisonHeapReference(temp.W());
2098 source = temp;
2099 }
2100
2101 if (field_info.IsVolatile()) {
2102 codegen_->StoreRelease(
2103 instruction, field_type, source, HeapOperand(obj, offset), /* needs_null_check= */ true);
2104 } else {
2105 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
2106 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2107 codegen_->Store(field_type, source, HeapOperand(obj, offset));
2108 codegen_->MaybeRecordImplicitNullCheck(instruction);
2109 }
2110 }
2111
2112 if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) {
2113 codegen_->MarkGCCard(obj, Register(value), value_can_be_null);
2114 }
2115 }
2116
HandleBinaryOp(HBinaryOperation * instr)2117 void InstructionCodeGeneratorARM64::HandleBinaryOp(HBinaryOperation* instr) {
2118 DataType::Type type = instr->GetType();
2119
2120 switch (type) {
2121 case DataType::Type::kInt32:
2122 case DataType::Type::kInt64: {
2123 Register dst = OutputRegister(instr);
2124 Register lhs = InputRegisterAt(instr, 0);
2125 Operand rhs = InputOperandAt(instr, 1);
2126 if (instr->IsAdd()) {
2127 __ Add(dst, lhs, rhs);
2128 } else if (instr->IsAnd()) {
2129 __ And(dst, lhs, rhs);
2130 } else if (instr->IsOr()) {
2131 __ Orr(dst, lhs, rhs);
2132 } else if (instr->IsSub()) {
2133 __ Sub(dst, lhs, rhs);
2134 } else if (instr->IsRor()) {
2135 if (rhs.IsImmediate()) {
2136 uint32_t shift = rhs.GetImmediate() & (lhs.GetSizeInBits() - 1);
2137 __ Ror(dst, lhs, shift);
2138 } else {
2139 // Ensure shift distance is in the same size register as the result. If
2140 // we are rotating a long and the shift comes in a w register originally,
2141 // we don't need to sxtw for use as an x since the shift distances are
2142 // all & reg_bits - 1.
2143 __ Ror(dst, lhs, RegisterFrom(instr->GetLocations()->InAt(1), type));
2144 }
2145 } else if (instr->IsMin() || instr->IsMax()) {
2146 __ Cmp(lhs, rhs);
2147 __ Csel(dst, lhs, rhs, instr->IsMin() ? lt : gt);
2148 } else {
2149 DCHECK(instr->IsXor());
2150 __ Eor(dst, lhs, rhs);
2151 }
2152 break;
2153 }
2154 case DataType::Type::kFloat32:
2155 case DataType::Type::kFloat64: {
2156 VRegister dst = OutputFPRegister(instr);
2157 VRegister lhs = InputFPRegisterAt(instr, 0);
2158 VRegister rhs = InputFPRegisterAt(instr, 1);
2159 if (instr->IsAdd()) {
2160 __ Fadd(dst, lhs, rhs);
2161 } else if (instr->IsSub()) {
2162 __ Fsub(dst, lhs, rhs);
2163 } else if (instr->IsMin()) {
2164 __ Fmin(dst, lhs, rhs);
2165 } else if (instr->IsMax()) {
2166 __ Fmax(dst, lhs, rhs);
2167 } else {
2168 LOG(FATAL) << "Unexpected floating-point binary operation";
2169 }
2170 break;
2171 }
2172 default:
2173 LOG(FATAL) << "Unexpected binary operation type " << type;
2174 }
2175 }
2176
HandleShift(HBinaryOperation * instr)2177 void LocationsBuilderARM64::HandleShift(HBinaryOperation* instr) {
2178 DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr());
2179
2180 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr);
2181 DataType::Type type = instr->GetResultType();
2182 switch (type) {
2183 case DataType::Type::kInt32:
2184 case DataType::Type::kInt64: {
2185 locations->SetInAt(0, Location::RequiresRegister());
2186 locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1)));
2187 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2188 break;
2189 }
2190 default:
2191 LOG(FATAL) << "Unexpected shift type " << type;
2192 }
2193 }
2194
HandleShift(HBinaryOperation * instr)2195 void InstructionCodeGeneratorARM64::HandleShift(HBinaryOperation* instr) {
2196 DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr());
2197
2198 DataType::Type type = instr->GetType();
2199 switch (type) {
2200 case DataType::Type::kInt32:
2201 case DataType::Type::kInt64: {
2202 Register dst = OutputRegister(instr);
2203 Register lhs = InputRegisterAt(instr, 0);
2204 Operand rhs = InputOperandAt(instr, 1);
2205 if (rhs.IsImmediate()) {
2206 uint32_t shift_value = rhs.GetImmediate() &
2207 (type == DataType::Type::kInt32 ? kMaxIntShiftDistance : kMaxLongShiftDistance);
2208 if (instr->IsShl()) {
2209 __ Lsl(dst, lhs, shift_value);
2210 } else if (instr->IsShr()) {
2211 __ Asr(dst, lhs, shift_value);
2212 } else {
2213 __ Lsr(dst, lhs, shift_value);
2214 }
2215 } else {
2216 Register rhs_reg = dst.IsX() ? rhs.GetRegister().X() : rhs.GetRegister().W();
2217
2218 if (instr->IsShl()) {
2219 __ Lsl(dst, lhs, rhs_reg);
2220 } else if (instr->IsShr()) {
2221 __ Asr(dst, lhs, rhs_reg);
2222 } else {
2223 __ Lsr(dst, lhs, rhs_reg);
2224 }
2225 }
2226 break;
2227 }
2228 default:
2229 LOG(FATAL) << "Unexpected shift operation type " << type;
2230 }
2231 }
2232
VisitAdd(HAdd * instruction)2233 void LocationsBuilderARM64::VisitAdd(HAdd* instruction) {
2234 HandleBinaryOp(instruction);
2235 }
2236
VisitAdd(HAdd * instruction)2237 void InstructionCodeGeneratorARM64::VisitAdd(HAdd* instruction) {
2238 HandleBinaryOp(instruction);
2239 }
2240
VisitAnd(HAnd * instruction)2241 void LocationsBuilderARM64::VisitAnd(HAnd* instruction) {
2242 HandleBinaryOp(instruction);
2243 }
2244
VisitAnd(HAnd * instruction)2245 void InstructionCodeGeneratorARM64::VisitAnd(HAnd* instruction) {
2246 HandleBinaryOp(instruction);
2247 }
2248
VisitBitwiseNegatedRight(HBitwiseNegatedRight * instr)2249 void LocationsBuilderARM64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instr) {
2250 DCHECK(DataType::IsIntegralType(instr->GetType())) << instr->GetType();
2251 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr);
2252 locations->SetInAt(0, Location::RequiresRegister());
2253 // There is no immediate variant of negated bitwise instructions in AArch64.
2254 locations->SetInAt(1, Location::RequiresRegister());
2255 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2256 }
2257
VisitBitwiseNegatedRight(HBitwiseNegatedRight * instr)2258 void InstructionCodeGeneratorARM64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instr) {
2259 Register dst = OutputRegister(instr);
2260 Register lhs = InputRegisterAt(instr, 0);
2261 Register rhs = InputRegisterAt(instr, 1);
2262
2263 switch (instr->GetOpKind()) {
2264 case HInstruction::kAnd:
2265 __ Bic(dst, lhs, rhs);
2266 break;
2267 case HInstruction::kOr:
2268 __ Orn(dst, lhs, rhs);
2269 break;
2270 case HInstruction::kXor:
2271 __ Eon(dst, lhs, rhs);
2272 break;
2273 default:
2274 LOG(FATAL) << "Unreachable";
2275 }
2276 }
2277
VisitDataProcWithShifterOp(HDataProcWithShifterOp * instruction)2278 void LocationsBuilderARM64::VisitDataProcWithShifterOp(
2279 HDataProcWithShifterOp* instruction) {
2280 DCHECK(instruction->GetType() == DataType::Type::kInt32 ||
2281 instruction->GetType() == DataType::Type::kInt64);
2282 LocationSummary* locations =
2283 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
2284 if (instruction->GetInstrKind() == HInstruction::kNeg) {
2285 locations->SetInAt(0, Location::ConstantLocation(instruction->InputAt(0)->AsConstant()));
2286 } else {
2287 locations->SetInAt(0, Location::RequiresRegister());
2288 }
2289 locations->SetInAt(1, Location::RequiresRegister());
2290 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2291 }
2292
VisitDataProcWithShifterOp(HDataProcWithShifterOp * instruction)2293 void InstructionCodeGeneratorARM64::VisitDataProcWithShifterOp(
2294 HDataProcWithShifterOp* instruction) {
2295 DataType::Type type = instruction->GetType();
2296 HInstruction::InstructionKind kind = instruction->GetInstrKind();
2297 DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
2298 Register out = OutputRegister(instruction);
2299 Register left;
2300 if (kind != HInstruction::kNeg) {
2301 left = InputRegisterAt(instruction, 0);
2302 }
2303 // If this `HDataProcWithShifterOp` was created by merging a type conversion as the
2304 // shifter operand operation, the IR generating `right_reg` (input to the type
2305 // conversion) can have a different type from the current instruction's type,
2306 // so we manually indicate the type.
2307 Register right_reg = RegisterFrom(instruction->GetLocations()->InAt(1), type);
2308 Operand right_operand(0);
2309
2310 HDataProcWithShifterOp::OpKind op_kind = instruction->GetOpKind();
2311 if (HDataProcWithShifterOp::IsExtensionOp(op_kind)) {
2312 right_operand = Operand(right_reg, helpers::ExtendFromOpKind(op_kind));
2313 } else {
2314 right_operand = Operand(right_reg,
2315 helpers::ShiftFromOpKind(op_kind),
2316 instruction->GetShiftAmount());
2317 }
2318
2319 // Logical binary operations do not support extension operations in the
2320 // operand. Note that VIXL would still manage if it was passed by generating
2321 // the extension as a separate instruction.
2322 // `HNeg` also does not support extension. See comments in `ShifterOperandSupportsExtension()`.
2323 DCHECK(!right_operand.IsExtendedRegister() ||
2324 (kind != HInstruction::kAnd && kind != HInstruction::kOr && kind != HInstruction::kXor &&
2325 kind != HInstruction::kNeg));
2326 switch (kind) {
2327 case HInstruction::kAdd:
2328 __ Add(out, left, right_operand);
2329 break;
2330 case HInstruction::kAnd:
2331 __ And(out, left, right_operand);
2332 break;
2333 case HInstruction::kNeg:
2334 DCHECK(instruction->InputAt(0)->AsConstant()->IsArithmeticZero());
2335 __ Neg(out, right_operand);
2336 break;
2337 case HInstruction::kOr:
2338 __ Orr(out, left, right_operand);
2339 break;
2340 case HInstruction::kSub:
2341 __ Sub(out, left, right_operand);
2342 break;
2343 case HInstruction::kXor:
2344 __ Eor(out, left, right_operand);
2345 break;
2346 default:
2347 LOG(FATAL) << "Unexpected operation kind: " << kind;
2348 UNREACHABLE();
2349 }
2350 }
2351
VisitIntermediateAddress(HIntermediateAddress * instruction)2352 void LocationsBuilderARM64::VisitIntermediateAddress(HIntermediateAddress* instruction) {
2353 LocationSummary* locations =
2354 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
2355 locations->SetInAt(0, Location::RequiresRegister());
2356 locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->GetOffset(), instruction));
2357 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2358 }
2359
VisitIntermediateAddress(HIntermediateAddress * instruction)2360 void InstructionCodeGeneratorARM64::VisitIntermediateAddress(HIntermediateAddress* instruction) {
2361 __ Add(OutputRegister(instruction),
2362 InputRegisterAt(instruction, 0),
2363 Operand(InputOperandAt(instruction, 1)));
2364 }
2365
VisitIntermediateAddressIndex(HIntermediateAddressIndex * instruction)2366 void LocationsBuilderARM64::VisitIntermediateAddressIndex(HIntermediateAddressIndex* instruction) {
2367 LocationSummary* locations =
2368 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
2369
2370 HIntConstant* shift = instruction->GetShift()->AsIntConstant();
2371
2372 locations->SetInAt(0, Location::RequiresRegister());
2373 // For byte case we don't need to shift the index variable so we can encode the data offset into
2374 // ADD instruction. For other cases we prefer the data_offset to be in register; that will hoist
2375 // data offset constant generation out of the loop and reduce the critical path length in the
2376 // loop.
2377 locations->SetInAt(1, shift->GetValue() == 0
2378 ? Location::ConstantLocation(instruction->GetOffset()->AsIntConstant())
2379 : Location::RequiresRegister());
2380 locations->SetInAt(2, Location::ConstantLocation(shift));
2381 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2382 }
2383
VisitIntermediateAddressIndex(HIntermediateAddressIndex * instruction)2384 void InstructionCodeGeneratorARM64::VisitIntermediateAddressIndex(
2385 HIntermediateAddressIndex* instruction) {
2386 Register index_reg = InputRegisterAt(instruction, 0);
2387 uint32_t shift = Int64FromLocation(instruction->GetLocations()->InAt(2));
2388 uint32_t offset = instruction->GetOffset()->AsIntConstant()->GetValue();
2389
2390 if (shift == 0) {
2391 __ Add(OutputRegister(instruction), index_reg, offset);
2392 } else {
2393 Register offset_reg = InputRegisterAt(instruction, 1);
2394 __ Add(OutputRegister(instruction), offset_reg, Operand(index_reg, LSL, shift));
2395 }
2396 }
2397
VisitMultiplyAccumulate(HMultiplyAccumulate * instr)2398 void LocationsBuilderARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
2399 LocationSummary* locations =
2400 new (GetGraph()->GetAllocator()) LocationSummary(instr, LocationSummary::kNoCall);
2401 HInstruction* accumulator = instr->InputAt(HMultiplyAccumulate::kInputAccumulatorIndex);
2402 if (instr->GetOpKind() == HInstruction::kSub &&
2403 accumulator->IsConstant() &&
2404 accumulator->AsConstant()->IsArithmeticZero()) {
2405 // Don't allocate register for Mneg instruction.
2406 } else {
2407 locations->SetInAt(HMultiplyAccumulate::kInputAccumulatorIndex,
2408 Location::RequiresRegister());
2409 }
2410 locations->SetInAt(HMultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister());
2411 locations->SetInAt(HMultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister());
2412 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2413 }
2414
VisitMultiplyAccumulate(HMultiplyAccumulate * instr)2415 void InstructionCodeGeneratorARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
2416 Register res = OutputRegister(instr);
2417 Register mul_left = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulLeftIndex);
2418 Register mul_right = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulRightIndex);
2419
2420 // Avoid emitting code that could trigger Cortex A53's erratum 835769.
2421 // This fixup should be carried out for all multiply-accumulate instructions:
2422 // madd, msub, smaddl, smsubl, umaddl and umsubl.
2423 if (instr->GetType() == DataType::Type::kInt64 &&
2424 codegen_->GetInstructionSetFeatures().NeedFixCortexA53_835769()) {
2425 MacroAssembler* masm = down_cast<CodeGeneratorARM64*>(codegen_)->GetVIXLAssembler();
2426 vixl::aarch64::Instruction* prev =
2427 masm->GetCursorAddress<vixl::aarch64::Instruction*>() - kInstructionSize;
2428 if (prev->IsLoadOrStore()) {
2429 // Make sure we emit only exactly one nop.
2430 ExactAssemblyScope scope(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
2431 __ nop();
2432 }
2433 }
2434
2435 if (instr->GetOpKind() == HInstruction::kAdd) {
2436 Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex);
2437 __ Madd(res, mul_left, mul_right, accumulator);
2438 } else {
2439 DCHECK(instr->GetOpKind() == HInstruction::kSub);
2440 HInstruction* accum_instr = instr->InputAt(HMultiplyAccumulate::kInputAccumulatorIndex);
2441 if (accum_instr->IsConstant() && accum_instr->AsConstant()->IsArithmeticZero()) {
2442 __ Mneg(res, mul_left, mul_right);
2443 } else {
2444 Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex);
2445 __ Msub(res, mul_left, mul_right, accumulator);
2446 }
2447 }
2448 }
2449
VisitArrayGet(HArrayGet * instruction)2450 void LocationsBuilderARM64::VisitArrayGet(HArrayGet* instruction) {
2451 bool object_array_get_with_read_barrier =
2452 kEmitCompilerReadBarrier && (instruction->GetType() == DataType::Type::kReference);
2453 LocationSummary* locations =
2454 new (GetGraph()->GetAllocator()) LocationSummary(instruction,
2455 object_array_get_with_read_barrier
2456 ? LocationSummary::kCallOnSlowPath
2457 : LocationSummary::kNoCall);
2458 if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
2459 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
2460 if (instruction->GetIndex()->IsConstant()) {
2461 // Array loads with constant index are treated as field loads.
2462 // We need a temporary register for the read barrier load in
2463 // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier()
2464 // only if the offset is too big.
2465 uint32_t offset = CodeGenerator::GetArrayDataOffset(instruction);
2466 uint32_t index = instruction->GetIndex()->AsIntConstant()->GetValue();
2467 offset += index << DataType::SizeShift(DataType::Type::kReference);
2468 if (offset >= kReferenceLoadMinFarOffset) {
2469 locations->AddTemp(FixedTempLocation());
2470 }
2471 } else if (!instruction->GetArray()->IsIntermediateAddress()) {
2472 // We need a non-scratch temporary for the array data pointer in
2473 // CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier() for the case with no
2474 // intermediate address.
2475 locations->AddTemp(Location::RequiresRegister());
2476 }
2477 }
2478 locations->SetInAt(0, Location::RequiresRegister());
2479 locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
2480 if (DataType::IsFloatingPointType(instruction->GetType())) {
2481 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2482 } else {
2483 // The output overlaps in the case of an object array get with
2484 // read barriers enabled: we do not want the move to overwrite the
2485 // array's location, as we need it to emit the read barrier.
2486 locations->SetOut(
2487 Location::RequiresRegister(),
2488 object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap);
2489 }
2490 }
2491
VisitArrayGet(HArrayGet * instruction)2492 void InstructionCodeGeneratorARM64::VisitArrayGet(HArrayGet* instruction) {
2493 DataType::Type type = instruction->GetType();
2494 Register obj = InputRegisterAt(instruction, 0);
2495 LocationSummary* locations = instruction->GetLocations();
2496 Location index = locations->InAt(1);
2497 Location out = locations->Out();
2498 uint32_t offset = CodeGenerator::GetArrayDataOffset(instruction);
2499 const bool maybe_compressed_char_at = mirror::kUseStringCompression &&
2500 instruction->IsStringCharAt();
2501 MacroAssembler* masm = GetVIXLAssembler();
2502 UseScratchRegisterScope temps(masm);
2503
2504 // The non-Baker read barrier instrumentation of object ArrayGet instructions
2505 // does not support the HIntermediateAddress instruction.
2506 DCHECK(!((type == DataType::Type::kReference) &&
2507 instruction->GetArray()->IsIntermediateAddress() &&
2508 kEmitCompilerReadBarrier &&
2509 !kUseBakerReadBarrier));
2510
2511 if (type == DataType::Type::kReference && kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
2512 // Object ArrayGet with Baker's read barrier case.
2513 // Note that a potential implicit null check is handled in the
2514 // CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier call.
2515 DCHECK(!instruction->CanDoImplicitNullCheckOn(instruction->InputAt(0)));
2516 if (index.IsConstant()) {
2517 DCHECK(!instruction->GetArray()->IsIntermediateAddress());
2518 // Array load with a constant index can be treated as a field load.
2519 offset += Int64FromLocation(index) << DataType::SizeShift(type);
2520 Location maybe_temp =
2521 (locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location::NoLocation();
2522 codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
2523 out,
2524 obj.W(),
2525 offset,
2526 maybe_temp,
2527 /* needs_null_check= */ false,
2528 /* use_load_acquire= */ false);
2529 } else {
2530 codegen_->GenerateArrayLoadWithBakerReadBarrier(
2531 instruction, out, obj.W(), offset, index, /* needs_null_check= */ false);
2532 }
2533 } else {
2534 // General case.
2535 MemOperand source = HeapOperand(obj);
2536 Register length;
2537 if (maybe_compressed_char_at) {
2538 uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
2539 length = temps.AcquireW();
2540 {
2541 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
2542 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2543
2544 if (instruction->GetArray()->IsIntermediateAddress()) {
2545 DCHECK_LT(count_offset, offset);
2546 int64_t adjusted_offset =
2547 static_cast<int64_t>(count_offset) - static_cast<int64_t>(offset);
2548 // Note that `adjusted_offset` is negative, so this will be a LDUR.
2549 __ Ldr(length, MemOperand(obj.X(), adjusted_offset));
2550 } else {
2551 __ Ldr(length, HeapOperand(obj, count_offset));
2552 }
2553 codegen_->MaybeRecordImplicitNullCheck(instruction);
2554 }
2555 }
2556 if (index.IsConstant()) {
2557 if (maybe_compressed_char_at) {
2558 vixl::aarch64::Label uncompressed_load, done;
2559 static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
2560 "Expecting 0=compressed, 1=uncompressed");
2561 __ Tbnz(length.W(), 0, &uncompressed_load);
2562 __ Ldrb(Register(OutputCPURegister(instruction)),
2563 HeapOperand(obj, offset + Int64FromLocation(index)));
2564 __ B(&done);
2565 __ Bind(&uncompressed_load);
2566 __ Ldrh(Register(OutputCPURegister(instruction)),
2567 HeapOperand(obj, offset + (Int64FromLocation(index) << 1)));
2568 __ Bind(&done);
2569 } else {
2570 offset += Int64FromLocation(index) << DataType::SizeShift(type);
2571 source = HeapOperand(obj, offset);
2572 }
2573 } else {
2574 Register temp = temps.AcquireSameSizeAs(obj);
2575 if (instruction->GetArray()->IsIntermediateAddress()) {
2576 // We do not need to compute the intermediate address from the array: the
2577 // input instruction has done it already. See the comment in
2578 // `TryExtractArrayAccessAddress()`.
2579 if (kIsDebugBuild) {
2580 HIntermediateAddress* interm_addr = instruction->GetArray()->AsIntermediateAddress();
2581 DCHECK_EQ(interm_addr->GetOffset()->AsIntConstant()->GetValueAsUint64(), offset);
2582 }
2583 temp = obj;
2584 } else {
2585 __ Add(temp, obj, offset);
2586 }
2587 if (maybe_compressed_char_at) {
2588 vixl::aarch64::Label uncompressed_load, done;
2589 static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
2590 "Expecting 0=compressed, 1=uncompressed");
2591 __ Tbnz(length.W(), 0, &uncompressed_load);
2592 __ Ldrb(Register(OutputCPURegister(instruction)),
2593 HeapOperand(temp, XRegisterFrom(index), LSL, 0));
2594 __ B(&done);
2595 __ Bind(&uncompressed_load);
2596 __ Ldrh(Register(OutputCPURegister(instruction)),
2597 HeapOperand(temp, XRegisterFrom(index), LSL, 1));
2598 __ Bind(&done);
2599 } else {
2600 source = HeapOperand(temp, XRegisterFrom(index), LSL, DataType::SizeShift(type));
2601 }
2602 }
2603 if (!maybe_compressed_char_at) {
2604 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
2605 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2606 codegen_->Load(type, OutputCPURegister(instruction), source);
2607 codegen_->MaybeRecordImplicitNullCheck(instruction);
2608 }
2609
2610 if (type == DataType::Type::kReference) {
2611 static_assert(
2612 sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
2613 "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
2614 Location obj_loc = locations->InAt(0);
2615 if (index.IsConstant()) {
2616 codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset);
2617 } else {
2618 codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset, index);
2619 }
2620 }
2621 }
2622 }
2623
VisitArrayLength(HArrayLength * instruction)2624 void LocationsBuilderARM64::VisitArrayLength(HArrayLength* instruction) {
2625 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
2626 locations->SetInAt(0, Location::RequiresRegister());
2627 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2628 }
2629
VisitArrayLength(HArrayLength * instruction)2630 void InstructionCodeGeneratorARM64::VisitArrayLength(HArrayLength* instruction) {
2631 uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction);
2632 vixl::aarch64::Register out = OutputRegister(instruction);
2633 {
2634 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
2635 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2636 __ Ldr(out, HeapOperand(InputRegisterAt(instruction, 0), offset));
2637 codegen_->MaybeRecordImplicitNullCheck(instruction);
2638 }
2639 // Mask out compression flag from String's array length.
2640 if (mirror::kUseStringCompression && instruction->IsStringLength()) {
2641 __ Lsr(out.W(), out.W(), 1u);
2642 }
2643 }
2644
VisitArraySet(HArraySet * instruction)2645 void LocationsBuilderARM64::VisitArraySet(HArraySet* instruction) {
2646 DataType::Type value_type = instruction->GetComponentType();
2647
2648 bool needs_type_check = instruction->NeedsTypeCheck();
2649 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
2650 instruction,
2651 needs_type_check ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall);
2652 locations->SetInAt(0, Location::RequiresRegister());
2653 locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
2654 if (IsConstantZeroBitPattern(instruction->InputAt(2))) {
2655 locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant()));
2656 } else if (DataType::IsFloatingPointType(value_type)) {
2657 locations->SetInAt(2, Location::RequiresFpuRegister());
2658 } else {
2659 locations->SetInAt(2, Location::RequiresRegister());
2660 }
2661 }
2662
VisitArraySet(HArraySet * instruction)2663 void InstructionCodeGeneratorARM64::VisitArraySet(HArraySet* instruction) {
2664 DataType::Type value_type = instruction->GetComponentType();
2665 LocationSummary* locations = instruction->GetLocations();
2666 bool needs_type_check = instruction->NeedsTypeCheck();
2667 bool needs_write_barrier =
2668 CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
2669
2670 Register array = InputRegisterAt(instruction, 0);
2671 CPURegister value = InputCPURegisterOrZeroRegAt(instruction, 2);
2672 CPURegister source = value;
2673 Location index = locations->InAt(1);
2674 size_t offset = mirror::Array::DataOffset(DataType::Size(value_type)).Uint32Value();
2675 MemOperand destination = HeapOperand(array);
2676 MacroAssembler* masm = GetVIXLAssembler();
2677
2678 if (!needs_write_barrier) {
2679 DCHECK(!needs_type_check);
2680 if (index.IsConstant()) {
2681 offset += Int64FromLocation(index) << DataType::SizeShift(value_type);
2682 destination = HeapOperand(array, offset);
2683 } else {
2684 UseScratchRegisterScope temps(masm);
2685 Register temp = temps.AcquireSameSizeAs(array);
2686 if (instruction->GetArray()->IsIntermediateAddress()) {
2687 // We do not need to compute the intermediate address from the array: the
2688 // input instruction has done it already. See the comment in
2689 // `TryExtractArrayAccessAddress()`.
2690 if (kIsDebugBuild) {
2691 HIntermediateAddress* interm_addr = instruction->GetArray()->AsIntermediateAddress();
2692 DCHECK(interm_addr->GetOffset()->AsIntConstant()->GetValueAsUint64() == offset);
2693 }
2694 temp = array;
2695 } else {
2696 __ Add(temp, array, offset);
2697 }
2698 destination = HeapOperand(temp,
2699 XRegisterFrom(index),
2700 LSL,
2701 DataType::SizeShift(value_type));
2702 }
2703 {
2704 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
2705 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2706 codegen_->Store(value_type, value, destination);
2707 codegen_->MaybeRecordImplicitNullCheck(instruction);
2708 }
2709 } else {
2710 DCHECK(!instruction->GetArray()->IsIntermediateAddress());
2711
2712 bool can_value_be_null = instruction->GetValueCanBeNull();
2713 vixl::aarch64::Label do_store;
2714 if (can_value_be_null) {
2715 __ Cbz(Register(value), &do_store);
2716 }
2717
2718 SlowPathCodeARM64* slow_path = nullptr;
2719 if (needs_type_check) {
2720 slow_path = new (codegen_->GetScopedAllocator()) ArraySetSlowPathARM64(instruction);
2721 codegen_->AddSlowPath(slow_path);
2722
2723 const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
2724 const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
2725 const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
2726
2727 UseScratchRegisterScope temps(masm);
2728 Register temp = temps.AcquireSameSizeAs(array);
2729 Register temp2 = temps.AcquireSameSizeAs(array);
2730
2731 // Note that when Baker read barriers are enabled, the type
2732 // checks are performed without read barriers. This is fine,
2733 // even in the case where a class object is in the from-space
2734 // after the flip, as a comparison involving such a type would
2735 // not produce a false positive; it may of course produce a
2736 // false negative, in which case we would take the ArraySet
2737 // slow path.
2738
2739 // /* HeapReference<Class> */ temp = array->klass_
2740 {
2741 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
2742 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2743 __ Ldr(temp, HeapOperand(array, class_offset));
2744 codegen_->MaybeRecordImplicitNullCheck(instruction);
2745 }
2746 GetAssembler()->MaybeUnpoisonHeapReference(temp);
2747
2748 // /* HeapReference<Class> */ temp = temp->component_type_
2749 __ Ldr(temp, HeapOperand(temp, component_offset));
2750 // /* HeapReference<Class> */ temp2 = value->klass_
2751 __ Ldr(temp2, HeapOperand(Register(value), class_offset));
2752 // If heap poisoning is enabled, no need to unpoison `temp`
2753 // nor `temp2`, as we are comparing two poisoned references.
2754 __ Cmp(temp, temp2);
2755
2756 if (instruction->StaticTypeOfArrayIsObjectArray()) {
2757 vixl::aarch64::Label do_put;
2758 __ B(eq, &do_put);
2759 // If heap poisoning is enabled, the `temp` reference has
2760 // not been unpoisoned yet; unpoison it now.
2761 GetAssembler()->MaybeUnpoisonHeapReference(temp);
2762
2763 // /* HeapReference<Class> */ temp = temp->super_class_
2764 __ Ldr(temp, HeapOperand(temp, super_offset));
2765 // If heap poisoning is enabled, no need to unpoison
2766 // `temp`, as we are comparing against null below.
2767 __ Cbnz(temp, slow_path->GetEntryLabel());
2768 __ Bind(&do_put);
2769 } else {
2770 __ B(ne, slow_path->GetEntryLabel());
2771 }
2772 }
2773
2774 codegen_->MarkGCCard(array, value.W(), /* value_can_be_null= */ false);
2775
2776 if (can_value_be_null) {
2777 DCHECK(do_store.IsLinked());
2778 __ Bind(&do_store);
2779 }
2780
2781 UseScratchRegisterScope temps(masm);
2782 if (kPoisonHeapReferences) {
2783 Register temp_source = temps.AcquireSameSizeAs(array);
2784 DCHECK(value.IsW());
2785 __ Mov(temp_source, value.W());
2786 GetAssembler()->PoisonHeapReference(temp_source);
2787 source = temp_source;
2788 }
2789
2790 if (index.IsConstant()) {
2791 offset += Int64FromLocation(index) << DataType::SizeShift(value_type);
2792 destination = HeapOperand(array, offset);
2793 } else {
2794 Register temp_base = temps.AcquireSameSizeAs(array);
2795 __ Add(temp_base, array, offset);
2796 destination = HeapOperand(temp_base,
2797 XRegisterFrom(index),
2798 LSL,
2799 DataType::SizeShift(value_type));
2800 }
2801
2802 {
2803 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
2804 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2805 __ Str(source, destination);
2806
2807 if (can_value_be_null || !needs_type_check) {
2808 codegen_->MaybeRecordImplicitNullCheck(instruction);
2809 }
2810 }
2811
2812 if (slow_path != nullptr) {
2813 __ Bind(slow_path->GetExitLabel());
2814 }
2815 }
2816 }
2817
VisitBoundsCheck(HBoundsCheck * instruction)2818 void LocationsBuilderARM64::VisitBoundsCheck(HBoundsCheck* instruction) {
2819 RegisterSet caller_saves = RegisterSet::Empty();
2820 InvokeRuntimeCallingConvention calling_convention;
2821 caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode()));
2822 caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1).GetCode()));
2823 LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves);
2824
2825 // If both index and length are constant, we can check the bounds statically and
2826 // generate code accordingly. We want to make sure we generate constant locations
2827 // in that case, regardless of whether they are encodable in the comparison or not.
2828 HInstruction* index = instruction->InputAt(0);
2829 HInstruction* length = instruction->InputAt(1);
2830 bool both_const = index->IsConstant() && length->IsConstant();
2831 locations->SetInAt(0, both_const
2832 ? Location::ConstantLocation(index->AsConstant())
2833 : ARM64EncodableConstantOrRegister(index, instruction));
2834 locations->SetInAt(1, both_const
2835 ? Location::ConstantLocation(length->AsConstant())
2836 : ARM64EncodableConstantOrRegister(length, instruction));
2837 }
2838
VisitBoundsCheck(HBoundsCheck * instruction)2839 void InstructionCodeGeneratorARM64::VisitBoundsCheck(HBoundsCheck* instruction) {
2840 LocationSummary* locations = instruction->GetLocations();
2841 Location index_loc = locations->InAt(0);
2842 Location length_loc = locations->InAt(1);
2843
2844 int cmp_first_input = 0;
2845 int cmp_second_input = 1;
2846 Condition cond = hs;
2847
2848 if (index_loc.IsConstant()) {
2849 int64_t index = Int64FromLocation(index_loc);
2850 if (length_loc.IsConstant()) {
2851 int64_t length = Int64FromLocation(length_loc);
2852 if (index < 0 || index >= length) {
2853 BoundsCheckSlowPathARM64* slow_path =
2854 new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARM64(instruction);
2855 codegen_->AddSlowPath(slow_path);
2856 __ B(slow_path->GetEntryLabel());
2857 } else {
2858 // BCE will remove the bounds check if we are guaranteed to pass.
2859 // However, some optimization after BCE may have generated this, and we should not
2860 // generate a bounds check if it is a valid range.
2861 }
2862 return;
2863 }
2864 // Only the index is constant: change the order of the operands and commute the condition
2865 // so we can use an immediate constant for the index (only the second input to a cmp
2866 // instruction can be an immediate).
2867 cmp_first_input = 1;
2868 cmp_second_input = 0;
2869 cond = ls;
2870 }
2871 BoundsCheckSlowPathARM64* slow_path =
2872 new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARM64(instruction);
2873 __ Cmp(InputRegisterAt(instruction, cmp_first_input),
2874 InputOperandAt(instruction, cmp_second_input));
2875 codegen_->AddSlowPath(slow_path);
2876 __ B(slow_path->GetEntryLabel(), cond);
2877 }
2878
VisitClinitCheck(HClinitCheck * check)2879 void LocationsBuilderARM64::VisitClinitCheck(HClinitCheck* check) {
2880 LocationSummary* locations =
2881 new (GetGraph()->GetAllocator()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
2882 locations->SetInAt(0, Location::RequiresRegister());
2883 if (check->HasUses()) {
2884 locations->SetOut(Location::SameAsFirstInput());
2885 }
2886 // Rely on the type initialization to save everything we need.
2887 locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
2888 }
2889
VisitClinitCheck(HClinitCheck * check)2890 void InstructionCodeGeneratorARM64::VisitClinitCheck(HClinitCheck* check) {
2891 // We assume the class is not null.
2892 SlowPathCodeARM64* slow_path =
2893 new (codegen_->GetScopedAllocator()) LoadClassSlowPathARM64(check->GetLoadClass(), check);
2894 codegen_->AddSlowPath(slow_path);
2895 GenerateClassInitializationCheck(slow_path, InputRegisterAt(check, 0));
2896 }
2897
IsFloatingPointZeroConstant(HInstruction * inst)2898 static bool IsFloatingPointZeroConstant(HInstruction* inst) {
2899 return (inst->IsFloatConstant() && (inst->AsFloatConstant()->IsArithmeticZero()))
2900 || (inst->IsDoubleConstant() && (inst->AsDoubleConstant()->IsArithmeticZero()));
2901 }
2902
GenerateFcmp(HInstruction * instruction)2903 void InstructionCodeGeneratorARM64::GenerateFcmp(HInstruction* instruction) {
2904 VRegister lhs_reg = InputFPRegisterAt(instruction, 0);
2905 Location rhs_loc = instruction->GetLocations()->InAt(1);
2906 if (rhs_loc.IsConstant()) {
2907 // 0.0 is the only immediate that can be encoded directly in
2908 // an FCMP instruction.
2909 //
2910 // Both the JLS (section 15.20.1) and the JVMS (section 6.5)
2911 // specify that in a floating-point comparison, positive zero
2912 // and negative zero are considered equal, so we can use the
2913 // literal 0.0 for both cases here.
2914 //
2915 // Note however that some methods (Float.equal, Float.compare,
2916 // Float.compareTo, Double.equal, Double.compare,
2917 // Double.compareTo, Math.max, Math.min, StrictMath.max,
2918 // StrictMath.min) consider 0.0 to be (strictly) greater than
2919 // -0.0. So if we ever translate calls to these methods into a
2920 // HCompare instruction, we must handle the -0.0 case with
2921 // care here.
2922 DCHECK(IsFloatingPointZeroConstant(rhs_loc.GetConstant()));
2923 __ Fcmp(lhs_reg, 0.0);
2924 } else {
2925 __ Fcmp(lhs_reg, InputFPRegisterAt(instruction, 1));
2926 }
2927 }
2928
VisitCompare(HCompare * compare)2929 void LocationsBuilderARM64::VisitCompare(HCompare* compare) {
2930 LocationSummary* locations =
2931 new (GetGraph()->GetAllocator()) LocationSummary(compare, LocationSummary::kNoCall);
2932 DataType::Type in_type = compare->InputAt(0)->GetType();
2933 switch (in_type) {
2934 case DataType::Type::kBool:
2935 case DataType::Type::kUint8:
2936 case DataType::Type::kInt8:
2937 case DataType::Type::kUint16:
2938 case DataType::Type::kInt16:
2939 case DataType::Type::kInt32:
2940 case DataType::Type::kInt64: {
2941 locations->SetInAt(0, Location::RequiresRegister());
2942 locations->SetInAt(1, ARM64EncodableConstantOrRegister(compare->InputAt(1), compare));
2943 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2944 break;
2945 }
2946 case DataType::Type::kFloat32:
2947 case DataType::Type::kFloat64: {
2948 locations->SetInAt(0, Location::RequiresFpuRegister());
2949 locations->SetInAt(1,
2950 IsFloatingPointZeroConstant(compare->InputAt(1))
2951 ? Location::ConstantLocation(compare->InputAt(1)->AsConstant())
2952 : Location::RequiresFpuRegister());
2953 locations->SetOut(Location::RequiresRegister());
2954 break;
2955 }
2956 default:
2957 LOG(FATAL) << "Unexpected type for compare operation " << in_type;
2958 }
2959 }
2960
VisitCompare(HCompare * compare)2961 void InstructionCodeGeneratorARM64::VisitCompare(HCompare* compare) {
2962 DataType::Type in_type = compare->InputAt(0)->GetType();
2963
2964 // 0 if: left == right
2965 // 1 if: left > right
2966 // -1 if: left < right
2967 switch (in_type) {
2968 case DataType::Type::kBool:
2969 case DataType::Type::kUint8:
2970 case DataType::Type::kInt8:
2971 case DataType::Type::kUint16:
2972 case DataType::Type::kInt16:
2973 case DataType::Type::kInt32:
2974 case DataType::Type::kInt64: {
2975 Register result = OutputRegister(compare);
2976 Register left = InputRegisterAt(compare, 0);
2977 Operand right = InputOperandAt(compare, 1);
2978 __ Cmp(left, right);
2979 __ Cset(result, ne); // result == +1 if NE or 0 otherwise
2980 __ Cneg(result, result, lt); // result == -1 if LT or unchanged otherwise
2981 break;
2982 }
2983 case DataType::Type::kFloat32:
2984 case DataType::Type::kFloat64: {
2985 Register result = OutputRegister(compare);
2986 GenerateFcmp(compare);
2987 __ Cset(result, ne);
2988 __ Cneg(result, result, ARM64FPCondition(kCondLT, compare->IsGtBias()));
2989 break;
2990 }
2991 default:
2992 LOG(FATAL) << "Unimplemented compare type " << in_type;
2993 }
2994 }
2995
HandleCondition(HCondition * instruction)2996 void LocationsBuilderARM64::HandleCondition(HCondition* instruction) {
2997 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
2998
2999 if (DataType::IsFloatingPointType(instruction->InputAt(0)->GetType())) {
3000 locations->SetInAt(0, Location::RequiresFpuRegister());
3001 locations->SetInAt(1,
3002 IsFloatingPointZeroConstant(instruction->InputAt(1))
3003 ? Location::ConstantLocation(instruction->InputAt(1)->AsConstant())
3004 : Location::RequiresFpuRegister());
3005 } else {
3006 // Integer cases.
3007 locations->SetInAt(0, Location::RequiresRegister());
3008 locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->InputAt(1), instruction));
3009 }
3010
3011 if (!instruction->IsEmittedAtUseSite()) {
3012 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3013 }
3014 }
3015
HandleCondition(HCondition * instruction)3016 void InstructionCodeGeneratorARM64::HandleCondition(HCondition* instruction) {
3017 if (instruction->IsEmittedAtUseSite()) {
3018 return;
3019 }
3020
3021 LocationSummary* locations = instruction->GetLocations();
3022 Register res = RegisterFrom(locations->Out(), instruction->GetType());
3023 IfCondition if_cond = instruction->GetCondition();
3024
3025 if (DataType::IsFloatingPointType(instruction->InputAt(0)->GetType())) {
3026 GenerateFcmp(instruction);
3027 __ Cset(res, ARM64FPCondition(if_cond, instruction->IsGtBias()));
3028 } else {
3029 // Integer cases.
3030 Register lhs = InputRegisterAt(instruction, 0);
3031 Operand rhs = InputOperandAt(instruction, 1);
3032 __ Cmp(lhs, rhs);
3033 __ Cset(res, ARM64Condition(if_cond));
3034 }
3035 }
3036
3037 #define FOR_EACH_CONDITION_INSTRUCTION(M) \
3038 M(Equal) \
3039 M(NotEqual) \
3040 M(LessThan) \
3041 M(LessThanOrEqual) \
3042 M(GreaterThan) \
3043 M(GreaterThanOrEqual) \
3044 M(Below) \
3045 M(BelowOrEqual) \
3046 M(Above) \
3047 M(AboveOrEqual)
3048 #define DEFINE_CONDITION_VISITORS(Name) \
3049 void LocationsBuilderARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); } \
3050 void InstructionCodeGeneratorARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); }
FOR_EACH_CONDITION_INSTRUCTION(DEFINE_CONDITION_VISITORS)3051 FOR_EACH_CONDITION_INSTRUCTION(DEFINE_CONDITION_VISITORS)
3052 #undef DEFINE_CONDITION_VISITORS
3053 #undef FOR_EACH_CONDITION_INSTRUCTION
3054
3055 void InstructionCodeGeneratorARM64::GenerateIntDivForPower2Denom(HDiv* instruction) {
3056 int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1));
3057 uint64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm));
3058 DCHECK(IsPowerOfTwo(abs_imm)) << abs_imm;
3059
3060 Register out = OutputRegister(instruction);
3061 Register dividend = InputRegisterAt(instruction, 0);
3062
3063 Register final_dividend;
3064 if (HasNonNegativeResultOrMinInt(instruction->GetLeft())) {
3065 // No need to adjust the result for non-negative dividends or the INT32_MIN/INT64_MIN dividends.
3066 // NOTE: The generated code for HDiv correctly works for the INT32_MIN/INT64_MIN dividends:
3067 // imm == 2
3068 // add out, dividend(0x80000000), dividend(0x80000000), lsr #31 => out = 0x80000001
3069 // asr out, out(0x80000001), #1 => out = 0xc0000000
3070 // This is the same as 'asr out, 0x80000000, #1'
3071 //
3072 // imm > 2
3073 // add temp, dividend(0x80000000), imm - 1 => temp = 0b10..01..1, where the number
3074 // of the rightmost 1s is ctz_imm.
3075 // cmp dividend(0x80000000), 0 => N = 1, V = 0 (lt is true)
3076 // csel out, temp(0b10..01..1), dividend(0x80000000), lt => out = 0b10..01..1
3077 // asr out, out(0b10..01..1), #ctz_imm => out = 0b1..10..0, where the number of the
3078 // leftmost 1s is ctz_imm + 1.
3079 // This is the same as 'asr out, dividend(0x80000000), #ctz_imm'.
3080 //
3081 // imm == INT32_MIN
3082 // add tmp, dividend(0x80000000), #0x7fffffff => tmp = -1
3083 // cmp dividend(0x80000000), 0 => N = 1, V = 0 (lt is true)
3084 // csel out, temp(-1), dividend(0x80000000), lt => out = -1
3085 // neg out, out(-1), asr #31 => out = 1
3086 // This is the same as 'neg out, dividend(0x80000000), asr #31'.
3087 final_dividend = dividend;
3088 } else {
3089 if (abs_imm == 2) {
3090 int bits = DataType::Size(instruction->GetResultType()) * kBitsPerByte;
3091 __ Add(out, dividend, Operand(dividend, LSR, bits - 1));
3092 } else {
3093 UseScratchRegisterScope temps(GetVIXLAssembler());
3094 Register temp = temps.AcquireSameSizeAs(out);
3095 __ Add(temp, dividend, abs_imm - 1);
3096 __ Cmp(dividend, 0);
3097 __ Csel(out, temp, dividend, lt);
3098 }
3099 final_dividend = out;
3100 }
3101
3102 int ctz_imm = CTZ(abs_imm);
3103 if (imm > 0) {
3104 __ Asr(out, final_dividend, ctz_imm);
3105 } else {
3106 __ Neg(out, Operand(final_dividend, ASR, ctz_imm));
3107 }
3108 }
3109
3110 // Return true if the magic number was modified by subtracting 2^32. So dividend needs to be added.
NeedToAddDividend(int64_t magic_number,int64_t divisor)3111 static inline bool NeedToAddDividend(int64_t magic_number, int64_t divisor) {
3112 return divisor > 0 && magic_number < 0;
3113 }
3114
3115 // Return true if the magic number was modified by adding 2^32. So dividend needs to be subtracted.
NeedToSubDividend(int64_t magic_number,int64_t divisor)3116 static inline bool NeedToSubDividend(int64_t magic_number, int64_t divisor) {
3117 return divisor < 0 && magic_number > 0;
3118 }
3119
3120 // Generate code which increments the value in register 'in' by 1 if the value is negative.
3121 // It is done with 'add out, in, in, lsr #31 or #63'.
3122 // If the value is a result of an operation setting the N flag, CINC MI can be used
3123 // instead of ADD. 'use_cond_inc' controls this.
GenerateIncrementNegativeByOne(Register out,Register in,bool use_cond_inc)3124 void InstructionCodeGeneratorARM64::GenerateIncrementNegativeByOne(
3125 Register out,
3126 Register in,
3127 bool use_cond_inc) {
3128 if (use_cond_inc) {
3129 __ Cinc(out, in, mi);
3130 } else {
3131 __ Add(out, in, Operand(in, LSR, in.GetSizeInBits() - 1));
3132 }
3133 }
3134
3135 // Helper to generate code producing the result of HRem with a constant divisor.
GenerateResultRemWithAnyConstant(Register out,Register dividend,Register quotient,int64_t divisor,UseScratchRegisterScope * temps_scope)3136 void InstructionCodeGeneratorARM64::GenerateResultRemWithAnyConstant(
3137 Register out,
3138 Register dividend,
3139 Register quotient,
3140 int64_t divisor,
3141 UseScratchRegisterScope* temps_scope) {
3142 Register temp_imm = temps_scope->AcquireSameSizeAs(out);
3143 __ Mov(temp_imm, divisor);
3144 __ Msub(out, quotient, temp_imm, dividend);
3145 }
3146
GenerateInt64DivRemWithAnyConstant(HBinaryOperation * instruction)3147 void InstructionCodeGeneratorARM64::GenerateInt64DivRemWithAnyConstant(
3148 HBinaryOperation* instruction) {
3149 DCHECK(instruction->IsDiv() || instruction->IsRem());
3150 DCHECK(instruction->GetResultType() == DataType::Type::kInt64);
3151
3152 LocationSummary* locations = instruction->GetLocations();
3153 Location second = locations->InAt(1);
3154 DCHECK(second.IsConstant());
3155
3156 Register out = OutputRegister(instruction);
3157 Register dividend = InputRegisterAt(instruction, 0);
3158 int64_t imm = Int64FromConstant(second.GetConstant());
3159
3160 int64_t magic;
3161 int shift;
3162 CalculateMagicAndShiftForDivRem(imm, /* is_long= */ true, &magic, &shift);
3163
3164 UseScratchRegisterScope temps(GetVIXLAssembler());
3165 Register temp = temps.AcquireSameSizeAs(out);
3166
3167 // temp = get_high(dividend * magic)
3168 __ Mov(temp, magic);
3169 __ Smulh(temp, dividend, temp);
3170
3171 // The multiplication result might need some corrections to be finalized.
3172 // The last correction is to increment by 1, if the result is negative.
3173 // Currently it is done with 'add result, temp_result, temp_result, lsr #31 or #63'.
3174 // Such ADD usually has latency 2, e.g. on Cortex-A55.
3175 // However if one of the corrections is ADD or SUB, the sign can be detected
3176 // with ADDS/SUBS. They set the N flag if the result is negative.
3177 // This allows to use CINC MI which has latency 1.
3178 bool use_cond_inc = false;
3179
3180 // As magic_number can be modified to fit into 32 bits, check whether the correction is needed.
3181 if (NeedToAddDividend(magic, imm)) {
3182 __ Adds(temp, temp, dividend);
3183 use_cond_inc = true;
3184 } else if (NeedToSubDividend(magic, imm)) {
3185 __ Subs(temp, temp, dividend);
3186 use_cond_inc = true;
3187 }
3188
3189 if (shift != 0) {
3190 __ Asr(temp, temp, shift);
3191 }
3192
3193 if (instruction->IsRem()) {
3194 GenerateIncrementNegativeByOne(temp, temp, use_cond_inc);
3195 GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps);
3196 } else {
3197 GenerateIncrementNegativeByOne(out, temp, use_cond_inc);
3198 }
3199 }
3200
GenerateInt32DivRemWithAnyConstant(HBinaryOperation * instruction)3201 void InstructionCodeGeneratorARM64::GenerateInt32DivRemWithAnyConstant(
3202 HBinaryOperation* instruction) {
3203 DCHECK(instruction->IsDiv() || instruction->IsRem());
3204 DCHECK(instruction->GetResultType() == DataType::Type::kInt32);
3205
3206 LocationSummary* locations = instruction->GetLocations();
3207 Location second = locations->InAt(1);
3208 DCHECK(second.IsConstant());
3209
3210 Register out = OutputRegister(instruction);
3211 Register dividend = InputRegisterAt(instruction, 0);
3212 int64_t imm = Int64FromConstant(second.GetConstant());
3213
3214 int64_t magic;
3215 int shift;
3216 CalculateMagicAndShiftForDivRem(imm, /* is_long= */ false, &magic, &shift);
3217 UseScratchRegisterScope temps(GetVIXLAssembler());
3218 Register temp = temps.AcquireSameSizeAs(out);
3219
3220 // temp = get_high(dividend * magic)
3221 __ Mov(temp, magic);
3222 __ Smull(temp.X(), dividend, temp);
3223
3224 // The multiplication result might need some corrections to be finalized.
3225 // The last correction is to increment by 1, if the result is negative.
3226 // Currently it is done with 'add result, temp_result, temp_result, lsr #31 or #63'.
3227 // Such ADD usually has latency 2, e.g. on Cortex-A55.
3228 // However if one of the corrections is ADD or SUB, the sign can be detected
3229 // with ADDS/SUBS. They set the N flag if the result is negative.
3230 // This allows to use CINC MI which has latency 1.
3231 bool use_cond_inc = false;
3232
3233 // ADD/SUB correction is performed in the high 32 bits
3234 // as high 32 bits are ignored because type are kInt32.
3235 if (NeedToAddDividend(magic, imm)) {
3236 __ Adds(temp.X(), temp.X(), Operand(dividend.X(), LSL, 32));
3237 use_cond_inc = true;
3238 } else if (NeedToSubDividend(magic, imm)) {
3239 __ Subs(temp.X(), temp.X(), Operand(dividend.X(), LSL, 32));
3240 use_cond_inc = true;
3241 }
3242
3243 // Extract the result from the high 32 bits and apply the final right shift.
3244 DCHECK_LT(shift, 32);
3245 if (imm > 0 && IsGEZero(instruction->GetLeft())) {
3246 // No need to adjust the result for a non-negative dividend and a positive divisor.
3247 if (instruction->IsDiv()) {
3248 __ Lsr(out.X(), temp.X(), 32 + shift);
3249 } else {
3250 __ Lsr(temp.X(), temp.X(), 32 + shift);
3251 GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps);
3252 }
3253 } else {
3254 __ Asr(temp.X(), temp.X(), 32 + shift);
3255
3256 if (instruction->IsRem()) {
3257 GenerateIncrementNegativeByOne(temp, temp, use_cond_inc);
3258 GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps);
3259 } else {
3260 GenerateIncrementNegativeByOne(out, temp, use_cond_inc);
3261 }
3262 }
3263 }
3264
GenerateDivRemWithAnyConstant(HBinaryOperation * instruction)3265 void InstructionCodeGeneratorARM64::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
3266 DCHECK(instruction->IsDiv() || instruction->IsRem());
3267 if (instruction->GetResultType() == DataType::Type::kInt64) {
3268 GenerateInt64DivRemWithAnyConstant(instruction);
3269 } else {
3270 GenerateInt32DivRemWithAnyConstant(instruction);
3271 }
3272 }
3273
GenerateIntDivForConstDenom(HDiv * instruction)3274 void InstructionCodeGeneratorARM64::GenerateIntDivForConstDenom(HDiv *instruction) {
3275 int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1));
3276
3277 if (imm == 0) {
3278 // Do not generate anything. DivZeroCheck would prevent any code to be executed.
3279 return;
3280 }
3281
3282 if (IsPowerOfTwo(AbsOrMin(imm))) {
3283 GenerateIntDivForPower2Denom(instruction);
3284 } else {
3285 // Cases imm == -1 or imm == 1 are handled by InstructionSimplifier.
3286 DCHECK(imm < -2 || imm > 2) << imm;
3287 GenerateDivRemWithAnyConstant(instruction);
3288 }
3289 }
3290
GenerateIntDiv(HDiv * instruction)3291 void InstructionCodeGeneratorARM64::GenerateIntDiv(HDiv *instruction) {
3292 DCHECK(DataType::IsIntOrLongType(instruction->GetResultType()))
3293 << instruction->GetResultType();
3294
3295 if (instruction->GetLocations()->InAt(1).IsConstant()) {
3296 GenerateIntDivForConstDenom(instruction);
3297 } else {
3298 Register out = OutputRegister(instruction);
3299 Register dividend = InputRegisterAt(instruction, 0);
3300 Register divisor = InputRegisterAt(instruction, 1);
3301 __ Sdiv(out, dividend, divisor);
3302 }
3303 }
3304
VisitDiv(HDiv * div)3305 void LocationsBuilderARM64::VisitDiv(HDiv* div) {
3306 LocationSummary* locations =
3307 new (GetGraph()->GetAllocator()) LocationSummary(div, LocationSummary::kNoCall);
3308 switch (div->GetResultType()) {
3309 case DataType::Type::kInt32:
3310 case DataType::Type::kInt64:
3311 locations->SetInAt(0, Location::RequiresRegister());
3312 locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1)));
3313 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3314 break;
3315
3316 case DataType::Type::kFloat32:
3317 case DataType::Type::kFloat64:
3318 locations->SetInAt(0, Location::RequiresFpuRegister());
3319 locations->SetInAt(1, Location::RequiresFpuRegister());
3320 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3321 break;
3322
3323 default:
3324 LOG(FATAL) << "Unexpected div type " << div->GetResultType();
3325 }
3326 }
3327
VisitDiv(HDiv * div)3328 void InstructionCodeGeneratorARM64::VisitDiv(HDiv* div) {
3329 DataType::Type type = div->GetResultType();
3330 switch (type) {
3331 case DataType::Type::kInt32:
3332 case DataType::Type::kInt64:
3333 GenerateIntDiv(div);
3334 break;
3335
3336 case DataType::Type::kFloat32:
3337 case DataType::Type::kFloat64:
3338 __ Fdiv(OutputFPRegister(div), InputFPRegisterAt(div, 0), InputFPRegisterAt(div, 1));
3339 break;
3340
3341 default:
3342 LOG(FATAL) << "Unexpected div type " << type;
3343 }
3344 }
3345
VisitDivZeroCheck(HDivZeroCheck * instruction)3346 void LocationsBuilderARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) {
3347 LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
3348 locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
3349 }
3350
VisitDivZeroCheck(HDivZeroCheck * instruction)3351 void InstructionCodeGeneratorARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) {
3352 SlowPathCodeARM64* slow_path =
3353 new (codegen_->GetScopedAllocator()) DivZeroCheckSlowPathARM64(instruction);
3354 codegen_->AddSlowPath(slow_path);
3355 Location value = instruction->GetLocations()->InAt(0);
3356
3357 DataType::Type type = instruction->GetType();
3358
3359 if (!DataType::IsIntegralType(type)) {
3360 LOG(FATAL) << "Unexpected type " << type << " for DivZeroCheck.";
3361 UNREACHABLE();
3362 }
3363
3364 if (value.IsConstant()) {
3365 int64_t divisor = Int64FromLocation(value);
3366 if (divisor == 0) {
3367 __ B(slow_path->GetEntryLabel());
3368 } else {
3369 // A division by a non-null constant is valid. We don't need to perform
3370 // any check, so simply fall through.
3371 }
3372 } else {
3373 __ Cbz(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel());
3374 }
3375 }
3376
VisitDoubleConstant(HDoubleConstant * constant)3377 void LocationsBuilderARM64::VisitDoubleConstant(HDoubleConstant* constant) {
3378 LocationSummary* locations =
3379 new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
3380 locations->SetOut(Location::ConstantLocation(constant));
3381 }
3382
VisitDoubleConstant(HDoubleConstant * constant ATTRIBUTE_UNUSED)3383 void InstructionCodeGeneratorARM64::VisitDoubleConstant(
3384 HDoubleConstant* constant ATTRIBUTE_UNUSED) {
3385 // Will be generated at use site.
3386 }
3387
VisitExit(HExit * exit)3388 void LocationsBuilderARM64::VisitExit(HExit* exit) {
3389 exit->SetLocations(nullptr);
3390 }
3391
VisitExit(HExit * exit ATTRIBUTE_UNUSED)3392 void InstructionCodeGeneratorARM64::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
3393 }
3394
VisitFloatConstant(HFloatConstant * constant)3395 void LocationsBuilderARM64::VisitFloatConstant(HFloatConstant* constant) {
3396 LocationSummary* locations =
3397 new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
3398 locations->SetOut(Location::ConstantLocation(constant));
3399 }
3400
VisitFloatConstant(HFloatConstant * constant ATTRIBUTE_UNUSED)3401 void InstructionCodeGeneratorARM64::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) {
3402 // Will be generated at use site.
3403 }
3404
HandleGoto(HInstruction * got,HBasicBlock * successor)3405 void InstructionCodeGeneratorARM64::HandleGoto(HInstruction* got, HBasicBlock* successor) {
3406 if (successor->IsExitBlock()) {
3407 DCHECK(got->GetPrevious()->AlwaysThrows());
3408 return; // no code needed
3409 }
3410
3411 HBasicBlock* block = got->GetBlock();
3412 HInstruction* previous = got->GetPrevious();
3413 HLoopInformation* info = block->GetLoopInformation();
3414
3415 if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
3416 codegen_->MaybeIncrementHotness(/* is_frame_entry= */ false);
3417 GenerateSuspendCheck(info->GetSuspendCheck(), successor);
3418 return;
3419 }
3420 if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
3421 GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
3422 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
3423 }
3424 if (!codegen_->GoesToNextBlock(block, successor)) {
3425 __ B(codegen_->GetLabelOf(successor));
3426 }
3427 }
3428
VisitGoto(HGoto * got)3429 void LocationsBuilderARM64::VisitGoto(HGoto* got) {
3430 got->SetLocations(nullptr);
3431 }
3432
VisitGoto(HGoto * got)3433 void InstructionCodeGeneratorARM64::VisitGoto(HGoto* got) {
3434 HandleGoto(got, got->GetSuccessor());
3435 }
3436
VisitTryBoundary(HTryBoundary * try_boundary)3437 void LocationsBuilderARM64::VisitTryBoundary(HTryBoundary* try_boundary) {
3438 try_boundary->SetLocations(nullptr);
3439 }
3440
VisitTryBoundary(HTryBoundary * try_boundary)3441 void InstructionCodeGeneratorARM64::VisitTryBoundary(HTryBoundary* try_boundary) {
3442 HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
3443 if (!successor->IsExitBlock()) {
3444 HandleGoto(try_boundary, successor);
3445 }
3446 }
3447
GenerateTestAndBranch(HInstruction * instruction,size_t condition_input_index,vixl::aarch64::Label * true_target,vixl::aarch64::Label * false_target)3448 void InstructionCodeGeneratorARM64::GenerateTestAndBranch(HInstruction* instruction,
3449 size_t condition_input_index,
3450 vixl::aarch64::Label* true_target,
3451 vixl::aarch64::Label* false_target) {
3452 HInstruction* cond = instruction->InputAt(condition_input_index);
3453
3454 if (true_target == nullptr && false_target == nullptr) {
3455 // Nothing to do. The code always falls through.
3456 return;
3457 } else if (cond->IsIntConstant()) {
3458 // Constant condition, statically compared against "true" (integer value 1).
3459 if (cond->AsIntConstant()->IsTrue()) {
3460 if (true_target != nullptr) {
3461 __ B(true_target);
3462 }
3463 } else {
3464 DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue();
3465 if (false_target != nullptr) {
3466 __ B(false_target);
3467 }
3468 }
3469 return;
3470 }
3471
3472 // The following code generates these patterns:
3473 // (1) true_target == nullptr && false_target != nullptr
3474 // - opposite condition true => branch to false_target
3475 // (2) true_target != nullptr && false_target == nullptr
3476 // - condition true => branch to true_target
3477 // (3) true_target != nullptr && false_target != nullptr
3478 // - condition true => branch to true_target
3479 // - branch to false_target
3480 if (IsBooleanValueOrMaterializedCondition(cond)) {
3481 // The condition instruction has been materialized, compare the output to 0.
3482 Location cond_val = instruction->GetLocations()->InAt(condition_input_index);
3483 DCHECK(cond_val.IsRegister());
3484 if (true_target == nullptr) {
3485 __ Cbz(InputRegisterAt(instruction, condition_input_index), false_target);
3486 } else {
3487 __ Cbnz(InputRegisterAt(instruction, condition_input_index), true_target);
3488 }
3489 } else {
3490 // The condition instruction has not been materialized, use its inputs as
3491 // the comparison and its condition as the branch condition.
3492 HCondition* condition = cond->AsCondition();
3493
3494 DataType::Type type = condition->InputAt(0)->GetType();
3495 if (DataType::IsFloatingPointType(type)) {
3496 GenerateFcmp(condition);
3497 if (true_target == nullptr) {
3498 IfCondition opposite_condition = condition->GetOppositeCondition();
3499 __ B(ARM64FPCondition(opposite_condition, condition->IsGtBias()), false_target);
3500 } else {
3501 __ B(ARM64FPCondition(condition->GetCondition(), condition->IsGtBias()), true_target);
3502 }
3503 } else {
3504 // Integer cases.
3505 Register lhs = InputRegisterAt(condition, 0);
3506 Operand rhs = InputOperandAt(condition, 1);
3507
3508 Condition arm64_cond;
3509 vixl::aarch64::Label* non_fallthrough_target;
3510 if (true_target == nullptr) {
3511 arm64_cond = ARM64Condition(condition->GetOppositeCondition());
3512 non_fallthrough_target = false_target;
3513 } else {
3514 arm64_cond = ARM64Condition(condition->GetCondition());
3515 non_fallthrough_target = true_target;
3516 }
3517
3518 if ((arm64_cond == eq || arm64_cond == ne || arm64_cond == lt || arm64_cond == ge) &&
3519 rhs.IsImmediate() && (rhs.GetImmediate() == 0)) {
3520 switch (arm64_cond) {
3521 case eq:
3522 __ Cbz(lhs, non_fallthrough_target);
3523 break;
3524 case ne:
3525 __ Cbnz(lhs, non_fallthrough_target);
3526 break;
3527 case lt:
3528 // Test the sign bit and branch accordingly.
3529 __ Tbnz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target);
3530 break;
3531 case ge:
3532 // Test the sign bit and branch accordingly.
3533 __ Tbz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target);
3534 break;
3535 default:
3536 // Without the `static_cast` the compiler throws an error for
3537 // `-Werror=sign-promo`.
3538 LOG(FATAL) << "Unexpected condition: " << static_cast<int>(arm64_cond);
3539 }
3540 } else {
3541 __ Cmp(lhs, rhs);
3542 __ B(arm64_cond, non_fallthrough_target);
3543 }
3544 }
3545 }
3546
3547 // If neither branch falls through (case 3), the conditional branch to `true_target`
3548 // was already emitted (case 2) and we need to emit a jump to `false_target`.
3549 if (true_target != nullptr && false_target != nullptr) {
3550 __ B(false_target);
3551 }
3552 }
3553
VisitIf(HIf * if_instr)3554 void LocationsBuilderARM64::VisitIf(HIf* if_instr) {
3555 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(if_instr);
3556 if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
3557 locations->SetInAt(0, Location::RequiresRegister());
3558 }
3559 }
3560
VisitIf(HIf * if_instr)3561 void InstructionCodeGeneratorARM64::VisitIf(HIf* if_instr) {
3562 HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
3563 HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
3564 vixl::aarch64::Label* true_target = codegen_->GetLabelOf(true_successor);
3565 if (codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor)) {
3566 true_target = nullptr;
3567 }
3568 vixl::aarch64::Label* false_target = codegen_->GetLabelOf(false_successor);
3569 if (codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor)) {
3570 false_target = nullptr;
3571 }
3572 GenerateTestAndBranch(if_instr, /* condition_input_index= */ 0, true_target, false_target);
3573 }
3574
VisitDeoptimize(HDeoptimize * deoptimize)3575 void LocationsBuilderARM64::VisitDeoptimize(HDeoptimize* deoptimize) {
3576 LocationSummary* locations = new (GetGraph()->GetAllocator())
3577 LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
3578 InvokeRuntimeCallingConvention calling_convention;
3579 RegisterSet caller_saves = RegisterSet::Empty();
3580 caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode()));
3581 locations->SetCustomSlowPathCallerSaves(caller_saves);
3582 if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
3583 locations->SetInAt(0, Location::RequiresRegister());
3584 }
3585 }
3586
VisitDeoptimize(HDeoptimize * deoptimize)3587 void InstructionCodeGeneratorARM64::VisitDeoptimize(HDeoptimize* deoptimize) {
3588 SlowPathCodeARM64* slow_path =
3589 deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathARM64>(deoptimize);
3590 GenerateTestAndBranch(deoptimize,
3591 /* condition_input_index= */ 0,
3592 slow_path->GetEntryLabel(),
3593 /* false_target= */ nullptr);
3594 }
3595
VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag * flag)3596 void LocationsBuilderARM64::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
3597 LocationSummary* locations = new (GetGraph()->GetAllocator())
3598 LocationSummary(flag, LocationSummary::kNoCall);
3599 locations->SetOut(Location::RequiresRegister());
3600 }
3601
VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag * flag)3602 void InstructionCodeGeneratorARM64::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
3603 __ Ldr(OutputRegister(flag),
3604 MemOperand(sp, codegen_->GetStackOffsetOfShouldDeoptimizeFlag()));
3605 }
3606
IsConditionOnFloatingPointValues(HInstruction * condition)3607 static inline bool IsConditionOnFloatingPointValues(HInstruction* condition) {
3608 return condition->IsCondition() &&
3609 DataType::IsFloatingPointType(condition->InputAt(0)->GetType());
3610 }
3611
GetConditionForSelect(HCondition * condition)3612 static inline Condition GetConditionForSelect(HCondition* condition) {
3613 IfCondition cond = condition->AsCondition()->GetCondition();
3614 return IsConditionOnFloatingPointValues(condition) ? ARM64FPCondition(cond, condition->IsGtBias())
3615 : ARM64Condition(cond);
3616 }
3617
VisitSelect(HSelect * select)3618 void LocationsBuilderARM64::VisitSelect(HSelect* select) {
3619 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(select);
3620 if (DataType::IsFloatingPointType(select->GetType())) {
3621 locations->SetInAt(0, Location::RequiresFpuRegister());
3622 locations->SetInAt(1, Location::RequiresFpuRegister());
3623 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3624 } else {
3625 HConstant* cst_true_value = select->GetTrueValue()->AsConstant();
3626 HConstant* cst_false_value = select->GetFalseValue()->AsConstant();
3627 bool is_true_value_constant = cst_true_value != nullptr;
3628 bool is_false_value_constant = cst_false_value != nullptr;
3629 // Ask VIXL whether we should synthesize constants in registers.
3630 // We give an arbitrary register to VIXL when dealing with non-constant inputs.
3631 Operand true_op = is_true_value_constant ?
3632 Operand(Int64FromConstant(cst_true_value)) : Operand(x1);
3633 Operand false_op = is_false_value_constant ?
3634 Operand(Int64FromConstant(cst_false_value)) : Operand(x2);
3635 bool true_value_in_register = false;
3636 bool false_value_in_register = false;
3637 MacroAssembler::GetCselSynthesisInformation(
3638 x0, true_op, false_op, &true_value_in_register, &false_value_in_register);
3639 true_value_in_register |= !is_true_value_constant;
3640 false_value_in_register |= !is_false_value_constant;
3641
3642 locations->SetInAt(1, true_value_in_register ? Location::RequiresRegister()
3643 : Location::ConstantLocation(cst_true_value));
3644 locations->SetInAt(0, false_value_in_register ? Location::RequiresRegister()
3645 : Location::ConstantLocation(cst_false_value));
3646 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3647 }
3648
3649 if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) {
3650 locations->SetInAt(2, Location::RequiresRegister());
3651 }
3652 }
3653
VisitSelect(HSelect * select)3654 void InstructionCodeGeneratorARM64::VisitSelect(HSelect* select) {
3655 HInstruction* cond = select->GetCondition();
3656 Condition csel_cond;
3657
3658 if (IsBooleanValueOrMaterializedCondition(cond)) {
3659 if (cond->IsCondition() && cond->GetNext() == select) {
3660 // Use the condition flags set by the previous instruction.
3661 csel_cond = GetConditionForSelect(cond->AsCondition());
3662 } else {
3663 __ Cmp(InputRegisterAt(select, 2), 0);
3664 csel_cond = ne;
3665 }
3666 } else if (IsConditionOnFloatingPointValues(cond)) {
3667 GenerateFcmp(cond);
3668 csel_cond = GetConditionForSelect(cond->AsCondition());
3669 } else {
3670 __ Cmp(InputRegisterAt(cond, 0), InputOperandAt(cond, 1));
3671 csel_cond = GetConditionForSelect(cond->AsCondition());
3672 }
3673
3674 if (DataType::IsFloatingPointType(select->GetType())) {
3675 __ Fcsel(OutputFPRegister(select),
3676 InputFPRegisterAt(select, 1),
3677 InputFPRegisterAt(select, 0),
3678 csel_cond);
3679 } else {
3680 __ Csel(OutputRegister(select),
3681 InputOperandAt(select, 1),
3682 InputOperandAt(select, 0),
3683 csel_cond);
3684 }
3685 }
3686
VisitNativeDebugInfo(HNativeDebugInfo * info)3687 void LocationsBuilderARM64::VisitNativeDebugInfo(HNativeDebugInfo* info) {
3688 new (GetGraph()->GetAllocator()) LocationSummary(info);
3689 }
3690
VisitNativeDebugInfo(HNativeDebugInfo *)3691 void InstructionCodeGeneratorARM64::VisitNativeDebugInfo(HNativeDebugInfo*) {
3692 // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile.
3693 }
3694
IncreaseFrame(size_t adjustment)3695 void CodeGeneratorARM64::IncreaseFrame(size_t adjustment) {
3696 __ Claim(adjustment);
3697 GetAssembler()->cfi().AdjustCFAOffset(adjustment);
3698 }
3699
DecreaseFrame(size_t adjustment)3700 void CodeGeneratorARM64::DecreaseFrame(size_t adjustment) {
3701 __ Drop(adjustment);
3702 GetAssembler()->cfi().AdjustCFAOffset(-adjustment);
3703 }
3704
GenerateNop()3705 void CodeGeneratorARM64::GenerateNop() {
3706 __ Nop();
3707 }
3708
VisitInstanceFieldGet(HInstanceFieldGet * instruction)3709 void LocationsBuilderARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
3710 HandleFieldGet(instruction, instruction->GetFieldInfo());
3711 }
3712
VisitInstanceFieldGet(HInstanceFieldGet * instruction)3713 void InstructionCodeGeneratorARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
3714 HandleFieldGet(instruction, instruction->GetFieldInfo());
3715 }
3716
VisitInstanceFieldSet(HInstanceFieldSet * instruction)3717 void LocationsBuilderARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
3718 HandleFieldSet(instruction);
3719 }
3720
VisitInstanceFieldSet(HInstanceFieldSet * instruction)3721 void InstructionCodeGeneratorARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
3722 HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
3723 }
3724
3725 // Temp is used for read barrier.
NumberOfInstanceOfTemps(TypeCheckKind type_check_kind)3726 static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) {
3727 if (kEmitCompilerReadBarrier &&
3728 (kUseBakerReadBarrier ||
3729 type_check_kind == TypeCheckKind::kAbstractClassCheck ||
3730 type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
3731 type_check_kind == TypeCheckKind::kArrayObjectCheck)) {
3732 return 1;
3733 }
3734 return 0;
3735 }
3736
3737 // Interface case has 3 temps, one for holding the number of interfaces, one for the current
3738 // interface pointer, one for loading the current interface.
3739 // The other checks have one temp for loading the object's class.
NumberOfCheckCastTemps(TypeCheckKind type_check_kind)3740 static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) {
3741 if (type_check_kind == TypeCheckKind::kInterfaceCheck) {
3742 return 3;
3743 }
3744 return 1 + NumberOfInstanceOfTemps(type_check_kind);
3745 }
3746
VisitInstanceOf(HInstanceOf * instruction)3747 void LocationsBuilderARM64::VisitInstanceOf(HInstanceOf* instruction) {
3748 LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
3749 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
3750 bool baker_read_barrier_slow_path = false;
3751 switch (type_check_kind) {
3752 case TypeCheckKind::kExactCheck:
3753 case TypeCheckKind::kAbstractClassCheck:
3754 case TypeCheckKind::kClassHierarchyCheck:
3755 case TypeCheckKind::kArrayObjectCheck: {
3756 bool needs_read_barrier = CodeGenerator::InstanceOfNeedsReadBarrier(instruction);
3757 call_kind = needs_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
3758 baker_read_barrier_slow_path = kUseBakerReadBarrier && needs_read_barrier;
3759 break;
3760 }
3761 case TypeCheckKind::kArrayCheck:
3762 case TypeCheckKind::kUnresolvedCheck:
3763 case TypeCheckKind::kInterfaceCheck:
3764 call_kind = LocationSummary::kCallOnSlowPath;
3765 break;
3766 case TypeCheckKind::kBitstringCheck:
3767 break;
3768 }
3769
3770 LocationSummary* locations =
3771 new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
3772 if (baker_read_barrier_slow_path) {
3773 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
3774 }
3775 locations->SetInAt(0, Location::RequiresRegister());
3776 if (type_check_kind == TypeCheckKind::kBitstringCheck) {
3777 locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant()));
3778 locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant()));
3779 locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)->AsConstant()));
3780 } else {
3781 locations->SetInAt(1, Location::RequiresRegister());
3782 }
3783 // The "out" register is used as a temporary, so it overlaps with the inputs.
3784 // Note that TypeCheckSlowPathARM64 uses this register too.
3785 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
3786 // Add temps if necessary for read barriers.
3787 locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind));
3788 }
3789
VisitInstanceOf(HInstanceOf * instruction)3790 void InstructionCodeGeneratorARM64::VisitInstanceOf(HInstanceOf* instruction) {
3791 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
3792 LocationSummary* locations = instruction->GetLocations();
3793 Location obj_loc = locations->InAt(0);
3794 Register obj = InputRegisterAt(instruction, 0);
3795 Register cls = (type_check_kind == TypeCheckKind::kBitstringCheck)
3796 ? Register()
3797 : InputRegisterAt(instruction, 1);
3798 Location out_loc = locations->Out();
3799 Register out = OutputRegister(instruction);
3800 const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind);
3801 DCHECK_LE(num_temps, 1u);
3802 Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation();
3803 uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
3804 uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
3805 uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
3806 uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
3807
3808 vixl::aarch64::Label done, zero;
3809 SlowPathCodeARM64* slow_path = nullptr;
3810
3811 // Return 0 if `obj` is null.
3812 // Avoid null check if we know `obj` is not null.
3813 if (instruction->MustDoNullCheck()) {
3814 __ Cbz(obj, &zero);
3815 }
3816
3817 switch (type_check_kind) {
3818 case TypeCheckKind::kExactCheck: {
3819 ReadBarrierOption read_barrier_option =
3820 CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
3821 // /* HeapReference<Class> */ out = obj->klass_
3822 GenerateReferenceLoadTwoRegisters(instruction,
3823 out_loc,
3824 obj_loc,
3825 class_offset,
3826 maybe_temp_loc,
3827 read_barrier_option);
3828 __ Cmp(out, cls);
3829 __ Cset(out, eq);
3830 if (zero.IsLinked()) {
3831 __ B(&done);
3832 }
3833 break;
3834 }
3835
3836 case TypeCheckKind::kAbstractClassCheck: {
3837 ReadBarrierOption read_barrier_option =
3838 CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
3839 // /* HeapReference<Class> */ out = obj->klass_
3840 GenerateReferenceLoadTwoRegisters(instruction,
3841 out_loc,
3842 obj_loc,
3843 class_offset,
3844 maybe_temp_loc,
3845 read_barrier_option);
3846 // If the class is abstract, we eagerly fetch the super class of the
3847 // object to avoid doing a comparison we know will fail.
3848 vixl::aarch64::Label loop, success;
3849 __ Bind(&loop);
3850 // /* HeapReference<Class> */ out = out->super_class_
3851 GenerateReferenceLoadOneRegister(instruction,
3852 out_loc,
3853 super_offset,
3854 maybe_temp_loc,
3855 read_barrier_option);
3856 // If `out` is null, we use it for the result, and jump to `done`.
3857 __ Cbz(out, &done);
3858 __ Cmp(out, cls);
3859 __ B(ne, &loop);
3860 __ Mov(out, 1);
3861 if (zero.IsLinked()) {
3862 __ B(&done);
3863 }
3864 break;
3865 }
3866
3867 case TypeCheckKind::kClassHierarchyCheck: {
3868 ReadBarrierOption read_barrier_option =
3869 CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
3870 // /* HeapReference<Class> */ out = obj->klass_
3871 GenerateReferenceLoadTwoRegisters(instruction,
3872 out_loc,
3873 obj_loc,
3874 class_offset,
3875 maybe_temp_loc,
3876 read_barrier_option);
3877 // Walk over the class hierarchy to find a match.
3878 vixl::aarch64::Label loop, success;
3879 __ Bind(&loop);
3880 __ Cmp(out, cls);
3881 __ B(eq, &success);
3882 // /* HeapReference<Class> */ out = out->super_class_
3883 GenerateReferenceLoadOneRegister(instruction,
3884 out_loc,
3885 super_offset,
3886 maybe_temp_loc,
3887 read_barrier_option);
3888 __ Cbnz(out, &loop);
3889 // If `out` is null, we use it for the result, and jump to `done`.
3890 __ B(&done);
3891 __ Bind(&success);
3892 __ Mov(out, 1);
3893 if (zero.IsLinked()) {
3894 __ B(&done);
3895 }
3896 break;
3897 }
3898
3899 case TypeCheckKind::kArrayObjectCheck: {
3900 ReadBarrierOption read_barrier_option =
3901 CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
3902 // /* HeapReference<Class> */ out = obj->klass_
3903 GenerateReferenceLoadTwoRegisters(instruction,
3904 out_loc,
3905 obj_loc,
3906 class_offset,
3907 maybe_temp_loc,
3908 read_barrier_option);
3909 // Do an exact check.
3910 vixl::aarch64::Label exact_check;
3911 __ Cmp(out, cls);
3912 __ B(eq, &exact_check);
3913 // Otherwise, we need to check that the object's class is a non-primitive array.
3914 // /* HeapReference<Class> */ out = out->component_type_
3915 GenerateReferenceLoadOneRegister(instruction,
3916 out_loc,
3917 component_offset,
3918 maybe_temp_loc,
3919 read_barrier_option);
3920 // If `out` is null, we use it for the result, and jump to `done`.
3921 __ Cbz(out, &done);
3922 __ Ldrh(out, HeapOperand(out, primitive_offset));
3923 static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
3924 __ Cbnz(out, &zero);
3925 __ Bind(&exact_check);
3926 __ Mov(out, 1);
3927 __ B(&done);
3928 break;
3929 }
3930
3931 case TypeCheckKind::kArrayCheck: {
3932 // No read barrier since the slow path will retry upon failure.
3933 // /* HeapReference<Class> */ out = obj->klass_
3934 GenerateReferenceLoadTwoRegisters(instruction,
3935 out_loc,
3936 obj_loc,
3937 class_offset,
3938 maybe_temp_loc,
3939 kWithoutReadBarrier);
3940 __ Cmp(out, cls);
3941 DCHECK(locations->OnlyCallsOnSlowPath());
3942 slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64(
3943 instruction, /* is_fatal= */ false);
3944 codegen_->AddSlowPath(slow_path);
3945 __ B(ne, slow_path->GetEntryLabel());
3946 __ Mov(out, 1);
3947 if (zero.IsLinked()) {
3948 __ B(&done);
3949 }
3950 break;
3951 }
3952
3953 case TypeCheckKind::kUnresolvedCheck:
3954 case TypeCheckKind::kInterfaceCheck: {
3955 // Note that we indeed only call on slow path, but we always go
3956 // into the slow path for the unresolved and interface check
3957 // cases.
3958 //
3959 // We cannot directly call the InstanceofNonTrivial runtime
3960 // entry point without resorting to a type checking slow path
3961 // here (i.e. by calling InvokeRuntime directly), as it would
3962 // require to assign fixed registers for the inputs of this
3963 // HInstanceOf instruction (following the runtime calling
3964 // convention), which might be cluttered by the potential first
3965 // read barrier emission at the beginning of this method.
3966 //
3967 // TODO: Introduce a new runtime entry point taking the object
3968 // to test (instead of its class) as argument, and let it deal
3969 // with the read barrier issues. This will let us refactor this
3970 // case of the `switch` code as it was previously (with a direct
3971 // call to the runtime not using a type checking slow path).
3972 // This should also be beneficial for the other cases above.
3973 DCHECK(locations->OnlyCallsOnSlowPath());
3974 slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64(
3975 instruction, /* is_fatal= */ false);
3976 codegen_->AddSlowPath(slow_path);
3977 __ B(slow_path->GetEntryLabel());
3978 if (zero.IsLinked()) {
3979 __ B(&done);
3980 }
3981 break;
3982 }
3983
3984 case TypeCheckKind::kBitstringCheck: {
3985 // /* HeapReference<Class> */ temp = obj->klass_
3986 GenerateReferenceLoadTwoRegisters(instruction,
3987 out_loc,
3988 obj_loc,
3989 class_offset,
3990 maybe_temp_loc,
3991 kWithoutReadBarrier);
3992
3993 GenerateBitstringTypeCheckCompare(instruction, out);
3994 __ Cset(out, eq);
3995 if (zero.IsLinked()) {
3996 __ B(&done);
3997 }
3998 break;
3999 }
4000 }
4001
4002 if (zero.IsLinked()) {
4003 __ Bind(&zero);
4004 __ Mov(out, 0);
4005 }
4006
4007 if (done.IsLinked()) {
4008 __ Bind(&done);
4009 }
4010
4011 if (slow_path != nullptr) {
4012 __ Bind(slow_path->GetExitLabel());
4013 }
4014 }
4015
VisitCheckCast(HCheckCast * instruction)4016 void LocationsBuilderARM64::VisitCheckCast(HCheckCast* instruction) {
4017 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
4018 LocationSummary::CallKind call_kind = CodeGenerator::GetCheckCastCallKind(instruction);
4019 LocationSummary* locations =
4020 new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
4021 locations->SetInAt(0, Location::RequiresRegister());
4022 if (type_check_kind == TypeCheckKind::kBitstringCheck) {
4023 locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant()));
4024 locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant()));
4025 locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)->AsConstant()));
4026 } else {
4027 locations->SetInAt(1, Location::RequiresRegister());
4028 }
4029 // Add temps for read barriers and other uses. One is used by TypeCheckSlowPathARM64.
4030 locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind));
4031 }
4032
VisitCheckCast(HCheckCast * instruction)4033 void InstructionCodeGeneratorARM64::VisitCheckCast(HCheckCast* instruction) {
4034 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
4035 LocationSummary* locations = instruction->GetLocations();
4036 Location obj_loc = locations->InAt(0);
4037 Register obj = InputRegisterAt(instruction, 0);
4038 Register cls = (type_check_kind == TypeCheckKind::kBitstringCheck)
4039 ? Register()
4040 : InputRegisterAt(instruction, 1);
4041 const size_t num_temps = NumberOfCheckCastTemps(type_check_kind);
4042 DCHECK_GE(num_temps, 1u);
4043 DCHECK_LE(num_temps, 3u);
4044 Location temp_loc = locations->GetTemp(0);
4045 Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation();
4046 Location maybe_temp3_loc = (num_temps >= 3) ? locations->GetTemp(2) : Location::NoLocation();
4047 Register temp = WRegisterFrom(temp_loc);
4048 const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
4049 const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
4050 const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
4051 const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
4052 const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value();
4053 const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value();
4054 const uint32_t object_array_data_offset =
4055 mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
4056
4057 bool is_type_check_slow_path_fatal = CodeGenerator::IsTypeCheckSlowPathFatal(instruction);
4058 SlowPathCodeARM64* type_check_slow_path =
4059 new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64(
4060 instruction, is_type_check_slow_path_fatal);
4061 codegen_->AddSlowPath(type_check_slow_path);
4062
4063 vixl::aarch64::Label done;
4064 // Avoid null check if we know obj is not null.
4065 if (instruction->MustDoNullCheck()) {
4066 __ Cbz(obj, &done);
4067 }
4068
4069 switch (type_check_kind) {
4070 case TypeCheckKind::kExactCheck:
4071 case TypeCheckKind::kArrayCheck: {
4072 // /* HeapReference<Class> */ temp = obj->klass_
4073 GenerateReferenceLoadTwoRegisters(instruction,
4074 temp_loc,
4075 obj_loc,
4076 class_offset,
4077 maybe_temp2_loc,
4078 kWithoutReadBarrier);
4079
4080 __ Cmp(temp, cls);
4081 // Jump to slow path for throwing the exception or doing a
4082 // more involved array check.
4083 __ B(ne, type_check_slow_path->GetEntryLabel());
4084 break;
4085 }
4086
4087 case TypeCheckKind::kAbstractClassCheck: {
4088 // /* HeapReference<Class> */ temp = obj->klass_
4089 GenerateReferenceLoadTwoRegisters(instruction,
4090 temp_loc,
4091 obj_loc,
4092 class_offset,
4093 maybe_temp2_loc,
4094 kWithoutReadBarrier);
4095
4096 // If the class is abstract, we eagerly fetch the super class of the
4097 // object to avoid doing a comparison we know will fail.
4098 vixl::aarch64::Label loop;
4099 __ Bind(&loop);
4100 // /* HeapReference<Class> */ temp = temp->super_class_
4101 GenerateReferenceLoadOneRegister(instruction,
4102 temp_loc,
4103 super_offset,
4104 maybe_temp2_loc,
4105 kWithoutReadBarrier);
4106
4107 // If the class reference currently in `temp` is null, jump to the slow path to throw the
4108 // exception.
4109 __ Cbz(temp, type_check_slow_path->GetEntryLabel());
4110 // Otherwise, compare classes.
4111 __ Cmp(temp, cls);
4112 __ B(ne, &loop);
4113 break;
4114 }
4115
4116 case TypeCheckKind::kClassHierarchyCheck: {
4117 // /* HeapReference<Class> */ temp = obj->klass_
4118 GenerateReferenceLoadTwoRegisters(instruction,
4119 temp_loc,
4120 obj_loc,
4121 class_offset,
4122 maybe_temp2_loc,
4123 kWithoutReadBarrier);
4124
4125 // Walk over the class hierarchy to find a match.
4126 vixl::aarch64::Label loop;
4127 __ Bind(&loop);
4128 __ Cmp(temp, cls);
4129 __ B(eq, &done);
4130
4131 // /* HeapReference<Class> */ temp = temp->super_class_
4132 GenerateReferenceLoadOneRegister(instruction,
4133 temp_loc,
4134 super_offset,
4135 maybe_temp2_loc,
4136 kWithoutReadBarrier);
4137
4138 // If the class reference currently in `temp` is not null, jump
4139 // back at the beginning of the loop.
4140 __ Cbnz(temp, &loop);
4141 // Otherwise, jump to the slow path to throw the exception.
4142 __ B(type_check_slow_path->GetEntryLabel());
4143 break;
4144 }
4145
4146 case TypeCheckKind::kArrayObjectCheck: {
4147 // /* HeapReference<Class> */ temp = obj->klass_
4148 GenerateReferenceLoadTwoRegisters(instruction,
4149 temp_loc,
4150 obj_loc,
4151 class_offset,
4152 maybe_temp2_loc,
4153 kWithoutReadBarrier);
4154
4155 // Do an exact check.
4156 __ Cmp(temp, cls);
4157 __ B(eq, &done);
4158
4159 // Otherwise, we need to check that the object's class is a non-primitive array.
4160 // /* HeapReference<Class> */ temp = temp->component_type_
4161 GenerateReferenceLoadOneRegister(instruction,
4162 temp_loc,
4163 component_offset,
4164 maybe_temp2_loc,
4165 kWithoutReadBarrier);
4166
4167 // If the component type is null, jump to the slow path to throw the exception.
4168 __ Cbz(temp, type_check_slow_path->GetEntryLabel());
4169 // Otherwise, the object is indeed an array. Further check that this component type is not a
4170 // primitive type.
4171 __ Ldrh(temp, HeapOperand(temp, primitive_offset));
4172 static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
4173 __ Cbnz(temp, type_check_slow_path->GetEntryLabel());
4174 break;
4175 }
4176
4177 case TypeCheckKind::kUnresolvedCheck:
4178 // We always go into the type check slow path for the unresolved check cases.
4179 //
4180 // We cannot directly call the CheckCast runtime entry point
4181 // without resorting to a type checking slow path here (i.e. by
4182 // calling InvokeRuntime directly), as it would require to
4183 // assign fixed registers for the inputs of this HInstanceOf
4184 // instruction (following the runtime calling convention), which
4185 // might be cluttered by the potential first read barrier
4186 // emission at the beginning of this method.
4187 __ B(type_check_slow_path->GetEntryLabel());
4188 break;
4189 case TypeCheckKind::kInterfaceCheck: {
4190 // /* HeapReference<Class> */ temp = obj->klass_
4191 GenerateReferenceLoadTwoRegisters(instruction,
4192 temp_loc,
4193 obj_loc,
4194 class_offset,
4195 maybe_temp2_loc,
4196 kWithoutReadBarrier);
4197
4198 // /* HeapReference<Class> */ temp = temp->iftable_
4199 GenerateReferenceLoadTwoRegisters(instruction,
4200 temp_loc,
4201 temp_loc,
4202 iftable_offset,
4203 maybe_temp2_loc,
4204 kWithoutReadBarrier);
4205 // Iftable is never null.
4206 __ Ldr(WRegisterFrom(maybe_temp2_loc), HeapOperand(temp.W(), array_length_offset));
4207 // Loop through the iftable and check if any class matches.
4208 vixl::aarch64::Label start_loop;
4209 __ Bind(&start_loop);
4210 __ Cbz(WRegisterFrom(maybe_temp2_loc), type_check_slow_path->GetEntryLabel());
4211 __ Ldr(WRegisterFrom(maybe_temp3_loc), HeapOperand(temp.W(), object_array_data_offset));
4212 GetAssembler()->MaybeUnpoisonHeapReference(WRegisterFrom(maybe_temp3_loc));
4213 // Go to next interface.
4214 __ Add(temp, temp, 2 * kHeapReferenceSize);
4215 __ Sub(WRegisterFrom(maybe_temp2_loc), WRegisterFrom(maybe_temp2_loc), 2);
4216 // Compare the classes and continue the loop if they do not match.
4217 __ Cmp(cls, WRegisterFrom(maybe_temp3_loc));
4218 __ B(ne, &start_loop);
4219 break;
4220 }
4221
4222 case TypeCheckKind::kBitstringCheck: {
4223 // /* HeapReference<Class> */ temp = obj->klass_
4224 GenerateReferenceLoadTwoRegisters(instruction,
4225 temp_loc,
4226 obj_loc,
4227 class_offset,
4228 maybe_temp2_loc,
4229 kWithoutReadBarrier);
4230
4231 GenerateBitstringTypeCheckCompare(instruction, temp);
4232 __ B(ne, type_check_slow_path->GetEntryLabel());
4233 break;
4234 }
4235 }
4236 __ Bind(&done);
4237
4238 __ Bind(type_check_slow_path->GetExitLabel());
4239 }
4240
VisitIntConstant(HIntConstant * constant)4241 void LocationsBuilderARM64::VisitIntConstant(HIntConstant* constant) {
4242 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant);
4243 locations->SetOut(Location::ConstantLocation(constant));
4244 }
4245
VisitIntConstant(HIntConstant * constant ATTRIBUTE_UNUSED)4246 void InstructionCodeGeneratorARM64::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
4247 // Will be generated at use site.
4248 }
4249
VisitNullConstant(HNullConstant * constant)4250 void LocationsBuilderARM64::VisitNullConstant(HNullConstant* constant) {
4251 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant);
4252 locations->SetOut(Location::ConstantLocation(constant));
4253 }
4254
VisitNullConstant(HNullConstant * constant ATTRIBUTE_UNUSED)4255 void InstructionCodeGeneratorARM64::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
4256 // Will be generated at use site.
4257 }
4258
VisitInvokeUnresolved(HInvokeUnresolved * invoke)4259 void LocationsBuilderARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
4260 // The trampoline uses the same calling convention as dex calling conventions,
4261 // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
4262 // the method_idx.
4263 HandleInvoke(invoke);
4264 }
4265
VisitInvokeUnresolved(HInvokeUnresolved * invoke)4266 void InstructionCodeGeneratorARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
4267 codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
4268 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
4269 }
4270
HandleInvoke(HInvoke * invoke)4271 void LocationsBuilderARM64::HandleInvoke(HInvoke* invoke) {
4272 InvokeDexCallingConventionVisitorARM64 calling_convention_visitor;
4273 CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
4274 }
4275
VisitInvokeInterface(HInvokeInterface * invoke)4276 void LocationsBuilderARM64::VisitInvokeInterface(HInvokeInterface* invoke) {
4277 HandleInvoke(invoke);
4278 }
4279
MaybeGenerateInlineCacheCheck(HInstruction * instruction,Register klass)4280 void CodeGeneratorARM64::MaybeGenerateInlineCacheCheck(HInstruction* instruction,
4281 Register klass) {
4282 DCHECK_EQ(klass.GetCode(), 0u);
4283 // We know the destination of an intrinsic, so no need to record inline
4284 // caches.
4285 if (!instruction->GetLocations()->Intrinsified() &&
4286 GetGraph()->IsCompilingBaseline() &&
4287 !Runtime::Current()->IsAotCompiler()) {
4288 DCHECK(!instruction->GetEnvironment()->IsFromInlinedInvoke());
4289 ScopedObjectAccess soa(Thread::Current());
4290 ProfilingInfo* info = GetGraph()->GetArtMethod()->GetProfilingInfo(kRuntimePointerSize);
4291 if (info != nullptr) {
4292 InlineCache* cache = info->GetInlineCache(instruction->GetDexPc());
4293 uint64_t address = reinterpret_cast64<uint64_t>(cache);
4294 vixl::aarch64::Label done;
4295 __ Mov(x8, address);
4296 __ Ldr(x9, MemOperand(x8, InlineCache::ClassesOffset().Int32Value()));
4297 // Fast path for a monomorphic cache.
4298 __ Cmp(klass, x9);
4299 __ B(eq, &done);
4300 InvokeRuntime(kQuickUpdateInlineCache, instruction, instruction->GetDexPc());
4301 __ Bind(&done);
4302 }
4303 }
4304 }
4305
VisitInvokeInterface(HInvokeInterface * invoke)4306 void InstructionCodeGeneratorARM64::VisitInvokeInterface(HInvokeInterface* invoke) {
4307 // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
4308 LocationSummary* locations = invoke->GetLocations();
4309 Register temp = XRegisterFrom(locations->GetTemp(0));
4310 Location receiver = locations->InAt(0);
4311 Offset class_offset = mirror::Object::ClassOffset();
4312 Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize);
4313
4314 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
4315 if (receiver.IsStackSlot()) {
4316 __ Ldr(temp.W(), StackOperandFrom(receiver));
4317 {
4318 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
4319 // /* HeapReference<Class> */ temp = temp->klass_
4320 __ Ldr(temp.W(), HeapOperand(temp.W(), class_offset));
4321 codegen_->MaybeRecordImplicitNullCheck(invoke);
4322 }
4323 } else {
4324 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
4325 // /* HeapReference<Class> */ temp = receiver->klass_
4326 __ Ldr(temp.W(), HeapOperandFrom(receiver, class_offset));
4327 codegen_->MaybeRecordImplicitNullCheck(invoke);
4328 }
4329
4330 // Instead of simply (possibly) unpoisoning `temp` here, we should
4331 // emit a read barrier for the previous class reference load.
4332 // However this is not required in practice, as this is an
4333 // intermediate/temporary reference and because the current
4334 // concurrent copying collector keeps the from-space memory
4335 // intact/accessible until the end of the marking phase (the
4336 // concurrent copying collector may not in the future).
4337 GetAssembler()->MaybeUnpoisonHeapReference(temp.W());
4338
4339 // If we're compiling baseline, update the inline cache.
4340 codegen_->MaybeGenerateInlineCacheCheck(invoke, temp);
4341
4342 // The register ip1 is required to be used for the hidden argument in
4343 // art_quick_imt_conflict_trampoline, so prevent VIXL from using it.
4344 MacroAssembler* masm = GetVIXLAssembler();
4345 UseScratchRegisterScope scratch_scope(masm);
4346 scratch_scope.Exclude(ip1);
4347 __ Mov(ip1, invoke->GetDexMethodIndex());
4348
4349 __ Ldr(temp,
4350 MemOperand(temp, mirror::Class::ImtPtrOffset(kArm64PointerSize).Uint32Value()));
4351 uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
4352 invoke->GetImtIndex(), kArm64PointerSize));
4353 // temp = temp->GetImtEntryAt(method_offset);
4354 __ Ldr(temp, MemOperand(temp, method_offset));
4355 // lr = temp->GetEntryPoint();
4356 __ Ldr(lr, MemOperand(temp, entry_point.Int32Value()));
4357
4358 {
4359 // Ensure the pc position is recorded immediately after the `blr` instruction.
4360 ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize);
4361
4362 // lr();
4363 __ blr(lr);
4364 DCHECK(!codegen_->IsLeafMethod());
4365 codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
4366 }
4367
4368 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
4369 }
4370
VisitInvokeVirtual(HInvokeVirtual * invoke)4371 void LocationsBuilderARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) {
4372 IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetAllocator(), codegen_);
4373 if (intrinsic.TryDispatch(invoke)) {
4374 return;
4375 }
4376
4377 HandleInvoke(invoke);
4378 }
4379
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)4380 void LocationsBuilderARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
4381 // Explicit clinit checks triggered by static invokes must have been pruned by
4382 // art::PrepareForRegisterAllocation.
4383 DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
4384
4385 IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetAllocator(), codegen_);
4386 if (intrinsic.TryDispatch(invoke)) {
4387 return;
4388 }
4389
4390 if (invoke->GetCodePtrLocation() == HInvokeStaticOrDirect::CodePtrLocation::kCallCriticalNative) {
4391 CriticalNativeCallingConventionVisitorARM64 calling_convention_visitor(
4392 /*for_register_allocation=*/ true);
4393 CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
4394 } else {
4395 HandleInvoke(invoke);
4396 }
4397 }
4398
TryGenerateIntrinsicCode(HInvoke * invoke,CodeGeneratorARM64 * codegen)4399 static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARM64* codegen) {
4400 if (invoke->GetLocations()->Intrinsified()) {
4401 IntrinsicCodeGeneratorARM64 intrinsic(codegen);
4402 intrinsic.Dispatch(invoke);
4403 return true;
4404 }
4405 return false;
4406 }
4407
GetSupportedInvokeStaticOrDirectDispatch(const HInvokeStaticOrDirect::DispatchInfo & desired_dispatch_info,ArtMethod * method ATTRIBUTE_UNUSED)4408 HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARM64::GetSupportedInvokeStaticOrDirectDispatch(
4409 const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
4410 ArtMethod* method ATTRIBUTE_UNUSED) {
4411 // On ARM64 we support all dispatch types.
4412 return desired_dispatch_info;
4413 }
4414
GenerateStaticOrDirectCall(HInvokeStaticOrDirect * invoke,Location temp,SlowPathCode * slow_path)4415 void CodeGeneratorARM64::GenerateStaticOrDirectCall(
4416 HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) {
4417 // Make sure that ArtMethod* is passed in kArtMethodRegister as per the calling convention.
4418 Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp.
4419 switch (invoke->GetMethodLoadKind()) {
4420 case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: {
4421 uint32_t offset =
4422 GetThreadOffset<kArm64PointerSize>(invoke->GetStringInitEntryPoint()).Int32Value();
4423 // temp = thread->string_init_entrypoint
4424 __ Ldr(XRegisterFrom(temp), MemOperand(tr, offset));
4425 break;
4426 }
4427 case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
4428 callee_method = invoke->GetLocations()->InAt(invoke->GetCurrentMethodIndex());
4429 break;
4430 case HInvokeStaticOrDirect::MethodLoadKind::kBootImageLinkTimePcRelative: {
4431 DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension());
4432 // Add ADRP with its PC-relative method patch.
4433 vixl::aarch64::Label* adrp_label = NewBootImageMethodPatch(invoke->GetTargetMethod());
4434 EmitAdrpPlaceholder(adrp_label, XRegisterFrom(temp));
4435 // Add ADD with its PC-relative method patch.
4436 vixl::aarch64::Label* add_label =
4437 NewBootImageMethodPatch(invoke->GetTargetMethod(), adrp_label);
4438 EmitAddPlaceholder(add_label, XRegisterFrom(temp), XRegisterFrom(temp));
4439 break;
4440 }
4441 case HInvokeStaticOrDirect::MethodLoadKind::kBootImageRelRo: {
4442 // Add ADRP with its PC-relative .data.bimg.rel.ro patch.
4443 uint32_t boot_image_offset = GetBootImageOffset(invoke);
4444 vixl::aarch64::Label* adrp_label = NewBootImageRelRoPatch(boot_image_offset);
4445 EmitAdrpPlaceholder(adrp_label, XRegisterFrom(temp));
4446 // Add LDR with its PC-relative .data.bimg.rel.ro patch.
4447 vixl::aarch64::Label* ldr_label = NewBootImageRelRoPatch(boot_image_offset, adrp_label);
4448 // Note: Boot image is in the low 4GiB and the entry is 32-bit, so emit a 32-bit load.
4449 EmitLdrOffsetPlaceholder(ldr_label, WRegisterFrom(temp), XRegisterFrom(temp));
4450 break;
4451 }
4452 case HInvokeStaticOrDirect::MethodLoadKind::kBssEntry: {
4453 // Add ADRP with its PC-relative .bss entry patch.
4454 MethodReference target_method(&GetGraph()->GetDexFile(), invoke->GetDexMethodIndex());
4455 vixl::aarch64::Label* adrp_label = NewMethodBssEntryPatch(target_method);
4456 EmitAdrpPlaceholder(adrp_label, XRegisterFrom(temp));
4457 // Add LDR with its PC-relative .bss entry patch.
4458 vixl::aarch64::Label* ldr_label =
4459 NewMethodBssEntryPatch(target_method, adrp_label);
4460 // All aligned loads are implicitly atomic consume operations on ARM64.
4461 EmitLdrOffsetPlaceholder(ldr_label, XRegisterFrom(temp), XRegisterFrom(temp));
4462 break;
4463 }
4464 case HInvokeStaticOrDirect::MethodLoadKind::kJitDirectAddress:
4465 // Load method address from literal pool.
4466 __ Ldr(XRegisterFrom(temp), DeduplicateUint64Literal(invoke->GetMethodAddress()));
4467 break;
4468 case HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall: {
4469 GenerateInvokeStaticOrDirectRuntimeCall(invoke, temp, slow_path);
4470 return; // No code pointer retrieval; the runtime performs the call directly.
4471 }
4472 }
4473
4474 auto call_code_pointer_member = [&](MemberOffset offset) {
4475 // LR = callee_method->member;
4476 __ Ldr(lr, MemOperand(XRegisterFrom(callee_method), offset.Int32Value()));
4477 {
4478 // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
4479 ExactAssemblyScope eas(GetVIXLAssembler(),
4480 kInstructionSize,
4481 CodeBufferCheckScope::kExactSize);
4482 // lr()
4483 __ blr(lr);
4484 RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
4485 }
4486 };
4487 switch (invoke->GetCodePtrLocation()) {
4488 case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf:
4489 {
4490 // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
4491 ExactAssemblyScope eas(GetVIXLAssembler(),
4492 kInstructionSize,
4493 CodeBufferCheckScope::kExactSize);
4494 __ bl(&frame_entry_label_);
4495 RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
4496 }
4497 break;
4498 case HInvokeStaticOrDirect::CodePtrLocation::kCallCriticalNative: {
4499 size_t out_frame_size =
4500 PrepareCriticalNativeCall<CriticalNativeCallingConventionVisitorARM64,
4501 kAapcs64StackAlignment,
4502 GetCriticalNativeDirectCallFrameSize>(invoke);
4503 call_code_pointer_member(ArtMethod::EntryPointFromJniOffset(kArm64PointerSize));
4504 // Zero-/sign-extend the result when needed due to native and managed ABI mismatch.
4505 switch (invoke->GetType()) {
4506 case DataType::Type::kBool:
4507 __ Ubfx(w0, w0, 0, 8);
4508 break;
4509 case DataType::Type::kInt8:
4510 __ Sbfx(w0, w0, 0, 8);
4511 break;
4512 case DataType::Type::kUint16:
4513 __ Ubfx(w0, w0, 0, 16);
4514 break;
4515 case DataType::Type::kInt16:
4516 __ Sbfx(w0, w0, 0, 16);
4517 break;
4518 case DataType::Type::kInt32:
4519 case DataType::Type::kInt64:
4520 case DataType::Type::kFloat32:
4521 case DataType::Type::kFloat64:
4522 case DataType::Type::kVoid:
4523 break;
4524 default:
4525 DCHECK(false) << invoke->GetType();
4526 break;
4527 }
4528 if (out_frame_size != 0u) {
4529 DecreaseFrame(out_frame_size);
4530 }
4531 break;
4532 }
4533 case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod:
4534 call_code_pointer_member(ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize));
4535 break;
4536 }
4537
4538 DCHECK(!IsLeafMethod());
4539 }
4540
GenerateVirtualCall(HInvokeVirtual * invoke,Location temp_in,SlowPathCode * slow_path)4541 void CodeGeneratorARM64::GenerateVirtualCall(
4542 HInvokeVirtual* invoke, Location temp_in, SlowPathCode* slow_path) {
4543 // Use the calling convention instead of the location of the receiver, as
4544 // intrinsics may have put the receiver in a different register. In the intrinsics
4545 // slow path, the arguments have been moved to the right place, so here we are
4546 // guaranteed that the receiver is the first register of the calling convention.
4547 InvokeDexCallingConvention calling_convention;
4548 Register receiver = calling_convention.GetRegisterAt(0);
4549 Register temp = XRegisterFrom(temp_in);
4550 size_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
4551 invoke->GetVTableIndex(), kArm64PointerSize).SizeValue();
4552 Offset class_offset = mirror::Object::ClassOffset();
4553 Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize);
4554
4555 DCHECK(receiver.IsRegister());
4556
4557 {
4558 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
4559 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
4560 // /* HeapReference<Class> */ temp = receiver->klass_
4561 __ Ldr(temp.W(), HeapOperandFrom(LocationFrom(receiver), class_offset));
4562 MaybeRecordImplicitNullCheck(invoke);
4563 }
4564 // Instead of simply (possibly) unpoisoning `temp` here, we should
4565 // emit a read barrier for the previous class reference load.
4566 // intermediate/temporary reference and because the current
4567 // concurrent copying collector keeps the from-space memory
4568 // intact/accessible until the end of the marking phase (the
4569 // concurrent copying collector may not in the future).
4570 GetAssembler()->MaybeUnpoisonHeapReference(temp.W());
4571
4572 // If we're compiling baseline, update the inline cache.
4573 MaybeGenerateInlineCacheCheck(invoke, temp);
4574
4575 // temp = temp->GetMethodAt(method_offset);
4576 __ Ldr(temp, MemOperand(temp, method_offset));
4577 // lr = temp->GetEntryPoint();
4578 __ Ldr(lr, MemOperand(temp, entry_point.SizeValue()));
4579 {
4580 // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
4581 ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize);
4582 // lr();
4583 __ blr(lr);
4584 RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
4585 }
4586 }
4587
MoveFromReturnRegister(Location trg,DataType::Type type)4588 void CodeGeneratorARM64::MoveFromReturnRegister(Location trg, DataType::Type type) {
4589 if (!trg.IsValid()) {
4590 DCHECK(type == DataType::Type::kVoid);
4591 return;
4592 }
4593
4594 DCHECK_NE(type, DataType::Type::kVoid);
4595
4596 if (DataType::IsIntegralType(type) || type == DataType::Type::kReference) {
4597 Register trg_reg = RegisterFrom(trg, type);
4598 Register res_reg = RegisterFrom(ARM64ReturnLocation(type), type);
4599 __ Mov(trg_reg, res_reg, kDiscardForSameWReg);
4600 } else {
4601 VRegister trg_reg = FPRegisterFrom(trg, type);
4602 VRegister res_reg = FPRegisterFrom(ARM64ReturnLocation(type), type);
4603 __ Fmov(trg_reg, res_reg);
4604 }
4605 }
4606
VisitInvokePolymorphic(HInvokePolymorphic * invoke)4607 void LocationsBuilderARM64::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
4608 IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetAllocator(), codegen_);
4609 if (intrinsic.TryDispatch(invoke)) {
4610 return;
4611 }
4612 HandleInvoke(invoke);
4613 }
4614
VisitInvokePolymorphic(HInvokePolymorphic * invoke)4615 void InstructionCodeGeneratorARM64::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
4616 if (TryGenerateIntrinsicCode(invoke, codegen_)) {
4617 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
4618 return;
4619 }
4620 codegen_->GenerateInvokePolymorphicCall(invoke);
4621 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
4622 }
4623
VisitInvokeCustom(HInvokeCustom * invoke)4624 void LocationsBuilderARM64::VisitInvokeCustom(HInvokeCustom* invoke) {
4625 HandleInvoke(invoke);
4626 }
4627
VisitInvokeCustom(HInvokeCustom * invoke)4628 void InstructionCodeGeneratorARM64::VisitInvokeCustom(HInvokeCustom* invoke) {
4629 codegen_->GenerateInvokeCustomCall(invoke);
4630 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
4631 }
4632
NewBootImageIntrinsicPatch(uint32_t intrinsic_data,vixl::aarch64::Label * adrp_label)4633 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageIntrinsicPatch(
4634 uint32_t intrinsic_data,
4635 vixl::aarch64::Label* adrp_label) {
4636 return NewPcRelativePatch(
4637 /* dex_file= */ nullptr, intrinsic_data, adrp_label, &boot_image_other_patches_);
4638 }
4639
NewBootImageRelRoPatch(uint32_t boot_image_offset,vixl::aarch64::Label * adrp_label)4640 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageRelRoPatch(
4641 uint32_t boot_image_offset,
4642 vixl::aarch64::Label* adrp_label) {
4643 return NewPcRelativePatch(
4644 /* dex_file= */ nullptr, boot_image_offset, adrp_label, &boot_image_other_patches_);
4645 }
4646
NewBootImageMethodPatch(MethodReference target_method,vixl::aarch64::Label * adrp_label)4647 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageMethodPatch(
4648 MethodReference target_method,
4649 vixl::aarch64::Label* adrp_label) {
4650 return NewPcRelativePatch(
4651 target_method.dex_file, target_method.index, adrp_label, &boot_image_method_patches_);
4652 }
4653
NewMethodBssEntryPatch(MethodReference target_method,vixl::aarch64::Label * adrp_label)4654 vixl::aarch64::Label* CodeGeneratorARM64::NewMethodBssEntryPatch(
4655 MethodReference target_method,
4656 vixl::aarch64::Label* adrp_label) {
4657 return NewPcRelativePatch(
4658 target_method.dex_file, target_method.index, adrp_label, &method_bss_entry_patches_);
4659 }
4660
NewBootImageTypePatch(const DexFile & dex_file,dex::TypeIndex type_index,vixl::aarch64::Label * adrp_label)4661 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageTypePatch(
4662 const DexFile& dex_file,
4663 dex::TypeIndex type_index,
4664 vixl::aarch64::Label* adrp_label) {
4665 return NewPcRelativePatch(&dex_file, type_index.index_, adrp_label, &boot_image_type_patches_);
4666 }
4667
NewBssEntryTypePatch(const DexFile & dex_file,dex::TypeIndex type_index,vixl::aarch64::Label * adrp_label)4668 vixl::aarch64::Label* CodeGeneratorARM64::NewBssEntryTypePatch(
4669 const DexFile& dex_file,
4670 dex::TypeIndex type_index,
4671 vixl::aarch64::Label* adrp_label) {
4672 return NewPcRelativePatch(&dex_file, type_index.index_, adrp_label, &type_bss_entry_patches_);
4673 }
4674
NewBootImageStringPatch(const DexFile & dex_file,dex::StringIndex string_index,vixl::aarch64::Label * adrp_label)4675 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageStringPatch(
4676 const DexFile& dex_file,
4677 dex::StringIndex string_index,
4678 vixl::aarch64::Label* adrp_label) {
4679 return NewPcRelativePatch(
4680 &dex_file, string_index.index_, adrp_label, &boot_image_string_patches_);
4681 }
4682
NewStringBssEntryPatch(const DexFile & dex_file,dex::StringIndex string_index,vixl::aarch64::Label * adrp_label)4683 vixl::aarch64::Label* CodeGeneratorARM64::NewStringBssEntryPatch(
4684 const DexFile& dex_file,
4685 dex::StringIndex string_index,
4686 vixl::aarch64::Label* adrp_label) {
4687 return NewPcRelativePatch(&dex_file, string_index.index_, adrp_label, &string_bss_entry_patches_);
4688 }
4689
EmitEntrypointThunkCall(ThreadOffset64 entrypoint_offset)4690 void CodeGeneratorARM64::EmitEntrypointThunkCall(ThreadOffset64 entrypoint_offset) {
4691 DCHECK(!__ AllowMacroInstructions()); // In ExactAssemblyScope.
4692 DCHECK(!GetCompilerOptions().IsJitCompiler());
4693 call_entrypoint_patches_.emplace_back(/*dex_file*/ nullptr, entrypoint_offset.Uint32Value());
4694 vixl::aarch64::Label* bl_label = &call_entrypoint_patches_.back().label;
4695 __ bind(bl_label);
4696 __ bl(static_cast<int64_t>(0)); // Placeholder, patched at link-time.
4697 }
4698
EmitBakerReadBarrierCbnz(uint32_t custom_data)4699 void CodeGeneratorARM64::EmitBakerReadBarrierCbnz(uint32_t custom_data) {
4700 DCHECK(!__ AllowMacroInstructions()); // In ExactAssemblyScope.
4701 if (GetCompilerOptions().IsJitCompiler()) {
4702 auto it = jit_baker_read_barrier_slow_paths_.FindOrAdd(custom_data);
4703 vixl::aarch64::Label* slow_path_entry = &it->second.label;
4704 __ cbnz(mr, slow_path_entry);
4705 } else {
4706 baker_read_barrier_patches_.emplace_back(custom_data);
4707 vixl::aarch64::Label* cbnz_label = &baker_read_barrier_patches_.back().label;
4708 __ bind(cbnz_label);
4709 __ cbnz(mr, static_cast<int64_t>(0)); // Placeholder, patched at link-time.
4710 }
4711 }
4712
NewPcRelativePatch(const DexFile * dex_file,uint32_t offset_or_index,vixl::aarch64::Label * adrp_label,ArenaDeque<PcRelativePatchInfo> * patches)4713 vixl::aarch64::Label* CodeGeneratorARM64::NewPcRelativePatch(
4714 const DexFile* dex_file,
4715 uint32_t offset_or_index,
4716 vixl::aarch64::Label* adrp_label,
4717 ArenaDeque<PcRelativePatchInfo>* patches) {
4718 // Add a patch entry and return the label.
4719 patches->emplace_back(dex_file, offset_or_index);
4720 PcRelativePatchInfo* info = &patches->back();
4721 vixl::aarch64::Label* label = &info->label;
4722 // If adrp_label is null, this is the ADRP patch and needs to point to its own label.
4723 info->pc_insn_label = (adrp_label != nullptr) ? adrp_label : label;
4724 return label;
4725 }
4726
DeduplicateBootImageAddressLiteral(uint64_t address)4727 vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateBootImageAddressLiteral(
4728 uint64_t address) {
4729 return DeduplicateUint32Literal(dchecked_integral_cast<uint32_t>(address));
4730 }
4731
DeduplicateJitStringLiteral(const DexFile & dex_file,dex::StringIndex string_index,Handle<mirror::String> handle)4732 vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateJitStringLiteral(
4733 const DexFile& dex_file, dex::StringIndex string_index, Handle<mirror::String> handle) {
4734 ReserveJitStringRoot(StringReference(&dex_file, string_index), handle);
4735 return jit_string_patches_.GetOrCreate(
4736 StringReference(&dex_file, string_index),
4737 [this]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(/* value= */ 0u); });
4738 }
4739
DeduplicateJitClassLiteral(const DexFile & dex_file,dex::TypeIndex type_index,Handle<mirror::Class> handle)4740 vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateJitClassLiteral(
4741 const DexFile& dex_file, dex::TypeIndex type_index, Handle<mirror::Class> handle) {
4742 ReserveJitClassRoot(TypeReference(&dex_file, type_index), handle);
4743 return jit_class_patches_.GetOrCreate(
4744 TypeReference(&dex_file, type_index),
4745 [this]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(/* value= */ 0u); });
4746 }
4747
EmitAdrpPlaceholder(vixl::aarch64::Label * fixup_label,vixl::aarch64::Register reg)4748 void CodeGeneratorARM64::EmitAdrpPlaceholder(vixl::aarch64::Label* fixup_label,
4749 vixl::aarch64::Register reg) {
4750 DCHECK(reg.IsX());
4751 SingleEmissionCheckScope guard(GetVIXLAssembler());
4752 __ Bind(fixup_label);
4753 __ adrp(reg, /* offset placeholder */ static_cast<int64_t>(0));
4754 }
4755
EmitAddPlaceholder(vixl::aarch64::Label * fixup_label,vixl::aarch64::Register out,vixl::aarch64::Register base)4756 void CodeGeneratorARM64::EmitAddPlaceholder(vixl::aarch64::Label* fixup_label,
4757 vixl::aarch64::Register out,
4758 vixl::aarch64::Register base) {
4759 DCHECK(out.IsX());
4760 DCHECK(base.IsX());
4761 SingleEmissionCheckScope guard(GetVIXLAssembler());
4762 __ Bind(fixup_label);
4763 __ add(out, base, Operand(/* offset placeholder */ 0));
4764 }
4765
EmitLdrOffsetPlaceholder(vixl::aarch64::Label * fixup_label,vixl::aarch64::Register out,vixl::aarch64::Register base)4766 void CodeGeneratorARM64::EmitLdrOffsetPlaceholder(vixl::aarch64::Label* fixup_label,
4767 vixl::aarch64::Register out,
4768 vixl::aarch64::Register base) {
4769 DCHECK(base.IsX());
4770 SingleEmissionCheckScope guard(GetVIXLAssembler());
4771 __ Bind(fixup_label);
4772 __ ldr(out, MemOperand(base, /* offset placeholder */ 0));
4773 }
4774
LoadBootImageAddress(vixl::aarch64::Register reg,uint32_t boot_image_reference)4775 void CodeGeneratorARM64::LoadBootImageAddress(vixl::aarch64::Register reg,
4776 uint32_t boot_image_reference) {
4777 if (GetCompilerOptions().IsBootImage()) {
4778 // Add ADRP with its PC-relative type patch.
4779 vixl::aarch64::Label* adrp_label = NewBootImageIntrinsicPatch(boot_image_reference);
4780 EmitAdrpPlaceholder(adrp_label, reg.X());
4781 // Add ADD with its PC-relative type patch.
4782 vixl::aarch64::Label* add_label = NewBootImageIntrinsicPatch(boot_image_reference, adrp_label);
4783 EmitAddPlaceholder(add_label, reg.X(), reg.X());
4784 } else if (GetCompilerOptions().GetCompilePic()) {
4785 // Add ADRP with its PC-relative .data.bimg.rel.ro patch.
4786 vixl::aarch64::Label* adrp_label = NewBootImageRelRoPatch(boot_image_reference);
4787 EmitAdrpPlaceholder(adrp_label, reg.X());
4788 // Add LDR with its PC-relative .data.bimg.rel.ro patch.
4789 vixl::aarch64::Label* ldr_label = NewBootImageRelRoPatch(boot_image_reference, adrp_label);
4790 EmitLdrOffsetPlaceholder(ldr_label, reg.W(), reg.X());
4791 } else {
4792 DCHECK(GetCompilerOptions().IsJitCompiler());
4793 gc::Heap* heap = Runtime::Current()->GetHeap();
4794 DCHECK(!heap->GetBootImageSpaces().empty());
4795 const uint8_t* address = heap->GetBootImageSpaces()[0]->Begin() + boot_image_reference;
4796 __ Ldr(reg.W(), DeduplicateBootImageAddressLiteral(reinterpret_cast<uintptr_t>(address)));
4797 }
4798 }
4799
AllocateInstanceForIntrinsic(HInvokeStaticOrDirect * invoke,uint32_t boot_image_offset)4800 void CodeGeneratorARM64::AllocateInstanceForIntrinsic(HInvokeStaticOrDirect* invoke,
4801 uint32_t boot_image_offset) {
4802 DCHECK(invoke->IsStatic());
4803 InvokeRuntimeCallingConvention calling_convention;
4804 Register argument = calling_convention.GetRegisterAt(0);
4805 if (GetCompilerOptions().IsBootImage()) {
4806 DCHECK_EQ(boot_image_offset, IntrinsicVisitor::IntegerValueOfInfo::kInvalidReference);
4807 // Load the class the same way as for HLoadClass::LoadKind::kBootImageLinkTimePcRelative.
4808 MethodReference target_method = invoke->GetTargetMethod();
4809 dex::TypeIndex type_idx = target_method.dex_file->GetMethodId(target_method.index).class_idx_;
4810 // Add ADRP with its PC-relative type patch.
4811 vixl::aarch64::Label* adrp_label = NewBootImageTypePatch(*target_method.dex_file, type_idx);
4812 EmitAdrpPlaceholder(adrp_label, argument.X());
4813 // Add ADD with its PC-relative type patch.
4814 vixl::aarch64::Label* add_label =
4815 NewBootImageTypePatch(*target_method.dex_file, type_idx, adrp_label);
4816 EmitAddPlaceholder(add_label, argument.X(), argument.X());
4817 } else {
4818 LoadBootImageAddress(argument, boot_image_offset);
4819 }
4820 InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc());
4821 CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
4822 }
4823
4824 template <linker::LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)>
EmitPcRelativeLinkerPatches(const ArenaDeque<PcRelativePatchInfo> & infos,ArenaVector<linker::LinkerPatch> * linker_patches)4825 inline void CodeGeneratorARM64::EmitPcRelativeLinkerPatches(
4826 const ArenaDeque<PcRelativePatchInfo>& infos,
4827 ArenaVector<linker::LinkerPatch>* linker_patches) {
4828 for (const PcRelativePatchInfo& info : infos) {
4829 linker_patches->push_back(Factory(info.label.GetLocation(),
4830 info.target_dex_file,
4831 info.pc_insn_label->GetLocation(),
4832 info.offset_or_index));
4833 }
4834 }
4835
4836 template <linker::LinkerPatch (*Factory)(size_t, uint32_t, uint32_t)>
NoDexFileAdapter(size_t literal_offset,const DexFile * target_dex_file,uint32_t pc_insn_offset,uint32_t boot_image_offset)4837 linker::LinkerPatch NoDexFileAdapter(size_t literal_offset,
4838 const DexFile* target_dex_file,
4839 uint32_t pc_insn_offset,
4840 uint32_t boot_image_offset) {
4841 DCHECK(target_dex_file == nullptr); // Unused for these patches, should be null.
4842 return Factory(literal_offset, pc_insn_offset, boot_image_offset);
4843 }
4844
EmitLinkerPatches(ArenaVector<linker::LinkerPatch> * linker_patches)4845 void CodeGeneratorARM64::EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches) {
4846 DCHECK(linker_patches->empty());
4847 size_t size =
4848 boot_image_method_patches_.size() +
4849 method_bss_entry_patches_.size() +
4850 boot_image_type_patches_.size() +
4851 type_bss_entry_patches_.size() +
4852 boot_image_string_patches_.size() +
4853 string_bss_entry_patches_.size() +
4854 boot_image_other_patches_.size() +
4855 call_entrypoint_patches_.size() +
4856 baker_read_barrier_patches_.size();
4857 linker_patches->reserve(size);
4858 if (GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()) {
4859 EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeMethodPatch>(
4860 boot_image_method_patches_, linker_patches);
4861 EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeTypePatch>(
4862 boot_image_type_patches_, linker_patches);
4863 EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeStringPatch>(
4864 boot_image_string_patches_, linker_patches);
4865 } else {
4866 DCHECK(boot_image_method_patches_.empty());
4867 DCHECK(boot_image_type_patches_.empty());
4868 DCHECK(boot_image_string_patches_.empty());
4869 }
4870 if (GetCompilerOptions().IsBootImage()) {
4871 EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::IntrinsicReferencePatch>>(
4872 boot_image_other_patches_, linker_patches);
4873 } else {
4874 EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::DataBimgRelRoPatch>>(
4875 boot_image_other_patches_, linker_patches);
4876 }
4877 EmitPcRelativeLinkerPatches<linker::LinkerPatch::MethodBssEntryPatch>(
4878 method_bss_entry_patches_, linker_patches);
4879 EmitPcRelativeLinkerPatches<linker::LinkerPatch::TypeBssEntryPatch>(
4880 type_bss_entry_patches_, linker_patches);
4881 EmitPcRelativeLinkerPatches<linker::LinkerPatch::StringBssEntryPatch>(
4882 string_bss_entry_patches_, linker_patches);
4883 for (const PatchInfo<vixl::aarch64::Label>& info : call_entrypoint_patches_) {
4884 DCHECK(info.target_dex_file == nullptr);
4885 linker_patches->push_back(linker::LinkerPatch::CallEntrypointPatch(
4886 info.label.GetLocation(), info.offset_or_index));
4887 }
4888 for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) {
4889 linker_patches->push_back(linker::LinkerPatch::BakerReadBarrierBranchPatch(
4890 info.label.GetLocation(), info.custom_data));
4891 }
4892 DCHECK_EQ(size, linker_patches->size());
4893 }
4894
NeedsThunkCode(const linker::LinkerPatch & patch) const4895 bool CodeGeneratorARM64::NeedsThunkCode(const linker::LinkerPatch& patch) const {
4896 return patch.GetType() == linker::LinkerPatch::Type::kCallEntrypoint ||
4897 patch.GetType() == linker::LinkerPatch::Type::kBakerReadBarrierBranch ||
4898 patch.GetType() == linker::LinkerPatch::Type::kCallRelative;
4899 }
4900
EmitThunkCode(const linker::LinkerPatch & patch,ArenaVector<uint8_t> * code,std::string * debug_name)4901 void CodeGeneratorARM64::EmitThunkCode(const linker::LinkerPatch& patch,
4902 /*out*/ ArenaVector<uint8_t>* code,
4903 /*out*/ std::string* debug_name) {
4904 Arm64Assembler assembler(GetGraph()->GetAllocator());
4905 switch (patch.GetType()) {
4906 case linker::LinkerPatch::Type::kCallRelative: {
4907 // The thunk just uses the entry point in the ArtMethod. This works even for calls
4908 // to the generic JNI and interpreter trampolines.
4909 Offset offset(ArtMethod::EntryPointFromQuickCompiledCodeOffset(
4910 kArm64PointerSize).Int32Value());
4911 assembler.JumpTo(ManagedRegister(arm64::X0), offset, ManagedRegister(arm64::IP0));
4912 if (GetCompilerOptions().GenerateAnyDebugInfo()) {
4913 *debug_name = "MethodCallThunk";
4914 }
4915 break;
4916 }
4917 case linker::LinkerPatch::Type::kCallEntrypoint: {
4918 Offset offset(patch.EntrypointOffset());
4919 assembler.JumpTo(ManagedRegister(arm64::TR), offset, ManagedRegister(arm64::IP0));
4920 if (GetCompilerOptions().GenerateAnyDebugInfo()) {
4921 *debug_name = "EntrypointCallThunk_" + std::to_string(offset.Uint32Value());
4922 }
4923 break;
4924 }
4925 case linker::LinkerPatch::Type::kBakerReadBarrierBranch: {
4926 DCHECK_EQ(patch.GetBakerCustomValue2(), 0u);
4927 CompileBakerReadBarrierThunk(assembler, patch.GetBakerCustomValue1(), debug_name);
4928 break;
4929 }
4930 default:
4931 LOG(FATAL) << "Unexpected patch type " << patch.GetType();
4932 UNREACHABLE();
4933 }
4934
4935 // Ensure we emit the literal pool if any.
4936 assembler.FinalizeCode();
4937 code->resize(assembler.CodeSize());
4938 MemoryRegion code_region(code->data(), code->size());
4939 assembler.FinalizeInstructions(code_region);
4940 }
4941
DeduplicateUint32Literal(uint32_t value)4942 vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateUint32Literal(uint32_t value) {
4943 return uint32_literals_.GetOrCreate(
4944 value,
4945 [this, value]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(value); });
4946 }
4947
DeduplicateUint64Literal(uint64_t value)4948 vixl::aarch64::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateUint64Literal(uint64_t value) {
4949 return uint64_literals_.GetOrCreate(
4950 value,
4951 [this, value]() { return __ CreateLiteralDestroyedWithPool<uint64_t>(value); });
4952 }
4953
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)4954 void InstructionCodeGeneratorARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
4955 // Explicit clinit checks triggered by static invokes must have been pruned by
4956 // art::PrepareForRegisterAllocation.
4957 DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
4958
4959 if (TryGenerateIntrinsicCode(invoke, codegen_)) {
4960 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
4961 return;
4962 }
4963
4964 LocationSummary* locations = invoke->GetLocations();
4965 codegen_->GenerateStaticOrDirectCall(
4966 invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation());
4967
4968 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
4969 }
4970
VisitInvokeVirtual(HInvokeVirtual * invoke)4971 void InstructionCodeGeneratorARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) {
4972 if (TryGenerateIntrinsicCode(invoke, codegen_)) {
4973 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
4974 return;
4975 }
4976
4977 {
4978 // Ensure that between the BLR (emitted by GenerateVirtualCall) and RecordPcInfo there
4979 // are no pools emitted.
4980 EmissionCheckScope guard(GetVIXLAssembler(), kInvokeCodeMarginSizeInBytes);
4981 codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
4982 DCHECK(!codegen_->IsLeafMethod());
4983 }
4984
4985 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
4986 }
4987
GetSupportedLoadClassKind(HLoadClass::LoadKind desired_class_load_kind)4988 HLoadClass::LoadKind CodeGeneratorARM64::GetSupportedLoadClassKind(
4989 HLoadClass::LoadKind desired_class_load_kind) {
4990 switch (desired_class_load_kind) {
4991 case HLoadClass::LoadKind::kInvalid:
4992 LOG(FATAL) << "UNREACHABLE";
4993 UNREACHABLE();
4994 case HLoadClass::LoadKind::kReferrersClass:
4995 break;
4996 case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
4997 case HLoadClass::LoadKind::kBootImageRelRo:
4998 case HLoadClass::LoadKind::kBssEntry:
4999 DCHECK(!GetCompilerOptions().IsJitCompiler());
5000 break;
5001 case HLoadClass::LoadKind::kJitBootImageAddress:
5002 case HLoadClass::LoadKind::kJitTableAddress:
5003 DCHECK(GetCompilerOptions().IsJitCompiler());
5004 break;
5005 case HLoadClass::LoadKind::kRuntimeCall:
5006 break;
5007 }
5008 return desired_class_load_kind;
5009 }
5010
VisitLoadClass(HLoadClass * cls)5011 void LocationsBuilderARM64::VisitLoadClass(HLoadClass* cls) {
5012 HLoadClass::LoadKind load_kind = cls->GetLoadKind();
5013 if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
5014 InvokeRuntimeCallingConvention calling_convention;
5015 CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(
5016 cls,
5017 LocationFrom(calling_convention.GetRegisterAt(0)),
5018 LocationFrom(vixl::aarch64::x0));
5019 DCHECK(calling_convention.GetRegisterAt(0).Is(vixl::aarch64::x0));
5020 return;
5021 }
5022 DCHECK(!cls->NeedsAccessCheck());
5023
5024 const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage();
5025 LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier)
5026 ? LocationSummary::kCallOnSlowPath
5027 : LocationSummary::kNoCall;
5028 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(cls, call_kind);
5029 if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) {
5030 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
5031 }
5032
5033 if (load_kind == HLoadClass::LoadKind::kReferrersClass) {
5034 locations->SetInAt(0, Location::RequiresRegister());
5035 }
5036 locations->SetOut(Location::RequiresRegister());
5037 if (cls->GetLoadKind() == HLoadClass::LoadKind::kBssEntry) {
5038 if (!kUseReadBarrier || kUseBakerReadBarrier) {
5039 // Rely on the type resolution or initialization and marking to save everything we need.
5040 locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
5041 } else {
5042 // For non-Baker read barrier we have a temp-clobbering call.
5043 }
5044 }
5045 }
5046
5047 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
5048 // move.
VisitLoadClass(HLoadClass * cls)5049 void InstructionCodeGeneratorARM64::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS {
5050 HLoadClass::LoadKind load_kind = cls->GetLoadKind();
5051 if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
5052 codegen_->GenerateLoadClassRuntimeCall(cls);
5053 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5054 return;
5055 }
5056 DCHECK(!cls->NeedsAccessCheck());
5057
5058 Location out_loc = cls->GetLocations()->Out();
5059 Register out = OutputRegister(cls);
5060
5061 const ReadBarrierOption read_barrier_option = cls->IsInBootImage()
5062 ? kWithoutReadBarrier
5063 : kCompilerReadBarrierOption;
5064 bool generate_null_check = false;
5065 switch (load_kind) {
5066 case HLoadClass::LoadKind::kReferrersClass: {
5067 DCHECK(!cls->CanCallRuntime());
5068 DCHECK(!cls->MustGenerateClinitCheck());
5069 // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
5070 Register current_method = InputRegisterAt(cls, 0);
5071 codegen_->GenerateGcRootFieldLoad(cls,
5072 out_loc,
5073 current_method,
5074 ArtMethod::DeclaringClassOffset().Int32Value(),
5075 /* fixup_label= */ nullptr,
5076 read_barrier_option);
5077 break;
5078 }
5079 case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: {
5080 DCHECK(codegen_->GetCompilerOptions().IsBootImage() ||
5081 codegen_->GetCompilerOptions().IsBootImageExtension());
5082 DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
5083 // Add ADRP with its PC-relative type patch.
5084 const DexFile& dex_file = cls->GetDexFile();
5085 dex::TypeIndex type_index = cls->GetTypeIndex();
5086 vixl::aarch64::Label* adrp_label = codegen_->NewBootImageTypePatch(dex_file, type_index);
5087 codegen_->EmitAdrpPlaceholder(adrp_label, out.X());
5088 // Add ADD with its PC-relative type patch.
5089 vixl::aarch64::Label* add_label =
5090 codegen_->NewBootImageTypePatch(dex_file, type_index, adrp_label);
5091 codegen_->EmitAddPlaceholder(add_label, out.X(), out.X());
5092 break;
5093 }
5094 case HLoadClass::LoadKind::kBootImageRelRo: {
5095 DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
5096 uint32_t boot_image_offset = codegen_->GetBootImageOffset(cls);
5097 // Add ADRP with its PC-relative .data.bimg.rel.ro patch.
5098 vixl::aarch64::Label* adrp_label = codegen_->NewBootImageRelRoPatch(boot_image_offset);
5099 codegen_->EmitAdrpPlaceholder(adrp_label, out.X());
5100 // Add LDR with its PC-relative .data.bimg.rel.ro patch.
5101 vixl::aarch64::Label* ldr_label =
5102 codegen_->NewBootImageRelRoPatch(boot_image_offset, adrp_label);
5103 codegen_->EmitLdrOffsetPlaceholder(ldr_label, out.W(), out.X());
5104 break;
5105 }
5106 case HLoadClass::LoadKind::kBssEntry: {
5107 // Add ADRP with its PC-relative Class .bss entry patch.
5108 const DexFile& dex_file = cls->GetDexFile();
5109 dex::TypeIndex type_index = cls->GetTypeIndex();
5110 vixl::aarch64::Register temp = XRegisterFrom(out_loc);
5111 vixl::aarch64::Label* adrp_label = codegen_->NewBssEntryTypePatch(dex_file, type_index);
5112 codegen_->EmitAdrpPlaceholder(adrp_label, temp);
5113 // Add LDR with its PC-relative Class .bss entry patch.
5114 vixl::aarch64::Label* ldr_label =
5115 codegen_->NewBssEntryTypePatch(dex_file, type_index, adrp_label);
5116 // /* GcRoot<mirror::Class> */ out = *(base_address + offset) /* PC-relative */
5117 // All aligned loads are implicitly atomic consume operations on ARM64.
5118 codegen_->GenerateGcRootFieldLoad(cls,
5119 out_loc,
5120 temp,
5121 /* offset placeholder */ 0u,
5122 ldr_label,
5123 read_barrier_option);
5124 generate_null_check = true;
5125 break;
5126 }
5127 case HLoadClass::LoadKind::kJitBootImageAddress: {
5128 DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
5129 uint32_t address = reinterpret_cast32<uint32_t>(cls->GetClass().Get());
5130 DCHECK_NE(address, 0u);
5131 __ Ldr(out.W(), codegen_->DeduplicateBootImageAddressLiteral(address));
5132 break;
5133 }
5134 case HLoadClass::LoadKind::kJitTableAddress: {
5135 __ Ldr(out, codegen_->DeduplicateJitClassLiteral(cls->GetDexFile(),
5136 cls->GetTypeIndex(),
5137 cls->GetClass()));
5138 codegen_->GenerateGcRootFieldLoad(cls,
5139 out_loc,
5140 out.X(),
5141 /* offset= */ 0,
5142 /* fixup_label= */ nullptr,
5143 read_barrier_option);
5144 break;
5145 }
5146 case HLoadClass::LoadKind::kRuntimeCall:
5147 case HLoadClass::LoadKind::kInvalid:
5148 LOG(FATAL) << "UNREACHABLE";
5149 UNREACHABLE();
5150 }
5151
5152 bool do_clinit = cls->MustGenerateClinitCheck();
5153 if (generate_null_check || do_clinit) {
5154 DCHECK(cls->CanCallRuntime());
5155 SlowPathCodeARM64* slow_path =
5156 new (codegen_->GetScopedAllocator()) LoadClassSlowPathARM64(cls, cls);
5157 codegen_->AddSlowPath(slow_path);
5158 if (generate_null_check) {
5159 __ Cbz(out, slow_path->GetEntryLabel());
5160 }
5161 if (cls->MustGenerateClinitCheck()) {
5162 GenerateClassInitializationCheck(slow_path, out);
5163 } else {
5164 __ Bind(slow_path->GetExitLabel());
5165 }
5166 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5167 }
5168 }
5169
VisitLoadMethodHandle(HLoadMethodHandle * load)5170 void LocationsBuilderARM64::VisitLoadMethodHandle(HLoadMethodHandle* load) {
5171 InvokeRuntimeCallingConvention calling_convention;
5172 Location location = LocationFrom(calling_convention.GetRegisterAt(0));
5173 CodeGenerator::CreateLoadMethodHandleRuntimeCallLocationSummary(load, location, location);
5174 }
5175
VisitLoadMethodHandle(HLoadMethodHandle * load)5176 void InstructionCodeGeneratorARM64::VisitLoadMethodHandle(HLoadMethodHandle* load) {
5177 codegen_->GenerateLoadMethodHandleRuntimeCall(load);
5178 }
5179
VisitLoadMethodType(HLoadMethodType * load)5180 void LocationsBuilderARM64::VisitLoadMethodType(HLoadMethodType* load) {
5181 InvokeRuntimeCallingConvention calling_convention;
5182 Location location = LocationFrom(calling_convention.GetRegisterAt(0));
5183 CodeGenerator::CreateLoadMethodTypeRuntimeCallLocationSummary(load, location, location);
5184 }
5185
VisitLoadMethodType(HLoadMethodType * load)5186 void InstructionCodeGeneratorARM64::VisitLoadMethodType(HLoadMethodType* load) {
5187 codegen_->GenerateLoadMethodTypeRuntimeCall(load);
5188 }
5189
GetExceptionTlsAddress()5190 static MemOperand GetExceptionTlsAddress() {
5191 return MemOperand(tr, Thread::ExceptionOffset<kArm64PointerSize>().Int32Value());
5192 }
5193
VisitLoadException(HLoadException * load)5194 void LocationsBuilderARM64::VisitLoadException(HLoadException* load) {
5195 LocationSummary* locations =
5196 new (GetGraph()->GetAllocator()) LocationSummary(load, LocationSummary::kNoCall);
5197 locations->SetOut(Location::RequiresRegister());
5198 }
5199
VisitLoadException(HLoadException * instruction)5200 void InstructionCodeGeneratorARM64::VisitLoadException(HLoadException* instruction) {
5201 __ Ldr(OutputRegister(instruction), GetExceptionTlsAddress());
5202 }
5203
VisitClearException(HClearException * clear)5204 void LocationsBuilderARM64::VisitClearException(HClearException* clear) {
5205 new (GetGraph()->GetAllocator()) LocationSummary(clear, LocationSummary::kNoCall);
5206 }
5207
VisitClearException(HClearException * clear ATTRIBUTE_UNUSED)5208 void InstructionCodeGeneratorARM64::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
5209 __ Str(wzr, GetExceptionTlsAddress());
5210 }
5211
GetSupportedLoadStringKind(HLoadString::LoadKind desired_string_load_kind)5212 HLoadString::LoadKind CodeGeneratorARM64::GetSupportedLoadStringKind(
5213 HLoadString::LoadKind desired_string_load_kind) {
5214 switch (desired_string_load_kind) {
5215 case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
5216 case HLoadString::LoadKind::kBootImageRelRo:
5217 case HLoadString::LoadKind::kBssEntry:
5218 DCHECK(!GetCompilerOptions().IsJitCompiler());
5219 break;
5220 case HLoadString::LoadKind::kJitBootImageAddress:
5221 case HLoadString::LoadKind::kJitTableAddress:
5222 DCHECK(GetCompilerOptions().IsJitCompiler());
5223 break;
5224 case HLoadString::LoadKind::kRuntimeCall:
5225 break;
5226 }
5227 return desired_string_load_kind;
5228 }
5229
VisitLoadString(HLoadString * load)5230 void LocationsBuilderARM64::VisitLoadString(HLoadString* load) {
5231 LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load);
5232 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(load, call_kind);
5233 if (load->GetLoadKind() == HLoadString::LoadKind::kRuntimeCall) {
5234 InvokeRuntimeCallingConvention calling_convention;
5235 locations->SetOut(calling_convention.GetReturnLocation(load->GetType()));
5236 } else {
5237 locations->SetOut(Location::RequiresRegister());
5238 if (load->GetLoadKind() == HLoadString::LoadKind::kBssEntry) {
5239 if (!kUseReadBarrier || kUseBakerReadBarrier) {
5240 // Rely on the pResolveString and marking to save everything we need.
5241 locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
5242 } else {
5243 // For non-Baker read barrier we have a temp-clobbering call.
5244 }
5245 }
5246 }
5247 }
5248
5249 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
5250 // move.
VisitLoadString(HLoadString * load)5251 void InstructionCodeGeneratorARM64::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS {
5252 Register out = OutputRegister(load);
5253 Location out_loc = load->GetLocations()->Out();
5254
5255 switch (load->GetLoadKind()) {
5256 case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
5257 DCHECK(codegen_->GetCompilerOptions().IsBootImage() ||
5258 codegen_->GetCompilerOptions().IsBootImageExtension());
5259 // Add ADRP with its PC-relative String patch.
5260 const DexFile& dex_file = load->GetDexFile();
5261 const dex::StringIndex string_index = load->GetStringIndex();
5262 vixl::aarch64::Label* adrp_label = codegen_->NewBootImageStringPatch(dex_file, string_index);
5263 codegen_->EmitAdrpPlaceholder(adrp_label, out.X());
5264 // Add ADD with its PC-relative String patch.
5265 vixl::aarch64::Label* add_label =
5266 codegen_->NewBootImageStringPatch(dex_file, string_index, adrp_label);
5267 codegen_->EmitAddPlaceholder(add_label, out.X(), out.X());
5268 return;
5269 }
5270 case HLoadString::LoadKind::kBootImageRelRo: {
5271 DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
5272 // Add ADRP with its PC-relative .data.bimg.rel.ro patch.
5273 uint32_t boot_image_offset = codegen_->GetBootImageOffset(load);
5274 vixl::aarch64::Label* adrp_label = codegen_->NewBootImageRelRoPatch(boot_image_offset);
5275 codegen_->EmitAdrpPlaceholder(adrp_label, out.X());
5276 // Add LDR with its PC-relative .data.bimg.rel.ro patch.
5277 vixl::aarch64::Label* ldr_label =
5278 codegen_->NewBootImageRelRoPatch(boot_image_offset, adrp_label);
5279 codegen_->EmitLdrOffsetPlaceholder(ldr_label, out.W(), out.X());
5280 return;
5281 }
5282 case HLoadString::LoadKind::kBssEntry: {
5283 // Add ADRP with its PC-relative String .bss entry patch.
5284 const DexFile& dex_file = load->GetDexFile();
5285 const dex::StringIndex string_index = load->GetStringIndex();
5286 Register temp = XRegisterFrom(out_loc);
5287 vixl::aarch64::Label* adrp_label = codegen_->NewStringBssEntryPatch(dex_file, string_index);
5288 codegen_->EmitAdrpPlaceholder(adrp_label, temp);
5289 // Add LDR with its PC-relative String .bss entry patch.
5290 vixl::aarch64::Label* ldr_label =
5291 codegen_->NewStringBssEntryPatch(dex_file, string_index, adrp_label);
5292 // /* GcRoot<mirror::String> */ out = *(base_address + offset) /* PC-relative */
5293 // All aligned loads are implicitly atomic consume operations on ARM64.
5294 codegen_->GenerateGcRootFieldLoad(load,
5295 out_loc,
5296 temp,
5297 /* offset placeholder */ 0u,
5298 ldr_label,
5299 kCompilerReadBarrierOption);
5300 SlowPathCodeARM64* slow_path =
5301 new (codegen_->GetScopedAllocator()) LoadStringSlowPathARM64(load);
5302 codegen_->AddSlowPath(slow_path);
5303 __ Cbz(out.X(), slow_path->GetEntryLabel());
5304 __ Bind(slow_path->GetExitLabel());
5305 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5306 return;
5307 }
5308 case HLoadString::LoadKind::kJitBootImageAddress: {
5309 uint32_t address = reinterpret_cast32<uint32_t>(load->GetString().Get());
5310 DCHECK_NE(address, 0u);
5311 __ Ldr(out.W(), codegen_->DeduplicateBootImageAddressLiteral(address));
5312 return;
5313 }
5314 case HLoadString::LoadKind::kJitTableAddress: {
5315 __ Ldr(out, codegen_->DeduplicateJitStringLiteral(load->GetDexFile(),
5316 load->GetStringIndex(),
5317 load->GetString()));
5318 codegen_->GenerateGcRootFieldLoad(load,
5319 out_loc,
5320 out.X(),
5321 /* offset= */ 0,
5322 /* fixup_label= */ nullptr,
5323 kCompilerReadBarrierOption);
5324 return;
5325 }
5326 default:
5327 break;
5328 }
5329
5330 // TODO: Re-add the compiler code to do string dex cache lookup again.
5331 InvokeRuntimeCallingConvention calling_convention;
5332 DCHECK_EQ(calling_convention.GetRegisterAt(0).GetCode(), out.GetCode());
5333 __ Mov(calling_convention.GetRegisterAt(0).W(), load->GetStringIndex().index_);
5334 codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc());
5335 CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
5336 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5337 }
5338
VisitLongConstant(HLongConstant * constant)5339 void LocationsBuilderARM64::VisitLongConstant(HLongConstant* constant) {
5340 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant);
5341 locations->SetOut(Location::ConstantLocation(constant));
5342 }
5343
VisitLongConstant(HLongConstant * constant ATTRIBUTE_UNUSED)5344 void InstructionCodeGeneratorARM64::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
5345 // Will be generated at use site.
5346 }
5347
VisitMonitorOperation(HMonitorOperation * instruction)5348 void LocationsBuilderARM64::VisitMonitorOperation(HMonitorOperation* instruction) {
5349 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
5350 instruction, LocationSummary::kCallOnMainOnly);
5351 InvokeRuntimeCallingConvention calling_convention;
5352 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
5353 }
5354
VisitMonitorOperation(HMonitorOperation * instruction)5355 void InstructionCodeGeneratorARM64::VisitMonitorOperation(HMonitorOperation* instruction) {
5356 codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject : kQuickUnlockObject,
5357 instruction,
5358 instruction->GetDexPc());
5359 if (instruction->IsEnter()) {
5360 CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
5361 } else {
5362 CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
5363 }
5364 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5365 }
5366
VisitMul(HMul * mul)5367 void LocationsBuilderARM64::VisitMul(HMul* mul) {
5368 LocationSummary* locations =
5369 new (GetGraph()->GetAllocator()) LocationSummary(mul, LocationSummary::kNoCall);
5370 switch (mul->GetResultType()) {
5371 case DataType::Type::kInt32:
5372 case DataType::Type::kInt64:
5373 locations->SetInAt(0, Location::RequiresRegister());
5374 locations->SetInAt(1, Location::RequiresRegister());
5375 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5376 break;
5377
5378 case DataType::Type::kFloat32:
5379 case DataType::Type::kFloat64:
5380 locations->SetInAt(0, Location::RequiresFpuRegister());
5381 locations->SetInAt(1, Location::RequiresFpuRegister());
5382 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
5383 break;
5384
5385 default:
5386 LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
5387 }
5388 }
5389
VisitMul(HMul * mul)5390 void InstructionCodeGeneratorARM64::VisitMul(HMul* mul) {
5391 switch (mul->GetResultType()) {
5392 case DataType::Type::kInt32:
5393 case DataType::Type::kInt64:
5394 __ Mul(OutputRegister(mul), InputRegisterAt(mul, 0), InputRegisterAt(mul, 1));
5395 break;
5396
5397 case DataType::Type::kFloat32:
5398 case DataType::Type::kFloat64:
5399 __ Fmul(OutputFPRegister(mul), InputFPRegisterAt(mul, 0), InputFPRegisterAt(mul, 1));
5400 break;
5401
5402 default:
5403 LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
5404 }
5405 }
5406
VisitNeg(HNeg * neg)5407 void LocationsBuilderARM64::VisitNeg(HNeg* neg) {
5408 LocationSummary* locations =
5409 new (GetGraph()->GetAllocator()) LocationSummary(neg, LocationSummary::kNoCall);
5410 switch (neg->GetResultType()) {
5411 case DataType::Type::kInt32:
5412 case DataType::Type::kInt64:
5413 locations->SetInAt(0, ARM64EncodableConstantOrRegister(neg->InputAt(0), neg));
5414 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5415 break;
5416
5417 case DataType::Type::kFloat32:
5418 case DataType::Type::kFloat64:
5419 locations->SetInAt(0, Location::RequiresFpuRegister());
5420 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
5421 break;
5422
5423 default:
5424 LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
5425 }
5426 }
5427
VisitNeg(HNeg * neg)5428 void InstructionCodeGeneratorARM64::VisitNeg(HNeg* neg) {
5429 switch (neg->GetResultType()) {
5430 case DataType::Type::kInt32:
5431 case DataType::Type::kInt64:
5432 __ Neg(OutputRegister(neg), InputOperandAt(neg, 0));
5433 break;
5434
5435 case DataType::Type::kFloat32:
5436 case DataType::Type::kFloat64:
5437 __ Fneg(OutputFPRegister(neg), InputFPRegisterAt(neg, 0));
5438 break;
5439
5440 default:
5441 LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
5442 }
5443 }
5444
VisitNewArray(HNewArray * instruction)5445 void LocationsBuilderARM64::VisitNewArray(HNewArray* instruction) {
5446 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
5447 instruction, LocationSummary::kCallOnMainOnly);
5448 InvokeRuntimeCallingConvention calling_convention;
5449 locations->SetOut(LocationFrom(x0));
5450 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
5451 locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
5452 }
5453
VisitNewArray(HNewArray * instruction)5454 void InstructionCodeGeneratorARM64::VisitNewArray(HNewArray* instruction) {
5455 // Note: if heap poisoning is enabled, the entry point takes care of poisoning the reference.
5456 QuickEntrypointEnum entrypoint = CodeGenerator::GetArrayAllocationEntrypoint(instruction);
5457 codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc());
5458 CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>();
5459 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5460 }
5461
VisitNewInstance(HNewInstance * instruction)5462 void LocationsBuilderARM64::VisitNewInstance(HNewInstance* instruction) {
5463 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
5464 instruction, LocationSummary::kCallOnMainOnly);
5465 InvokeRuntimeCallingConvention calling_convention;
5466 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
5467 locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference));
5468 }
5469
VisitNewInstance(HNewInstance * instruction)5470 void InstructionCodeGeneratorARM64::VisitNewInstance(HNewInstance* instruction) {
5471 codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc());
5472 CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
5473 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5474 }
5475
VisitNot(HNot * instruction)5476 void LocationsBuilderARM64::VisitNot(HNot* instruction) {
5477 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
5478 locations->SetInAt(0, Location::RequiresRegister());
5479 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5480 }
5481
VisitNot(HNot * instruction)5482 void InstructionCodeGeneratorARM64::VisitNot(HNot* instruction) {
5483 switch (instruction->GetResultType()) {
5484 case DataType::Type::kInt32:
5485 case DataType::Type::kInt64:
5486 __ Mvn(OutputRegister(instruction), InputOperandAt(instruction, 0));
5487 break;
5488
5489 default:
5490 LOG(FATAL) << "Unexpected type for not operation " << instruction->GetResultType();
5491 }
5492 }
5493
VisitBooleanNot(HBooleanNot * instruction)5494 void LocationsBuilderARM64::VisitBooleanNot(HBooleanNot* instruction) {
5495 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
5496 locations->SetInAt(0, Location::RequiresRegister());
5497 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5498 }
5499
VisitBooleanNot(HBooleanNot * instruction)5500 void InstructionCodeGeneratorARM64::VisitBooleanNot(HBooleanNot* instruction) {
5501 __ Eor(OutputRegister(instruction), InputRegisterAt(instruction, 0), vixl::aarch64::Operand(1));
5502 }
5503
VisitNullCheck(HNullCheck * instruction)5504 void LocationsBuilderARM64::VisitNullCheck(HNullCheck* instruction) {
5505 LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
5506 locations->SetInAt(0, Location::RequiresRegister());
5507 }
5508
GenerateImplicitNullCheck(HNullCheck * instruction)5509 void CodeGeneratorARM64::GenerateImplicitNullCheck(HNullCheck* instruction) {
5510 if (CanMoveNullCheckToUser(instruction)) {
5511 return;
5512 }
5513 {
5514 // Ensure that between load and RecordPcInfo there are no pools emitted.
5515 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
5516 Location obj = instruction->GetLocations()->InAt(0);
5517 __ Ldr(wzr, HeapOperandFrom(obj, Offset(0)));
5518 RecordPcInfo(instruction, instruction->GetDexPc());
5519 }
5520 }
5521
GenerateExplicitNullCheck(HNullCheck * instruction)5522 void CodeGeneratorARM64::GenerateExplicitNullCheck(HNullCheck* instruction) {
5523 SlowPathCodeARM64* slow_path = new (GetScopedAllocator()) NullCheckSlowPathARM64(instruction);
5524 AddSlowPath(slow_path);
5525
5526 LocationSummary* locations = instruction->GetLocations();
5527 Location obj = locations->InAt(0);
5528
5529 __ Cbz(RegisterFrom(obj, instruction->InputAt(0)->GetType()), slow_path->GetEntryLabel());
5530 }
5531
VisitNullCheck(HNullCheck * instruction)5532 void InstructionCodeGeneratorARM64::VisitNullCheck(HNullCheck* instruction) {
5533 codegen_->GenerateNullCheck(instruction);
5534 }
5535
VisitOr(HOr * instruction)5536 void LocationsBuilderARM64::VisitOr(HOr* instruction) {
5537 HandleBinaryOp(instruction);
5538 }
5539
VisitOr(HOr * instruction)5540 void InstructionCodeGeneratorARM64::VisitOr(HOr* instruction) {
5541 HandleBinaryOp(instruction);
5542 }
5543
VisitParallelMove(HParallelMove * instruction ATTRIBUTE_UNUSED)5544 void LocationsBuilderARM64::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
5545 LOG(FATAL) << "Unreachable";
5546 }
5547
VisitParallelMove(HParallelMove * instruction)5548 void InstructionCodeGeneratorARM64::VisitParallelMove(HParallelMove* instruction) {
5549 if (instruction->GetNext()->IsSuspendCheck() &&
5550 instruction->GetBlock()->GetLoopInformation() != nullptr) {
5551 HSuspendCheck* suspend_check = instruction->GetNext()->AsSuspendCheck();
5552 // The back edge will generate the suspend check.
5553 codegen_->ClearSpillSlotsFromLoopPhisInStackMap(suspend_check, instruction);
5554 }
5555
5556 codegen_->GetMoveResolver()->EmitNativeCode(instruction);
5557 }
5558
VisitParameterValue(HParameterValue * instruction)5559 void LocationsBuilderARM64::VisitParameterValue(HParameterValue* instruction) {
5560 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
5561 Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
5562 if (location.IsStackSlot()) {
5563 location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
5564 } else if (location.IsDoubleStackSlot()) {
5565 location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
5566 }
5567 locations->SetOut(location);
5568 }
5569
VisitParameterValue(HParameterValue * instruction ATTRIBUTE_UNUSED)5570 void InstructionCodeGeneratorARM64::VisitParameterValue(
5571 HParameterValue* instruction ATTRIBUTE_UNUSED) {
5572 // Nothing to do, the parameter is already at its location.
5573 }
5574
VisitCurrentMethod(HCurrentMethod * instruction)5575 void LocationsBuilderARM64::VisitCurrentMethod(HCurrentMethod* instruction) {
5576 LocationSummary* locations =
5577 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
5578 locations->SetOut(LocationFrom(kArtMethodRegister));
5579 }
5580
VisitCurrentMethod(HCurrentMethod * instruction ATTRIBUTE_UNUSED)5581 void InstructionCodeGeneratorARM64::VisitCurrentMethod(
5582 HCurrentMethod* instruction ATTRIBUTE_UNUSED) {
5583 // Nothing to do, the method is already at its location.
5584 }
5585
VisitPhi(HPhi * instruction)5586 void LocationsBuilderARM64::VisitPhi(HPhi* instruction) {
5587 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
5588 for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) {
5589 locations->SetInAt(i, Location::Any());
5590 }
5591 locations->SetOut(Location::Any());
5592 }
5593
VisitPhi(HPhi * instruction ATTRIBUTE_UNUSED)5594 void InstructionCodeGeneratorARM64::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
5595 LOG(FATAL) << "Unreachable";
5596 }
5597
VisitRem(HRem * rem)5598 void LocationsBuilderARM64::VisitRem(HRem* rem) {
5599 DataType::Type type = rem->GetResultType();
5600 LocationSummary::CallKind call_kind =
5601 DataType::IsFloatingPointType(type) ? LocationSummary::kCallOnMainOnly
5602 : LocationSummary::kNoCall;
5603 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(rem, call_kind);
5604
5605 switch (type) {
5606 case DataType::Type::kInt32:
5607 case DataType::Type::kInt64:
5608 locations->SetInAt(0, Location::RequiresRegister());
5609 locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1)));
5610 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5611 break;
5612
5613 case DataType::Type::kFloat32:
5614 case DataType::Type::kFloat64: {
5615 InvokeRuntimeCallingConvention calling_convention;
5616 locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0)));
5617 locations->SetInAt(1, LocationFrom(calling_convention.GetFpuRegisterAt(1)));
5618 locations->SetOut(calling_convention.GetReturnLocation(type));
5619
5620 break;
5621 }
5622
5623 default:
5624 LOG(FATAL) << "Unexpected rem type " << type;
5625 }
5626 }
5627
GenerateIntRemForPower2Denom(HRem * instruction)5628 void InstructionCodeGeneratorARM64::GenerateIntRemForPower2Denom(HRem *instruction) {
5629 int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1));
5630 uint64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm));
5631 DCHECK(IsPowerOfTwo(abs_imm)) << abs_imm;
5632
5633 Register out = OutputRegister(instruction);
5634 Register dividend = InputRegisterAt(instruction, 0);
5635
5636 if (HasNonNegativeResultOrMinInt(instruction->GetLeft())) {
5637 // No need to adjust the result for non-negative dividends or the INT32_MIN/INT64_MIN dividends.
5638 // NOTE: The generated code for HRem correctly works for the INT32_MIN/INT64_MIN dividends.
5639 // INT*_MIN % imm must be 0 for any imm of power 2. 'and' works only with bits
5640 // 0..30 (Int32 case)/0..62 (Int64 case) of a dividend. For INT32_MIN/INT64_MIN they are zeros.
5641 // So 'and' always produces zero.
5642 __ And(out, dividend, abs_imm - 1);
5643 } else {
5644 if (abs_imm == 2) {
5645 __ Cmp(dividend, 0);
5646 __ And(out, dividend, 1);
5647 __ Csneg(out, out, out, ge);
5648 } else {
5649 UseScratchRegisterScope temps(GetVIXLAssembler());
5650 Register temp = temps.AcquireSameSizeAs(out);
5651
5652 __ Negs(temp, dividend);
5653 __ And(out, dividend, abs_imm - 1);
5654 __ And(temp, temp, abs_imm - 1);
5655 __ Csneg(out, out, temp, mi);
5656 }
5657 }
5658 }
5659
GenerateIntRemForConstDenom(HRem * instruction)5660 void InstructionCodeGeneratorARM64::GenerateIntRemForConstDenom(HRem *instruction) {
5661 int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1));
5662
5663 if (imm == 0) {
5664 // Do not generate anything.
5665 // DivZeroCheck would prevent any code to be executed.
5666 return;
5667 }
5668
5669 if (IsPowerOfTwo(AbsOrMin(imm))) {
5670 // Cases imm == -1 or imm == 1 are handled in constant folding by
5671 // InstructionWithAbsorbingInputSimplifier.
5672 // If the cases have survided till code generation they are handled in
5673 // GenerateIntRemForPower2Denom becauses -1 and 1 are the power of 2 (2^0).
5674 // The correct code is generated for them, just more instructions.
5675 GenerateIntRemForPower2Denom(instruction);
5676 } else {
5677 DCHECK(imm < -2 || imm > 2) << imm;
5678 GenerateDivRemWithAnyConstant(instruction);
5679 }
5680 }
5681
GenerateIntRem(HRem * instruction)5682 void InstructionCodeGeneratorARM64::GenerateIntRem(HRem* instruction) {
5683 DCHECK(DataType::IsIntOrLongType(instruction->GetResultType()))
5684 << instruction->GetResultType();
5685
5686 if (instruction->GetLocations()->InAt(1).IsConstant()) {
5687 GenerateIntRemForConstDenom(instruction);
5688 } else {
5689 Register out = OutputRegister(instruction);
5690 Register dividend = InputRegisterAt(instruction, 0);
5691 Register divisor = InputRegisterAt(instruction, 1);
5692 UseScratchRegisterScope temps(GetVIXLAssembler());
5693 Register temp = temps.AcquireSameSizeAs(out);
5694 __ Sdiv(temp, dividend, divisor);
5695 __ Msub(out, temp, divisor, dividend);
5696 }
5697 }
5698
VisitRem(HRem * rem)5699 void InstructionCodeGeneratorARM64::VisitRem(HRem* rem) {
5700 DataType::Type type = rem->GetResultType();
5701
5702 switch (type) {
5703 case DataType::Type::kInt32:
5704 case DataType::Type::kInt64: {
5705 GenerateIntRem(rem);
5706 break;
5707 }
5708
5709 case DataType::Type::kFloat32:
5710 case DataType::Type::kFloat64: {
5711 QuickEntrypointEnum entrypoint =
5712 (type == DataType::Type::kFloat32) ? kQuickFmodf : kQuickFmod;
5713 codegen_->InvokeRuntime(entrypoint, rem, rem->GetDexPc());
5714 if (type == DataType::Type::kFloat32) {
5715 CheckEntrypointTypes<kQuickFmodf, float, float, float>();
5716 } else {
5717 CheckEntrypointTypes<kQuickFmod, double, double, double>();
5718 }
5719 break;
5720 }
5721
5722 default:
5723 LOG(FATAL) << "Unexpected rem type " << type;
5724 UNREACHABLE();
5725 }
5726 }
5727
VisitMin(HMin * min)5728 void LocationsBuilderARM64::VisitMin(HMin* min) {
5729 HandleBinaryOp(min);
5730 }
5731
VisitMin(HMin * min)5732 void InstructionCodeGeneratorARM64::VisitMin(HMin* min) {
5733 HandleBinaryOp(min);
5734 }
5735
VisitMax(HMax * max)5736 void LocationsBuilderARM64::VisitMax(HMax* max) {
5737 HandleBinaryOp(max);
5738 }
5739
VisitMax(HMax * max)5740 void InstructionCodeGeneratorARM64::VisitMax(HMax* max) {
5741 HandleBinaryOp(max);
5742 }
5743
VisitAbs(HAbs * abs)5744 void LocationsBuilderARM64::VisitAbs(HAbs* abs) {
5745 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(abs);
5746 switch (abs->GetResultType()) {
5747 case DataType::Type::kInt32:
5748 case DataType::Type::kInt64:
5749 locations->SetInAt(0, Location::RequiresRegister());
5750 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5751 break;
5752 case DataType::Type::kFloat32:
5753 case DataType::Type::kFloat64:
5754 locations->SetInAt(0, Location::RequiresFpuRegister());
5755 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
5756 break;
5757 default:
5758 LOG(FATAL) << "Unexpected type for abs operation " << abs->GetResultType();
5759 }
5760 }
5761
VisitAbs(HAbs * abs)5762 void InstructionCodeGeneratorARM64::VisitAbs(HAbs* abs) {
5763 switch (abs->GetResultType()) {
5764 case DataType::Type::kInt32:
5765 case DataType::Type::kInt64: {
5766 Register in_reg = InputRegisterAt(abs, 0);
5767 Register out_reg = OutputRegister(abs);
5768 __ Cmp(in_reg, Operand(0));
5769 __ Cneg(out_reg, in_reg, lt);
5770 break;
5771 }
5772 case DataType::Type::kFloat32:
5773 case DataType::Type::kFloat64: {
5774 VRegister in_reg = InputFPRegisterAt(abs, 0);
5775 VRegister out_reg = OutputFPRegister(abs);
5776 __ Fabs(out_reg, in_reg);
5777 break;
5778 }
5779 default:
5780 LOG(FATAL) << "Unexpected type for abs operation " << abs->GetResultType();
5781 }
5782 }
5783
VisitConstructorFence(HConstructorFence * constructor_fence)5784 void LocationsBuilderARM64::VisitConstructorFence(HConstructorFence* constructor_fence) {
5785 constructor_fence->SetLocations(nullptr);
5786 }
5787
VisitConstructorFence(HConstructorFence * constructor_fence ATTRIBUTE_UNUSED)5788 void InstructionCodeGeneratorARM64::VisitConstructorFence(
5789 HConstructorFence* constructor_fence ATTRIBUTE_UNUSED) {
5790 codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
5791 }
5792
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)5793 void LocationsBuilderARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
5794 memory_barrier->SetLocations(nullptr);
5795 }
5796
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)5797 void InstructionCodeGeneratorARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
5798 codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
5799 }
5800
VisitReturn(HReturn * instruction)5801 void LocationsBuilderARM64::VisitReturn(HReturn* instruction) {
5802 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
5803 DataType::Type return_type = instruction->InputAt(0)->GetType();
5804 locations->SetInAt(0, ARM64ReturnLocation(return_type));
5805 }
5806
VisitReturn(HReturn * ret)5807 void InstructionCodeGeneratorARM64::VisitReturn(HReturn* ret) {
5808 if (GetGraph()->IsCompilingOsr()) {
5809 // To simplify callers of an OSR method, we put the return value in both
5810 // floating point and core register.
5811 switch (ret->InputAt(0)->GetType()) {
5812 case DataType::Type::kFloat32:
5813 __ Fmov(w0, s0);
5814 break;
5815 case DataType::Type::kFloat64:
5816 __ Fmov(x0, d0);
5817 break;
5818 default:
5819 break;
5820 }
5821 }
5822 codegen_->GenerateFrameExit();
5823 }
5824
VisitReturnVoid(HReturnVoid * instruction)5825 void LocationsBuilderARM64::VisitReturnVoid(HReturnVoid* instruction) {
5826 instruction->SetLocations(nullptr);
5827 }
5828
VisitReturnVoid(HReturnVoid * instruction ATTRIBUTE_UNUSED)5829 void InstructionCodeGeneratorARM64::VisitReturnVoid(HReturnVoid* instruction ATTRIBUTE_UNUSED) {
5830 codegen_->GenerateFrameExit();
5831 }
5832
VisitRor(HRor * ror)5833 void LocationsBuilderARM64::VisitRor(HRor* ror) {
5834 HandleBinaryOp(ror);
5835 }
5836
VisitRor(HRor * ror)5837 void InstructionCodeGeneratorARM64::VisitRor(HRor* ror) {
5838 HandleBinaryOp(ror);
5839 }
5840
VisitShl(HShl * shl)5841 void LocationsBuilderARM64::VisitShl(HShl* shl) {
5842 HandleShift(shl);
5843 }
5844
VisitShl(HShl * shl)5845 void InstructionCodeGeneratorARM64::VisitShl(HShl* shl) {
5846 HandleShift(shl);
5847 }
5848
VisitShr(HShr * shr)5849 void LocationsBuilderARM64::VisitShr(HShr* shr) {
5850 HandleShift(shr);
5851 }
5852
VisitShr(HShr * shr)5853 void InstructionCodeGeneratorARM64::VisitShr(HShr* shr) {
5854 HandleShift(shr);
5855 }
5856
VisitSub(HSub * instruction)5857 void LocationsBuilderARM64::VisitSub(HSub* instruction) {
5858 HandleBinaryOp(instruction);
5859 }
5860
VisitSub(HSub * instruction)5861 void InstructionCodeGeneratorARM64::VisitSub(HSub* instruction) {
5862 HandleBinaryOp(instruction);
5863 }
5864
VisitStaticFieldGet(HStaticFieldGet * instruction)5865 void LocationsBuilderARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) {
5866 HandleFieldGet(instruction, instruction->GetFieldInfo());
5867 }
5868
VisitStaticFieldGet(HStaticFieldGet * instruction)5869 void InstructionCodeGeneratorARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) {
5870 HandleFieldGet(instruction, instruction->GetFieldInfo());
5871 }
5872
VisitStaticFieldSet(HStaticFieldSet * instruction)5873 void LocationsBuilderARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) {
5874 HandleFieldSet(instruction);
5875 }
5876
VisitStaticFieldSet(HStaticFieldSet * instruction)5877 void InstructionCodeGeneratorARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) {
5878 HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
5879 }
5880
VisitStringBuilderAppend(HStringBuilderAppend * instruction)5881 void LocationsBuilderARM64::VisitStringBuilderAppend(HStringBuilderAppend* instruction) {
5882 codegen_->CreateStringBuilderAppendLocations(instruction, LocationFrom(x0));
5883 }
5884
VisitStringBuilderAppend(HStringBuilderAppend * instruction)5885 void InstructionCodeGeneratorARM64::VisitStringBuilderAppend(HStringBuilderAppend* instruction) {
5886 __ Mov(w0, instruction->GetFormat()->GetValue());
5887 codegen_->InvokeRuntime(kQuickStringBuilderAppend, instruction, instruction->GetDexPc());
5888 }
5889
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)5890 void LocationsBuilderARM64::VisitUnresolvedInstanceFieldGet(
5891 HUnresolvedInstanceFieldGet* instruction) {
5892 FieldAccessCallingConventionARM64 calling_convention;
5893 codegen_->CreateUnresolvedFieldLocationSummary(
5894 instruction, instruction->GetFieldType(), calling_convention);
5895 }
5896
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)5897 void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldGet(
5898 HUnresolvedInstanceFieldGet* instruction) {
5899 FieldAccessCallingConventionARM64 calling_convention;
5900 codegen_->GenerateUnresolvedFieldAccess(instruction,
5901 instruction->GetFieldType(),
5902 instruction->GetFieldIndex(),
5903 instruction->GetDexPc(),
5904 calling_convention);
5905 }
5906
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)5907 void LocationsBuilderARM64::VisitUnresolvedInstanceFieldSet(
5908 HUnresolvedInstanceFieldSet* instruction) {
5909 FieldAccessCallingConventionARM64 calling_convention;
5910 codegen_->CreateUnresolvedFieldLocationSummary(
5911 instruction, instruction->GetFieldType(), calling_convention);
5912 }
5913
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)5914 void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldSet(
5915 HUnresolvedInstanceFieldSet* instruction) {
5916 FieldAccessCallingConventionARM64 calling_convention;
5917 codegen_->GenerateUnresolvedFieldAccess(instruction,
5918 instruction->GetFieldType(),
5919 instruction->GetFieldIndex(),
5920 instruction->GetDexPc(),
5921 calling_convention);
5922 }
5923
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)5924 void LocationsBuilderARM64::VisitUnresolvedStaticFieldGet(
5925 HUnresolvedStaticFieldGet* instruction) {
5926 FieldAccessCallingConventionARM64 calling_convention;
5927 codegen_->CreateUnresolvedFieldLocationSummary(
5928 instruction, instruction->GetFieldType(), calling_convention);
5929 }
5930
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)5931 void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldGet(
5932 HUnresolvedStaticFieldGet* instruction) {
5933 FieldAccessCallingConventionARM64 calling_convention;
5934 codegen_->GenerateUnresolvedFieldAccess(instruction,
5935 instruction->GetFieldType(),
5936 instruction->GetFieldIndex(),
5937 instruction->GetDexPc(),
5938 calling_convention);
5939 }
5940
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)5941 void LocationsBuilderARM64::VisitUnresolvedStaticFieldSet(
5942 HUnresolvedStaticFieldSet* instruction) {
5943 FieldAccessCallingConventionARM64 calling_convention;
5944 codegen_->CreateUnresolvedFieldLocationSummary(
5945 instruction, instruction->GetFieldType(), calling_convention);
5946 }
5947
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)5948 void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldSet(
5949 HUnresolvedStaticFieldSet* instruction) {
5950 FieldAccessCallingConventionARM64 calling_convention;
5951 codegen_->GenerateUnresolvedFieldAccess(instruction,
5952 instruction->GetFieldType(),
5953 instruction->GetFieldIndex(),
5954 instruction->GetDexPc(),
5955 calling_convention);
5956 }
5957
VisitSuspendCheck(HSuspendCheck * instruction)5958 void LocationsBuilderARM64::VisitSuspendCheck(HSuspendCheck* instruction) {
5959 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
5960 instruction, LocationSummary::kCallOnSlowPath);
5961 // In suspend check slow path, usually there are no caller-save registers at all.
5962 // If SIMD instructions are present, however, we force spilling all live SIMD
5963 // registers in full width (since the runtime only saves/restores lower part).
5964 locations->SetCustomSlowPathCallerSaves(
5965 GetGraph()->HasSIMD() ? RegisterSet::AllFpu() : RegisterSet::Empty());
5966 }
5967
VisitSuspendCheck(HSuspendCheck * instruction)5968 void InstructionCodeGeneratorARM64::VisitSuspendCheck(HSuspendCheck* instruction) {
5969 HBasicBlock* block = instruction->GetBlock();
5970 if (block->GetLoopInformation() != nullptr) {
5971 DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
5972 // The back edge will generate the suspend check.
5973 return;
5974 }
5975 if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
5976 // The goto will generate the suspend check.
5977 return;
5978 }
5979 GenerateSuspendCheck(instruction, nullptr);
5980 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5981 }
5982
VisitThrow(HThrow * instruction)5983 void LocationsBuilderARM64::VisitThrow(HThrow* instruction) {
5984 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
5985 instruction, LocationSummary::kCallOnMainOnly);
5986 InvokeRuntimeCallingConvention calling_convention;
5987 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
5988 }
5989
VisitThrow(HThrow * instruction)5990 void InstructionCodeGeneratorARM64::VisitThrow(HThrow* instruction) {
5991 codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc());
5992 CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
5993 }
5994
VisitTypeConversion(HTypeConversion * conversion)5995 void LocationsBuilderARM64::VisitTypeConversion(HTypeConversion* conversion) {
5996 LocationSummary* locations =
5997 new (GetGraph()->GetAllocator()) LocationSummary(conversion, LocationSummary::kNoCall);
5998 DataType::Type input_type = conversion->GetInputType();
5999 DataType::Type result_type = conversion->GetResultType();
6000 DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
6001 << input_type << " -> " << result_type;
6002 if ((input_type == DataType::Type::kReference) || (input_type == DataType::Type::kVoid) ||
6003 (result_type == DataType::Type::kReference) || (result_type == DataType::Type::kVoid)) {
6004 LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type;
6005 }
6006
6007 if (DataType::IsFloatingPointType(input_type)) {
6008 locations->SetInAt(0, Location::RequiresFpuRegister());
6009 } else {
6010 locations->SetInAt(0, Location::RequiresRegister());
6011 }
6012
6013 if (DataType::IsFloatingPointType(result_type)) {
6014 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
6015 } else {
6016 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6017 }
6018 }
6019
VisitTypeConversion(HTypeConversion * conversion)6020 void InstructionCodeGeneratorARM64::VisitTypeConversion(HTypeConversion* conversion) {
6021 DataType::Type result_type = conversion->GetResultType();
6022 DataType::Type input_type = conversion->GetInputType();
6023
6024 DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
6025 << input_type << " -> " << result_type;
6026
6027 if (DataType::IsIntegralType(result_type) && DataType::IsIntegralType(input_type)) {
6028 int result_size = DataType::Size(result_type);
6029 int input_size = DataType::Size(input_type);
6030 int min_size = std::min(result_size, input_size);
6031 Register output = OutputRegister(conversion);
6032 Register source = InputRegisterAt(conversion, 0);
6033 if (result_type == DataType::Type::kInt32 && input_type == DataType::Type::kInt64) {
6034 // 'int' values are used directly as W registers, discarding the top
6035 // bits, so we don't need to sign-extend and can just perform a move.
6036 // We do not pass the `kDiscardForSameWReg` argument to force clearing the
6037 // top 32 bits of the target register. We theoretically could leave those
6038 // bits unchanged, but we would have to make sure that no code uses a
6039 // 32bit input value as a 64bit value assuming that the top 32 bits are
6040 // zero.
6041 __ Mov(output.W(), source.W());
6042 } else if (DataType::IsUnsignedType(result_type) ||
6043 (DataType::IsUnsignedType(input_type) && input_size < result_size)) {
6044 __ Ubfx(output, output.IsX() ? source.X() : source.W(), 0, result_size * kBitsPerByte);
6045 } else {
6046 __ Sbfx(output, output.IsX() ? source.X() : source.W(), 0, min_size * kBitsPerByte);
6047 }
6048 } else if (DataType::IsFloatingPointType(result_type) && DataType::IsIntegralType(input_type)) {
6049 __ Scvtf(OutputFPRegister(conversion), InputRegisterAt(conversion, 0));
6050 } else if (DataType::IsIntegralType(result_type) && DataType::IsFloatingPointType(input_type)) {
6051 CHECK(result_type == DataType::Type::kInt32 || result_type == DataType::Type::kInt64);
6052 __ Fcvtzs(OutputRegister(conversion), InputFPRegisterAt(conversion, 0));
6053 } else if (DataType::IsFloatingPointType(result_type) &&
6054 DataType::IsFloatingPointType(input_type)) {
6055 __ Fcvt(OutputFPRegister(conversion), InputFPRegisterAt(conversion, 0));
6056 } else {
6057 LOG(FATAL) << "Unexpected or unimplemented type conversion from " << input_type
6058 << " to " << result_type;
6059 }
6060 }
6061
VisitUShr(HUShr * ushr)6062 void LocationsBuilderARM64::VisitUShr(HUShr* ushr) {
6063 HandleShift(ushr);
6064 }
6065
VisitUShr(HUShr * ushr)6066 void InstructionCodeGeneratorARM64::VisitUShr(HUShr* ushr) {
6067 HandleShift(ushr);
6068 }
6069
VisitXor(HXor * instruction)6070 void LocationsBuilderARM64::VisitXor(HXor* instruction) {
6071 HandleBinaryOp(instruction);
6072 }
6073
VisitXor(HXor * instruction)6074 void InstructionCodeGeneratorARM64::VisitXor(HXor* instruction) {
6075 HandleBinaryOp(instruction);
6076 }
6077
VisitBoundType(HBoundType * instruction ATTRIBUTE_UNUSED)6078 void LocationsBuilderARM64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
6079 // Nothing to do, this should be removed during prepare for register allocator.
6080 LOG(FATAL) << "Unreachable";
6081 }
6082
VisitBoundType(HBoundType * instruction ATTRIBUTE_UNUSED)6083 void InstructionCodeGeneratorARM64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
6084 // Nothing to do, this should be removed during prepare for register allocator.
6085 LOG(FATAL) << "Unreachable";
6086 }
6087
6088 // Simple implementation of packed switch - generate cascaded compare/jumps.
VisitPackedSwitch(HPackedSwitch * switch_instr)6089 void LocationsBuilderARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) {
6090 LocationSummary* locations =
6091 new (GetGraph()->GetAllocator()) LocationSummary(switch_instr, LocationSummary::kNoCall);
6092 locations->SetInAt(0, Location::RequiresRegister());
6093 }
6094
VisitPackedSwitch(HPackedSwitch * switch_instr)6095 void InstructionCodeGeneratorARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) {
6096 int32_t lower_bound = switch_instr->GetStartValue();
6097 uint32_t num_entries = switch_instr->GetNumEntries();
6098 Register value_reg = InputRegisterAt(switch_instr, 0);
6099 HBasicBlock* default_block = switch_instr->GetDefaultBlock();
6100
6101 // Roughly set 16 as max average assemblies generated per HIR in a graph.
6102 static constexpr int32_t kMaxExpectedSizePerHInstruction = 16 * kInstructionSize;
6103 // ADR has a limited range(+/-1MB), so we set a threshold for the number of HIRs in the graph to
6104 // make sure we don't emit it if the target may run out of range.
6105 // TODO: Instead of emitting all jump tables at the end of the code, we could keep track of ADR
6106 // ranges and emit the tables only as required.
6107 static constexpr int32_t kJumpTableInstructionThreshold = 1* MB / kMaxExpectedSizePerHInstruction;
6108
6109 if (num_entries <= kPackedSwitchCompareJumpThreshold ||
6110 // Current instruction id is an upper bound of the number of HIRs in the graph.
6111 GetGraph()->GetCurrentInstructionId() > kJumpTableInstructionThreshold) {
6112 // Create a series of compare/jumps.
6113 UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
6114 Register temp = temps.AcquireW();
6115 __ Subs(temp, value_reg, Operand(lower_bound));
6116
6117 const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors();
6118 // Jump to successors[0] if value == lower_bound.
6119 __ B(eq, codegen_->GetLabelOf(successors[0]));
6120 int32_t last_index = 0;
6121 for (; num_entries - last_index > 2; last_index += 2) {
6122 __ Subs(temp, temp, Operand(2));
6123 // Jump to successors[last_index + 1] if value < case_value[last_index + 2].
6124 __ B(lo, codegen_->GetLabelOf(successors[last_index + 1]));
6125 // Jump to successors[last_index + 2] if value == case_value[last_index + 2].
6126 __ B(eq, codegen_->GetLabelOf(successors[last_index + 2]));
6127 }
6128 if (num_entries - last_index == 2) {
6129 // The last missing case_value.
6130 __ Cmp(temp, Operand(1));
6131 __ B(eq, codegen_->GetLabelOf(successors[last_index + 1]));
6132 }
6133
6134 // And the default for any other value.
6135 if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) {
6136 __ B(codegen_->GetLabelOf(default_block));
6137 }
6138 } else {
6139 JumpTableARM64* jump_table = codegen_->CreateJumpTable(switch_instr);
6140
6141 UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
6142
6143 // Below instructions should use at most one blocked register. Since there are two blocked
6144 // registers, we are free to block one.
6145 Register temp_w = temps.AcquireW();
6146 Register index;
6147 // Remove the bias.
6148 if (lower_bound != 0) {
6149 index = temp_w;
6150 __ Sub(index, value_reg, Operand(lower_bound));
6151 } else {
6152 index = value_reg;
6153 }
6154
6155 // Jump to default block if index is out of the range.
6156 __ Cmp(index, Operand(num_entries));
6157 __ B(hs, codegen_->GetLabelOf(default_block));
6158
6159 // In current VIXL implementation, it won't require any blocked registers to encode the
6160 // immediate value for Adr. So we are free to use both VIXL blocked registers to reduce the
6161 // register pressure.
6162 Register table_base = temps.AcquireX();
6163 // Load jump offset from the table.
6164 __ Adr(table_base, jump_table->GetTableStartLabel());
6165 Register jump_offset = temp_w;
6166 __ Ldr(jump_offset, MemOperand(table_base, index, UXTW, 2));
6167
6168 // Jump to target block by branching to table_base(pc related) + offset.
6169 Register target_address = table_base;
6170 __ Add(target_address, table_base, Operand(jump_offset, SXTW));
6171 __ Br(target_address);
6172 }
6173 }
6174
GenerateReferenceLoadOneRegister(HInstruction * instruction,Location out,uint32_t offset,Location maybe_temp,ReadBarrierOption read_barrier_option)6175 void InstructionCodeGeneratorARM64::GenerateReferenceLoadOneRegister(
6176 HInstruction* instruction,
6177 Location out,
6178 uint32_t offset,
6179 Location maybe_temp,
6180 ReadBarrierOption read_barrier_option) {
6181 DataType::Type type = DataType::Type::kReference;
6182 Register out_reg = RegisterFrom(out, type);
6183 if (read_barrier_option == kWithReadBarrier) {
6184 CHECK(kEmitCompilerReadBarrier);
6185 if (kUseBakerReadBarrier) {
6186 // Load with fast path based Baker's read barrier.
6187 // /* HeapReference<Object> */ out = *(out + offset)
6188 codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
6189 out,
6190 out_reg,
6191 offset,
6192 maybe_temp,
6193 /* needs_null_check= */ false,
6194 /* use_load_acquire= */ false);
6195 } else {
6196 // Load with slow path based read barrier.
6197 // Save the value of `out` into `maybe_temp` before overwriting it
6198 // in the following move operation, as we will need it for the
6199 // read barrier below.
6200 Register temp_reg = RegisterFrom(maybe_temp, type);
6201 __ Mov(temp_reg, out_reg);
6202 // /* HeapReference<Object> */ out = *(out + offset)
6203 __ Ldr(out_reg, HeapOperand(out_reg, offset));
6204 codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
6205 }
6206 } else {
6207 // Plain load with no read barrier.
6208 // /* HeapReference<Object> */ out = *(out + offset)
6209 __ Ldr(out_reg, HeapOperand(out_reg, offset));
6210 GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
6211 }
6212 }
6213
GenerateReferenceLoadTwoRegisters(HInstruction * instruction,Location out,Location obj,uint32_t offset,Location maybe_temp,ReadBarrierOption read_barrier_option)6214 void InstructionCodeGeneratorARM64::GenerateReferenceLoadTwoRegisters(
6215 HInstruction* instruction,
6216 Location out,
6217 Location obj,
6218 uint32_t offset,
6219 Location maybe_temp,
6220 ReadBarrierOption read_barrier_option) {
6221 DataType::Type type = DataType::Type::kReference;
6222 Register out_reg = RegisterFrom(out, type);
6223 Register obj_reg = RegisterFrom(obj, type);
6224 if (read_barrier_option == kWithReadBarrier) {
6225 CHECK(kEmitCompilerReadBarrier);
6226 if (kUseBakerReadBarrier) {
6227 // Load with fast path based Baker's read barrier.
6228 // /* HeapReference<Object> */ out = *(obj + offset)
6229 codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
6230 out,
6231 obj_reg,
6232 offset,
6233 maybe_temp,
6234 /* needs_null_check= */ false,
6235 /* use_load_acquire= */ false);
6236 } else {
6237 // Load with slow path based read barrier.
6238 // /* HeapReference<Object> */ out = *(obj + offset)
6239 __ Ldr(out_reg, HeapOperand(obj_reg, offset));
6240 codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
6241 }
6242 } else {
6243 // Plain load with no read barrier.
6244 // /* HeapReference<Object> */ out = *(obj + offset)
6245 __ Ldr(out_reg, HeapOperand(obj_reg, offset));
6246 GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
6247 }
6248 }
6249
GenerateGcRootFieldLoad(HInstruction * instruction,Location root,Register obj,uint32_t offset,vixl::aarch64::Label * fixup_label,ReadBarrierOption read_barrier_option)6250 void CodeGeneratorARM64::GenerateGcRootFieldLoad(
6251 HInstruction* instruction,
6252 Location root,
6253 Register obj,
6254 uint32_t offset,
6255 vixl::aarch64::Label* fixup_label,
6256 ReadBarrierOption read_barrier_option) {
6257 DCHECK(fixup_label == nullptr || offset == 0u);
6258 Register root_reg = RegisterFrom(root, DataType::Type::kReference);
6259 if (read_barrier_option == kWithReadBarrier) {
6260 DCHECK(kEmitCompilerReadBarrier);
6261 if (kUseBakerReadBarrier) {
6262 // Fast path implementation of art::ReadBarrier::BarrierForRoot when
6263 // Baker's read barrier are used.
6264
6265 // Query `art::Thread::Current()->GetIsGcMarking()` (stored in
6266 // the Marking Register) to decide whether we need to enter
6267 // the slow path to mark the GC root.
6268 //
6269 // We use shared thunks for the slow path; shared within the method
6270 // for JIT, across methods for AOT. That thunk checks the reference
6271 // and jumps to the entrypoint if needed.
6272 //
6273 // lr = &return_address;
6274 // GcRoot<mirror::Object> root = *(obj+offset); // Original reference load.
6275 // if (mr) { // Thread::Current()->GetIsGcMarking()
6276 // goto gc_root_thunk<root_reg>(lr)
6277 // }
6278 // return_address:
6279
6280 UseScratchRegisterScope temps(GetVIXLAssembler());
6281 DCHECK(temps.IsAvailable(ip0));
6282 DCHECK(temps.IsAvailable(ip1));
6283 temps.Exclude(ip0, ip1);
6284 uint32_t custom_data = EncodeBakerReadBarrierGcRootData(root_reg.GetCode());
6285
6286 ExactAssemblyScope guard(GetVIXLAssembler(), 3 * vixl::aarch64::kInstructionSize);
6287 vixl::aarch64::Label return_address;
6288 __ adr(lr, &return_address);
6289 if (fixup_label != nullptr) {
6290 __ bind(fixup_label);
6291 }
6292 static_assert(BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_OFFSET == -8,
6293 "GC root LDR must be 2 instructions (8B) before the return address label.");
6294 __ ldr(root_reg, MemOperand(obj.X(), offset));
6295 EmitBakerReadBarrierCbnz(custom_data);
6296 __ bind(&return_address);
6297 } else {
6298 // GC root loaded through a slow path for read barriers other
6299 // than Baker's.
6300 // /* GcRoot<mirror::Object>* */ root = obj + offset
6301 if (fixup_label == nullptr) {
6302 __ Add(root_reg.X(), obj.X(), offset);
6303 } else {
6304 EmitAddPlaceholder(fixup_label, root_reg.X(), obj.X());
6305 }
6306 // /* mirror::Object* */ root = root->Read()
6307 GenerateReadBarrierForRootSlow(instruction, root, root);
6308 }
6309 } else {
6310 // Plain GC root load with no read barrier.
6311 // /* GcRoot<mirror::Object> */ root = *(obj + offset)
6312 if (fixup_label == nullptr) {
6313 __ Ldr(root_reg, MemOperand(obj, offset));
6314 } else {
6315 EmitLdrOffsetPlaceholder(fixup_label, root_reg, obj.X());
6316 }
6317 // Note that GC roots are not affected by heap poisoning, thus we
6318 // do not have to unpoison `root_reg` here.
6319 }
6320 MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
6321 }
6322
GenerateUnsafeCasOldValueMovWithBakerReadBarrier(vixl::aarch64::Register marked,vixl::aarch64::Register old_value)6323 void CodeGeneratorARM64::GenerateUnsafeCasOldValueMovWithBakerReadBarrier(
6324 vixl::aarch64::Register marked,
6325 vixl::aarch64::Register old_value) {
6326 DCHECK(kEmitCompilerReadBarrier);
6327 DCHECK(kUseBakerReadBarrier);
6328
6329 // Similar to the Baker RB path in GenerateGcRootFieldLoad(), with a MOV instead of LDR.
6330 uint32_t custom_data = EncodeBakerReadBarrierGcRootData(marked.GetCode());
6331
6332 ExactAssemblyScope guard(GetVIXLAssembler(), 3 * vixl::aarch64::kInstructionSize);
6333 vixl::aarch64::Label return_address;
6334 __ adr(lr, &return_address);
6335 static_assert(BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_OFFSET == -8,
6336 "GC root LDR must be 2 instructions (8B) before the return address label.");
6337 __ mov(marked, old_value);
6338 EmitBakerReadBarrierCbnz(custom_data);
6339 __ bind(&return_address);
6340 }
6341
GenerateFieldLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,vixl::aarch64::Register obj,const vixl::aarch64::MemOperand & src,bool needs_null_check,bool use_load_acquire)6342 void CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
6343 Location ref,
6344 vixl::aarch64::Register obj,
6345 const vixl::aarch64::MemOperand& src,
6346 bool needs_null_check,
6347 bool use_load_acquire) {
6348 DCHECK(kEmitCompilerReadBarrier);
6349 DCHECK(kUseBakerReadBarrier);
6350
6351 // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the
6352 // Marking Register) to decide whether we need to enter the slow
6353 // path to mark the reference. Then, in the slow path, check the
6354 // gray bit in the lock word of the reference's holder (`obj`) to
6355 // decide whether to mark `ref` or not.
6356 //
6357 // We use shared thunks for the slow path; shared within the method
6358 // for JIT, across methods for AOT. That thunk checks the holder
6359 // and jumps to the entrypoint if needed. If the holder is not gray,
6360 // it creates a fake dependency and returns to the LDR instruction.
6361 //
6362 // lr = &gray_return_address;
6363 // if (mr) { // Thread::Current()->GetIsGcMarking()
6364 // goto field_thunk<holder_reg, base_reg, use_load_acquire>(lr)
6365 // }
6366 // not_gray_return_address:
6367 // // Original reference load. If the offset is too large to fit
6368 // // into LDR, we use an adjusted base register here.
6369 // HeapReference<mirror::Object> reference = *(obj+offset);
6370 // gray_return_address:
6371
6372 DCHECK(src.GetAddrMode() == vixl::aarch64::Offset);
6373 DCHECK_ALIGNED(src.GetOffset(), sizeof(mirror::HeapReference<mirror::Object>));
6374
6375 UseScratchRegisterScope temps(GetVIXLAssembler());
6376 DCHECK(temps.IsAvailable(ip0));
6377 DCHECK(temps.IsAvailable(ip1));
6378 temps.Exclude(ip0, ip1);
6379 uint32_t custom_data = use_load_acquire
6380 ? EncodeBakerReadBarrierAcquireData(src.GetBaseRegister().GetCode(), obj.GetCode())
6381 : EncodeBakerReadBarrierFieldData(src.GetBaseRegister().GetCode(), obj.GetCode());
6382
6383 {
6384 ExactAssemblyScope guard(GetVIXLAssembler(),
6385 (kPoisonHeapReferences ? 4u : 3u) * vixl::aarch64::kInstructionSize);
6386 vixl::aarch64::Label return_address;
6387 __ adr(lr, &return_address);
6388 EmitBakerReadBarrierCbnz(custom_data);
6389 static_assert(BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4),
6390 "Field LDR must be 1 instruction (4B) before the return address label; "
6391 " 2 instructions (8B) for heap poisoning.");
6392 Register ref_reg = RegisterFrom(ref, DataType::Type::kReference);
6393 if (use_load_acquire) {
6394 DCHECK_EQ(src.GetOffset(), 0);
6395 __ ldar(ref_reg, src);
6396 } else {
6397 __ ldr(ref_reg, src);
6398 }
6399 if (needs_null_check) {
6400 MaybeRecordImplicitNullCheck(instruction);
6401 }
6402 // Unpoison the reference explicitly if needed. MaybeUnpoisonHeapReference() uses
6403 // macro instructions disallowed in ExactAssemblyScope.
6404 if (kPoisonHeapReferences) {
6405 __ neg(ref_reg, Operand(ref_reg));
6406 }
6407 __ bind(&return_address);
6408 }
6409 MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__, /* temp_loc= */ LocationFrom(ip1));
6410 }
6411
GenerateFieldLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,Register obj,uint32_t offset,Location maybe_temp,bool needs_null_check,bool use_load_acquire)6412 void CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
6413 Location ref,
6414 Register obj,
6415 uint32_t offset,
6416 Location maybe_temp,
6417 bool needs_null_check,
6418 bool use_load_acquire) {
6419 DCHECK_ALIGNED(offset, sizeof(mirror::HeapReference<mirror::Object>));
6420 Register base = obj;
6421 if (use_load_acquire) {
6422 DCHECK(maybe_temp.IsRegister());
6423 base = WRegisterFrom(maybe_temp);
6424 __ Add(base, obj, offset);
6425 offset = 0u;
6426 } else if (offset >= kReferenceLoadMinFarOffset) {
6427 DCHECK(maybe_temp.IsRegister());
6428 base = WRegisterFrom(maybe_temp);
6429 static_assert(IsPowerOfTwo(kReferenceLoadMinFarOffset), "Expecting a power of 2.");
6430 __ Add(base, obj, Operand(offset & ~(kReferenceLoadMinFarOffset - 1u)));
6431 offset &= (kReferenceLoadMinFarOffset - 1u);
6432 }
6433 MemOperand src(base.X(), offset);
6434 GenerateFieldLoadWithBakerReadBarrier(
6435 instruction, ref, obj, src, needs_null_check, use_load_acquire);
6436 }
6437
GenerateArrayLoadWithBakerReadBarrier(HArrayGet * instruction,Location ref,Register obj,uint32_t data_offset,Location index,bool needs_null_check)6438 void CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier(HArrayGet* instruction,
6439 Location ref,
6440 Register obj,
6441 uint32_t data_offset,
6442 Location index,
6443 bool needs_null_check) {
6444 DCHECK(kEmitCompilerReadBarrier);
6445 DCHECK(kUseBakerReadBarrier);
6446
6447 static_assert(
6448 sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
6449 "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
6450 size_t scale_factor = DataType::SizeShift(DataType::Type::kReference);
6451
6452 // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the
6453 // Marking Register) to decide whether we need to enter the slow
6454 // path to mark the reference. Then, in the slow path, check the
6455 // gray bit in the lock word of the reference's holder (`obj`) to
6456 // decide whether to mark `ref` or not.
6457 //
6458 // We use shared thunks for the slow path; shared within the method
6459 // for JIT, across methods for AOT. That thunk checks the holder
6460 // and jumps to the entrypoint if needed. If the holder is not gray,
6461 // it creates a fake dependency and returns to the LDR instruction.
6462 //
6463 // lr = &gray_return_address;
6464 // if (mr) { // Thread::Current()->GetIsGcMarking()
6465 // goto array_thunk<base_reg>(lr)
6466 // }
6467 // not_gray_return_address:
6468 // // Original reference load. If the offset is too large to fit
6469 // // into LDR, we use an adjusted base register here.
6470 // HeapReference<mirror::Object> reference = data[index];
6471 // gray_return_address:
6472
6473 DCHECK(index.IsValid());
6474 Register index_reg = RegisterFrom(index, DataType::Type::kInt32);
6475 Register ref_reg = RegisterFrom(ref, DataType::Type::kReference);
6476
6477 UseScratchRegisterScope temps(GetVIXLAssembler());
6478 DCHECK(temps.IsAvailable(ip0));
6479 DCHECK(temps.IsAvailable(ip1));
6480 temps.Exclude(ip0, ip1);
6481
6482 Register temp;
6483 if (instruction->GetArray()->IsIntermediateAddress()) {
6484 // We do not need to compute the intermediate address from the array: the
6485 // input instruction has done it already. See the comment in
6486 // `TryExtractArrayAccessAddress()`.
6487 if (kIsDebugBuild) {
6488 HIntermediateAddress* interm_addr = instruction->GetArray()->AsIntermediateAddress();
6489 DCHECK_EQ(interm_addr->GetOffset()->AsIntConstant()->GetValueAsUint64(), data_offset);
6490 }
6491 temp = obj;
6492 } else {
6493 temp = WRegisterFrom(instruction->GetLocations()->GetTemp(0));
6494 __ Add(temp.X(), obj.X(), Operand(data_offset));
6495 }
6496
6497 uint32_t custom_data = EncodeBakerReadBarrierArrayData(temp.GetCode());
6498
6499 {
6500 ExactAssemblyScope guard(GetVIXLAssembler(),
6501 (kPoisonHeapReferences ? 4u : 3u) * vixl::aarch64::kInstructionSize);
6502 vixl::aarch64::Label return_address;
6503 __ adr(lr, &return_address);
6504 EmitBakerReadBarrierCbnz(custom_data);
6505 static_assert(BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4),
6506 "Array LDR must be 1 instruction (4B) before the return address label; "
6507 " 2 instructions (8B) for heap poisoning.");
6508 __ ldr(ref_reg, MemOperand(temp.X(), index_reg.X(), LSL, scale_factor));
6509 DCHECK(!needs_null_check); // The thunk cannot handle the null check.
6510 // Unpoison the reference explicitly if needed. MaybeUnpoisonHeapReference() uses
6511 // macro instructions disallowed in ExactAssemblyScope.
6512 if (kPoisonHeapReferences) {
6513 __ neg(ref_reg, Operand(ref_reg));
6514 }
6515 __ bind(&return_address);
6516 }
6517 MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__, /* temp_loc= */ LocationFrom(ip1));
6518 }
6519
MaybeGenerateMarkingRegisterCheck(int code,Location temp_loc)6520 void CodeGeneratorARM64::MaybeGenerateMarkingRegisterCheck(int code, Location temp_loc) {
6521 // The following condition is a compile-time one, so it does not have a run-time cost.
6522 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier && kIsDebugBuild) {
6523 // The following condition is a run-time one; it is executed after the
6524 // previous compile-time test, to avoid penalizing non-debug builds.
6525 if (GetCompilerOptions().EmitRunTimeChecksInDebugMode()) {
6526 UseScratchRegisterScope temps(GetVIXLAssembler());
6527 Register temp = temp_loc.IsValid() ? WRegisterFrom(temp_loc) : temps.AcquireW();
6528 GetAssembler()->GenerateMarkingRegisterCheck(temp, code);
6529 }
6530 }
6531 }
6532
GenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)6533 void CodeGeneratorARM64::GenerateReadBarrierSlow(HInstruction* instruction,
6534 Location out,
6535 Location ref,
6536 Location obj,
6537 uint32_t offset,
6538 Location index) {
6539 DCHECK(kEmitCompilerReadBarrier);
6540
6541 // Insert a slow path based read barrier *after* the reference load.
6542 //
6543 // If heap poisoning is enabled, the unpoisoning of the loaded
6544 // reference will be carried out by the runtime within the slow
6545 // path.
6546 //
6547 // Note that `ref` currently does not get unpoisoned (when heap
6548 // poisoning is enabled), which is alright as the `ref` argument is
6549 // not used by the artReadBarrierSlow entry point.
6550 //
6551 // TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
6552 SlowPathCodeARM64* slow_path = new (GetScopedAllocator())
6553 ReadBarrierForHeapReferenceSlowPathARM64(instruction, out, ref, obj, offset, index);
6554 AddSlowPath(slow_path);
6555
6556 __ B(slow_path->GetEntryLabel());
6557 __ Bind(slow_path->GetExitLabel());
6558 }
6559
MaybeGenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)6560 void CodeGeneratorARM64::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
6561 Location out,
6562 Location ref,
6563 Location obj,
6564 uint32_t offset,
6565 Location index) {
6566 if (kEmitCompilerReadBarrier) {
6567 // Baker's read barriers shall be handled by the fast path
6568 // (CodeGeneratorARM64::GenerateReferenceLoadWithBakerReadBarrier).
6569 DCHECK(!kUseBakerReadBarrier);
6570 // If heap poisoning is enabled, unpoisoning will be taken care of
6571 // by the runtime within the slow path.
6572 GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
6573 } else if (kPoisonHeapReferences) {
6574 GetAssembler()->UnpoisonHeapReference(WRegisterFrom(out));
6575 }
6576 }
6577
GenerateReadBarrierForRootSlow(HInstruction * instruction,Location out,Location root)6578 void CodeGeneratorARM64::GenerateReadBarrierForRootSlow(HInstruction* instruction,
6579 Location out,
6580 Location root) {
6581 DCHECK(kEmitCompilerReadBarrier);
6582
6583 // Insert a slow path based read barrier *after* the GC root load.
6584 //
6585 // Note that GC roots are not affected by heap poisoning, so we do
6586 // not need to do anything special for this here.
6587 SlowPathCodeARM64* slow_path =
6588 new (GetScopedAllocator()) ReadBarrierForRootSlowPathARM64(instruction, out, root);
6589 AddSlowPath(slow_path);
6590
6591 __ B(slow_path->GetEntryLabel());
6592 __ Bind(slow_path->GetExitLabel());
6593 }
6594
VisitClassTableGet(HClassTableGet * instruction)6595 void LocationsBuilderARM64::VisitClassTableGet(HClassTableGet* instruction) {
6596 LocationSummary* locations =
6597 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
6598 locations->SetInAt(0, Location::RequiresRegister());
6599 locations->SetOut(Location::RequiresRegister());
6600 }
6601
VisitClassTableGet(HClassTableGet * instruction)6602 void InstructionCodeGeneratorARM64::VisitClassTableGet(HClassTableGet* instruction) {
6603 LocationSummary* locations = instruction->GetLocations();
6604 if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
6605 uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
6606 instruction->GetIndex(), kArm64PointerSize).SizeValue();
6607 __ Ldr(XRegisterFrom(locations->Out()),
6608 MemOperand(XRegisterFrom(locations->InAt(0)), method_offset));
6609 } else {
6610 uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
6611 instruction->GetIndex(), kArm64PointerSize));
6612 __ Ldr(XRegisterFrom(locations->Out()), MemOperand(XRegisterFrom(locations->InAt(0)),
6613 mirror::Class::ImtPtrOffset(kArm64PointerSize).Uint32Value()));
6614 __ Ldr(XRegisterFrom(locations->Out()),
6615 MemOperand(XRegisterFrom(locations->Out()), method_offset));
6616 }
6617 }
6618
PatchJitRootUse(uint8_t * code,const uint8_t * roots_data,vixl::aarch64::Literal<uint32_t> * literal,uint64_t index_in_table)6619 static void PatchJitRootUse(uint8_t* code,
6620 const uint8_t* roots_data,
6621 vixl::aarch64::Literal<uint32_t>* literal,
6622 uint64_t index_in_table) {
6623 uint32_t literal_offset = literal->GetOffset();
6624 uintptr_t address =
6625 reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>);
6626 uint8_t* data = code + literal_offset;
6627 reinterpret_cast<uint32_t*>(data)[0] = dchecked_integral_cast<uint32_t>(address);
6628 }
6629
EmitJitRootPatches(uint8_t * code,const uint8_t * roots_data)6630 void CodeGeneratorARM64::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) {
6631 for (const auto& entry : jit_string_patches_) {
6632 const StringReference& string_reference = entry.first;
6633 vixl::aarch64::Literal<uint32_t>* table_entry_literal = entry.second;
6634 uint64_t index_in_table = GetJitStringRootIndex(string_reference);
6635 PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table);
6636 }
6637 for (const auto& entry : jit_class_patches_) {
6638 const TypeReference& type_reference = entry.first;
6639 vixl::aarch64::Literal<uint32_t>* table_entry_literal = entry.second;
6640 uint64_t index_in_table = GetJitClassRootIndex(type_reference);
6641 PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table);
6642 }
6643 }
6644
VecNeonAddress(HVecMemoryOperation * instruction,UseScratchRegisterScope * temps_scope,size_t size,bool is_string_char_at,Register * scratch)6645 MemOperand InstructionCodeGeneratorARM64::VecNeonAddress(
6646 HVecMemoryOperation* instruction,
6647 UseScratchRegisterScope* temps_scope,
6648 size_t size,
6649 bool is_string_char_at,
6650 /*out*/ Register* scratch) {
6651 LocationSummary* locations = instruction->GetLocations();
6652 Register base = InputRegisterAt(instruction, 0);
6653
6654 if (instruction->InputAt(1)->IsIntermediateAddressIndex()) {
6655 DCHECK(!is_string_char_at);
6656 return MemOperand(base.X(), InputRegisterAt(instruction, 1).X());
6657 }
6658
6659 Location index = locations->InAt(1);
6660 uint32_t offset = is_string_char_at
6661 ? mirror::String::ValueOffset().Uint32Value()
6662 : mirror::Array::DataOffset(size).Uint32Value();
6663 size_t shift = ComponentSizeShiftWidth(size);
6664
6665 // HIntermediateAddress optimization is only applied for scalar ArrayGet and ArraySet.
6666 DCHECK(!instruction->InputAt(0)->IsIntermediateAddress());
6667
6668 if (index.IsConstant()) {
6669 offset += Int64FromLocation(index) << shift;
6670 return HeapOperand(base, offset);
6671 } else {
6672 *scratch = temps_scope->AcquireSameSizeAs(base);
6673 __ Add(*scratch, base, Operand(WRegisterFrom(index), LSL, shift));
6674 return HeapOperand(*scratch, offset);
6675 }
6676 }
6677
6678 #undef __
6679 #undef QUICK_ENTRY_POINT
6680
6681 #define __ assembler.GetVIXLAssembler()->
6682
EmitGrayCheckAndFastPath(arm64::Arm64Assembler & assembler,vixl::aarch64::Register base_reg,vixl::aarch64::MemOperand & lock_word,vixl::aarch64::Label * slow_path,vixl::aarch64::Label * throw_npe=nullptr)6683 static void EmitGrayCheckAndFastPath(arm64::Arm64Assembler& assembler,
6684 vixl::aarch64::Register base_reg,
6685 vixl::aarch64::MemOperand& lock_word,
6686 vixl::aarch64::Label* slow_path,
6687 vixl::aarch64::Label* throw_npe = nullptr) {
6688 // Load the lock word containing the rb_state.
6689 __ Ldr(ip0.W(), lock_word);
6690 // Given the numeric representation, it's enough to check the low bit of the rb_state.
6691 static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0");
6692 static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
6693 __ Tbnz(ip0.W(), LockWord::kReadBarrierStateShift, slow_path);
6694 static_assert(
6695 BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET == BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET,
6696 "Field and array LDR offsets must be the same to reuse the same code.");
6697 // To throw NPE, we return to the fast path; the artificial dependence below does not matter.
6698 if (throw_npe != nullptr) {
6699 __ Bind(throw_npe);
6700 }
6701 // Adjust the return address back to the LDR (1 instruction; 2 for heap poisoning).
6702 static_assert(BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4),
6703 "Field LDR must be 1 instruction (4B) before the return address label; "
6704 " 2 instructions (8B) for heap poisoning.");
6705 __ Add(lr, lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET);
6706 // Introduce a dependency on the lock_word including rb_state,
6707 // to prevent load-load reordering, and without using
6708 // a memory barrier (which would be more expensive).
6709 __ Add(base_reg, base_reg, Operand(ip0, LSR, 32));
6710 __ Br(lr); // And return back to the function.
6711 // Note: The fake dependency is unnecessary for the slow path.
6712 }
6713
6714 // Load the read barrier introspection entrypoint in register `entrypoint`.
LoadReadBarrierMarkIntrospectionEntrypoint(arm64::Arm64Assembler & assembler,vixl::aarch64::Register entrypoint)6715 static void LoadReadBarrierMarkIntrospectionEntrypoint(arm64::Arm64Assembler& assembler,
6716 vixl::aarch64::Register entrypoint) {
6717 // entrypoint = Thread::Current()->pReadBarrierMarkReg16, i.e. pReadBarrierMarkIntrospection.
6718 DCHECK_EQ(ip0.GetCode(), 16u);
6719 const int32_t entry_point_offset =
6720 Thread::ReadBarrierMarkEntryPointsOffset<kArm64PointerSize>(ip0.GetCode());
6721 __ Ldr(entrypoint, MemOperand(tr, entry_point_offset));
6722 }
6723
CompileBakerReadBarrierThunk(Arm64Assembler & assembler,uint32_t encoded_data,std::string * debug_name)6724 void CodeGeneratorARM64::CompileBakerReadBarrierThunk(Arm64Assembler& assembler,
6725 uint32_t encoded_data,
6726 /*out*/ std::string* debug_name) {
6727 BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data);
6728 switch (kind) {
6729 case BakerReadBarrierKind::kField:
6730 case BakerReadBarrierKind::kAcquire: {
6731 auto base_reg =
6732 Register::GetXRegFromCode(BakerReadBarrierFirstRegField::Decode(encoded_data));
6733 CheckValidReg(base_reg.GetCode());
6734 auto holder_reg =
6735 Register::GetXRegFromCode(BakerReadBarrierSecondRegField::Decode(encoded_data));
6736 CheckValidReg(holder_reg.GetCode());
6737 UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
6738 temps.Exclude(ip0, ip1);
6739 // In the case of a field load (with relaxed semantic), if `base_reg` differs from
6740 // `holder_reg`, the offset was too large and we must have emitted (during the construction
6741 // of the HIR graph, see `art::HInstructionBuilder::BuildInstanceFieldAccess`) and preserved
6742 // (see `art::PrepareForRegisterAllocation::VisitNullCheck`) an explicit null check before
6743 // the load. Otherwise, for implicit null checks, we need to null-check the holder as we do
6744 // not necessarily do that check before going to the thunk.
6745 //
6746 // In the case of a field load with load-acquire semantics (where `base_reg` always differs
6747 // from `holder_reg`), we also need an explicit null check when implicit null checks are
6748 // allowed, as we do not emit one before going to the thunk.
6749 vixl::aarch64::Label throw_npe_label;
6750 vixl::aarch64::Label* throw_npe = nullptr;
6751 if (GetCompilerOptions().GetImplicitNullChecks() &&
6752 (holder_reg.Is(base_reg) || (kind == BakerReadBarrierKind::kAcquire))) {
6753 throw_npe = &throw_npe_label;
6754 __ Cbz(holder_reg.W(), throw_npe);
6755 }
6756 // Check if the holder is gray and, if not, add fake dependency to the base register
6757 // and return to the LDR instruction to load the reference. Otherwise, use introspection
6758 // to load the reference and call the entrypoint that performs further checks on the
6759 // reference and marks it if needed.
6760 vixl::aarch64::Label slow_path;
6761 MemOperand lock_word(holder_reg, mirror::Object::MonitorOffset().Int32Value());
6762 EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path, throw_npe);
6763 __ Bind(&slow_path);
6764 if (kind == BakerReadBarrierKind::kField) {
6765 MemOperand ldr_address(lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET);
6766 __ Ldr(ip0.W(), ldr_address); // Load the LDR (immediate) unsigned offset.
6767 LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1);
6768 __ Ubfx(ip0.W(), ip0.W(), 10, 12); // Extract the offset.
6769 __ Ldr(ip0.W(), MemOperand(base_reg, ip0, LSL, 2)); // Load the reference.
6770 } else {
6771 DCHECK(kind == BakerReadBarrierKind::kAcquire);
6772 DCHECK(!base_reg.Is(holder_reg));
6773 LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1);
6774 __ Ldar(ip0.W(), MemOperand(base_reg));
6775 }
6776 // Do not unpoison. With heap poisoning enabled, the entrypoint expects a poisoned reference.
6777 __ Br(ip1); // Jump to the entrypoint.
6778 break;
6779 }
6780 case BakerReadBarrierKind::kArray: {
6781 auto base_reg =
6782 Register::GetXRegFromCode(BakerReadBarrierFirstRegField::Decode(encoded_data));
6783 CheckValidReg(base_reg.GetCode());
6784 DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
6785 BakerReadBarrierSecondRegField::Decode(encoded_data));
6786 UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
6787 temps.Exclude(ip0, ip1);
6788 vixl::aarch64::Label slow_path;
6789 int32_t data_offset =
6790 mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimNot)).Int32Value();
6791 MemOperand lock_word(base_reg, mirror::Object::MonitorOffset().Int32Value() - data_offset);
6792 DCHECK_LT(lock_word.GetOffset(), 0);
6793 EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path);
6794 __ Bind(&slow_path);
6795 MemOperand ldr_address(lr, BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET);
6796 __ Ldr(ip0.W(), ldr_address); // Load the LDR (register) unsigned offset.
6797 LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1);
6798 __ Ubfx(ip0, ip0, 16, 6); // Extract the index register, plus 32 (bit 21 is set).
6799 __ Bfi(ip1, ip0, 3, 6); // Insert ip0 to the entrypoint address to create
6800 // a switch case target based on the index register.
6801 __ Mov(ip0, base_reg); // Move the base register to ip0.
6802 __ Br(ip1); // Jump to the entrypoint's array switch case.
6803 break;
6804 }
6805 case BakerReadBarrierKind::kGcRoot: {
6806 // Check if the reference needs to be marked and if so (i.e. not null, not marked yet
6807 // and it does not have a forwarding address), call the correct introspection entrypoint;
6808 // otherwise return the reference (or the extracted forwarding address).
6809 // There is no gray bit check for GC roots.
6810 auto root_reg =
6811 Register::GetWRegFromCode(BakerReadBarrierFirstRegField::Decode(encoded_data));
6812 CheckValidReg(root_reg.GetCode());
6813 DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
6814 BakerReadBarrierSecondRegField::Decode(encoded_data));
6815 UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
6816 temps.Exclude(ip0, ip1);
6817 vixl::aarch64::Label return_label, not_marked, forwarding_address;
6818 __ Cbz(root_reg, &return_label);
6819 MemOperand lock_word(root_reg.X(), mirror::Object::MonitorOffset().Int32Value());
6820 __ Ldr(ip0.W(), lock_word);
6821 __ Tbz(ip0.W(), LockWord::kMarkBitStateShift, ¬_marked);
6822 __ Bind(&return_label);
6823 __ Br(lr);
6824 __ Bind(¬_marked);
6825 __ Tst(ip0.W(), Operand(ip0.W(), LSL, 1));
6826 __ B(&forwarding_address, mi);
6827 LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1);
6828 // Adjust the art_quick_read_barrier_mark_introspection address in IP1 to
6829 // art_quick_read_barrier_mark_introspection_gc_roots.
6830 __ Add(ip1, ip1, Operand(BAKER_MARK_INTROSPECTION_GC_ROOT_ENTRYPOINT_OFFSET));
6831 __ Mov(ip0.W(), root_reg);
6832 __ Br(ip1);
6833 __ Bind(&forwarding_address);
6834 __ Lsl(root_reg, ip0.W(), LockWord::kForwardingAddressShift);
6835 __ Br(lr);
6836 break;
6837 }
6838 default:
6839 LOG(FATAL) << "Unexpected kind: " << static_cast<uint32_t>(kind);
6840 UNREACHABLE();
6841 }
6842
6843 // For JIT, the slow path is considered part of the compiled method,
6844 // so JIT should pass null as `debug_name`.
6845 DCHECK(!GetCompilerOptions().IsJitCompiler() || debug_name == nullptr);
6846 if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) {
6847 std::ostringstream oss;
6848 oss << "BakerReadBarrierThunk";
6849 switch (kind) {
6850 case BakerReadBarrierKind::kField:
6851 oss << "Field_r" << BakerReadBarrierFirstRegField::Decode(encoded_data)
6852 << "_r" << BakerReadBarrierSecondRegField::Decode(encoded_data);
6853 break;
6854 case BakerReadBarrierKind::kAcquire:
6855 oss << "Acquire_r" << BakerReadBarrierFirstRegField::Decode(encoded_data)
6856 << "_r" << BakerReadBarrierSecondRegField::Decode(encoded_data);
6857 break;
6858 case BakerReadBarrierKind::kArray:
6859 oss << "Array_r" << BakerReadBarrierFirstRegField::Decode(encoded_data);
6860 DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
6861 BakerReadBarrierSecondRegField::Decode(encoded_data));
6862 break;
6863 case BakerReadBarrierKind::kGcRoot:
6864 oss << "GcRoot_r" << BakerReadBarrierFirstRegField::Decode(encoded_data);
6865 DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
6866 BakerReadBarrierSecondRegField::Decode(encoded_data));
6867 break;
6868 }
6869 *debug_name = oss.str();
6870 }
6871 }
6872
6873 #undef __
6874
6875 } // namespace arm64
6876 } // namespace art
6877