1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "instruction_builder.h"
18
19 #include "art_method-inl.h"
20 #include "base/arena_bit_vector.h"
21 #include "base/bit_vector-inl.h"
22 #include "base/logging.h"
23 #include "block_builder.h"
24 #include "class_linker-inl.h"
25 #include "code_generator.h"
26 #include "data_type-inl.h"
27 #include "dex/bytecode_utils.h"
28 #include "dex/dex_instruction-inl.h"
29 #include "driver/dex_compilation_unit.h"
30 #include "driver/compiler_options.h"
31 #include "imtable-inl.h"
32 #include "jit/jit.h"
33 #include "mirror/dex_cache.h"
34 #include "oat_file.h"
35 #include "optimizing_compiler_stats.h"
36 #include "quicken_info.h"
37 #include "reflective_handle_scope-inl.h"
38 #include "scoped_thread_state_change-inl.h"
39 #include "sharpening.h"
40 #include "ssa_builder.h"
41 #include "well_known_classes.h"
42
43 namespace art {
44
HInstructionBuilder(HGraph * graph,HBasicBlockBuilder * block_builder,SsaBuilder * ssa_builder,const DexFile * dex_file,const CodeItemDebugInfoAccessor & accessor,DataType::Type return_type,const DexCompilationUnit * dex_compilation_unit,const DexCompilationUnit * outer_compilation_unit,CodeGenerator * code_generator,ArrayRef<const uint8_t> interpreter_metadata,OptimizingCompilerStats * compiler_stats,ScopedArenaAllocator * local_allocator)45 HInstructionBuilder::HInstructionBuilder(HGraph* graph,
46 HBasicBlockBuilder* block_builder,
47 SsaBuilder* ssa_builder,
48 const DexFile* dex_file,
49 const CodeItemDebugInfoAccessor& accessor,
50 DataType::Type return_type,
51 const DexCompilationUnit* dex_compilation_unit,
52 const DexCompilationUnit* outer_compilation_unit,
53 CodeGenerator* code_generator,
54 ArrayRef<const uint8_t> interpreter_metadata,
55 OptimizingCompilerStats* compiler_stats,
56 ScopedArenaAllocator* local_allocator)
57 : allocator_(graph->GetAllocator()),
58 graph_(graph),
59 dex_file_(dex_file),
60 code_item_accessor_(accessor),
61 return_type_(return_type),
62 block_builder_(block_builder),
63 ssa_builder_(ssa_builder),
64 code_generator_(code_generator),
65 dex_compilation_unit_(dex_compilation_unit),
66 outer_compilation_unit_(outer_compilation_unit),
67 quicken_info_(interpreter_metadata),
68 compilation_stats_(compiler_stats),
69 local_allocator_(local_allocator),
70 locals_for_(local_allocator->Adapter(kArenaAllocGraphBuilder)),
71 current_block_(nullptr),
72 current_locals_(nullptr),
73 latest_result_(nullptr),
74 current_this_parameter_(nullptr),
75 loop_headers_(local_allocator->Adapter(kArenaAllocGraphBuilder)),
76 class_cache_(std::less<dex::TypeIndex>(), local_allocator->Adapter(kArenaAllocGraphBuilder)) {
77 loop_headers_.reserve(kDefaultNumberOfLoops);
78 }
79
FindBlockStartingAt(uint32_t dex_pc) const80 HBasicBlock* HInstructionBuilder::FindBlockStartingAt(uint32_t dex_pc) const {
81 return block_builder_->GetBlockAt(dex_pc);
82 }
83
GetLocalsFor(HBasicBlock * block)84 inline ScopedArenaVector<HInstruction*>* HInstructionBuilder::GetLocalsFor(HBasicBlock* block) {
85 ScopedArenaVector<HInstruction*>* locals = &locals_for_[block->GetBlockId()];
86 const size_t vregs = graph_->GetNumberOfVRegs();
87 if (locals->size() == vregs) {
88 return locals;
89 }
90 return GetLocalsForWithAllocation(block, locals, vregs);
91 }
92
GetLocalsForWithAllocation(HBasicBlock * block,ScopedArenaVector<HInstruction * > * locals,const size_t vregs)93 ScopedArenaVector<HInstruction*>* HInstructionBuilder::GetLocalsForWithAllocation(
94 HBasicBlock* block,
95 ScopedArenaVector<HInstruction*>* locals,
96 const size_t vregs) {
97 DCHECK_NE(locals->size(), vregs);
98 locals->resize(vregs, nullptr);
99 if (block->IsCatchBlock()) {
100 // We record incoming inputs of catch phis at throwing instructions and
101 // must therefore eagerly create the phis. Phis for undefined vregs will
102 // be deleted when the first throwing instruction with the vreg undefined
103 // is encountered. Unused phis will be removed by dead phi analysis.
104 for (size_t i = 0; i < vregs; ++i) {
105 // No point in creating the catch phi if it is already undefined at
106 // the first throwing instruction.
107 HInstruction* current_local_value = (*current_locals_)[i];
108 if (current_local_value != nullptr) {
109 HPhi* phi = new (allocator_) HPhi(
110 allocator_,
111 i,
112 0,
113 current_local_value->GetType());
114 block->AddPhi(phi);
115 (*locals)[i] = phi;
116 }
117 }
118 }
119 return locals;
120 }
121
ValueOfLocalAt(HBasicBlock * block,size_t local)122 inline HInstruction* HInstructionBuilder::ValueOfLocalAt(HBasicBlock* block, size_t local) {
123 ScopedArenaVector<HInstruction*>* locals = GetLocalsFor(block);
124 return (*locals)[local];
125 }
126
InitializeBlockLocals()127 void HInstructionBuilder::InitializeBlockLocals() {
128 current_locals_ = GetLocalsFor(current_block_);
129
130 if (current_block_->IsCatchBlock()) {
131 // Catch phis were already created and inputs collected from throwing sites.
132 if (kIsDebugBuild) {
133 // Make sure there was at least one throwing instruction which initialized
134 // locals (guaranteed by HGraphBuilder) and that all try blocks have been
135 // visited already (from HTryBoundary scoping and reverse post order).
136 bool catch_block_visited = false;
137 for (HBasicBlock* current : graph_->GetReversePostOrder()) {
138 if (current == current_block_) {
139 catch_block_visited = true;
140 } else if (current->IsTryBlock()) {
141 const HTryBoundary& try_entry = current->GetTryCatchInformation()->GetTryEntry();
142 if (try_entry.HasExceptionHandler(*current_block_)) {
143 DCHECK(!catch_block_visited) << "Catch block visited before its try block.";
144 }
145 }
146 }
147 DCHECK_EQ(current_locals_->size(), graph_->GetNumberOfVRegs())
148 << "No instructions throwing into a live catch block.";
149 }
150 } else if (current_block_->IsLoopHeader()) {
151 // If the block is a loop header, we know we only have visited the pre header
152 // because we are visiting in reverse post order. We create phis for all initialized
153 // locals from the pre header. Their inputs will be populated at the end of
154 // the analysis.
155 for (size_t local = 0; local < current_locals_->size(); ++local) {
156 HInstruction* incoming =
157 ValueOfLocalAt(current_block_->GetLoopInformation()->GetPreHeader(), local);
158 if (incoming != nullptr) {
159 HPhi* phi = new (allocator_) HPhi(
160 allocator_,
161 local,
162 0,
163 incoming->GetType());
164 current_block_->AddPhi(phi);
165 (*current_locals_)[local] = phi;
166 }
167 }
168
169 // Save the loop header so that the last phase of the analysis knows which
170 // blocks need to be updated.
171 loop_headers_.push_back(current_block_);
172 } else if (current_block_->GetPredecessors().size() > 0) {
173 // All predecessors have already been visited because we are visiting in reverse post order.
174 // We merge the values of all locals, creating phis if those values differ.
175 for (size_t local = 0; local < current_locals_->size(); ++local) {
176 bool one_predecessor_has_no_value = false;
177 bool is_different = false;
178 HInstruction* value = ValueOfLocalAt(current_block_->GetPredecessors()[0], local);
179
180 for (HBasicBlock* predecessor : current_block_->GetPredecessors()) {
181 HInstruction* current = ValueOfLocalAt(predecessor, local);
182 if (current == nullptr) {
183 one_predecessor_has_no_value = true;
184 break;
185 } else if (current != value) {
186 is_different = true;
187 }
188 }
189
190 if (one_predecessor_has_no_value) {
191 // If one predecessor has no value for this local, we trust the verifier has
192 // successfully checked that there is a store dominating any read after this block.
193 continue;
194 }
195
196 if (is_different) {
197 HInstruction* first_input = ValueOfLocalAt(current_block_->GetPredecessors()[0], local);
198 HPhi* phi = new (allocator_) HPhi(
199 allocator_,
200 local,
201 current_block_->GetPredecessors().size(),
202 first_input->GetType());
203 for (size_t i = 0; i < current_block_->GetPredecessors().size(); i++) {
204 HInstruction* pred_value = ValueOfLocalAt(current_block_->GetPredecessors()[i], local);
205 phi->SetRawInputAt(i, pred_value);
206 }
207 current_block_->AddPhi(phi);
208 value = phi;
209 }
210 (*current_locals_)[local] = value;
211 }
212 }
213 }
214
PropagateLocalsToCatchBlocks()215 void HInstructionBuilder::PropagateLocalsToCatchBlocks() {
216 const HTryBoundary& try_entry = current_block_->GetTryCatchInformation()->GetTryEntry();
217 for (HBasicBlock* catch_block : try_entry.GetExceptionHandlers()) {
218 ScopedArenaVector<HInstruction*>* handler_locals = GetLocalsFor(catch_block);
219 DCHECK_EQ(handler_locals->size(), current_locals_->size());
220 for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) {
221 HInstruction* handler_value = (*handler_locals)[vreg];
222 if (handler_value == nullptr) {
223 // Vreg was undefined at a previously encountered throwing instruction
224 // and the catch phi was deleted. Do not record the local value.
225 continue;
226 }
227 DCHECK(handler_value->IsPhi());
228
229 HInstruction* local_value = (*current_locals_)[vreg];
230 if (local_value == nullptr) {
231 // This is the first instruction throwing into `catch_block` where
232 // `vreg` is undefined. Delete the catch phi.
233 catch_block->RemovePhi(handler_value->AsPhi());
234 (*handler_locals)[vreg] = nullptr;
235 } else {
236 // Vreg has been defined at all instructions throwing into `catch_block`
237 // encountered so far. Record the local value in the catch phi.
238 handler_value->AsPhi()->AddInput(local_value);
239 }
240 }
241 }
242 }
243
AppendInstruction(HInstruction * instruction)244 void HInstructionBuilder::AppendInstruction(HInstruction* instruction) {
245 current_block_->AddInstruction(instruction);
246 InitializeInstruction(instruction);
247 }
248
InsertInstructionAtTop(HInstruction * instruction)249 void HInstructionBuilder::InsertInstructionAtTop(HInstruction* instruction) {
250 if (current_block_->GetInstructions().IsEmpty()) {
251 current_block_->AddInstruction(instruction);
252 } else {
253 current_block_->InsertInstructionBefore(instruction, current_block_->GetFirstInstruction());
254 }
255 InitializeInstruction(instruction);
256 }
257
InitializeInstruction(HInstruction * instruction)258 void HInstructionBuilder::InitializeInstruction(HInstruction* instruction) {
259 if (instruction->NeedsEnvironment()) {
260 HEnvironment* environment = new (allocator_) HEnvironment(
261 allocator_,
262 current_locals_->size(),
263 graph_->GetArtMethod(),
264 instruction->GetDexPc(),
265 instruction);
266 environment->CopyFrom(ArrayRef<HInstruction* const>(*current_locals_));
267 instruction->SetRawEnvironment(environment);
268 }
269 }
270
LoadNullCheckedLocal(uint32_t register_index,uint32_t dex_pc)271 HInstruction* HInstructionBuilder::LoadNullCheckedLocal(uint32_t register_index, uint32_t dex_pc) {
272 HInstruction* ref = LoadLocal(register_index, DataType::Type::kReference);
273 if (!ref->CanBeNull()) {
274 return ref;
275 }
276
277 HNullCheck* null_check = new (allocator_) HNullCheck(ref, dex_pc);
278 AppendInstruction(null_check);
279 return null_check;
280 }
281
SetLoopHeaderPhiInputs()282 void HInstructionBuilder::SetLoopHeaderPhiInputs() {
283 for (size_t i = loop_headers_.size(); i > 0; --i) {
284 HBasicBlock* block = loop_headers_[i - 1];
285 for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
286 HPhi* phi = it.Current()->AsPhi();
287 size_t vreg = phi->GetRegNumber();
288 for (HBasicBlock* predecessor : block->GetPredecessors()) {
289 HInstruction* value = ValueOfLocalAt(predecessor, vreg);
290 if (value == nullptr) {
291 // Vreg is undefined at this predecessor. Mark it dead and leave with
292 // fewer inputs than predecessors. SsaChecker will fail if not removed.
293 phi->SetDead();
294 break;
295 } else {
296 phi->AddInput(value);
297 }
298 }
299 }
300 }
301 }
302
IsBlockPopulated(HBasicBlock * block)303 static bool IsBlockPopulated(HBasicBlock* block) {
304 if (block->IsLoopHeader()) {
305 // Suspend checks were inserted into loop headers during building of dominator tree.
306 DCHECK(block->GetFirstInstruction()->IsSuspendCheck());
307 return block->GetFirstInstruction() != block->GetLastInstruction();
308 } else {
309 return !block->GetInstructions().IsEmpty();
310 }
311 }
312
Build()313 bool HInstructionBuilder::Build() {
314 DCHECK(code_item_accessor_.HasCodeItem());
315 locals_for_.resize(
316 graph_->GetBlocks().size(),
317 ScopedArenaVector<HInstruction*>(local_allocator_->Adapter(kArenaAllocGraphBuilder)));
318
319 // Find locations where we want to generate extra stackmaps for native debugging.
320 // This allows us to generate the info only at interesting points (for example,
321 // at start of java statement) rather than before every dex instruction.
322 const bool native_debuggable = code_generator_ != nullptr &&
323 code_generator_->GetCompilerOptions().GetNativeDebuggable();
324 ArenaBitVector* native_debug_info_locations = nullptr;
325 if (native_debuggable) {
326 native_debug_info_locations = FindNativeDebugInfoLocations();
327 }
328
329 for (HBasicBlock* block : graph_->GetReversePostOrder()) {
330 current_block_ = block;
331 uint32_t block_dex_pc = current_block_->GetDexPc();
332
333 InitializeBlockLocals();
334
335 if (current_block_->IsEntryBlock()) {
336 InitializeParameters();
337 AppendInstruction(new (allocator_) HSuspendCheck(0u));
338 AppendInstruction(new (allocator_) HGoto(0u));
339 continue;
340 } else if (current_block_->IsExitBlock()) {
341 AppendInstruction(new (allocator_) HExit());
342 continue;
343 } else if (current_block_->IsLoopHeader()) {
344 HSuspendCheck* suspend_check = new (allocator_) HSuspendCheck(current_block_->GetDexPc());
345 current_block_->GetLoopInformation()->SetSuspendCheck(suspend_check);
346 // This is slightly odd because the loop header might not be empty (TryBoundary).
347 // But we're still creating the environment with locals from the top of the block.
348 InsertInstructionAtTop(suspend_check);
349 }
350
351 if (block_dex_pc == kNoDexPc || current_block_ != block_builder_->GetBlockAt(block_dex_pc)) {
352 // Synthetic block that does not need to be populated.
353 DCHECK(IsBlockPopulated(current_block_));
354 continue;
355 }
356
357 DCHECK(!IsBlockPopulated(current_block_));
358
359 uint32_t quicken_index = 0;
360 if (CanDecodeQuickenedInfo()) {
361 quicken_index = block_builder_->GetQuickenIndex(block_dex_pc);
362 }
363
364 for (const DexInstructionPcPair& pair : code_item_accessor_.InstructionsFrom(block_dex_pc)) {
365 if (current_block_ == nullptr) {
366 // The previous instruction ended this block.
367 break;
368 }
369
370 const uint32_t dex_pc = pair.DexPc();
371 if (dex_pc != block_dex_pc && FindBlockStartingAt(dex_pc) != nullptr) {
372 // This dex_pc starts a new basic block.
373 break;
374 }
375
376 if (current_block_->IsTryBlock() && IsThrowingDexInstruction(pair.Inst())) {
377 PropagateLocalsToCatchBlocks();
378 }
379
380 if (native_debuggable && native_debug_info_locations->IsBitSet(dex_pc)) {
381 AppendInstruction(new (allocator_) HNativeDebugInfo(dex_pc));
382 }
383
384 // Note: There may be no Thread for gtests.
385 DCHECK(Thread::Current() == nullptr || !Thread::Current()->IsExceptionPending())
386 << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
387 << " " << pair.Inst().Name() << "@" << dex_pc;
388 if (!ProcessDexInstruction(pair.Inst(), dex_pc, quicken_index)) {
389 return false;
390 }
391 DCHECK(Thread::Current() == nullptr || !Thread::Current()->IsExceptionPending())
392 << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
393 << " " << pair.Inst().Name() << "@" << dex_pc;
394
395 if (QuickenInfoTable::NeedsIndexForInstruction(&pair.Inst())) {
396 ++quicken_index;
397 }
398 }
399
400 if (current_block_ != nullptr) {
401 // Branching instructions clear current_block, so we know the last
402 // instruction of the current block is not a branching instruction.
403 // We add an unconditional Goto to the next block.
404 DCHECK_EQ(current_block_->GetSuccessors().size(), 1u);
405 AppendInstruction(new (allocator_) HGoto());
406 }
407 }
408
409 SetLoopHeaderPhiInputs();
410
411 return true;
412 }
413
BuildIntrinsic(ArtMethod * method)414 void HInstructionBuilder::BuildIntrinsic(ArtMethod* method) {
415 DCHECK(!code_item_accessor_.HasCodeItem());
416 DCHECK(method->IsIntrinsic());
417
418 locals_for_.resize(
419 graph_->GetBlocks().size(),
420 ScopedArenaVector<HInstruction*>(local_allocator_->Adapter(kArenaAllocGraphBuilder)));
421
422 // Fill the entry block. Do not add suspend check, we do not want a suspend
423 // check in intrinsics; intrinsic methods are supposed to be fast.
424 current_block_ = graph_->GetEntryBlock();
425 InitializeBlockLocals();
426 InitializeParameters();
427 AppendInstruction(new (allocator_) HGoto(0u));
428
429 // Fill the body.
430 current_block_ = current_block_->GetSingleSuccessor();
431 InitializeBlockLocals();
432 DCHECK(!IsBlockPopulated(current_block_));
433
434 // Add the intermediate representation, if available, or invoke instruction.
435 size_t in_vregs = graph_->GetNumberOfInVRegs();
436 size_t number_of_arguments =
437 in_vregs - std::count(current_locals_->end() - in_vregs, current_locals_->end(), nullptr);
438 uint32_t method_idx = dex_compilation_unit_->GetDexMethodIndex();
439 const char* shorty = dex_file_->GetMethodShorty(method_idx);
440 RangeInstructionOperands operands(graph_->GetNumberOfVRegs() - in_vregs, in_vregs);
441 if (!BuildSimpleIntrinsic(method, kNoDexPc, operands, shorty)) {
442 // Some intrinsics without intermediate representation still yield a leaf method,
443 // so build the invoke. Use HInvokeStaticOrDirect even for methods that would
444 // normally use an HInvokeVirtual (sharpen the call).
445 MethodReference target_method(dex_file_, method_idx);
446 HInvokeStaticOrDirect::DispatchInfo dispatch_info = {
447 HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall,
448 HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
449 /* method_load_data= */ 0u
450 };
451 InvokeType invoke_type = dex_compilation_unit_->IsStatic() ? kStatic : kDirect;
452 HInvokeStaticOrDirect* invoke = new (allocator_) HInvokeStaticOrDirect(
453 allocator_,
454 number_of_arguments,
455 return_type_,
456 kNoDexPc,
457 method_idx,
458 method,
459 dispatch_info,
460 invoke_type,
461 target_method,
462 HInvokeStaticOrDirect::ClinitCheckRequirement::kNone);
463 HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false);
464 }
465
466 // Add the return instruction.
467 if (return_type_ == DataType::Type::kVoid) {
468 AppendInstruction(new (allocator_) HReturnVoid());
469 } else {
470 AppendInstruction(new (allocator_) HReturn(latest_result_));
471 }
472
473 // Fill the exit block.
474 DCHECK_EQ(current_block_->GetSingleSuccessor(), graph_->GetExitBlock());
475 current_block_ = graph_->GetExitBlock();
476 InitializeBlockLocals();
477 AppendInstruction(new (allocator_) HExit());
478 }
479
FindNativeDebugInfoLocations()480 ArenaBitVector* HInstructionBuilder::FindNativeDebugInfoLocations() {
481 ArenaBitVector* locations = ArenaBitVector::Create(local_allocator_,
482 code_item_accessor_.InsnsSizeInCodeUnits(),
483 /* expandable= */ false,
484 kArenaAllocGraphBuilder);
485 locations->ClearAllBits();
486 // The visitor gets called when the line number changes.
487 // In other words, it marks the start of new java statement.
488 code_item_accessor_.DecodeDebugPositionInfo([&](const DexFile::PositionInfo& entry) {
489 locations->SetBit(entry.address_);
490 return false;
491 });
492 // Instruction-specific tweaks.
493 for (const DexInstructionPcPair& inst : code_item_accessor_) {
494 switch (inst->Opcode()) {
495 case Instruction::MOVE_EXCEPTION: {
496 // Stop in native debugger after the exception has been moved.
497 // The compiler also expects the move at the start of basic block so
498 // we do not want to interfere by inserting native-debug-info before it.
499 locations->ClearBit(inst.DexPc());
500 DexInstructionIterator next = std::next(DexInstructionIterator(inst));
501 DCHECK(next.DexPc() != inst.DexPc());
502 if (next != code_item_accessor_.end()) {
503 locations->SetBit(next.DexPc());
504 }
505 break;
506 }
507 default:
508 break;
509 }
510 }
511 return locations;
512 }
513
LoadLocal(uint32_t reg_number,DataType::Type type) const514 HInstruction* HInstructionBuilder::LoadLocal(uint32_t reg_number, DataType::Type type) const {
515 HInstruction* value = (*current_locals_)[reg_number];
516 DCHECK(value != nullptr);
517
518 // If the operation requests a specific type, we make sure its input is of that type.
519 if (type != value->GetType()) {
520 if (DataType::IsFloatingPointType(type)) {
521 value = ssa_builder_->GetFloatOrDoubleEquivalent(value, type);
522 } else if (type == DataType::Type::kReference) {
523 value = ssa_builder_->GetReferenceTypeEquivalent(value);
524 }
525 DCHECK(value != nullptr);
526 }
527
528 return value;
529 }
530
UpdateLocal(uint32_t reg_number,HInstruction * stored_value)531 void HInstructionBuilder::UpdateLocal(uint32_t reg_number, HInstruction* stored_value) {
532 DataType::Type stored_type = stored_value->GetType();
533 DCHECK_NE(stored_type, DataType::Type::kVoid);
534
535 // Storing into vreg `reg_number` may implicitly invalidate the surrounding
536 // registers. Consider the following cases:
537 // (1) Storing a wide value must overwrite previous values in both `reg_number`
538 // and `reg_number+1`. We store `nullptr` in `reg_number+1`.
539 // (2) If vreg `reg_number-1` holds a wide value, writing into `reg_number`
540 // must invalidate it. We store `nullptr` in `reg_number-1`.
541 // Consequently, storing a wide value into the high vreg of another wide value
542 // will invalidate both `reg_number-1` and `reg_number+1`.
543
544 if (reg_number != 0) {
545 HInstruction* local_low = (*current_locals_)[reg_number - 1];
546 if (local_low != nullptr && DataType::Is64BitType(local_low->GetType())) {
547 // The vreg we are storing into was previously the high vreg of a pair.
548 // We need to invalidate its low vreg.
549 DCHECK((*current_locals_)[reg_number] == nullptr);
550 (*current_locals_)[reg_number - 1] = nullptr;
551 }
552 }
553
554 (*current_locals_)[reg_number] = stored_value;
555 if (DataType::Is64BitType(stored_type)) {
556 // We are storing a pair. Invalidate the instruction in the high vreg.
557 (*current_locals_)[reg_number + 1] = nullptr;
558 }
559 }
560
InitializeParameters()561 void HInstructionBuilder::InitializeParameters() {
562 DCHECK(current_block_->IsEntryBlock());
563
564 // outer_compilation_unit_ is null only when unit testing.
565 if (outer_compilation_unit_ == nullptr) {
566 return;
567 }
568
569 const char* shorty = dex_compilation_unit_->GetShorty();
570 uint16_t number_of_parameters = graph_->GetNumberOfInVRegs();
571 uint16_t locals_index = graph_->GetNumberOfLocalVRegs();
572 uint16_t parameter_index = 0;
573
574 const dex::MethodId& referrer_method_id =
575 dex_file_->GetMethodId(dex_compilation_unit_->GetDexMethodIndex());
576 if (!dex_compilation_unit_->IsStatic()) {
577 // Add the implicit 'this' argument, not expressed in the signature.
578 HParameterValue* parameter = new (allocator_) HParameterValue(*dex_file_,
579 referrer_method_id.class_idx_,
580 parameter_index++,
581 DataType::Type::kReference,
582 /* is_this= */ true);
583 AppendInstruction(parameter);
584 UpdateLocal(locals_index++, parameter);
585 number_of_parameters--;
586 current_this_parameter_ = parameter;
587 } else {
588 DCHECK(current_this_parameter_ == nullptr);
589 }
590
591 const dex::ProtoId& proto = dex_file_->GetMethodPrototype(referrer_method_id);
592 const dex::TypeList* arg_types = dex_file_->GetProtoParameters(proto);
593 for (int i = 0, shorty_pos = 1; i < number_of_parameters; i++) {
594 HParameterValue* parameter = new (allocator_) HParameterValue(
595 *dex_file_,
596 arg_types->GetTypeItem(shorty_pos - 1).type_idx_,
597 parameter_index++,
598 DataType::FromShorty(shorty[shorty_pos]),
599 /* is_this= */ false);
600 ++shorty_pos;
601 AppendInstruction(parameter);
602 // Store the parameter value in the local that the dex code will use
603 // to reference that parameter.
604 UpdateLocal(locals_index++, parameter);
605 if (DataType::Is64BitType(parameter->GetType())) {
606 i++;
607 locals_index++;
608 parameter_index++;
609 }
610 }
611 }
612
613 template<typename T>
If_22t(const Instruction & instruction,uint32_t dex_pc)614 void HInstructionBuilder::If_22t(const Instruction& instruction, uint32_t dex_pc) {
615 HInstruction* first = LoadLocal(instruction.VRegA(), DataType::Type::kInt32);
616 HInstruction* second = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
617 T* comparison = new (allocator_) T(first, second, dex_pc);
618 AppendInstruction(comparison);
619 AppendInstruction(new (allocator_) HIf(comparison, dex_pc));
620 current_block_ = nullptr;
621 }
622
623 template<typename T>
If_21t(const Instruction & instruction,uint32_t dex_pc)624 void HInstructionBuilder::If_21t(const Instruction& instruction, uint32_t dex_pc) {
625 HInstruction* value = LoadLocal(instruction.VRegA(), DataType::Type::kInt32);
626 T* comparison = new (allocator_) T(value, graph_->GetIntConstant(0, dex_pc), dex_pc);
627 AppendInstruction(comparison);
628 AppendInstruction(new (allocator_) HIf(comparison, dex_pc));
629 current_block_ = nullptr;
630 }
631
632 template<typename T>
Unop_12x(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)633 void HInstructionBuilder::Unop_12x(const Instruction& instruction,
634 DataType::Type type,
635 uint32_t dex_pc) {
636 HInstruction* first = LoadLocal(instruction.VRegB(), type);
637 AppendInstruction(new (allocator_) T(type, first, dex_pc));
638 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
639 }
640
Conversion_12x(const Instruction & instruction,DataType::Type input_type,DataType::Type result_type,uint32_t dex_pc)641 void HInstructionBuilder::Conversion_12x(const Instruction& instruction,
642 DataType::Type input_type,
643 DataType::Type result_type,
644 uint32_t dex_pc) {
645 HInstruction* first = LoadLocal(instruction.VRegB(), input_type);
646 AppendInstruction(new (allocator_) HTypeConversion(result_type, first, dex_pc));
647 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
648 }
649
650 template<typename T>
Binop_23x(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)651 void HInstructionBuilder::Binop_23x(const Instruction& instruction,
652 DataType::Type type,
653 uint32_t dex_pc) {
654 HInstruction* first = LoadLocal(instruction.VRegB(), type);
655 HInstruction* second = LoadLocal(instruction.VRegC(), type);
656 AppendInstruction(new (allocator_) T(type, first, second, dex_pc));
657 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
658 }
659
660 template<typename T>
Binop_23x_shift(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)661 void HInstructionBuilder::Binop_23x_shift(const Instruction& instruction,
662 DataType::Type type,
663 uint32_t dex_pc) {
664 HInstruction* first = LoadLocal(instruction.VRegB(), type);
665 HInstruction* second = LoadLocal(instruction.VRegC(), DataType::Type::kInt32);
666 AppendInstruction(new (allocator_) T(type, first, second, dex_pc));
667 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
668 }
669
Binop_23x_cmp(const Instruction & instruction,DataType::Type type,ComparisonBias bias,uint32_t dex_pc)670 void HInstructionBuilder::Binop_23x_cmp(const Instruction& instruction,
671 DataType::Type type,
672 ComparisonBias bias,
673 uint32_t dex_pc) {
674 HInstruction* first = LoadLocal(instruction.VRegB(), type);
675 HInstruction* second = LoadLocal(instruction.VRegC(), type);
676 AppendInstruction(new (allocator_) HCompare(type, first, second, bias, dex_pc));
677 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
678 }
679
680 template<typename T>
Binop_12x_shift(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)681 void HInstructionBuilder::Binop_12x_shift(const Instruction& instruction,
682 DataType::Type type,
683 uint32_t dex_pc) {
684 HInstruction* first = LoadLocal(instruction.VRegA(), type);
685 HInstruction* second = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
686 AppendInstruction(new (allocator_) T(type, first, second, dex_pc));
687 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
688 }
689
690 template<typename T>
Binop_12x(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)691 void HInstructionBuilder::Binop_12x(const Instruction& instruction,
692 DataType::Type type,
693 uint32_t dex_pc) {
694 HInstruction* first = LoadLocal(instruction.VRegA(), type);
695 HInstruction* second = LoadLocal(instruction.VRegB(), type);
696 AppendInstruction(new (allocator_) T(type, first, second, dex_pc));
697 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
698 }
699
700 template<typename T>
Binop_22s(const Instruction & instruction,bool reverse,uint32_t dex_pc)701 void HInstructionBuilder::Binop_22s(const Instruction& instruction, bool reverse, uint32_t dex_pc) {
702 HInstruction* first = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
703 HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22s(), dex_pc);
704 if (reverse) {
705 std::swap(first, second);
706 }
707 AppendInstruction(new (allocator_) T(DataType::Type::kInt32, first, second, dex_pc));
708 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
709 }
710
711 template<typename T>
Binop_22b(const Instruction & instruction,bool reverse,uint32_t dex_pc)712 void HInstructionBuilder::Binop_22b(const Instruction& instruction, bool reverse, uint32_t dex_pc) {
713 HInstruction* first = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
714 HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22b(), dex_pc);
715 if (reverse) {
716 std::swap(first, second);
717 }
718 AppendInstruction(new (allocator_) T(DataType::Type::kInt32, first, second, dex_pc));
719 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
720 }
721
722 // Does the method being compiled need any constructor barriers being inserted?
723 // (Always 'false' for methods that aren't <init>.)
RequiresConstructorBarrier(const DexCompilationUnit * cu)724 static bool RequiresConstructorBarrier(const DexCompilationUnit* cu) {
725 // Can be null in unit tests only.
726 if (UNLIKELY(cu == nullptr)) {
727 return false;
728 }
729
730 // Constructor barriers are applicable only for <init> methods.
731 if (LIKELY(!cu->IsConstructor() || cu->IsStatic())) {
732 return false;
733 }
734
735 return cu->RequiresConstructorBarrier();
736 }
737
738 // Returns true if `block` has only one successor which starts at the next
739 // dex_pc after `instruction` at `dex_pc`.
IsFallthroughInstruction(const Instruction & instruction,uint32_t dex_pc,HBasicBlock * block)740 static bool IsFallthroughInstruction(const Instruction& instruction,
741 uint32_t dex_pc,
742 HBasicBlock* block) {
743 uint32_t next_dex_pc = dex_pc + instruction.SizeInCodeUnits();
744 return block->GetSingleSuccessor()->GetDexPc() == next_dex_pc;
745 }
746
BuildSwitch(const Instruction & instruction,uint32_t dex_pc)747 void HInstructionBuilder::BuildSwitch(const Instruction& instruction, uint32_t dex_pc) {
748 HInstruction* value = LoadLocal(instruction.VRegA(), DataType::Type::kInt32);
749 DexSwitchTable table(instruction, dex_pc);
750
751 if (table.GetNumEntries() == 0) {
752 // Empty Switch. Code falls through to the next block.
753 DCHECK(IsFallthroughInstruction(instruction, dex_pc, current_block_));
754 AppendInstruction(new (allocator_) HGoto(dex_pc));
755 } else if (table.ShouldBuildDecisionTree()) {
756 for (DexSwitchTableIterator it(table); !it.Done(); it.Advance()) {
757 HInstruction* case_value = graph_->GetIntConstant(it.CurrentKey(), dex_pc);
758 HEqual* comparison = new (allocator_) HEqual(value, case_value, dex_pc);
759 AppendInstruction(comparison);
760 AppendInstruction(new (allocator_) HIf(comparison, dex_pc));
761
762 if (!it.IsLast()) {
763 current_block_ = FindBlockStartingAt(it.GetDexPcForCurrentIndex());
764 }
765 }
766 } else {
767 AppendInstruction(
768 new (allocator_) HPackedSwitch(table.GetEntryAt(0), table.GetNumEntries(), value, dex_pc));
769 }
770
771 current_block_ = nullptr;
772 }
773
BuildReturn(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)774 void HInstructionBuilder::BuildReturn(const Instruction& instruction,
775 DataType::Type type,
776 uint32_t dex_pc) {
777 if (type == DataType::Type::kVoid) {
778 // Only <init> (which is a return-void) could possibly have a constructor fence.
779 // This may insert additional redundant constructor fences from the super constructors.
780 // TODO: remove redundant constructor fences (b/36656456).
781 if (RequiresConstructorBarrier(dex_compilation_unit_)) {
782 // Compiling instance constructor.
783 DCHECK_STREQ("<init>", graph_->GetMethodName());
784
785 HInstruction* fence_target = current_this_parameter_;
786 DCHECK(fence_target != nullptr);
787
788 AppendInstruction(new (allocator_) HConstructorFence(fence_target, dex_pc, allocator_));
789 MaybeRecordStat(
790 compilation_stats_,
791 MethodCompilationStat::kConstructorFenceGeneratedFinal);
792 }
793 AppendInstruction(new (allocator_) HReturnVoid(dex_pc));
794 } else {
795 DCHECK(!RequiresConstructorBarrier(dex_compilation_unit_));
796 HInstruction* value = LoadLocal(instruction.VRegA(), type);
797 AppendInstruction(new (allocator_) HReturn(value, dex_pc));
798 }
799 current_block_ = nullptr;
800 }
801
GetInvokeTypeFromOpCode(Instruction::Code opcode)802 static InvokeType GetInvokeTypeFromOpCode(Instruction::Code opcode) {
803 switch (opcode) {
804 case Instruction::INVOKE_STATIC:
805 case Instruction::INVOKE_STATIC_RANGE:
806 return kStatic;
807 case Instruction::INVOKE_DIRECT:
808 case Instruction::INVOKE_DIRECT_RANGE:
809 return kDirect;
810 case Instruction::INVOKE_VIRTUAL:
811 case Instruction::INVOKE_VIRTUAL_QUICK:
812 case Instruction::INVOKE_VIRTUAL_RANGE:
813 case Instruction::INVOKE_VIRTUAL_RANGE_QUICK:
814 return kVirtual;
815 case Instruction::INVOKE_INTERFACE:
816 case Instruction::INVOKE_INTERFACE_RANGE:
817 return kInterface;
818 case Instruction::INVOKE_SUPER_RANGE:
819 case Instruction::INVOKE_SUPER:
820 return kSuper;
821 default:
822 LOG(FATAL) << "Unexpected invoke opcode: " << opcode;
823 UNREACHABLE();
824 }
825 }
826
827 // Try to resolve a method using the class linker. Return null if a method could
828 // not be resolved or the resolved method cannot be used for some reason.
829 // Also retrieve method data needed for creating the invoke intermediate
830 // representation while we hold the mutator lock here.
ResolveMethod(uint16_t method_idx,ArtMethod * referrer,const DexCompilationUnit & dex_compilation_unit,InvokeType * invoke_type,MethodReference * target_method,bool * is_string_constructor)831 static ArtMethod* ResolveMethod(uint16_t method_idx,
832 ArtMethod* referrer,
833 const DexCompilationUnit& dex_compilation_unit,
834 /*inout*/InvokeType* invoke_type,
835 /*out*/MethodReference* target_method,
836 /*out*/bool* is_string_constructor) {
837 ScopedObjectAccess soa(Thread::Current());
838
839 ClassLinker* class_linker = dex_compilation_unit.GetClassLinker();
840 Handle<mirror::ClassLoader> class_loader = dex_compilation_unit.GetClassLoader();
841
842 ArtMethod* resolved_method =
843 class_linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
844 method_idx,
845 dex_compilation_unit.GetDexCache(),
846 class_loader,
847 referrer,
848 *invoke_type);
849
850 if (UNLIKELY(resolved_method == nullptr)) {
851 // Clean up any exception left by type resolution.
852 soa.Self()->ClearException();
853 return nullptr;
854 }
855 DCHECK(!soa.Self()->IsExceptionPending());
856
857 // The referrer may be unresolved for AOT if we're compiling a class that cannot be
858 // resolved because, for example, we don't find a superclass in the classpath.
859 if (referrer == nullptr) {
860 // The class linker cannot check access without a referrer, so we have to do it.
861 // Fall back to HInvokeUnresolved if the method isn't public.
862 if (!resolved_method->IsPublic()) {
863 return nullptr;
864 }
865 }
866
867 // We have to special case the invoke-super case, as ClassLinker::ResolveMethod does not.
868 // We need to look at the referrer's super class vtable. We need to do this to know if we need to
869 // make this an invoke-unresolved to handle cross-dex invokes or abstract super methods, both of
870 // which require runtime handling.
871 if (*invoke_type == kSuper) {
872 ObjPtr<mirror::Class> compiling_class = dex_compilation_unit.GetCompilingClass().Get();
873 if (compiling_class == nullptr) {
874 // We could not determine the method's class we need to wait until runtime.
875 DCHECK(Runtime::Current()->IsAotCompiler());
876 return nullptr;
877 }
878 ObjPtr<mirror::Class> referenced_class = class_linker->LookupResolvedType(
879 dex_compilation_unit.GetDexFile()->GetMethodId(method_idx).class_idx_,
880 dex_compilation_unit.GetDexCache().Get(),
881 class_loader.Get());
882 DCHECK(referenced_class != nullptr); // We have already resolved a method from this class.
883 if (!referenced_class->IsAssignableFrom(compiling_class)) {
884 // We cannot statically determine the target method. The runtime will throw a
885 // NoSuchMethodError on this one.
886 return nullptr;
887 }
888 ArtMethod* actual_method;
889 if (referenced_class->IsInterface()) {
890 actual_method = referenced_class->FindVirtualMethodForInterfaceSuper(
891 resolved_method, class_linker->GetImagePointerSize());
892 } else {
893 uint16_t vtable_index = resolved_method->GetMethodIndex();
894 actual_method = compiling_class->GetSuperClass()->GetVTableEntry(
895 vtable_index, class_linker->GetImagePointerSize());
896 }
897 if (actual_method != resolved_method &&
898 !IsSameDexFile(*actual_method->GetDexFile(), *dex_compilation_unit.GetDexFile())) {
899 // The back-end code generator relies on this check in order to ensure that it will not
900 // attempt to read the dex_cache with a dex_method_index that is not from the correct
901 // dex_file. If we didn't do this check then the dex_method_index will not be updated in the
902 // builder, which means that the code-generator (and sharpening and inliner, maybe)
903 // might invoke an incorrect method.
904 // TODO: The actual method could still be referenced in the current dex file, so we
905 // could try locating it.
906 // TODO: Remove the dex_file restriction.
907 return nullptr;
908 }
909 if (!actual_method->IsInvokable()) {
910 // Fail if the actual method cannot be invoked. Otherwise, the runtime resolution stub
911 // could resolve the callee to the wrong method.
912 return nullptr;
913 }
914 resolved_method = actual_method;
915 }
916
917 if (*invoke_type == kInterface) {
918 if (resolved_method->GetDeclaringClass()->IsObjectClass()) {
919 // If the resolved method is from j.l.Object, emit a virtual call instead.
920 // The IMT conflict stub only handles interface methods.
921 *invoke_type = kVirtual;
922 } else {
923 DCHECK(resolved_method->GetDeclaringClass()->IsInterface());
924 }
925 }
926
927 if (*invoke_type == kDirect || *invoke_type == kStatic || *invoke_type == kSuper) {
928 // Record the target method needed for HInvokeStaticOrDirect.
929 *target_method =
930 MethodReference(resolved_method->GetDexFile(), resolved_method->GetDexMethodIndex());
931 } else if (*invoke_type == kVirtual) {
932 // For HInvokeVirtual we need the vtable index.
933 *target_method = MethodReference(/*file=*/ nullptr, resolved_method->GetVtableIndex());
934 } else if (*invoke_type == kInterface) {
935 // For HInvokeInterface we need the IMT index.
936 *target_method = MethodReference(/*file=*/ nullptr, ImTable::GetImtIndex(resolved_method));
937 } else {
938 // For HInvokePolymorphic we don't need the target method yet
939 DCHECK_EQ(*invoke_type, kPolymorphic);
940 DCHECK(target_method == nullptr);
941 }
942
943 *is_string_constructor =
944 resolved_method->IsConstructor() && resolved_method->GetDeclaringClass()->IsStringClass();
945
946 return resolved_method;
947 }
948
BuildInvoke(const Instruction & instruction,uint32_t dex_pc,uint32_t method_idx,const InstructionOperands & operands)949 bool HInstructionBuilder::BuildInvoke(const Instruction& instruction,
950 uint32_t dex_pc,
951 uint32_t method_idx,
952 const InstructionOperands& operands) {
953 InvokeType invoke_type = GetInvokeTypeFromOpCode(instruction.Opcode());
954 const char* shorty = dex_file_->GetMethodShorty(method_idx);
955 DataType::Type return_type = DataType::FromShorty(shorty[0]);
956
957 // Remove the return type from the 'proto'.
958 size_t number_of_arguments = strlen(shorty) - 1;
959 if (invoke_type != kStatic) { // instance call
960 // One extra argument for 'this'.
961 number_of_arguments++;
962 }
963
964 MethodReference target_method(nullptr, 0u);
965 bool is_string_constructor = false;
966 ArtMethod* resolved_method = ResolveMethod(method_idx,
967 graph_->GetArtMethod(),
968 *dex_compilation_unit_,
969 &invoke_type,
970 &target_method,
971 &is_string_constructor);
972
973 if (UNLIKELY(resolved_method == nullptr)) {
974 DCHECK(!Thread::Current()->IsExceptionPending());
975 MaybeRecordStat(compilation_stats_,
976 MethodCompilationStat::kUnresolvedMethod);
977 HInvoke* invoke = new (allocator_) HInvokeUnresolved(allocator_,
978 number_of_arguments,
979 return_type,
980 dex_pc,
981 method_idx,
982 invoke_type);
983 return HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ true);
984 }
985
986 // Replace calls to String.<init> with StringFactory.
987 if (is_string_constructor) {
988 uint32_t string_init_entry_point = WellKnownClasses::StringInitToEntryPoint(resolved_method);
989 HInvokeStaticOrDirect::DispatchInfo dispatch_info = {
990 HInvokeStaticOrDirect::MethodLoadKind::kStringInit,
991 HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
992 dchecked_integral_cast<uint64_t>(string_init_entry_point)
993 };
994 // We pass null for the resolved_method to ensure optimizations
995 // don't rely on it.
996 HInvoke* invoke = new (allocator_) HInvokeStaticOrDirect(
997 allocator_,
998 number_of_arguments - 1,
999 /* return_type= */ DataType::Type::kReference,
1000 dex_pc,
1001 method_idx,
1002 /* resolved_method= */ nullptr,
1003 dispatch_info,
1004 invoke_type,
1005 target_method,
1006 HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit);
1007 return HandleStringInit(invoke, operands, shorty);
1008 }
1009
1010 // Potential class initialization check, in the case of a static method call.
1011 HInvokeStaticOrDirect::ClinitCheckRequirement clinit_check_requirement =
1012 HInvokeStaticOrDirect::ClinitCheckRequirement::kNone;
1013 HClinitCheck* clinit_check = nullptr;
1014 if (invoke_type == kStatic) {
1015 clinit_check = ProcessClinitCheckForInvoke(dex_pc, resolved_method, &clinit_check_requirement);
1016 }
1017
1018 // Try to build an HIR replacement for the intrinsic.
1019 if (UNLIKELY(resolved_method->IsIntrinsic())) {
1020 // All intrinsics are in the primary boot image, so their class can always be referenced
1021 // and we do not need to rely on the implicit class initialization check. The class should
1022 // be initialized but we do not require that here.
1023 DCHECK_NE(clinit_check_requirement, HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit);
1024 if (BuildSimpleIntrinsic(resolved_method, dex_pc, operands, shorty)) {
1025 return true;
1026 }
1027 }
1028
1029 HInvoke* invoke = nullptr;
1030 if (invoke_type == kDirect || invoke_type == kStatic || invoke_type == kSuper) {
1031 if (invoke_type == kSuper) {
1032 if (IsSameDexFile(*target_method.dex_file, *dex_compilation_unit_->GetDexFile())) {
1033 // Update the method index to the one resolved. Note that this may be a no-op if
1034 // we resolved to the method referenced by the instruction.
1035 method_idx = target_method.index;
1036 }
1037 }
1038
1039 HInvokeStaticOrDirect::DispatchInfo dispatch_info =
1040 HSharpening::SharpenInvokeStaticOrDirect(resolved_method, code_generator_);
1041 invoke = new (allocator_) HInvokeStaticOrDirect(allocator_,
1042 number_of_arguments,
1043 return_type,
1044 dex_pc,
1045 method_idx,
1046 resolved_method,
1047 dispatch_info,
1048 invoke_type,
1049 target_method,
1050 clinit_check_requirement);
1051 if (clinit_check != nullptr) {
1052 // Add the class initialization check as last input of `invoke`.
1053 DCHECK_EQ(clinit_check_requirement, HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit);
1054 size_t clinit_check_index = invoke->InputCount() - 1u;
1055 DCHECK(invoke->InputAt(clinit_check_index) == nullptr);
1056 invoke->SetArgumentAt(clinit_check_index, clinit_check);
1057 }
1058 } else if (invoke_type == kVirtual) {
1059 DCHECK(target_method.dex_file == nullptr);
1060 invoke = new (allocator_) HInvokeVirtual(allocator_,
1061 number_of_arguments,
1062 return_type,
1063 dex_pc,
1064 method_idx,
1065 resolved_method,
1066 /*vtable_index=*/ target_method.index);
1067 } else {
1068 DCHECK_EQ(invoke_type, kInterface);
1069 invoke = new (allocator_) HInvokeInterface(allocator_,
1070 number_of_arguments,
1071 return_type,
1072 dex_pc,
1073 method_idx,
1074 resolved_method,
1075 /*imt_index=*/ target_method.index);
1076 }
1077 return HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false);
1078 }
1079
BuildInvokePolymorphic(uint32_t dex_pc,uint32_t method_idx,dex::ProtoIndex proto_idx,const InstructionOperands & operands)1080 bool HInstructionBuilder::BuildInvokePolymorphic(uint32_t dex_pc,
1081 uint32_t method_idx,
1082 dex::ProtoIndex proto_idx,
1083 const InstructionOperands& operands) {
1084 const char* shorty = dex_file_->GetShorty(proto_idx);
1085 DCHECK_EQ(1 + ArtMethod::NumArgRegisters(shorty), operands.GetNumberOfOperands());
1086 DataType::Type return_type = DataType::FromShorty(shorty[0]);
1087 size_t number_of_arguments = strlen(shorty);
1088 // We use ResolveMethod which is also used in BuildInvoke in order to
1089 // not duplicate code. As such, we need to provide is_string_constructor
1090 // even if we don't need it afterwards.
1091 InvokeType invoke_type = InvokeType::kPolymorphic;
1092 bool is_string_constructor = false;
1093 ArtMethod* resolved_method = ResolveMethod(method_idx,
1094 graph_->GetArtMethod(),
1095 *dex_compilation_unit_,
1096 &invoke_type,
1097 /* target_method= */ nullptr,
1098 &is_string_constructor);
1099 HInvoke* invoke = new (allocator_) HInvokePolymorphic(allocator_,
1100 number_of_arguments,
1101 return_type,
1102 dex_pc,
1103 method_idx,
1104 resolved_method);
1105 return HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false);
1106 }
1107
1108
BuildInvokeCustom(uint32_t dex_pc,uint32_t call_site_idx,const InstructionOperands & operands)1109 bool HInstructionBuilder::BuildInvokeCustom(uint32_t dex_pc,
1110 uint32_t call_site_idx,
1111 const InstructionOperands& operands) {
1112 dex::ProtoIndex proto_idx = dex_file_->GetProtoIndexForCallSite(call_site_idx);
1113 const char* shorty = dex_file_->GetShorty(proto_idx);
1114 DataType::Type return_type = DataType::FromShorty(shorty[0]);
1115 size_t number_of_arguments = strlen(shorty) - 1;
1116 HInvoke* invoke = new (allocator_) HInvokeCustom(allocator_,
1117 number_of_arguments,
1118 call_site_idx,
1119 return_type,
1120 dex_pc);
1121 return HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false);
1122 }
1123
BuildNewInstance(dex::TypeIndex type_index,uint32_t dex_pc)1124 HNewInstance* HInstructionBuilder::BuildNewInstance(dex::TypeIndex type_index, uint32_t dex_pc) {
1125 ScopedObjectAccess soa(Thread::Current());
1126
1127 HLoadClass* load_class = BuildLoadClass(type_index, dex_pc);
1128
1129 HInstruction* cls = load_class;
1130 Handle<mirror::Class> klass = load_class->GetClass();
1131
1132 if (!IsInitialized(klass.Get())) {
1133 cls = new (allocator_) HClinitCheck(load_class, dex_pc);
1134 AppendInstruction(cls);
1135 }
1136
1137 // Only the access check entrypoint handles the finalizable class case. If we
1138 // need access checks, then we haven't resolved the method and the class may
1139 // again be finalizable.
1140 QuickEntrypointEnum entrypoint = kQuickAllocObjectInitialized;
1141 if (load_class->NeedsAccessCheck() || klass->IsFinalizable() || !klass->IsInstantiable()) {
1142 entrypoint = kQuickAllocObjectWithChecks;
1143 }
1144 // We will always be able to resolve the string class since it is in the BCP.
1145 if (!klass.IsNull() && klass->IsStringClass()) {
1146 entrypoint = kQuickAllocStringObject;
1147 }
1148
1149 // Consider classes we haven't resolved as potentially finalizable.
1150 bool finalizable = (klass == nullptr) || klass->IsFinalizable();
1151
1152 HNewInstance* new_instance = new (allocator_) HNewInstance(
1153 cls,
1154 dex_pc,
1155 type_index,
1156 *dex_compilation_unit_->GetDexFile(),
1157 finalizable,
1158 entrypoint);
1159 AppendInstruction(new_instance);
1160
1161 return new_instance;
1162 }
1163
BuildConstructorFenceForAllocation(HInstruction * allocation)1164 void HInstructionBuilder::BuildConstructorFenceForAllocation(HInstruction* allocation) {
1165 DCHECK(allocation != nullptr &&
1166 (allocation->IsNewInstance() ||
1167 allocation->IsNewArray())); // corresponding to "new" keyword in JLS.
1168
1169 if (allocation->IsNewInstance()) {
1170 // STRING SPECIAL HANDLING:
1171 // -------------------------------
1172 // Strings have a real HNewInstance node but they end up always having 0 uses.
1173 // All uses of a String HNewInstance are always transformed to replace their input
1174 // of the HNewInstance with an input of the invoke to StringFactory.
1175 //
1176 // Do not emit an HConstructorFence here since it can inhibit some String new-instance
1177 // optimizations (to pass checker tests that rely on those optimizations).
1178 HNewInstance* new_inst = allocation->AsNewInstance();
1179 HLoadClass* load_class = new_inst->GetLoadClass();
1180
1181 Thread* self = Thread::Current();
1182 ScopedObjectAccess soa(self);
1183 StackHandleScope<1> hs(self);
1184 Handle<mirror::Class> klass = load_class->GetClass();
1185 if (klass != nullptr && klass->IsStringClass()) {
1186 return;
1187 // Note: Do not use allocation->IsStringAlloc which requires
1188 // a valid ReferenceTypeInfo, but that doesn't get made until after reference type
1189 // propagation (and instruction builder is too early).
1190 }
1191 // (In terms of correctness, the StringFactory needs to provide its own
1192 // default initialization barrier, see below.)
1193 }
1194
1195 // JLS 17.4.5 "Happens-before Order" describes:
1196 //
1197 // The default initialization of any object happens-before any other actions (other than
1198 // default-writes) of a program.
1199 //
1200 // In our implementation the default initialization of an object to type T means
1201 // setting all of its initial data (object[0..size)) to 0, and setting the
1202 // object's class header (i.e. object.getClass() == T.class).
1203 //
1204 // In practice this fence ensures that the writes to the object header
1205 // are visible to other threads if this object escapes the current thread.
1206 // (and in theory the 0-initializing, but that happens automatically
1207 // when new memory pages are mapped in by the OS).
1208 HConstructorFence* ctor_fence =
1209 new (allocator_) HConstructorFence(allocation, allocation->GetDexPc(), allocator_);
1210 AppendInstruction(ctor_fence);
1211 MaybeRecordStat(
1212 compilation_stats_,
1213 MethodCompilationStat::kConstructorFenceGeneratedNew);
1214 }
1215
IsInBootImage(ObjPtr<mirror::Class> cls,const CompilerOptions & compiler_options)1216 static bool IsInBootImage(ObjPtr<mirror::Class> cls, const CompilerOptions& compiler_options)
1217 REQUIRES_SHARED(Locks::mutator_lock_) {
1218 if (Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(cls)) {
1219 return true;
1220 }
1221 if (compiler_options.IsBootImage() || compiler_options.IsBootImageExtension()) {
1222 std::string temp;
1223 const char* descriptor = cls->GetDescriptor(&temp);
1224 return compiler_options.IsImageClass(descriptor);
1225 } else {
1226 return false;
1227 }
1228 }
1229
IsSubClass(ObjPtr<mirror::Class> to_test,ObjPtr<mirror::Class> super_class)1230 static bool IsSubClass(ObjPtr<mirror::Class> to_test, ObjPtr<mirror::Class> super_class)
1231 REQUIRES_SHARED(Locks::mutator_lock_) {
1232 return to_test != nullptr && !to_test->IsInterface() && to_test->IsSubClass(super_class);
1233 }
1234
HasTrivialClinit(ObjPtr<mirror::Class> klass,PointerSize pointer_size)1235 static bool HasTrivialClinit(ObjPtr<mirror::Class> klass, PointerSize pointer_size)
1236 REQUIRES_SHARED(Locks::mutator_lock_) {
1237 // Check if the class has encoded fields that trigger bytecode execution.
1238 // (Encoded fields are just a different representation of <clinit>.)
1239 if (klass->NumStaticFields() != 0u) {
1240 DCHECK(klass->GetClassDef() != nullptr);
1241 EncodedStaticFieldValueIterator it(klass->GetDexFile(), *klass->GetClassDef());
1242 for (; it.HasNext(); it.Next()) {
1243 switch (it.GetValueType()) {
1244 case EncodedArrayValueIterator::ValueType::kBoolean:
1245 case EncodedArrayValueIterator::ValueType::kByte:
1246 case EncodedArrayValueIterator::ValueType::kShort:
1247 case EncodedArrayValueIterator::ValueType::kChar:
1248 case EncodedArrayValueIterator::ValueType::kInt:
1249 case EncodedArrayValueIterator::ValueType::kLong:
1250 case EncodedArrayValueIterator::ValueType::kFloat:
1251 case EncodedArrayValueIterator::ValueType::kDouble:
1252 case EncodedArrayValueIterator::ValueType::kNull:
1253 case EncodedArrayValueIterator::ValueType::kString:
1254 // Primitive, null or j.l.String initialization is permitted.
1255 break;
1256 case EncodedArrayValueIterator::ValueType::kType:
1257 // Type initialization can load classes and execute bytecode through a class loader
1258 // which can execute arbitrary bytecode. We do not optimize for known class loaders;
1259 // kType is rarely used (if ever).
1260 return false;
1261 default:
1262 // Other types in the encoded static field list are rejected by the DexFileVerifier.
1263 LOG(FATAL) << "Unexpected type " << it.GetValueType();
1264 UNREACHABLE();
1265 }
1266 }
1267 }
1268 // Check if the class has <clinit> that executes arbitrary code.
1269 // Initialization of static fields of the class itself with constants is allowed.
1270 ArtMethod* clinit = klass->FindClassInitializer(pointer_size);
1271 if (clinit != nullptr) {
1272 const DexFile& dex_file = *clinit->GetDexFile();
1273 CodeItemInstructionAccessor accessor(dex_file, clinit->GetCodeItem());
1274 for (DexInstructionPcPair it : accessor) {
1275 switch (it->Opcode()) {
1276 case Instruction::CONST_4:
1277 case Instruction::CONST_16:
1278 case Instruction::CONST:
1279 case Instruction::CONST_HIGH16:
1280 case Instruction::CONST_WIDE_16:
1281 case Instruction::CONST_WIDE_32:
1282 case Instruction::CONST_WIDE:
1283 case Instruction::CONST_WIDE_HIGH16:
1284 case Instruction::CONST_STRING:
1285 case Instruction::CONST_STRING_JUMBO:
1286 // Primitive, null or j.l.String initialization is permitted.
1287 break;
1288 case Instruction::RETURN_VOID:
1289 case Instruction::RETURN_VOID_NO_BARRIER:
1290 break;
1291 case Instruction::SPUT:
1292 case Instruction::SPUT_WIDE:
1293 case Instruction::SPUT_OBJECT:
1294 case Instruction::SPUT_BOOLEAN:
1295 case Instruction::SPUT_BYTE:
1296 case Instruction::SPUT_CHAR:
1297 case Instruction::SPUT_SHORT:
1298 // Only initialization of a static field of the same class is permitted.
1299 if (dex_file.GetFieldId(it->VRegB_21c()).class_idx_ != klass->GetDexTypeIndex()) {
1300 return false;
1301 }
1302 break;
1303 case Instruction::NEW_ARRAY:
1304 // Only primitive arrays are permitted.
1305 if (Primitive::GetType(dex_file.GetTypeDescriptor(dex_file.GetTypeId(
1306 dex::TypeIndex(it->VRegC_22c())))[1]) == Primitive::kPrimNot) {
1307 return false;
1308 }
1309 break;
1310 case Instruction::APUT:
1311 case Instruction::APUT_WIDE:
1312 case Instruction::APUT_BOOLEAN:
1313 case Instruction::APUT_BYTE:
1314 case Instruction::APUT_CHAR:
1315 case Instruction::APUT_SHORT:
1316 case Instruction::FILL_ARRAY_DATA:
1317 case Instruction::NOP:
1318 // Allow initialization of primitive arrays (only constants can be stored).
1319 // Note: We expect NOPs used for fill-array-data-payload but accept all NOPs
1320 // (even unreferenced switch payloads if they make it through the verifier).
1321 break;
1322 default:
1323 return false;
1324 }
1325 }
1326 }
1327 return true;
1328 }
1329
HasTrivialInitialization(ObjPtr<mirror::Class> cls,const CompilerOptions & compiler_options)1330 static bool HasTrivialInitialization(ObjPtr<mirror::Class> cls,
1331 const CompilerOptions& compiler_options)
1332 REQUIRES_SHARED(Locks::mutator_lock_) {
1333 Runtime* runtime = Runtime::Current();
1334 PointerSize pointer_size = runtime->GetClassLinker()->GetImagePointerSize();
1335
1336 // Check the superclass chain.
1337 for (ObjPtr<mirror::Class> klass = cls; klass != nullptr; klass = klass->GetSuperClass()) {
1338 if (klass->IsInitialized() && IsInBootImage(klass, compiler_options)) {
1339 break; // `klass` and its superclasses are already initialized in the boot image.
1340 }
1341 if (!HasTrivialClinit(klass, pointer_size)) {
1342 return false;
1343 }
1344 }
1345
1346 // Also check interfaces with default methods as they need to be initialized as well.
1347 ObjPtr<mirror::IfTable> iftable = cls->GetIfTable();
1348 DCHECK(iftable != nullptr);
1349 for (int32_t i = 0, count = iftable->Count(); i != count; ++i) {
1350 ObjPtr<mirror::Class> iface = iftable->GetInterface(i);
1351 if (!iface->HasDefaultMethods()) {
1352 continue; // Initializing `cls` does not initialize this interface.
1353 }
1354 if (iface->IsInitialized() && IsInBootImage(iface, compiler_options)) {
1355 continue; // This interface is already initialized in the boot image.
1356 }
1357 if (!HasTrivialClinit(iface, pointer_size)) {
1358 return false;
1359 }
1360 }
1361 return true;
1362 }
1363
IsInitialized(ObjPtr<mirror::Class> cls) const1364 bool HInstructionBuilder::IsInitialized(ObjPtr<mirror::Class> cls) const {
1365 if (cls == nullptr) {
1366 return false;
1367 }
1368
1369 // Check if the class will be initialized at runtime.
1370 if (cls->IsInitialized()) {
1371 const CompilerOptions& compiler_options = code_generator_->GetCompilerOptions();
1372 if (compiler_options.IsAotCompiler()) {
1373 // Assume loaded only if klass is in the boot image. App classes cannot be assumed
1374 // loaded because we don't even know what class loader will be used to load them.
1375 if (IsInBootImage(cls, compiler_options)) {
1376 return true;
1377 }
1378 } else {
1379 DCHECK(compiler_options.IsJitCompiler());
1380 if (Runtime::Current()->GetJit()->CanAssumeInitialized(
1381 cls,
1382 compiler_options.IsJitCompilerForSharedCode())) {
1383 // For JIT, the class cannot revert to an uninitialized state.
1384 return true;
1385 }
1386 }
1387 }
1388
1389 // We can avoid the class initialization check for `cls` in static methods and constructors
1390 // in the very same class; invoking a static method involves a class initialization check
1391 // and so does the instance allocation that must be executed before invoking a constructor.
1392 // Other instance methods of the same class can run on an escaped instance
1393 // of an erroneous class. Even a superclass may need to be checked as the subclass
1394 // can be completely initialized while the superclass is initializing and the subclass
1395 // remains initialized when the superclass initializer throws afterwards. b/62478025
1396 // Note: The HClinitCheck+HInvokeStaticOrDirect merging can still apply.
1397 auto is_static_method_or_constructor_of_cls = [cls](const DexCompilationUnit& compilation_unit)
1398 REQUIRES_SHARED(Locks::mutator_lock_) {
1399 return (compilation_unit.GetAccessFlags() & (kAccStatic | kAccConstructor)) != 0u &&
1400 compilation_unit.GetCompilingClass().Get() == cls;
1401 };
1402 if (is_static_method_or_constructor_of_cls(*outer_compilation_unit_) ||
1403 // Check also the innermost method. Though excessive copies of ClinitCheck can be
1404 // eliminated by GVN, that happens only after the decision whether to inline the
1405 // graph or not and that may depend on the presence of the ClinitCheck.
1406 // TODO: We should walk over the entire inlined method chain, but we don't pass that
1407 // information to the builder.
1408 is_static_method_or_constructor_of_cls(*dex_compilation_unit_)) {
1409 return true;
1410 }
1411
1412 // Otherwise, we may be able to avoid the check if `cls` is a superclass of a method being
1413 // compiled here (anywhere in the inlining chain) as the `cls` must have started initializing
1414 // before calling any `cls` or subclass methods. Static methods require a clinit check and
1415 // instance methods require an instance which cannot be created before doing a clinit check.
1416 // When a subclass of `cls` starts initializing, it starts initializing its superclass
1417 // chain up to `cls` without running any bytecode, i.e. without any opportunity for circular
1418 // initialization weirdness.
1419 //
1420 // If the initialization of `cls` is trivial (`cls` and its superclasses and superinterfaces
1421 // with default methods initialize only their own static fields using constant values), it must
1422 // complete, either successfully or by throwing and marking `cls` erroneous, without allocating
1423 // any instances of `cls` or subclasses (or any other class) and without calling any methods.
1424 // If it completes by throwing, no instances of `cls` shall be created and no subclass method
1425 // bytecode shall execute (see above), therefore the instruction we're building shall be
1426 // unreachable. By reaching the instruction, we know that `cls` was initialized successfully.
1427 //
1428 // TODO: We should walk over the entire inlined methods chain, but we don't pass that
1429 // information to the builder. (We could also check if we're guaranteed a non-null instance
1430 // of `cls` at this location but that's outside the scope of the instruction builder.)
1431 bool is_subclass = IsSubClass(outer_compilation_unit_->GetCompilingClass().Get(), cls);
1432 if (dex_compilation_unit_ != outer_compilation_unit_) {
1433 is_subclass = is_subclass ||
1434 IsSubClass(dex_compilation_unit_->GetCompilingClass().Get(), cls);
1435 }
1436 if (is_subclass && HasTrivialInitialization(cls, code_generator_->GetCompilerOptions())) {
1437 return true;
1438 }
1439
1440 return false;
1441 }
1442
ProcessClinitCheckForInvoke(uint32_t dex_pc,ArtMethod * resolved_method,HInvokeStaticOrDirect::ClinitCheckRequirement * clinit_check_requirement)1443 HClinitCheck* HInstructionBuilder::ProcessClinitCheckForInvoke(
1444 uint32_t dex_pc,
1445 ArtMethod* resolved_method,
1446 HInvokeStaticOrDirect::ClinitCheckRequirement* clinit_check_requirement) {
1447 ScopedObjectAccess soa(Thread::Current());
1448 ObjPtr<mirror::Class> klass = resolved_method->GetDeclaringClass();
1449
1450 HClinitCheck* clinit_check = nullptr;
1451 if (IsInitialized(klass)) {
1452 *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone;
1453 } else {
1454 Handle<mirror::Class> h_klass = graph_->GetHandleCache()->NewHandle(klass);
1455 HLoadClass* cls = BuildLoadClass(h_klass->GetDexTypeIndex(),
1456 h_klass->GetDexFile(),
1457 h_klass,
1458 dex_pc,
1459 /* needs_access_check= */ false);
1460 if (cls != nullptr) {
1461 *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit;
1462 clinit_check = new (allocator_) HClinitCheck(cls, dex_pc);
1463 AppendInstruction(clinit_check);
1464 } else {
1465 // Let the invoke handle this with an implicit class initialization check.
1466 *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit;
1467 }
1468 }
1469 return clinit_check;
1470 }
1471
SetupInvokeArguments(HInstruction * invoke,const InstructionOperands & operands,const char * shorty,ReceiverArg receiver_arg)1472 bool HInstructionBuilder::SetupInvokeArguments(HInstruction* invoke,
1473 const InstructionOperands& operands,
1474 const char* shorty,
1475 ReceiverArg receiver_arg) {
1476 // Note: The `invoke` can be an intrinsic replacement, so not necessaritly HInvoke.
1477 // In that case, do not log errors, they shall be reported when we try to build the HInvoke.
1478 uint32_t shorty_index = 1; // Skip the return type.
1479 const size_t number_of_operands = operands.GetNumberOfOperands();
1480 bool argument_length_error = false;
1481
1482 size_t start_index = 0u;
1483 size_t argument_index = 0u;
1484 if (receiver_arg != ReceiverArg::kNone) {
1485 if (number_of_operands == 0u) {
1486 argument_length_error = true;
1487 } else {
1488 start_index = 1u;
1489 if (receiver_arg != ReceiverArg::kIgnored) {
1490 uint32_t obj_reg = operands.GetOperand(0u);
1491 HInstruction* arg = (receiver_arg == ReceiverArg::kPlainArg)
1492 ? LoadLocal(obj_reg, DataType::Type::kReference)
1493 : LoadNullCheckedLocal(obj_reg, invoke->GetDexPc());
1494 if (receiver_arg != ReceiverArg::kNullCheckedOnly) {
1495 invoke->SetRawInputAt(0u, arg);
1496 argument_index = 1u;
1497 }
1498 }
1499 }
1500 }
1501
1502 for (size_t i = start_index; i < number_of_operands; ++i, ++argument_index) {
1503 // Make sure we don't go over the expected arguments or over the number of
1504 // dex registers given. If the instruction was seen as dead by the verifier,
1505 // it hasn't been properly checked.
1506 if (UNLIKELY(shorty[shorty_index] == 0)) {
1507 argument_length_error = true;
1508 break;
1509 }
1510 DataType::Type type = DataType::FromShorty(shorty[shorty_index++]);
1511 bool is_wide = (type == DataType::Type::kInt64) || (type == DataType::Type::kFloat64);
1512 if (is_wide && ((i + 1 == number_of_operands) ||
1513 (operands.GetOperand(i) + 1 != operands.GetOperand(i + 1)))) {
1514 if (invoke->IsInvoke()) {
1515 // Longs and doubles should be in pairs, that is, sequential registers. The verifier should
1516 // reject any class where this is violated. However, the verifier only does these checks
1517 // on non trivially dead instructions, so we just bailout the compilation.
1518 VLOG(compiler) << "Did not compile "
1519 << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
1520 << " because of non-sequential dex register pair in wide argument";
1521 MaybeRecordStat(compilation_stats_,
1522 MethodCompilationStat::kNotCompiledMalformedOpcode);
1523 }
1524 return false;
1525 }
1526 HInstruction* arg = LoadLocal(operands.GetOperand(i), type);
1527 DCHECK(invoke->InputAt(argument_index) == nullptr);
1528 invoke->SetRawInputAt(argument_index, arg);
1529 if (is_wide) {
1530 ++i;
1531 }
1532 }
1533
1534 argument_length_error = argument_length_error || shorty[shorty_index] != 0;
1535 if (argument_length_error) {
1536 if (invoke->IsInvoke()) {
1537 VLOG(compiler) << "Did not compile "
1538 << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
1539 << " because of wrong number of arguments in invoke instruction";
1540 MaybeRecordStat(compilation_stats_,
1541 MethodCompilationStat::kNotCompiledMalformedOpcode);
1542 }
1543 return false;
1544 }
1545
1546 if (invoke->IsInvokeStaticOrDirect() &&
1547 HInvokeStaticOrDirect::NeedsCurrentMethodInput(
1548 invoke->AsInvokeStaticOrDirect()->GetDispatchInfo())) {
1549 DCHECK_EQ(argument_index, invoke->AsInvokeStaticOrDirect()->GetCurrentMethodIndex());
1550 DCHECK(invoke->InputAt(argument_index) == nullptr);
1551 invoke->SetRawInputAt(argument_index, graph_->GetCurrentMethod());
1552 }
1553
1554 return true;
1555 }
1556
HandleInvoke(HInvoke * invoke,const InstructionOperands & operands,const char * shorty,bool is_unresolved)1557 bool HInstructionBuilder::HandleInvoke(HInvoke* invoke,
1558 const InstructionOperands& operands,
1559 const char* shorty,
1560 bool is_unresolved) {
1561 DCHECK(!invoke->IsInvokeStaticOrDirect() || !invoke->AsInvokeStaticOrDirect()->IsStringInit());
1562
1563 ReceiverArg receiver_arg = (invoke->GetInvokeType() == InvokeType::kStatic)
1564 ? ReceiverArg::kNone
1565 : (is_unresolved ? ReceiverArg::kPlainArg : ReceiverArg::kNullCheckedArg);
1566 if (!SetupInvokeArguments(invoke, operands, shorty, receiver_arg)) {
1567 return false;
1568 }
1569
1570 AppendInstruction(invoke);
1571 latest_result_ = invoke;
1572
1573 return true;
1574 }
1575
BuildSimpleIntrinsic(ArtMethod * method,uint32_t dex_pc,const InstructionOperands & operands,const char * shorty)1576 bool HInstructionBuilder::BuildSimpleIntrinsic(ArtMethod* method,
1577 uint32_t dex_pc,
1578 const InstructionOperands& operands,
1579 const char* shorty) {
1580 Intrinsics intrinsic = static_cast<Intrinsics>(method->GetIntrinsic());
1581 DCHECK_NE(intrinsic, Intrinsics::kNone);
1582 constexpr DataType::Type kInt32 = DataType::Type::kInt32;
1583 constexpr DataType::Type kInt64 = DataType::Type::kInt64;
1584 constexpr DataType::Type kFloat32 = DataType::Type::kFloat32;
1585 constexpr DataType::Type kFloat64 = DataType::Type::kFloat64;
1586 ReceiverArg receiver_arg = method->IsStatic() ? ReceiverArg::kNone : ReceiverArg::kNullCheckedArg;
1587 HInstruction* instruction = nullptr;
1588 switch (intrinsic) {
1589 case Intrinsics::kIntegerRotateRight:
1590 case Intrinsics::kIntegerRotateLeft:
1591 // For rotate left, we negate the distance below.
1592 instruction = new (allocator_) HRor(kInt32, /*value=*/ nullptr, /*distance=*/ nullptr);
1593 break;
1594 case Intrinsics::kLongRotateRight:
1595 case Intrinsics::kLongRotateLeft:
1596 // For rotate left, we negate the distance below.
1597 instruction = new (allocator_) HRor(kInt64, /*value=*/ nullptr, /*distance=*/ nullptr);
1598 break;
1599 case Intrinsics::kIntegerCompare:
1600 instruction = new (allocator_) HCompare(
1601 kInt32, /*first=*/ nullptr, /*second=*/ nullptr, ComparisonBias::kNoBias, dex_pc);
1602 break;
1603 case Intrinsics::kLongCompare:
1604 instruction = new (allocator_) HCompare(
1605 kInt64, /*first=*/ nullptr, /*second=*/ nullptr, ComparisonBias::kNoBias, dex_pc);
1606 break;
1607 case Intrinsics::kIntegerSignum:
1608 instruction = new (allocator_) HCompare(
1609 kInt32, /*first=*/ nullptr, graph_->GetIntConstant(0), ComparisonBias::kNoBias, dex_pc);
1610 break;
1611 case Intrinsics::kLongSignum:
1612 instruction = new (allocator_) HCompare(
1613 kInt64, /*first=*/ nullptr, graph_->GetLongConstant(0), ComparisonBias::kNoBias, dex_pc);
1614 break;
1615 case Intrinsics::kFloatIsNaN:
1616 case Intrinsics::kDoubleIsNaN: {
1617 // IsNaN(x) is the same as x != x.
1618 instruction = new (allocator_) HNotEqual(/*first=*/ nullptr, /*second=*/ nullptr, dex_pc);
1619 instruction->AsCondition()->SetBias(ComparisonBias::kLtBias);
1620 break;
1621 }
1622 case Intrinsics::kStringCharAt:
1623 // We treat String as an array to allow DCE and BCE to seamlessly work on strings.
1624 instruction = new (allocator_) HArrayGet(/*array=*/ nullptr,
1625 /*index=*/ nullptr,
1626 DataType::Type::kUint16,
1627 SideEffects::None(), // Strings are immutable.
1628 dex_pc,
1629 /*is_string_char_at=*/ true);
1630 break;
1631 case Intrinsics::kStringIsEmpty:
1632 case Intrinsics::kStringLength:
1633 // We treat String as an array to allow DCE and BCE to seamlessly work on strings.
1634 // For String.isEmpty(), we add a comparison with 0 below.
1635 instruction =
1636 new (allocator_) HArrayLength(/*array=*/ nullptr, dex_pc, /* is_string_length= */ true);
1637 break;
1638 case Intrinsics::kUnsafeLoadFence:
1639 receiver_arg = ReceiverArg::kNullCheckedOnly;
1640 instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kLoadAny, dex_pc);
1641 break;
1642 case Intrinsics::kUnsafeStoreFence:
1643 receiver_arg = ReceiverArg::kNullCheckedOnly;
1644 instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kAnyStore, dex_pc);
1645 break;
1646 case Intrinsics::kUnsafeFullFence:
1647 receiver_arg = ReceiverArg::kNullCheckedOnly;
1648 instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kAnyAny, dex_pc);
1649 break;
1650 case Intrinsics::kVarHandleFullFence:
1651 instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kAnyAny, dex_pc);
1652 break;
1653 case Intrinsics::kVarHandleAcquireFence:
1654 instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kLoadAny, dex_pc);
1655 break;
1656 case Intrinsics::kVarHandleReleaseFence:
1657 instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kAnyStore, dex_pc);
1658 break;
1659 case Intrinsics::kVarHandleLoadLoadFence:
1660 instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kLoadAny, dex_pc);
1661 break;
1662 case Intrinsics::kVarHandleStoreStoreFence:
1663 instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kStoreStore, dex_pc);
1664 break;
1665 case Intrinsics::kMathMinIntInt:
1666 instruction = new (allocator_) HMin(kInt32, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
1667 break;
1668 case Intrinsics::kMathMinLongLong:
1669 instruction = new (allocator_) HMin(kInt64, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
1670 break;
1671 case Intrinsics::kMathMinFloatFloat:
1672 instruction = new (allocator_) HMin(kFloat32, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
1673 break;
1674 case Intrinsics::kMathMinDoubleDouble:
1675 instruction = new (allocator_) HMin(kFloat64, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
1676 break;
1677 case Intrinsics::kMathMaxIntInt:
1678 instruction = new (allocator_) HMax(kInt32, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
1679 break;
1680 case Intrinsics::kMathMaxLongLong:
1681 instruction = new (allocator_) HMax(kInt64, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
1682 break;
1683 case Intrinsics::kMathMaxFloatFloat:
1684 instruction = new (allocator_) HMax(kFloat32, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
1685 break;
1686 case Intrinsics::kMathMaxDoubleDouble:
1687 instruction = new (allocator_) HMax(kFloat64, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
1688 break;
1689 case Intrinsics::kMathAbsInt:
1690 instruction = new (allocator_) HAbs(kInt32, /*input=*/ nullptr, dex_pc);
1691 break;
1692 case Intrinsics::kMathAbsLong:
1693 instruction = new (allocator_) HAbs(kInt64, /*input=*/ nullptr, dex_pc);
1694 break;
1695 case Intrinsics::kMathAbsFloat:
1696 instruction = new (allocator_) HAbs(kFloat32, /*input=*/ nullptr, dex_pc);
1697 break;
1698 case Intrinsics::kMathAbsDouble:
1699 instruction = new (allocator_) HAbs(kFloat64, /*input=*/ nullptr, dex_pc);
1700 break;
1701 default:
1702 // We do not have intermediate representation for other intrinsics.
1703 return false;
1704 }
1705 DCHECK(instruction != nullptr);
1706 if (!SetupInvokeArguments(instruction, operands, shorty, receiver_arg)) {
1707 return false;
1708 }
1709
1710 switch (intrinsic) {
1711 case Intrinsics::kIntegerRotateLeft:
1712 case Intrinsics::kLongRotateLeft: {
1713 // Negate the distance value for rotate left.
1714 DCHECK(instruction->IsRor());
1715 HNeg* neg = new (allocator_) HNeg(kInt32, instruction->InputAt(1u));
1716 AppendInstruction(neg);
1717 instruction->SetRawInputAt(1u, neg);
1718 break;
1719 }
1720 case Intrinsics::kFloatIsNaN:
1721 case Intrinsics::kDoubleIsNaN:
1722 // Set the second input to be the same as first.
1723 DCHECK(instruction->IsNotEqual());
1724 DCHECK(instruction->InputAt(1u) == nullptr);
1725 instruction->SetRawInputAt(1u, instruction->InputAt(0u));
1726 break;
1727 case Intrinsics::kStringCharAt: {
1728 // Add bounds check.
1729 HInstruction* array = instruction->InputAt(0u);
1730 HInstruction* index = instruction->InputAt(1u);
1731 HInstruction* length =
1732 new (allocator_) HArrayLength(array, dex_pc, /*is_string_length=*/ true);
1733 AppendInstruction(length);
1734 HBoundsCheck* bounds_check =
1735 new (allocator_) HBoundsCheck(index, length, dex_pc, /*is_string_char_at=*/ true);
1736 AppendInstruction(bounds_check);
1737 graph_->SetHasBoundsChecks(true);
1738 instruction->SetRawInputAt(1u, bounds_check);
1739 break;
1740 }
1741 case Intrinsics::kStringIsEmpty: {
1742 // Compare the length with 0.
1743 DCHECK(instruction->IsArrayLength());
1744 AppendInstruction(instruction);
1745 HEqual* equal = new (allocator_) HEqual(instruction, graph_->GetIntConstant(0), dex_pc);
1746 instruction = equal;
1747 break;
1748 }
1749 default:
1750 break;
1751 }
1752
1753 AppendInstruction(instruction);
1754 latest_result_ = instruction;
1755
1756 return true;
1757 }
1758
HandleStringInit(HInvoke * invoke,const InstructionOperands & operands,const char * shorty)1759 bool HInstructionBuilder::HandleStringInit(HInvoke* invoke,
1760 const InstructionOperands& operands,
1761 const char* shorty) {
1762 DCHECK(invoke->IsInvokeStaticOrDirect());
1763 DCHECK(invoke->AsInvokeStaticOrDirect()->IsStringInit());
1764
1765 if (!SetupInvokeArguments(invoke, operands, shorty, ReceiverArg::kIgnored)) {
1766 return false;
1767 }
1768
1769 AppendInstruction(invoke);
1770
1771 // This is a StringFactory call, not an actual String constructor. Its result
1772 // replaces the empty String pre-allocated by NewInstance.
1773 uint32_t orig_this_reg = operands.GetOperand(0);
1774 HInstruction* arg_this = LoadLocal(orig_this_reg, DataType::Type::kReference);
1775
1776 // Replacing the NewInstance might render it redundant. Keep a list of these
1777 // to be visited once it is clear whether it has remaining uses.
1778 if (arg_this->IsNewInstance()) {
1779 ssa_builder_->AddUninitializedString(arg_this->AsNewInstance());
1780 } else {
1781 DCHECK(arg_this->IsPhi());
1782 // We can get a phi as input of a String.<init> if there is a loop between the
1783 // allocation and the String.<init> call. As we don't know which other phis might alias
1784 // with `arg_this`, we keep a record of those invocations so we can later replace
1785 // the allocation with the invocation.
1786 // Add the actual 'this' input so the analysis knows what is the allocation instruction.
1787 // The input will be removed during the analysis.
1788 invoke->AddInput(arg_this);
1789 ssa_builder_->AddUninitializedStringPhi(invoke);
1790 }
1791 // Walk over all vregs and replace any occurrence of `arg_this` with `invoke`.
1792 for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) {
1793 if ((*current_locals_)[vreg] == arg_this) {
1794 (*current_locals_)[vreg] = invoke;
1795 }
1796 }
1797 return true;
1798 }
1799
GetFieldAccessType(const DexFile & dex_file,uint16_t field_index)1800 static DataType::Type GetFieldAccessType(const DexFile& dex_file, uint16_t field_index) {
1801 const dex::FieldId& field_id = dex_file.GetFieldId(field_index);
1802 const char* type = dex_file.GetFieldTypeDescriptor(field_id);
1803 return DataType::FromShorty(type[0]);
1804 }
1805
BuildInstanceFieldAccess(const Instruction & instruction,uint32_t dex_pc,bool is_put,size_t quicken_index)1806 bool HInstructionBuilder::BuildInstanceFieldAccess(const Instruction& instruction,
1807 uint32_t dex_pc,
1808 bool is_put,
1809 size_t quicken_index) {
1810 uint32_t source_or_dest_reg = instruction.VRegA_22c();
1811 uint32_t obj_reg = instruction.VRegB_22c();
1812 uint16_t field_index;
1813 if (instruction.IsQuickened()) {
1814 if (!CanDecodeQuickenedInfo()) {
1815 VLOG(compiler) << "Not compiled: Could not decode quickened instruction "
1816 << instruction.Opcode();
1817 return false;
1818 }
1819 field_index = LookupQuickenedInfo(quicken_index);
1820 } else {
1821 field_index = instruction.VRegC_22c();
1822 }
1823
1824 ScopedObjectAccess soa(Thread::Current());
1825 ArtField* resolved_field = ResolveField(field_index, /* is_static= */ false, is_put);
1826
1827 // Generate an explicit null check on the reference, unless the field access
1828 // is unresolved. In that case, we rely on the runtime to perform various
1829 // checks first, followed by a null check.
1830 HInstruction* object = (resolved_field == nullptr)
1831 ? LoadLocal(obj_reg, DataType::Type::kReference)
1832 : LoadNullCheckedLocal(obj_reg, dex_pc);
1833
1834 DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index);
1835 if (is_put) {
1836 HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
1837 HInstruction* field_set = nullptr;
1838 if (resolved_field == nullptr) {
1839 MaybeRecordStat(compilation_stats_,
1840 MethodCompilationStat::kUnresolvedField);
1841 field_set = new (allocator_) HUnresolvedInstanceFieldSet(object,
1842 value,
1843 field_type,
1844 field_index,
1845 dex_pc);
1846 } else {
1847 uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex();
1848 field_set = new (allocator_) HInstanceFieldSet(object,
1849 value,
1850 resolved_field,
1851 field_type,
1852 resolved_field->GetOffset(),
1853 resolved_field->IsVolatile(),
1854 field_index,
1855 class_def_index,
1856 *dex_file_,
1857 dex_pc);
1858 }
1859 AppendInstruction(field_set);
1860 } else {
1861 HInstruction* field_get = nullptr;
1862 if (resolved_field == nullptr) {
1863 MaybeRecordStat(compilation_stats_,
1864 MethodCompilationStat::kUnresolvedField);
1865 field_get = new (allocator_) HUnresolvedInstanceFieldGet(object,
1866 field_type,
1867 field_index,
1868 dex_pc);
1869 } else {
1870 uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex();
1871 field_get = new (allocator_) HInstanceFieldGet(object,
1872 resolved_field,
1873 field_type,
1874 resolved_field->GetOffset(),
1875 resolved_field->IsVolatile(),
1876 field_index,
1877 class_def_index,
1878 *dex_file_,
1879 dex_pc);
1880 }
1881 AppendInstruction(field_get);
1882 UpdateLocal(source_or_dest_reg, field_get);
1883 }
1884
1885 return true;
1886 }
1887
BuildUnresolvedStaticFieldAccess(const Instruction & instruction,uint32_t dex_pc,bool is_put,DataType::Type field_type)1888 void HInstructionBuilder::BuildUnresolvedStaticFieldAccess(const Instruction& instruction,
1889 uint32_t dex_pc,
1890 bool is_put,
1891 DataType::Type field_type) {
1892 uint32_t source_or_dest_reg = instruction.VRegA_21c();
1893 uint16_t field_index = instruction.VRegB_21c();
1894
1895 if (is_put) {
1896 HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
1897 AppendInstruction(
1898 new (allocator_) HUnresolvedStaticFieldSet(value, field_type, field_index, dex_pc));
1899 } else {
1900 AppendInstruction(new (allocator_) HUnresolvedStaticFieldGet(field_type, field_index, dex_pc));
1901 UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
1902 }
1903 }
1904
ResolveField(uint16_t field_idx,bool is_static,bool is_put)1905 ArtField* HInstructionBuilder::ResolveField(uint16_t field_idx, bool is_static, bool is_put) {
1906 ScopedObjectAccess soa(Thread::Current());
1907
1908 ClassLinker* class_linker = dex_compilation_unit_->GetClassLinker();
1909 Handle<mirror::ClassLoader> class_loader = dex_compilation_unit_->GetClassLoader();
1910
1911 ArtField* resolved_field = class_linker->ResolveField(field_idx,
1912 dex_compilation_unit_->GetDexCache(),
1913 class_loader,
1914 is_static);
1915 DCHECK_EQ(resolved_field == nullptr, soa.Self()->IsExceptionPending())
1916 << "field="
1917 << ((resolved_field == nullptr) ? "null" : resolved_field->PrettyField())
1918 << ", exception="
1919 << (soa.Self()->IsExceptionPending() ? soa.Self()->GetException()->Dump() : "null");
1920 if (UNLIKELY(resolved_field == nullptr)) {
1921 // Clean up any exception left by field resolution.
1922 soa.Self()->ClearException();
1923 return nullptr;
1924 }
1925
1926 // Check static/instance. The class linker has a fast path for looking into the dex cache
1927 // and does not check static/instance if it hits it.
1928 if (UNLIKELY(resolved_field->IsStatic() != is_static)) {
1929 return nullptr;
1930 }
1931
1932 // Check access.
1933 Handle<mirror::Class> compiling_class = dex_compilation_unit_->GetCompilingClass();
1934 if (compiling_class == nullptr) {
1935 if (!resolved_field->IsPublic()) {
1936 return nullptr;
1937 }
1938 } else if (!compiling_class->CanAccessResolvedField(resolved_field->GetDeclaringClass(),
1939 resolved_field,
1940 dex_compilation_unit_->GetDexCache().Get(),
1941 field_idx)) {
1942 return nullptr;
1943 }
1944
1945 if (is_put &&
1946 resolved_field->IsFinal() &&
1947 (compiling_class.Get() != resolved_field->GetDeclaringClass())) {
1948 // Final fields can only be updated within their own class.
1949 // TODO: Only allow it in constructors. b/34966607.
1950 return nullptr;
1951 }
1952
1953 StackArtFieldHandleScope<1> rhs(soa.Self());
1954 ReflectiveHandle<ArtField> resolved_field_handle(rhs.NewHandle(resolved_field));
1955 if (resolved_field->ResolveType().IsNull()) {
1956 // ArtField::ResolveType() may fail as evidenced with a dexing bug (b/78788577).
1957 soa.Self()->ClearException();
1958 return nullptr; // Failure
1959 }
1960 return resolved_field_handle.Get();
1961 }
1962
BuildStaticFieldAccess(const Instruction & instruction,uint32_t dex_pc,bool is_put)1963 void HInstructionBuilder::BuildStaticFieldAccess(const Instruction& instruction,
1964 uint32_t dex_pc,
1965 bool is_put) {
1966 uint32_t source_or_dest_reg = instruction.VRegA_21c();
1967 uint16_t field_index = instruction.VRegB_21c();
1968
1969 ScopedObjectAccess soa(Thread::Current());
1970 ArtField* resolved_field = ResolveField(field_index, /* is_static= */ true, is_put);
1971
1972 if (resolved_field == nullptr) {
1973 MaybeRecordStat(compilation_stats_,
1974 MethodCompilationStat::kUnresolvedField);
1975 DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index);
1976 BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type);
1977 return;
1978 }
1979
1980 DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index);
1981
1982 Handle<mirror::Class> klass =
1983 graph_->GetHandleCache()->NewHandle(resolved_field->GetDeclaringClass());
1984 HLoadClass* constant = BuildLoadClass(klass->GetDexTypeIndex(),
1985 klass->GetDexFile(),
1986 klass,
1987 dex_pc,
1988 /* needs_access_check= */ false);
1989
1990 if (constant == nullptr) {
1991 // The class cannot be referenced from this compiled code. Generate
1992 // an unresolved access.
1993 MaybeRecordStat(compilation_stats_,
1994 MethodCompilationStat::kUnresolvedFieldNotAFastAccess);
1995 BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type);
1996 return;
1997 }
1998
1999 HInstruction* cls = constant;
2000 if (!IsInitialized(klass.Get())) {
2001 cls = new (allocator_) HClinitCheck(constant, dex_pc);
2002 AppendInstruction(cls);
2003 }
2004
2005 uint16_t class_def_index = klass->GetDexClassDefIndex();
2006 if (is_put) {
2007 // We need to keep the class alive before loading the value.
2008 HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
2009 DCHECK_EQ(HPhi::ToPhiType(value->GetType()), HPhi::ToPhiType(field_type));
2010 AppendInstruction(new (allocator_) HStaticFieldSet(cls,
2011 value,
2012 resolved_field,
2013 field_type,
2014 resolved_field->GetOffset(),
2015 resolved_field->IsVolatile(),
2016 field_index,
2017 class_def_index,
2018 *dex_file_,
2019 dex_pc));
2020 } else {
2021 AppendInstruction(new (allocator_) HStaticFieldGet(cls,
2022 resolved_field,
2023 field_type,
2024 resolved_field->GetOffset(),
2025 resolved_field->IsVolatile(),
2026 field_index,
2027 class_def_index,
2028 *dex_file_,
2029 dex_pc));
2030 UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
2031 }
2032 }
2033
BuildCheckedDivRem(uint16_t out_vreg,uint16_t first_vreg,int64_t second_vreg_or_constant,uint32_t dex_pc,DataType::Type type,bool second_is_constant,bool isDiv)2034 void HInstructionBuilder::BuildCheckedDivRem(uint16_t out_vreg,
2035 uint16_t first_vreg,
2036 int64_t second_vreg_or_constant,
2037 uint32_t dex_pc,
2038 DataType::Type type,
2039 bool second_is_constant,
2040 bool isDiv) {
2041 DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
2042
2043 HInstruction* first = LoadLocal(first_vreg, type);
2044 HInstruction* second = nullptr;
2045 if (second_is_constant) {
2046 if (type == DataType::Type::kInt32) {
2047 second = graph_->GetIntConstant(second_vreg_or_constant, dex_pc);
2048 } else {
2049 second = graph_->GetLongConstant(second_vreg_or_constant, dex_pc);
2050 }
2051 } else {
2052 second = LoadLocal(second_vreg_or_constant, type);
2053 }
2054
2055 if (!second_is_constant
2056 || (type == DataType::Type::kInt32 && second->AsIntConstant()->GetValue() == 0)
2057 || (type == DataType::Type::kInt64 && second->AsLongConstant()->GetValue() == 0)) {
2058 second = new (allocator_) HDivZeroCheck(second, dex_pc);
2059 AppendInstruction(second);
2060 }
2061
2062 if (isDiv) {
2063 AppendInstruction(new (allocator_) HDiv(type, first, second, dex_pc));
2064 } else {
2065 AppendInstruction(new (allocator_) HRem(type, first, second, dex_pc));
2066 }
2067 UpdateLocal(out_vreg, current_block_->GetLastInstruction());
2068 }
2069
BuildArrayAccess(const Instruction & instruction,uint32_t dex_pc,bool is_put,DataType::Type anticipated_type)2070 void HInstructionBuilder::BuildArrayAccess(const Instruction& instruction,
2071 uint32_t dex_pc,
2072 bool is_put,
2073 DataType::Type anticipated_type) {
2074 uint8_t source_or_dest_reg = instruction.VRegA_23x();
2075 uint8_t array_reg = instruction.VRegB_23x();
2076 uint8_t index_reg = instruction.VRegC_23x();
2077
2078 HInstruction* object = LoadNullCheckedLocal(array_reg, dex_pc);
2079 HInstruction* length = new (allocator_) HArrayLength(object, dex_pc);
2080 AppendInstruction(length);
2081 HInstruction* index = LoadLocal(index_reg, DataType::Type::kInt32);
2082 index = new (allocator_) HBoundsCheck(index, length, dex_pc);
2083 AppendInstruction(index);
2084 if (is_put) {
2085 HInstruction* value = LoadLocal(source_or_dest_reg, anticipated_type);
2086 // TODO: Insert a type check node if the type is Object.
2087 HArraySet* aset = new (allocator_) HArraySet(object, index, value, anticipated_type, dex_pc);
2088 ssa_builder_->MaybeAddAmbiguousArraySet(aset);
2089 AppendInstruction(aset);
2090 } else {
2091 HArrayGet* aget = new (allocator_) HArrayGet(object, index, anticipated_type, dex_pc);
2092 ssa_builder_->MaybeAddAmbiguousArrayGet(aget);
2093 AppendInstruction(aget);
2094 UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
2095 }
2096 graph_->SetHasBoundsChecks(true);
2097 }
2098
BuildNewArray(uint32_t dex_pc,dex::TypeIndex type_index,HInstruction * length)2099 HNewArray* HInstructionBuilder::BuildNewArray(uint32_t dex_pc,
2100 dex::TypeIndex type_index,
2101 HInstruction* length) {
2102 HLoadClass* cls = BuildLoadClass(type_index, dex_pc);
2103
2104 const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(type_index));
2105 DCHECK_EQ(descriptor[0], '[');
2106 size_t component_type_shift = Primitive::ComponentSizeShift(Primitive::GetType(descriptor[1]));
2107
2108 HNewArray* new_array = new (allocator_) HNewArray(cls, length, dex_pc, component_type_shift);
2109 AppendInstruction(new_array);
2110 return new_array;
2111 }
2112
BuildFilledNewArray(uint32_t dex_pc,dex::TypeIndex type_index,const InstructionOperands & operands)2113 HNewArray* HInstructionBuilder::BuildFilledNewArray(uint32_t dex_pc,
2114 dex::TypeIndex type_index,
2115 const InstructionOperands& operands) {
2116 const size_t number_of_operands = operands.GetNumberOfOperands();
2117 HInstruction* length = graph_->GetIntConstant(number_of_operands, dex_pc);
2118
2119 HNewArray* new_array = BuildNewArray(dex_pc, type_index, length);
2120 const char* descriptor = dex_file_->StringByTypeIdx(type_index);
2121 DCHECK_EQ(descriptor[0], '[') << descriptor;
2122 char primitive = descriptor[1];
2123 DCHECK(primitive == 'I'
2124 || primitive == 'L'
2125 || primitive == '[') << descriptor;
2126 bool is_reference_array = (primitive == 'L') || (primitive == '[');
2127 DataType::Type type = is_reference_array ? DataType::Type::kReference : DataType::Type::kInt32;
2128
2129 for (size_t i = 0; i < number_of_operands; ++i) {
2130 HInstruction* value = LoadLocal(operands.GetOperand(i), type);
2131 HInstruction* index = graph_->GetIntConstant(i, dex_pc);
2132 HArraySet* aset = new (allocator_) HArraySet(new_array, index, value, type, dex_pc);
2133 ssa_builder_->MaybeAddAmbiguousArraySet(aset);
2134 AppendInstruction(aset);
2135 }
2136 latest_result_ = new_array;
2137
2138 return new_array;
2139 }
2140
2141 template <typename T>
BuildFillArrayData(HInstruction * object,const T * data,uint32_t element_count,DataType::Type anticipated_type,uint32_t dex_pc)2142 void HInstructionBuilder::BuildFillArrayData(HInstruction* object,
2143 const T* data,
2144 uint32_t element_count,
2145 DataType::Type anticipated_type,
2146 uint32_t dex_pc) {
2147 for (uint32_t i = 0; i < element_count; ++i) {
2148 HInstruction* index = graph_->GetIntConstant(i, dex_pc);
2149 HInstruction* value = graph_->GetIntConstant(data[i], dex_pc);
2150 HArraySet* aset = new (allocator_) HArraySet(object, index, value, anticipated_type, dex_pc);
2151 ssa_builder_->MaybeAddAmbiguousArraySet(aset);
2152 AppendInstruction(aset);
2153 }
2154 }
2155
BuildFillArrayData(const Instruction & instruction,uint32_t dex_pc)2156 void HInstructionBuilder::BuildFillArrayData(const Instruction& instruction, uint32_t dex_pc) {
2157 HInstruction* array = LoadNullCheckedLocal(instruction.VRegA_31t(), dex_pc);
2158
2159 int32_t payload_offset = instruction.VRegB_31t() + dex_pc;
2160 const Instruction::ArrayDataPayload* payload =
2161 reinterpret_cast<const Instruction::ArrayDataPayload*>(
2162 code_item_accessor_.Insns() + payload_offset);
2163 const uint8_t* data = payload->data;
2164 uint32_t element_count = payload->element_count;
2165
2166 if (element_count == 0u) {
2167 // For empty payload we emit only the null check above.
2168 return;
2169 }
2170
2171 HInstruction* length = new (allocator_) HArrayLength(array, dex_pc);
2172 AppendInstruction(length);
2173
2174 // Implementation of this DEX instruction seems to be that the bounds check is
2175 // done before doing any stores.
2176 HInstruction* last_index = graph_->GetIntConstant(payload->element_count - 1, dex_pc);
2177 AppendInstruction(new (allocator_) HBoundsCheck(last_index, length, dex_pc));
2178
2179 switch (payload->element_width) {
2180 case 1:
2181 BuildFillArrayData(array,
2182 reinterpret_cast<const int8_t*>(data),
2183 element_count,
2184 DataType::Type::kInt8,
2185 dex_pc);
2186 break;
2187 case 2:
2188 BuildFillArrayData(array,
2189 reinterpret_cast<const int16_t*>(data),
2190 element_count,
2191 DataType::Type::kInt16,
2192 dex_pc);
2193 break;
2194 case 4:
2195 BuildFillArrayData(array,
2196 reinterpret_cast<const int32_t*>(data),
2197 element_count,
2198 DataType::Type::kInt32,
2199 dex_pc);
2200 break;
2201 case 8:
2202 BuildFillWideArrayData(array,
2203 reinterpret_cast<const int64_t*>(data),
2204 element_count,
2205 dex_pc);
2206 break;
2207 default:
2208 LOG(FATAL) << "Unknown element width for " << payload->element_width;
2209 }
2210 graph_->SetHasBoundsChecks(true);
2211 }
2212
BuildFillWideArrayData(HInstruction * object,const int64_t * data,uint32_t element_count,uint32_t dex_pc)2213 void HInstructionBuilder::BuildFillWideArrayData(HInstruction* object,
2214 const int64_t* data,
2215 uint32_t element_count,
2216 uint32_t dex_pc) {
2217 for (uint32_t i = 0; i < element_count; ++i) {
2218 HInstruction* index = graph_->GetIntConstant(i, dex_pc);
2219 HInstruction* value = graph_->GetLongConstant(data[i], dex_pc);
2220 HArraySet* aset =
2221 new (allocator_) HArraySet(object, index, value, DataType::Type::kInt64, dex_pc);
2222 ssa_builder_->MaybeAddAmbiguousArraySet(aset);
2223 AppendInstruction(aset);
2224 }
2225 }
2226
BuildLoadString(dex::StringIndex string_index,uint32_t dex_pc)2227 void HInstructionBuilder::BuildLoadString(dex::StringIndex string_index, uint32_t dex_pc) {
2228 HLoadString* load_string =
2229 new (allocator_) HLoadString(graph_->GetCurrentMethod(), string_index, *dex_file_, dex_pc);
2230 HSharpening::ProcessLoadString(load_string,
2231 code_generator_,
2232 *dex_compilation_unit_,
2233 graph_->GetHandleCache()->GetHandles());
2234 AppendInstruction(load_string);
2235 }
2236
BuildLoadClass(dex::TypeIndex type_index,uint32_t dex_pc)2237 HLoadClass* HInstructionBuilder::BuildLoadClass(dex::TypeIndex type_index, uint32_t dex_pc) {
2238 ScopedObjectAccess soa(Thread::Current());
2239 const DexFile& dex_file = *dex_compilation_unit_->GetDexFile();
2240 Handle<mirror::Class> klass = ResolveClass(soa, type_index);
2241 bool needs_access_check = LoadClassNeedsAccessCheck(klass.Get());
2242 return BuildLoadClass(type_index, dex_file, klass, dex_pc, needs_access_check);
2243 }
2244
BuildLoadClass(dex::TypeIndex type_index,const DexFile & dex_file,Handle<mirror::Class> klass,uint32_t dex_pc,bool needs_access_check)2245 HLoadClass* HInstructionBuilder::BuildLoadClass(dex::TypeIndex type_index,
2246 const DexFile& dex_file,
2247 Handle<mirror::Class> klass,
2248 uint32_t dex_pc,
2249 bool needs_access_check) {
2250 // Try to find a reference in the compiling dex file.
2251 const DexFile* actual_dex_file = &dex_file;
2252 if (!IsSameDexFile(dex_file, *dex_compilation_unit_->GetDexFile())) {
2253 dex::TypeIndex local_type_index =
2254 klass->FindTypeIndexInOtherDexFile(*dex_compilation_unit_->GetDexFile());
2255 if (local_type_index.IsValid()) {
2256 type_index = local_type_index;
2257 actual_dex_file = dex_compilation_unit_->GetDexFile();
2258 }
2259 }
2260
2261 // Note: `klass` must be from `graph_->GetHandleCache()`.
2262 bool is_referrers_class =
2263 (klass != nullptr) && (outer_compilation_unit_->GetCompilingClass().Get() == klass.Get());
2264 HLoadClass* load_class = new (allocator_) HLoadClass(
2265 graph_->GetCurrentMethod(),
2266 type_index,
2267 *actual_dex_file,
2268 klass,
2269 is_referrers_class,
2270 dex_pc,
2271 needs_access_check);
2272
2273 HLoadClass::LoadKind load_kind = HSharpening::ComputeLoadClassKind(load_class,
2274 code_generator_,
2275 *dex_compilation_unit_);
2276
2277 if (load_kind == HLoadClass::LoadKind::kInvalid) {
2278 // We actually cannot reference this class, we're forced to bail.
2279 return nullptr;
2280 }
2281 // Load kind must be set before inserting the instruction into the graph.
2282 load_class->SetLoadKind(load_kind);
2283 AppendInstruction(load_class);
2284 return load_class;
2285 }
2286
ResolveClass(ScopedObjectAccess & soa,dex::TypeIndex type_index)2287 Handle<mirror::Class> HInstructionBuilder::ResolveClass(ScopedObjectAccess& soa,
2288 dex::TypeIndex type_index) {
2289 auto it = class_cache_.find(type_index);
2290 if (it != class_cache_.end()) {
2291 return it->second;
2292 }
2293
2294 ObjPtr<mirror::Class> klass = dex_compilation_unit_->GetClassLinker()->ResolveType(
2295 type_index, dex_compilation_unit_->GetDexCache(), dex_compilation_unit_->GetClassLoader());
2296 DCHECK_EQ(klass == nullptr, soa.Self()->IsExceptionPending());
2297 soa.Self()->ClearException(); // Clean up the exception left by type resolution if any.
2298
2299 Handle<mirror::Class> h_klass = graph_->GetHandleCache()->NewHandle(klass);
2300 class_cache_.Put(type_index, h_klass);
2301 return h_klass;
2302 }
2303
LoadClassNeedsAccessCheck(ObjPtr<mirror::Class> klass)2304 bool HInstructionBuilder::LoadClassNeedsAccessCheck(ObjPtr<mirror::Class> klass) {
2305 if (klass == nullptr) {
2306 return true;
2307 } else if (klass->IsPublic()) {
2308 return false;
2309 } else {
2310 ObjPtr<mirror::Class> compiling_class = dex_compilation_unit_->GetCompilingClass().Get();
2311 return compiling_class == nullptr || !compiling_class->CanAccess(klass);
2312 }
2313 }
2314
BuildLoadMethodHandle(uint16_t method_handle_index,uint32_t dex_pc)2315 void HInstructionBuilder::BuildLoadMethodHandle(uint16_t method_handle_index, uint32_t dex_pc) {
2316 const DexFile& dex_file = *dex_compilation_unit_->GetDexFile();
2317 HLoadMethodHandle* load_method_handle = new (allocator_) HLoadMethodHandle(
2318 graph_->GetCurrentMethod(), method_handle_index, dex_file, dex_pc);
2319 AppendInstruction(load_method_handle);
2320 }
2321
BuildLoadMethodType(dex::ProtoIndex proto_index,uint32_t dex_pc)2322 void HInstructionBuilder::BuildLoadMethodType(dex::ProtoIndex proto_index, uint32_t dex_pc) {
2323 const DexFile& dex_file = *dex_compilation_unit_->GetDexFile();
2324 HLoadMethodType* load_method_type =
2325 new (allocator_) HLoadMethodType(graph_->GetCurrentMethod(), proto_index, dex_file, dex_pc);
2326 AppendInstruction(load_method_type);
2327 }
2328
BuildTypeCheck(const Instruction & instruction,uint8_t destination,uint8_t reference,dex::TypeIndex type_index,uint32_t dex_pc)2329 void HInstructionBuilder::BuildTypeCheck(const Instruction& instruction,
2330 uint8_t destination,
2331 uint8_t reference,
2332 dex::TypeIndex type_index,
2333 uint32_t dex_pc) {
2334 HInstruction* object = LoadLocal(reference, DataType::Type::kReference);
2335
2336 ScopedObjectAccess soa(Thread::Current());
2337 const DexFile& dex_file = *dex_compilation_unit_->GetDexFile();
2338 Handle<mirror::Class> klass = ResolveClass(soa, type_index);
2339 bool needs_access_check = LoadClassNeedsAccessCheck(klass.Get());
2340 TypeCheckKind check_kind = HSharpening::ComputeTypeCheckKind(
2341 klass.Get(), code_generator_, needs_access_check);
2342
2343 HInstruction* class_or_null = nullptr;
2344 HIntConstant* bitstring_path_to_root = nullptr;
2345 HIntConstant* bitstring_mask = nullptr;
2346 if (check_kind == TypeCheckKind::kBitstringCheck) {
2347 // TODO: Allow using the bitstring check also if we need an access check.
2348 DCHECK(!needs_access_check);
2349 class_or_null = graph_->GetNullConstant(dex_pc);
2350 MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_);
2351 uint32_t path_to_root =
2352 SubtypeCheck<ObjPtr<mirror::Class>>::GetEncodedPathToRootForTarget(klass.Get());
2353 uint32_t mask = SubtypeCheck<ObjPtr<mirror::Class>>::GetEncodedPathToRootMask(klass.Get());
2354 bitstring_path_to_root = graph_->GetIntConstant(static_cast<int32_t>(path_to_root), dex_pc);
2355 bitstring_mask = graph_->GetIntConstant(static_cast<int32_t>(mask), dex_pc);
2356 } else {
2357 class_or_null = BuildLoadClass(type_index, dex_file, klass, dex_pc, needs_access_check);
2358 }
2359 DCHECK(class_or_null != nullptr);
2360
2361 if (instruction.Opcode() == Instruction::INSTANCE_OF) {
2362 AppendInstruction(new (allocator_) HInstanceOf(object,
2363 class_or_null,
2364 check_kind,
2365 klass,
2366 dex_pc,
2367 allocator_,
2368 bitstring_path_to_root,
2369 bitstring_mask));
2370 UpdateLocal(destination, current_block_->GetLastInstruction());
2371 } else {
2372 DCHECK_EQ(instruction.Opcode(), Instruction::CHECK_CAST);
2373 // We emit a CheckCast followed by a BoundType. CheckCast is a statement
2374 // which may throw. If it succeeds BoundType sets the new type of `object`
2375 // for all subsequent uses.
2376 AppendInstruction(
2377 new (allocator_) HCheckCast(object,
2378 class_or_null,
2379 check_kind,
2380 klass,
2381 dex_pc,
2382 allocator_,
2383 bitstring_path_to_root,
2384 bitstring_mask));
2385 AppendInstruction(new (allocator_) HBoundType(object, dex_pc));
2386 UpdateLocal(reference, current_block_->GetLastInstruction());
2387 }
2388 }
2389
CanDecodeQuickenedInfo() const2390 bool HInstructionBuilder::CanDecodeQuickenedInfo() const {
2391 return !quicken_info_.IsNull();
2392 }
2393
LookupQuickenedInfo(uint32_t quicken_index)2394 uint16_t HInstructionBuilder::LookupQuickenedInfo(uint32_t quicken_index) {
2395 DCHECK(CanDecodeQuickenedInfo());
2396 return quicken_info_.GetData(quicken_index);
2397 }
2398
ProcessDexInstruction(const Instruction & instruction,uint32_t dex_pc,size_t quicken_index)2399 bool HInstructionBuilder::ProcessDexInstruction(const Instruction& instruction,
2400 uint32_t dex_pc,
2401 size_t quicken_index) {
2402 switch (instruction.Opcode()) {
2403 case Instruction::CONST_4: {
2404 int32_t register_index = instruction.VRegA();
2405 HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_11n(), dex_pc);
2406 UpdateLocal(register_index, constant);
2407 break;
2408 }
2409
2410 case Instruction::CONST_16: {
2411 int32_t register_index = instruction.VRegA();
2412 HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21s(), dex_pc);
2413 UpdateLocal(register_index, constant);
2414 break;
2415 }
2416
2417 case Instruction::CONST: {
2418 int32_t register_index = instruction.VRegA();
2419 HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_31i(), dex_pc);
2420 UpdateLocal(register_index, constant);
2421 break;
2422 }
2423
2424 case Instruction::CONST_HIGH16: {
2425 int32_t register_index = instruction.VRegA();
2426 HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21h() << 16, dex_pc);
2427 UpdateLocal(register_index, constant);
2428 break;
2429 }
2430
2431 case Instruction::CONST_WIDE_16: {
2432 int32_t register_index = instruction.VRegA();
2433 // Get 16 bits of constant value, sign extended to 64 bits.
2434 int64_t value = instruction.VRegB_21s();
2435 value <<= 48;
2436 value >>= 48;
2437 HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
2438 UpdateLocal(register_index, constant);
2439 break;
2440 }
2441
2442 case Instruction::CONST_WIDE_32: {
2443 int32_t register_index = instruction.VRegA();
2444 // Get 32 bits of constant value, sign extended to 64 bits.
2445 int64_t value = instruction.VRegB_31i();
2446 value <<= 32;
2447 value >>= 32;
2448 HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
2449 UpdateLocal(register_index, constant);
2450 break;
2451 }
2452
2453 case Instruction::CONST_WIDE: {
2454 int32_t register_index = instruction.VRegA();
2455 HLongConstant* constant = graph_->GetLongConstant(instruction.VRegB_51l(), dex_pc);
2456 UpdateLocal(register_index, constant);
2457 break;
2458 }
2459
2460 case Instruction::CONST_WIDE_HIGH16: {
2461 int32_t register_index = instruction.VRegA();
2462 int64_t value = static_cast<int64_t>(instruction.VRegB_21h()) << 48;
2463 HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
2464 UpdateLocal(register_index, constant);
2465 break;
2466 }
2467
2468 // Note that the SSA building will refine the types.
2469 case Instruction::MOVE:
2470 case Instruction::MOVE_FROM16:
2471 case Instruction::MOVE_16: {
2472 HInstruction* value = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
2473 UpdateLocal(instruction.VRegA(), value);
2474 break;
2475 }
2476
2477 // Note that the SSA building will refine the types.
2478 case Instruction::MOVE_WIDE:
2479 case Instruction::MOVE_WIDE_FROM16:
2480 case Instruction::MOVE_WIDE_16: {
2481 HInstruction* value = LoadLocal(instruction.VRegB(), DataType::Type::kInt64);
2482 UpdateLocal(instruction.VRegA(), value);
2483 break;
2484 }
2485
2486 case Instruction::MOVE_OBJECT:
2487 case Instruction::MOVE_OBJECT_16:
2488 case Instruction::MOVE_OBJECT_FROM16: {
2489 // The verifier has no notion of a null type, so a move-object of constant 0
2490 // will lead to the same constant 0 in the destination register. To mimic
2491 // this behavior, we just pretend we haven't seen a type change (int to reference)
2492 // for the 0 constant and phis. We rely on our type propagation to eventually get the
2493 // types correct.
2494 uint32_t reg_number = instruction.VRegB();
2495 HInstruction* value = (*current_locals_)[reg_number];
2496 if (value->IsIntConstant()) {
2497 DCHECK_EQ(value->AsIntConstant()->GetValue(), 0);
2498 } else if (value->IsPhi()) {
2499 DCHECK(value->GetType() == DataType::Type::kInt32 ||
2500 value->GetType() == DataType::Type::kReference);
2501 } else {
2502 value = LoadLocal(reg_number, DataType::Type::kReference);
2503 }
2504 UpdateLocal(instruction.VRegA(), value);
2505 break;
2506 }
2507
2508 case Instruction::RETURN_VOID_NO_BARRIER:
2509 case Instruction::RETURN_VOID: {
2510 BuildReturn(instruction, DataType::Type::kVoid, dex_pc);
2511 break;
2512 }
2513
2514 #define IF_XX(comparison, cond) \
2515 case Instruction::IF_##cond: If_22t<comparison>(instruction, dex_pc); break; \
2516 case Instruction::IF_##cond##Z: If_21t<comparison>(instruction, dex_pc); break
2517
2518 IF_XX(HEqual, EQ);
2519 IF_XX(HNotEqual, NE);
2520 IF_XX(HLessThan, LT);
2521 IF_XX(HLessThanOrEqual, LE);
2522 IF_XX(HGreaterThan, GT);
2523 IF_XX(HGreaterThanOrEqual, GE);
2524
2525 case Instruction::GOTO:
2526 case Instruction::GOTO_16:
2527 case Instruction::GOTO_32: {
2528 AppendInstruction(new (allocator_) HGoto(dex_pc));
2529 current_block_ = nullptr;
2530 break;
2531 }
2532
2533 case Instruction::RETURN: {
2534 BuildReturn(instruction, return_type_, dex_pc);
2535 break;
2536 }
2537
2538 case Instruction::RETURN_OBJECT: {
2539 BuildReturn(instruction, return_type_, dex_pc);
2540 break;
2541 }
2542
2543 case Instruction::RETURN_WIDE: {
2544 BuildReturn(instruction, return_type_, dex_pc);
2545 break;
2546 }
2547
2548 case Instruction::INVOKE_DIRECT:
2549 case Instruction::INVOKE_INTERFACE:
2550 case Instruction::INVOKE_STATIC:
2551 case Instruction::INVOKE_SUPER:
2552 case Instruction::INVOKE_VIRTUAL:
2553 case Instruction::INVOKE_VIRTUAL_QUICK: {
2554 uint16_t method_idx;
2555 if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_QUICK) {
2556 if (!CanDecodeQuickenedInfo()) {
2557 VLOG(compiler) << "Not compiled: Could not decode quickened instruction "
2558 << instruction.Opcode();
2559 return false;
2560 }
2561 method_idx = LookupQuickenedInfo(quicken_index);
2562 } else {
2563 method_idx = instruction.VRegB_35c();
2564 }
2565 uint32_t args[5];
2566 uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args);
2567 VarArgsInstructionOperands operands(args, number_of_vreg_arguments);
2568 if (!BuildInvoke(instruction, dex_pc, method_idx, operands)) {
2569 return false;
2570 }
2571 break;
2572 }
2573
2574 case Instruction::INVOKE_DIRECT_RANGE:
2575 case Instruction::INVOKE_INTERFACE_RANGE:
2576 case Instruction::INVOKE_STATIC_RANGE:
2577 case Instruction::INVOKE_SUPER_RANGE:
2578 case Instruction::INVOKE_VIRTUAL_RANGE:
2579 case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2580 uint16_t method_idx;
2581 if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK) {
2582 if (!CanDecodeQuickenedInfo()) {
2583 VLOG(compiler) << "Not compiled: Could not decode quickened instruction "
2584 << instruction.Opcode();
2585 return false;
2586 }
2587 method_idx = LookupQuickenedInfo(quicken_index);
2588 } else {
2589 method_idx = instruction.VRegB_3rc();
2590 }
2591 RangeInstructionOperands operands(instruction.VRegC(), instruction.VRegA_3rc());
2592 if (!BuildInvoke(instruction, dex_pc, method_idx, operands)) {
2593 return false;
2594 }
2595 break;
2596 }
2597
2598 case Instruction::INVOKE_POLYMORPHIC: {
2599 uint16_t method_idx = instruction.VRegB_45cc();
2600 dex::ProtoIndex proto_idx(instruction.VRegH_45cc());
2601 uint32_t args[5];
2602 uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args);
2603 VarArgsInstructionOperands operands(args, number_of_vreg_arguments);
2604 return BuildInvokePolymorphic(dex_pc, method_idx, proto_idx, operands);
2605 }
2606
2607 case Instruction::INVOKE_POLYMORPHIC_RANGE: {
2608 uint16_t method_idx = instruction.VRegB_4rcc();
2609 dex::ProtoIndex proto_idx(instruction.VRegH_4rcc());
2610 RangeInstructionOperands operands(instruction.VRegC_4rcc(), instruction.VRegA_4rcc());
2611 return BuildInvokePolymorphic(dex_pc, method_idx, proto_idx, operands);
2612 }
2613
2614 case Instruction::INVOKE_CUSTOM: {
2615 uint16_t call_site_idx = instruction.VRegB_35c();
2616 uint32_t args[5];
2617 uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args);
2618 VarArgsInstructionOperands operands(args, number_of_vreg_arguments);
2619 return BuildInvokeCustom(dex_pc, call_site_idx, operands);
2620 }
2621
2622 case Instruction::INVOKE_CUSTOM_RANGE: {
2623 uint16_t call_site_idx = instruction.VRegB_3rc();
2624 RangeInstructionOperands operands(instruction.VRegC_3rc(), instruction.VRegA_3rc());
2625 return BuildInvokeCustom(dex_pc, call_site_idx, operands);
2626 }
2627
2628 case Instruction::NEG_INT: {
2629 Unop_12x<HNeg>(instruction, DataType::Type::kInt32, dex_pc);
2630 break;
2631 }
2632
2633 case Instruction::NEG_LONG: {
2634 Unop_12x<HNeg>(instruction, DataType::Type::kInt64, dex_pc);
2635 break;
2636 }
2637
2638 case Instruction::NEG_FLOAT: {
2639 Unop_12x<HNeg>(instruction, DataType::Type::kFloat32, dex_pc);
2640 break;
2641 }
2642
2643 case Instruction::NEG_DOUBLE: {
2644 Unop_12x<HNeg>(instruction, DataType::Type::kFloat64, dex_pc);
2645 break;
2646 }
2647
2648 case Instruction::NOT_INT: {
2649 Unop_12x<HNot>(instruction, DataType::Type::kInt32, dex_pc);
2650 break;
2651 }
2652
2653 case Instruction::NOT_LONG: {
2654 Unop_12x<HNot>(instruction, DataType::Type::kInt64, dex_pc);
2655 break;
2656 }
2657
2658 case Instruction::INT_TO_LONG: {
2659 Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt64, dex_pc);
2660 break;
2661 }
2662
2663 case Instruction::INT_TO_FLOAT: {
2664 Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kFloat32, dex_pc);
2665 break;
2666 }
2667
2668 case Instruction::INT_TO_DOUBLE: {
2669 Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kFloat64, dex_pc);
2670 break;
2671 }
2672
2673 case Instruction::LONG_TO_INT: {
2674 Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kInt32, dex_pc);
2675 break;
2676 }
2677
2678 case Instruction::LONG_TO_FLOAT: {
2679 Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kFloat32, dex_pc);
2680 break;
2681 }
2682
2683 case Instruction::LONG_TO_DOUBLE: {
2684 Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kFloat64, dex_pc);
2685 break;
2686 }
2687
2688 case Instruction::FLOAT_TO_INT: {
2689 Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kInt32, dex_pc);
2690 break;
2691 }
2692
2693 case Instruction::FLOAT_TO_LONG: {
2694 Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kInt64, dex_pc);
2695 break;
2696 }
2697
2698 case Instruction::FLOAT_TO_DOUBLE: {
2699 Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kFloat64, dex_pc);
2700 break;
2701 }
2702
2703 case Instruction::DOUBLE_TO_INT: {
2704 Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kInt32, dex_pc);
2705 break;
2706 }
2707
2708 case Instruction::DOUBLE_TO_LONG: {
2709 Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kInt64, dex_pc);
2710 break;
2711 }
2712
2713 case Instruction::DOUBLE_TO_FLOAT: {
2714 Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kFloat32, dex_pc);
2715 break;
2716 }
2717
2718 case Instruction::INT_TO_BYTE: {
2719 Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt8, dex_pc);
2720 break;
2721 }
2722
2723 case Instruction::INT_TO_SHORT: {
2724 Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt16, dex_pc);
2725 break;
2726 }
2727
2728 case Instruction::INT_TO_CHAR: {
2729 Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kUint16, dex_pc);
2730 break;
2731 }
2732
2733 case Instruction::ADD_INT: {
2734 Binop_23x<HAdd>(instruction, DataType::Type::kInt32, dex_pc);
2735 break;
2736 }
2737
2738 case Instruction::ADD_LONG: {
2739 Binop_23x<HAdd>(instruction, DataType::Type::kInt64, dex_pc);
2740 break;
2741 }
2742
2743 case Instruction::ADD_DOUBLE: {
2744 Binop_23x<HAdd>(instruction, DataType::Type::kFloat64, dex_pc);
2745 break;
2746 }
2747
2748 case Instruction::ADD_FLOAT: {
2749 Binop_23x<HAdd>(instruction, DataType::Type::kFloat32, dex_pc);
2750 break;
2751 }
2752
2753 case Instruction::SUB_INT: {
2754 Binop_23x<HSub>(instruction, DataType::Type::kInt32, dex_pc);
2755 break;
2756 }
2757
2758 case Instruction::SUB_LONG: {
2759 Binop_23x<HSub>(instruction, DataType::Type::kInt64, dex_pc);
2760 break;
2761 }
2762
2763 case Instruction::SUB_FLOAT: {
2764 Binop_23x<HSub>(instruction, DataType::Type::kFloat32, dex_pc);
2765 break;
2766 }
2767
2768 case Instruction::SUB_DOUBLE: {
2769 Binop_23x<HSub>(instruction, DataType::Type::kFloat64, dex_pc);
2770 break;
2771 }
2772
2773 case Instruction::ADD_INT_2ADDR: {
2774 Binop_12x<HAdd>(instruction, DataType::Type::kInt32, dex_pc);
2775 break;
2776 }
2777
2778 case Instruction::MUL_INT: {
2779 Binop_23x<HMul>(instruction, DataType::Type::kInt32, dex_pc);
2780 break;
2781 }
2782
2783 case Instruction::MUL_LONG: {
2784 Binop_23x<HMul>(instruction, DataType::Type::kInt64, dex_pc);
2785 break;
2786 }
2787
2788 case Instruction::MUL_FLOAT: {
2789 Binop_23x<HMul>(instruction, DataType::Type::kFloat32, dex_pc);
2790 break;
2791 }
2792
2793 case Instruction::MUL_DOUBLE: {
2794 Binop_23x<HMul>(instruction, DataType::Type::kFloat64, dex_pc);
2795 break;
2796 }
2797
2798 case Instruction::DIV_INT: {
2799 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2800 dex_pc, DataType::Type::kInt32, false, true);
2801 break;
2802 }
2803
2804 case Instruction::DIV_LONG: {
2805 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2806 dex_pc, DataType::Type::kInt64, false, true);
2807 break;
2808 }
2809
2810 case Instruction::DIV_FLOAT: {
2811 Binop_23x<HDiv>(instruction, DataType::Type::kFloat32, dex_pc);
2812 break;
2813 }
2814
2815 case Instruction::DIV_DOUBLE: {
2816 Binop_23x<HDiv>(instruction, DataType::Type::kFloat64, dex_pc);
2817 break;
2818 }
2819
2820 case Instruction::REM_INT: {
2821 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2822 dex_pc, DataType::Type::kInt32, false, false);
2823 break;
2824 }
2825
2826 case Instruction::REM_LONG: {
2827 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2828 dex_pc, DataType::Type::kInt64, false, false);
2829 break;
2830 }
2831
2832 case Instruction::REM_FLOAT: {
2833 Binop_23x<HRem>(instruction, DataType::Type::kFloat32, dex_pc);
2834 break;
2835 }
2836
2837 case Instruction::REM_DOUBLE: {
2838 Binop_23x<HRem>(instruction, DataType::Type::kFloat64, dex_pc);
2839 break;
2840 }
2841
2842 case Instruction::AND_INT: {
2843 Binop_23x<HAnd>(instruction, DataType::Type::kInt32, dex_pc);
2844 break;
2845 }
2846
2847 case Instruction::AND_LONG: {
2848 Binop_23x<HAnd>(instruction, DataType::Type::kInt64, dex_pc);
2849 break;
2850 }
2851
2852 case Instruction::SHL_INT: {
2853 Binop_23x_shift<HShl>(instruction, DataType::Type::kInt32, dex_pc);
2854 break;
2855 }
2856
2857 case Instruction::SHL_LONG: {
2858 Binop_23x_shift<HShl>(instruction, DataType::Type::kInt64, dex_pc);
2859 break;
2860 }
2861
2862 case Instruction::SHR_INT: {
2863 Binop_23x_shift<HShr>(instruction, DataType::Type::kInt32, dex_pc);
2864 break;
2865 }
2866
2867 case Instruction::SHR_LONG: {
2868 Binop_23x_shift<HShr>(instruction, DataType::Type::kInt64, dex_pc);
2869 break;
2870 }
2871
2872 case Instruction::USHR_INT: {
2873 Binop_23x_shift<HUShr>(instruction, DataType::Type::kInt32, dex_pc);
2874 break;
2875 }
2876
2877 case Instruction::USHR_LONG: {
2878 Binop_23x_shift<HUShr>(instruction, DataType::Type::kInt64, dex_pc);
2879 break;
2880 }
2881
2882 case Instruction::OR_INT: {
2883 Binop_23x<HOr>(instruction, DataType::Type::kInt32, dex_pc);
2884 break;
2885 }
2886
2887 case Instruction::OR_LONG: {
2888 Binop_23x<HOr>(instruction, DataType::Type::kInt64, dex_pc);
2889 break;
2890 }
2891
2892 case Instruction::XOR_INT: {
2893 Binop_23x<HXor>(instruction, DataType::Type::kInt32, dex_pc);
2894 break;
2895 }
2896
2897 case Instruction::XOR_LONG: {
2898 Binop_23x<HXor>(instruction, DataType::Type::kInt64, dex_pc);
2899 break;
2900 }
2901
2902 case Instruction::ADD_LONG_2ADDR: {
2903 Binop_12x<HAdd>(instruction, DataType::Type::kInt64, dex_pc);
2904 break;
2905 }
2906
2907 case Instruction::ADD_DOUBLE_2ADDR: {
2908 Binop_12x<HAdd>(instruction, DataType::Type::kFloat64, dex_pc);
2909 break;
2910 }
2911
2912 case Instruction::ADD_FLOAT_2ADDR: {
2913 Binop_12x<HAdd>(instruction, DataType::Type::kFloat32, dex_pc);
2914 break;
2915 }
2916
2917 case Instruction::SUB_INT_2ADDR: {
2918 Binop_12x<HSub>(instruction, DataType::Type::kInt32, dex_pc);
2919 break;
2920 }
2921
2922 case Instruction::SUB_LONG_2ADDR: {
2923 Binop_12x<HSub>(instruction, DataType::Type::kInt64, dex_pc);
2924 break;
2925 }
2926
2927 case Instruction::SUB_FLOAT_2ADDR: {
2928 Binop_12x<HSub>(instruction, DataType::Type::kFloat32, dex_pc);
2929 break;
2930 }
2931
2932 case Instruction::SUB_DOUBLE_2ADDR: {
2933 Binop_12x<HSub>(instruction, DataType::Type::kFloat64, dex_pc);
2934 break;
2935 }
2936
2937 case Instruction::MUL_INT_2ADDR: {
2938 Binop_12x<HMul>(instruction, DataType::Type::kInt32, dex_pc);
2939 break;
2940 }
2941
2942 case Instruction::MUL_LONG_2ADDR: {
2943 Binop_12x<HMul>(instruction, DataType::Type::kInt64, dex_pc);
2944 break;
2945 }
2946
2947 case Instruction::MUL_FLOAT_2ADDR: {
2948 Binop_12x<HMul>(instruction, DataType::Type::kFloat32, dex_pc);
2949 break;
2950 }
2951
2952 case Instruction::MUL_DOUBLE_2ADDR: {
2953 Binop_12x<HMul>(instruction, DataType::Type::kFloat64, dex_pc);
2954 break;
2955 }
2956
2957 case Instruction::DIV_INT_2ADDR: {
2958 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2959 dex_pc, DataType::Type::kInt32, false, true);
2960 break;
2961 }
2962
2963 case Instruction::DIV_LONG_2ADDR: {
2964 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2965 dex_pc, DataType::Type::kInt64, false, true);
2966 break;
2967 }
2968
2969 case Instruction::REM_INT_2ADDR: {
2970 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2971 dex_pc, DataType::Type::kInt32, false, false);
2972 break;
2973 }
2974
2975 case Instruction::REM_LONG_2ADDR: {
2976 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2977 dex_pc, DataType::Type::kInt64, false, false);
2978 break;
2979 }
2980
2981 case Instruction::REM_FLOAT_2ADDR: {
2982 Binop_12x<HRem>(instruction, DataType::Type::kFloat32, dex_pc);
2983 break;
2984 }
2985
2986 case Instruction::REM_DOUBLE_2ADDR: {
2987 Binop_12x<HRem>(instruction, DataType::Type::kFloat64, dex_pc);
2988 break;
2989 }
2990
2991 case Instruction::SHL_INT_2ADDR: {
2992 Binop_12x_shift<HShl>(instruction, DataType::Type::kInt32, dex_pc);
2993 break;
2994 }
2995
2996 case Instruction::SHL_LONG_2ADDR: {
2997 Binop_12x_shift<HShl>(instruction, DataType::Type::kInt64, dex_pc);
2998 break;
2999 }
3000
3001 case Instruction::SHR_INT_2ADDR: {
3002 Binop_12x_shift<HShr>(instruction, DataType::Type::kInt32, dex_pc);
3003 break;
3004 }
3005
3006 case Instruction::SHR_LONG_2ADDR: {
3007 Binop_12x_shift<HShr>(instruction, DataType::Type::kInt64, dex_pc);
3008 break;
3009 }
3010
3011 case Instruction::USHR_INT_2ADDR: {
3012 Binop_12x_shift<HUShr>(instruction, DataType::Type::kInt32, dex_pc);
3013 break;
3014 }
3015
3016 case Instruction::USHR_LONG_2ADDR: {
3017 Binop_12x_shift<HUShr>(instruction, DataType::Type::kInt64, dex_pc);
3018 break;
3019 }
3020
3021 case Instruction::DIV_FLOAT_2ADDR: {
3022 Binop_12x<HDiv>(instruction, DataType::Type::kFloat32, dex_pc);
3023 break;
3024 }
3025
3026 case Instruction::DIV_DOUBLE_2ADDR: {
3027 Binop_12x<HDiv>(instruction, DataType::Type::kFloat64, dex_pc);
3028 break;
3029 }
3030
3031 case Instruction::AND_INT_2ADDR: {
3032 Binop_12x<HAnd>(instruction, DataType::Type::kInt32, dex_pc);
3033 break;
3034 }
3035
3036 case Instruction::AND_LONG_2ADDR: {
3037 Binop_12x<HAnd>(instruction, DataType::Type::kInt64, dex_pc);
3038 break;
3039 }
3040
3041 case Instruction::OR_INT_2ADDR: {
3042 Binop_12x<HOr>(instruction, DataType::Type::kInt32, dex_pc);
3043 break;
3044 }
3045
3046 case Instruction::OR_LONG_2ADDR: {
3047 Binop_12x<HOr>(instruction, DataType::Type::kInt64, dex_pc);
3048 break;
3049 }
3050
3051 case Instruction::XOR_INT_2ADDR: {
3052 Binop_12x<HXor>(instruction, DataType::Type::kInt32, dex_pc);
3053 break;
3054 }
3055
3056 case Instruction::XOR_LONG_2ADDR: {
3057 Binop_12x<HXor>(instruction, DataType::Type::kInt64, dex_pc);
3058 break;
3059 }
3060
3061 case Instruction::ADD_INT_LIT16: {
3062 Binop_22s<HAdd>(instruction, false, dex_pc);
3063 break;
3064 }
3065
3066 case Instruction::AND_INT_LIT16: {
3067 Binop_22s<HAnd>(instruction, false, dex_pc);
3068 break;
3069 }
3070
3071 case Instruction::OR_INT_LIT16: {
3072 Binop_22s<HOr>(instruction, false, dex_pc);
3073 break;
3074 }
3075
3076 case Instruction::XOR_INT_LIT16: {
3077 Binop_22s<HXor>(instruction, false, dex_pc);
3078 break;
3079 }
3080
3081 case Instruction::RSUB_INT: {
3082 Binop_22s<HSub>(instruction, true, dex_pc);
3083 break;
3084 }
3085
3086 case Instruction::MUL_INT_LIT16: {
3087 Binop_22s<HMul>(instruction, false, dex_pc);
3088 break;
3089 }
3090
3091 case Instruction::ADD_INT_LIT8: {
3092 Binop_22b<HAdd>(instruction, false, dex_pc);
3093 break;
3094 }
3095
3096 case Instruction::AND_INT_LIT8: {
3097 Binop_22b<HAnd>(instruction, false, dex_pc);
3098 break;
3099 }
3100
3101 case Instruction::OR_INT_LIT8: {
3102 Binop_22b<HOr>(instruction, false, dex_pc);
3103 break;
3104 }
3105
3106 case Instruction::XOR_INT_LIT8: {
3107 Binop_22b<HXor>(instruction, false, dex_pc);
3108 break;
3109 }
3110
3111 case Instruction::RSUB_INT_LIT8: {
3112 Binop_22b<HSub>(instruction, true, dex_pc);
3113 break;
3114 }
3115
3116 case Instruction::MUL_INT_LIT8: {
3117 Binop_22b<HMul>(instruction, false, dex_pc);
3118 break;
3119 }
3120
3121 case Instruction::DIV_INT_LIT16:
3122 case Instruction::DIV_INT_LIT8: {
3123 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
3124 dex_pc, DataType::Type::kInt32, true, true);
3125 break;
3126 }
3127
3128 case Instruction::REM_INT_LIT16:
3129 case Instruction::REM_INT_LIT8: {
3130 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
3131 dex_pc, DataType::Type::kInt32, true, false);
3132 break;
3133 }
3134
3135 case Instruction::SHL_INT_LIT8: {
3136 Binop_22b<HShl>(instruction, false, dex_pc);
3137 break;
3138 }
3139
3140 case Instruction::SHR_INT_LIT8: {
3141 Binop_22b<HShr>(instruction, false, dex_pc);
3142 break;
3143 }
3144
3145 case Instruction::USHR_INT_LIT8: {
3146 Binop_22b<HUShr>(instruction, false, dex_pc);
3147 break;
3148 }
3149
3150 case Instruction::NEW_INSTANCE: {
3151 HNewInstance* new_instance =
3152 BuildNewInstance(dex::TypeIndex(instruction.VRegB_21c()), dex_pc);
3153 DCHECK(new_instance != nullptr);
3154
3155 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
3156 BuildConstructorFenceForAllocation(new_instance);
3157 break;
3158 }
3159
3160 case Instruction::NEW_ARRAY: {
3161 dex::TypeIndex type_index(instruction.VRegC_22c());
3162 HInstruction* length = LoadLocal(instruction.VRegB_22c(), DataType::Type::kInt32);
3163 HNewArray* new_array = BuildNewArray(dex_pc, type_index, length);
3164
3165 UpdateLocal(instruction.VRegA_22c(), current_block_->GetLastInstruction());
3166 BuildConstructorFenceForAllocation(new_array);
3167 break;
3168 }
3169
3170 case Instruction::FILLED_NEW_ARRAY: {
3171 dex::TypeIndex type_index(instruction.VRegB_35c());
3172 uint32_t args[5];
3173 uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args);
3174 VarArgsInstructionOperands operands(args, number_of_vreg_arguments);
3175 HNewArray* new_array = BuildFilledNewArray(dex_pc, type_index, operands);
3176 BuildConstructorFenceForAllocation(new_array);
3177 break;
3178 }
3179
3180 case Instruction::FILLED_NEW_ARRAY_RANGE: {
3181 dex::TypeIndex type_index(instruction.VRegB_3rc());
3182 RangeInstructionOperands operands(instruction.VRegC_3rc(), instruction.VRegA_3rc());
3183 HNewArray* new_array = BuildFilledNewArray(dex_pc, type_index, operands);
3184 BuildConstructorFenceForAllocation(new_array);
3185 break;
3186 }
3187
3188 case Instruction::FILL_ARRAY_DATA: {
3189 BuildFillArrayData(instruction, dex_pc);
3190 break;
3191 }
3192
3193 case Instruction::MOVE_RESULT:
3194 case Instruction::MOVE_RESULT_WIDE:
3195 case Instruction::MOVE_RESULT_OBJECT: {
3196 DCHECK(latest_result_ != nullptr);
3197 UpdateLocal(instruction.VRegA(), latest_result_);
3198 latest_result_ = nullptr;
3199 break;
3200 }
3201
3202 case Instruction::CMP_LONG: {
3203 Binop_23x_cmp(instruction, DataType::Type::kInt64, ComparisonBias::kNoBias, dex_pc);
3204 break;
3205 }
3206
3207 case Instruction::CMPG_FLOAT: {
3208 Binop_23x_cmp(instruction, DataType::Type::kFloat32, ComparisonBias::kGtBias, dex_pc);
3209 break;
3210 }
3211
3212 case Instruction::CMPG_DOUBLE: {
3213 Binop_23x_cmp(instruction, DataType::Type::kFloat64, ComparisonBias::kGtBias, dex_pc);
3214 break;
3215 }
3216
3217 case Instruction::CMPL_FLOAT: {
3218 Binop_23x_cmp(instruction, DataType::Type::kFloat32, ComparisonBias::kLtBias, dex_pc);
3219 break;
3220 }
3221
3222 case Instruction::CMPL_DOUBLE: {
3223 Binop_23x_cmp(instruction, DataType::Type::kFloat64, ComparisonBias::kLtBias, dex_pc);
3224 break;
3225 }
3226
3227 case Instruction::NOP:
3228 break;
3229
3230 case Instruction::IGET:
3231 case Instruction::IGET_QUICK:
3232 case Instruction::IGET_WIDE:
3233 case Instruction::IGET_WIDE_QUICK:
3234 case Instruction::IGET_OBJECT:
3235 case Instruction::IGET_OBJECT_QUICK:
3236 case Instruction::IGET_BOOLEAN:
3237 case Instruction::IGET_BOOLEAN_QUICK:
3238 case Instruction::IGET_BYTE:
3239 case Instruction::IGET_BYTE_QUICK:
3240 case Instruction::IGET_CHAR:
3241 case Instruction::IGET_CHAR_QUICK:
3242 case Instruction::IGET_SHORT:
3243 case Instruction::IGET_SHORT_QUICK: {
3244 if (!BuildInstanceFieldAccess(instruction, dex_pc, /* is_put= */ false, quicken_index)) {
3245 return false;
3246 }
3247 break;
3248 }
3249
3250 case Instruction::IPUT:
3251 case Instruction::IPUT_QUICK:
3252 case Instruction::IPUT_WIDE:
3253 case Instruction::IPUT_WIDE_QUICK:
3254 case Instruction::IPUT_OBJECT:
3255 case Instruction::IPUT_OBJECT_QUICK:
3256 case Instruction::IPUT_BOOLEAN:
3257 case Instruction::IPUT_BOOLEAN_QUICK:
3258 case Instruction::IPUT_BYTE:
3259 case Instruction::IPUT_BYTE_QUICK:
3260 case Instruction::IPUT_CHAR:
3261 case Instruction::IPUT_CHAR_QUICK:
3262 case Instruction::IPUT_SHORT:
3263 case Instruction::IPUT_SHORT_QUICK: {
3264 if (!BuildInstanceFieldAccess(instruction, dex_pc, /* is_put= */ true, quicken_index)) {
3265 return false;
3266 }
3267 break;
3268 }
3269
3270 case Instruction::SGET:
3271 case Instruction::SGET_WIDE:
3272 case Instruction::SGET_OBJECT:
3273 case Instruction::SGET_BOOLEAN:
3274 case Instruction::SGET_BYTE:
3275 case Instruction::SGET_CHAR:
3276 case Instruction::SGET_SHORT: {
3277 BuildStaticFieldAccess(instruction, dex_pc, /* is_put= */ false);
3278 break;
3279 }
3280
3281 case Instruction::SPUT:
3282 case Instruction::SPUT_WIDE:
3283 case Instruction::SPUT_OBJECT:
3284 case Instruction::SPUT_BOOLEAN:
3285 case Instruction::SPUT_BYTE:
3286 case Instruction::SPUT_CHAR:
3287 case Instruction::SPUT_SHORT: {
3288 BuildStaticFieldAccess(instruction, dex_pc, /* is_put= */ true);
3289 break;
3290 }
3291
3292 #define ARRAY_XX(kind, anticipated_type) \
3293 case Instruction::AGET##kind: { \
3294 BuildArrayAccess(instruction, dex_pc, false, anticipated_type); \
3295 break; \
3296 } \
3297 case Instruction::APUT##kind: { \
3298 BuildArrayAccess(instruction, dex_pc, true, anticipated_type); \
3299 break; \
3300 }
3301
3302 ARRAY_XX(, DataType::Type::kInt32);
3303 ARRAY_XX(_WIDE, DataType::Type::kInt64);
3304 ARRAY_XX(_OBJECT, DataType::Type::kReference);
3305 ARRAY_XX(_BOOLEAN, DataType::Type::kBool);
3306 ARRAY_XX(_BYTE, DataType::Type::kInt8);
3307 ARRAY_XX(_CHAR, DataType::Type::kUint16);
3308 ARRAY_XX(_SHORT, DataType::Type::kInt16);
3309
3310 case Instruction::ARRAY_LENGTH: {
3311 HInstruction* object = LoadNullCheckedLocal(instruction.VRegB_12x(), dex_pc);
3312 AppendInstruction(new (allocator_) HArrayLength(object, dex_pc));
3313 UpdateLocal(instruction.VRegA_12x(), current_block_->GetLastInstruction());
3314 break;
3315 }
3316
3317 case Instruction::CONST_STRING: {
3318 dex::StringIndex string_index(instruction.VRegB_21c());
3319 BuildLoadString(string_index, dex_pc);
3320 UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
3321 break;
3322 }
3323
3324 case Instruction::CONST_STRING_JUMBO: {
3325 dex::StringIndex string_index(instruction.VRegB_31c());
3326 BuildLoadString(string_index, dex_pc);
3327 UpdateLocal(instruction.VRegA_31c(), current_block_->GetLastInstruction());
3328 break;
3329 }
3330
3331 case Instruction::CONST_CLASS: {
3332 dex::TypeIndex type_index(instruction.VRegB_21c());
3333 BuildLoadClass(type_index, dex_pc);
3334 UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
3335 break;
3336 }
3337
3338 case Instruction::CONST_METHOD_HANDLE: {
3339 uint16_t method_handle_idx = instruction.VRegB_21c();
3340 BuildLoadMethodHandle(method_handle_idx, dex_pc);
3341 UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
3342 break;
3343 }
3344
3345 case Instruction::CONST_METHOD_TYPE: {
3346 dex::ProtoIndex proto_idx(instruction.VRegB_21c());
3347 BuildLoadMethodType(proto_idx, dex_pc);
3348 UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
3349 break;
3350 }
3351
3352 case Instruction::MOVE_EXCEPTION: {
3353 AppendInstruction(new (allocator_) HLoadException(dex_pc));
3354 UpdateLocal(instruction.VRegA_11x(), current_block_->GetLastInstruction());
3355 AppendInstruction(new (allocator_) HClearException(dex_pc));
3356 break;
3357 }
3358
3359 case Instruction::THROW: {
3360 HInstruction* exception = LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference);
3361 AppendInstruction(new (allocator_) HThrow(exception, dex_pc));
3362 // We finished building this block. Set the current block to null to avoid
3363 // adding dead instructions to it.
3364 current_block_ = nullptr;
3365 break;
3366 }
3367
3368 case Instruction::INSTANCE_OF: {
3369 uint8_t destination = instruction.VRegA_22c();
3370 uint8_t reference = instruction.VRegB_22c();
3371 dex::TypeIndex type_index(instruction.VRegC_22c());
3372 BuildTypeCheck(instruction, destination, reference, type_index, dex_pc);
3373 break;
3374 }
3375
3376 case Instruction::CHECK_CAST: {
3377 uint8_t reference = instruction.VRegA_21c();
3378 dex::TypeIndex type_index(instruction.VRegB_21c());
3379 BuildTypeCheck(instruction, -1, reference, type_index, dex_pc);
3380 break;
3381 }
3382
3383 case Instruction::MONITOR_ENTER: {
3384 AppendInstruction(new (allocator_) HMonitorOperation(
3385 LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference),
3386 HMonitorOperation::OperationKind::kEnter,
3387 dex_pc));
3388 graph_->SetHasMonitorOperations(true);
3389 break;
3390 }
3391
3392 case Instruction::MONITOR_EXIT: {
3393 AppendInstruction(new (allocator_) HMonitorOperation(
3394 LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference),
3395 HMonitorOperation::OperationKind::kExit,
3396 dex_pc));
3397 graph_->SetHasMonitorOperations(true);
3398 break;
3399 }
3400
3401 case Instruction::SPARSE_SWITCH:
3402 case Instruction::PACKED_SWITCH: {
3403 BuildSwitch(instruction, dex_pc);
3404 break;
3405 }
3406
3407 case Instruction::UNUSED_3E:
3408 case Instruction::UNUSED_3F:
3409 case Instruction::UNUSED_40:
3410 case Instruction::UNUSED_41:
3411 case Instruction::UNUSED_42:
3412 case Instruction::UNUSED_43:
3413 case Instruction::UNUSED_79:
3414 case Instruction::UNUSED_7A:
3415 case Instruction::UNUSED_F3:
3416 case Instruction::UNUSED_F4:
3417 case Instruction::UNUSED_F5:
3418 case Instruction::UNUSED_F6:
3419 case Instruction::UNUSED_F7:
3420 case Instruction::UNUSED_F8:
3421 case Instruction::UNUSED_F9: {
3422 VLOG(compiler) << "Did not compile "
3423 << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
3424 << " because of unhandled instruction "
3425 << instruction.Name();
3426 MaybeRecordStat(compilation_stats_,
3427 MethodCompilationStat::kNotCompiledUnhandledInstruction);
3428 return false;
3429 }
3430 }
3431 return true;
3432 } // NOLINT(readability/fn_size)
3433
LookupResolvedType(dex::TypeIndex type_index,const DexCompilationUnit & compilation_unit) const3434 ObjPtr<mirror::Class> HInstructionBuilder::LookupResolvedType(
3435 dex::TypeIndex type_index,
3436 const DexCompilationUnit& compilation_unit) const {
3437 return compilation_unit.GetClassLinker()->LookupResolvedType(
3438 type_index, compilation_unit.GetDexCache().Get(), compilation_unit.GetClassLoader().Get());
3439 }
3440
LookupReferrerClass() const3441 ObjPtr<mirror::Class> HInstructionBuilder::LookupReferrerClass() const {
3442 // TODO: Cache the result in a Handle<mirror::Class>.
3443 const dex::MethodId& method_id =
3444 dex_compilation_unit_->GetDexFile()->GetMethodId(dex_compilation_unit_->GetDexMethodIndex());
3445 return LookupResolvedType(method_id.class_idx_, *dex_compilation_unit_);
3446 }
3447
3448 } // namespace art
3449