1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "instruction_builder.h"
18 
19 #include "art_method-inl.h"
20 #include "base/arena_bit_vector.h"
21 #include "base/bit_vector-inl.h"
22 #include "base/logging.h"
23 #include "block_builder.h"
24 #include "class_linker-inl.h"
25 #include "code_generator.h"
26 #include "data_type-inl.h"
27 #include "dex/bytecode_utils.h"
28 #include "dex/dex_instruction-inl.h"
29 #include "driver/dex_compilation_unit.h"
30 #include "driver/compiler_options.h"
31 #include "imtable-inl.h"
32 #include "jit/jit.h"
33 #include "mirror/dex_cache.h"
34 #include "oat_file.h"
35 #include "optimizing_compiler_stats.h"
36 #include "quicken_info.h"
37 #include "reflective_handle_scope-inl.h"
38 #include "scoped_thread_state_change-inl.h"
39 #include "sharpening.h"
40 #include "ssa_builder.h"
41 #include "well_known_classes.h"
42 
43 namespace art {
44 
HInstructionBuilder(HGraph * graph,HBasicBlockBuilder * block_builder,SsaBuilder * ssa_builder,const DexFile * dex_file,const CodeItemDebugInfoAccessor & accessor,DataType::Type return_type,const DexCompilationUnit * dex_compilation_unit,const DexCompilationUnit * outer_compilation_unit,CodeGenerator * code_generator,ArrayRef<const uint8_t> interpreter_metadata,OptimizingCompilerStats * compiler_stats,ScopedArenaAllocator * local_allocator)45 HInstructionBuilder::HInstructionBuilder(HGraph* graph,
46                                          HBasicBlockBuilder* block_builder,
47                                          SsaBuilder* ssa_builder,
48                                          const DexFile* dex_file,
49                                          const CodeItemDebugInfoAccessor& accessor,
50                                          DataType::Type return_type,
51                                          const DexCompilationUnit* dex_compilation_unit,
52                                          const DexCompilationUnit* outer_compilation_unit,
53                                          CodeGenerator* code_generator,
54                                          ArrayRef<const uint8_t> interpreter_metadata,
55                                          OptimizingCompilerStats* compiler_stats,
56                                          ScopedArenaAllocator* local_allocator)
57     : allocator_(graph->GetAllocator()),
58       graph_(graph),
59       dex_file_(dex_file),
60       code_item_accessor_(accessor),
61       return_type_(return_type),
62       block_builder_(block_builder),
63       ssa_builder_(ssa_builder),
64       code_generator_(code_generator),
65       dex_compilation_unit_(dex_compilation_unit),
66       outer_compilation_unit_(outer_compilation_unit),
67       quicken_info_(interpreter_metadata),
68       compilation_stats_(compiler_stats),
69       local_allocator_(local_allocator),
70       locals_for_(local_allocator->Adapter(kArenaAllocGraphBuilder)),
71       current_block_(nullptr),
72       current_locals_(nullptr),
73       latest_result_(nullptr),
74       current_this_parameter_(nullptr),
75       loop_headers_(local_allocator->Adapter(kArenaAllocGraphBuilder)),
76       class_cache_(std::less<dex::TypeIndex>(), local_allocator->Adapter(kArenaAllocGraphBuilder)) {
77   loop_headers_.reserve(kDefaultNumberOfLoops);
78 }
79 
FindBlockStartingAt(uint32_t dex_pc) const80 HBasicBlock* HInstructionBuilder::FindBlockStartingAt(uint32_t dex_pc) const {
81   return block_builder_->GetBlockAt(dex_pc);
82 }
83 
GetLocalsFor(HBasicBlock * block)84 inline ScopedArenaVector<HInstruction*>* HInstructionBuilder::GetLocalsFor(HBasicBlock* block) {
85   ScopedArenaVector<HInstruction*>* locals = &locals_for_[block->GetBlockId()];
86   const size_t vregs = graph_->GetNumberOfVRegs();
87   if (locals->size() == vregs) {
88     return locals;
89   }
90   return GetLocalsForWithAllocation(block, locals, vregs);
91 }
92 
GetLocalsForWithAllocation(HBasicBlock * block,ScopedArenaVector<HInstruction * > * locals,const size_t vregs)93 ScopedArenaVector<HInstruction*>* HInstructionBuilder::GetLocalsForWithAllocation(
94     HBasicBlock* block,
95     ScopedArenaVector<HInstruction*>* locals,
96     const size_t vregs) {
97   DCHECK_NE(locals->size(), vregs);
98   locals->resize(vregs, nullptr);
99   if (block->IsCatchBlock()) {
100     // We record incoming inputs of catch phis at throwing instructions and
101     // must therefore eagerly create the phis. Phis for undefined vregs will
102     // be deleted when the first throwing instruction with the vreg undefined
103     // is encountered. Unused phis will be removed by dead phi analysis.
104     for (size_t i = 0; i < vregs; ++i) {
105       // No point in creating the catch phi if it is already undefined at
106       // the first throwing instruction.
107       HInstruction* current_local_value = (*current_locals_)[i];
108       if (current_local_value != nullptr) {
109         HPhi* phi = new (allocator_) HPhi(
110             allocator_,
111             i,
112             0,
113             current_local_value->GetType());
114         block->AddPhi(phi);
115         (*locals)[i] = phi;
116       }
117     }
118   }
119   return locals;
120 }
121 
ValueOfLocalAt(HBasicBlock * block,size_t local)122 inline HInstruction* HInstructionBuilder::ValueOfLocalAt(HBasicBlock* block, size_t local) {
123   ScopedArenaVector<HInstruction*>* locals = GetLocalsFor(block);
124   return (*locals)[local];
125 }
126 
InitializeBlockLocals()127 void HInstructionBuilder::InitializeBlockLocals() {
128   current_locals_ = GetLocalsFor(current_block_);
129 
130   if (current_block_->IsCatchBlock()) {
131     // Catch phis were already created and inputs collected from throwing sites.
132     if (kIsDebugBuild) {
133       // Make sure there was at least one throwing instruction which initialized
134       // locals (guaranteed by HGraphBuilder) and that all try blocks have been
135       // visited already (from HTryBoundary scoping and reverse post order).
136       bool catch_block_visited = false;
137       for (HBasicBlock* current : graph_->GetReversePostOrder()) {
138         if (current == current_block_) {
139           catch_block_visited = true;
140         } else if (current->IsTryBlock()) {
141           const HTryBoundary& try_entry = current->GetTryCatchInformation()->GetTryEntry();
142           if (try_entry.HasExceptionHandler(*current_block_)) {
143             DCHECK(!catch_block_visited) << "Catch block visited before its try block.";
144           }
145         }
146       }
147       DCHECK_EQ(current_locals_->size(), graph_->GetNumberOfVRegs())
148           << "No instructions throwing into a live catch block.";
149     }
150   } else if (current_block_->IsLoopHeader()) {
151     // If the block is a loop header, we know we only have visited the pre header
152     // because we are visiting in reverse post order. We create phis for all initialized
153     // locals from the pre header. Their inputs will be populated at the end of
154     // the analysis.
155     for (size_t local = 0; local < current_locals_->size(); ++local) {
156       HInstruction* incoming =
157           ValueOfLocalAt(current_block_->GetLoopInformation()->GetPreHeader(), local);
158       if (incoming != nullptr) {
159         HPhi* phi = new (allocator_) HPhi(
160             allocator_,
161             local,
162             0,
163             incoming->GetType());
164         current_block_->AddPhi(phi);
165         (*current_locals_)[local] = phi;
166       }
167     }
168 
169     // Save the loop header so that the last phase of the analysis knows which
170     // blocks need to be updated.
171     loop_headers_.push_back(current_block_);
172   } else if (current_block_->GetPredecessors().size() > 0) {
173     // All predecessors have already been visited because we are visiting in reverse post order.
174     // We merge the values of all locals, creating phis if those values differ.
175     for (size_t local = 0; local < current_locals_->size(); ++local) {
176       bool one_predecessor_has_no_value = false;
177       bool is_different = false;
178       HInstruction* value = ValueOfLocalAt(current_block_->GetPredecessors()[0], local);
179 
180       for (HBasicBlock* predecessor : current_block_->GetPredecessors()) {
181         HInstruction* current = ValueOfLocalAt(predecessor, local);
182         if (current == nullptr) {
183           one_predecessor_has_no_value = true;
184           break;
185         } else if (current != value) {
186           is_different = true;
187         }
188       }
189 
190       if (one_predecessor_has_no_value) {
191         // If one predecessor has no value for this local, we trust the verifier has
192         // successfully checked that there is a store dominating any read after this block.
193         continue;
194       }
195 
196       if (is_different) {
197         HInstruction* first_input = ValueOfLocalAt(current_block_->GetPredecessors()[0], local);
198         HPhi* phi = new (allocator_) HPhi(
199             allocator_,
200             local,
201             current_block_->GetPredecessors().size(),
202             first_input->GetType());
203         for (size_t i = 0; i < current_block_->GetPredecessors().size(); i++) {
204           HInstruction* pred_value = ValueOfLocalAt(current_block_->GetPredecessors()[i], local);
205           phi->SetRawInputAt(i, pred_value);
206         }
207         current_block_->AddPhi(phi);
208         value = phi;
209       }
210       (*current_locals_)[local] = value;
211     }
212   }
213 }
214 
PropagateLocalsToCatchBlocks()215 void HInstructionBuilder::PropagateLocalsToCatchBlocks() {
216   const HTryBoundary& try_entry = current_block_->GetTryCatchInformation()->GetTryEntry();
217   for (HBasicBlock* catch_block : try_entry.GetExceptionHandlers()) {
218     ScopedArenaVector<HInstruction*>* handler_locals = GetLocalsFor(catch_block);
219     DCHECK_EQ(handler_locals->size(), current_locals_->size());
220     for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) {
221       HInstruction* handler_value = (*handler_locals)[vreg];
222       if (handler_value == nullptr) {
223         // Vreg was undefined at a previously encountered throwing instruction
224         // and the catch phi was deleted. Do not record the local value.
225         continue;
226       }
227       DCHECK(handler_value->IsPhi());
228 
229       HInstruction* local_value = (*current_locals_)[vreg];
230       if (local_value == nullptr) {
231         // This is the first instruction throwing into `catch_block` where
232         // `vreg` is undefined. Delete the catch phi.
233         catch_block->RemovePhi(handler_value->AsPhi());
234         (*handler_locals)[vreg] = nullptr;
235       } else {
236         // Vreg has been defined at all instructions throwing into `catch_block`
237         // encountered so far. Record the local value in the catch phi.
238         handler_value->AsPhi()->AddInput(local_value);
239       }
240     }
241   }
242 }
243 
AppendInstruction(HInstruction * instruction)244 void HInstructionBuilder::AppendInstruction(HInstruction* instruction) {
245   current_block_->AddInstruction(instruction);
246   InitializeInstruction(instruction);
247 }
248 
InsertInstructionAtTop(HInstruction * instruction)249 void HInstructionBuilder::InsertInstructionAtTop(HInstruction* instruction) {
250   if (current_block_->GetInstructions().IsEmpty()) {
251     current_block_->AddInstruction(instruction);
252   } else {
253     current_block_->InsertInstructionBefore(instruction, current_block_->GetFirstInstruction());
254   }
255   InitializeInstruction(instruction);
256 }
257 
InitializeInstruction(HInstruction * instruction)258 void HInstructionBuilder::InitializeInstruction(HInstruction* instruction) {
259   if (instruction->NeedsEnvironment()) {
260     HEnvironment* environment = new (allocator_) HEnvironment(
261         allocator_,
262         current_locals_->size(),
263         graph_->GetArtMethod(),
264         instruction->GetDexPc(),
265         instruction);
266     environment->CopyFrom(ArrayRef<HInstruction* const>(*current_locals_));
267     instruction->SetRawEnvironment(environment);
268   }
269 }
270 
LoadNullCheckedLocal(uint32_t register_index,uint32_t dex_pc)271 HInstruction* HInstructionBuilder::LoadNullCheckedLocal(uint32_t register_index, uint32_t dex_pc) {
272   HInstruction* ref = LoadLocal(register_index, DataType::Type::kReference);
273   if (!ref->CanBeNull()) {
274     return ref;
275   }
276 
277   HNullCheck* null_check = new (allocator_) HNullCheck(ref, dex_pc);
278   AppendInstruction(null_check);
279   return null_check;
280 }
281 
SetLoopHeaderPhiInputs()282 void HInstructionBuilder::SetLoopHeaderPhiInputs() {
283   for (size_t i = loop_headers_.size(); i > 0; --i) {
284     HBasicBlock* block = loop_headers_[i - 1];
285     for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
286       HPhi* phi = it.Current()->AsPhi();
287       size_t vreg = phi->GetRegNumber();
288       for (HBasicBlock* predecessor : block->GetPredecessors()) {
289         HInstruction* value = ValueOfLocalAt(predecessor, vreg);
290         if (value == nullptr) {
291           // Vreg is undefined at this predecessor. Mark it dead and leave with
292           // fewer inputs than predecessors. SsaChecker will fail if not removed.
293           phi->SetDead();
294           break;
295         } else {
296           phi->AddInput(value);
297         }
298       }
299     }
300   }
301 }
302 
IsBlockPopulated(HBasicBlock * block)303 static bool IsBlockPopulated(HBasicBlock* block) {
304   if (block->IsLoopHeader()) {
305     // Suspend checks were inserted into loop headers during building of dominator tree.
306     DCHECK(block->GetFirstInstruction()->IsSuspendCheck());
307     return block->GetFirstInstruction() != block->GetLastInstruction();
308   } else {
309     return !block->GetInstructions().IsEmpty();
310   }
311 }
312 
Build()313 bool HInstructionBuilder::Build() {
314   DCHECK(code_item_accessor_.HasCodeItem());
315   locals_for_.resize(
316       graph_->GetBlocks().size(),
317       ScopedArenaVector<HInstruction*>(local_allocator_->Adapter(kArenaAllocGraphBuilder)));
318 
319   // Find locations where we want to generate extra stackmaps for native debugging.
320   // This allows us to generate the info only at interesting points (for example,
321   // at start of java statement) rather than before every dex instruction.
322   const bool native_debuggable = code_generator_ != nullptr &&
323                                  code_generator_->GetCompilerOptions().GetNativeDebuggable();
324   ArenaBitVector* native_debug_info_locations = nullptr;
325   if (native_debuggable) {
326     native_debug_info_locations = FindNativeDebugInfoLocations();
327   }
328 
329   for (HBasicBlock* block : graph_->GetReversePostOrder()) {
330     current_block_ = block;
331     uint32_t block_dex_pc = current_block_->GetDexPc();
332 
333     InitializeBlockLocals();
334 
335     if (current_block_->IsEntryBlock()) {
336       InitializeParameters();
337       AppendInstruction(new (allocator_) HSuspendCheck(0u));
338       AppendInstruction(new (allocator_) HGoto(0u));
339       continue;
340     } else if (current_block_->IsExitBlock()) {
341       AppendInstruction(new (allocator_) HExit());
342       continue;
343     } else if (current_block_->IsLoopHeader()) {
344       HSuspendCheck* suspend_check = new (allocator_) HSuspendCheck(current_block_->GetDexPc());
345       current_block_->GetLoopInformation()->SetSuspendCheck(suspend_check);
346       // This is slightly odd because the loop header might not be empty (TryBoundary).
347       // But we're still creating the environment with locals from the top of the block.
348       InsertInstructionAtTop(suspend_check);
349     }
350 
351     if (block_dex_pc == kNoDexPc || current_block_ != block_builder_->GetBlockAt(block_dex_pc)) {
352       // Synthetic block that does not need to be populated.
353       DCHECK(IsBlockPopulated(current_block_));
354       continue;
355     }
356 
357     DCHECK(!IsBlockPopulated(current_block_));
358 
359     uint32_t quicken_index = 0;
360     if (CanDecodeQuickenedInfo()) {
361       quicken_index = block_builder_->GetQuickenIndex(block_dex_pc);
362     }
363 
364     for (const DexInstructionPcPair& pair : code_item_accessor_.InstructionsFrom(block_dex_pc)) {
365       if (current_block_ == nullptr) {
366         // The previous instruction ended this block.
367         break;
368       }
369 
370       const uint32_t dex_pc = pair.DexPc();
371       if (dex_pc != block_dex_pc && FindBlockStartingAt(dex_pc) != nullptr) {
372         // This dex_pc starts a new basic block.
373         break;
374       }
375 
376       if (current_block_->IsTryBlock() && IsThrowingDexInstruction(pair.Inst())) {
377         PropagateLocalsToCatchBlocks();
378       }
379 
380       if (native_debuggable && native_debug_info_locations->IsBitSet(dex_pc)) {
381         AppendInstruction(new (allocator_) HNativeDebugInfo(dex_pc));
382       }
383 
384       // Note: There may be no Thread for gtests.
385       DCHECK(Thread::Current() == nullptr || !Thread::Current()->IsExceptionPending())
386           << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
387           << " " << pair.Inst().Name() << "@" << dex_pc;
388       if (!ProcessDexInstruction(pair.Inst(), dex_pc, quicken_index)) {
389         return false;
390       }
391       DCHECK(Thread::Current() == nullptr || !Thread::Current()->IsExceptionPending())
392           << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
393           << " " << pair.Inst().Name() << "@" << dex_pc;
394 
395       if (QuickenInfoTable::NeedsIndexForInstruction(&pair.Inst())) {
396         ++quicken_index;
397       }
398     }
399 
400     if (current_block_ != nullptr) {
401       // Branching instructions clear current_block, so we know the last
402       // instruction of the current block is not a branching instruction.
403       // We add an unconditional Goto to the next block.
404       DCHECK_EQ(current_block_->GetSuccessors().size(), 1u);
405       AppendInstruction(new (allocator_) HGoto());
406     }
407   }
408 
409   SetLoopHeaderPhiInputs();
410 
411   return true;
412 }
413 
BuildIntrinsic(ArtMethod * method)414 void HInstructionBuilder::BuildIntrinsic(ArtMethod* method) {
415   DCHECK(!code_item_accessor_.HasCodeItem());
416   DCHECK(method->IsIntrinsic());
417 
418   locals_for_.resize(
419       graph_->GetBlocks().size(),
420       ScopedArenaVector<HInstruction*>(local_allocator_->Adapter(kArenaAllocGraphBuilder)));
421 
422   // Fill the entry block. Do not add suspend check, we do not want a suspend
423   // check in intrinsics; intrinsic methods are supposed to be fast.
424   current_block_ = graph_->GetEntryBlock();
425   InitializeBlockLocals();
426   InitializeParameters();
427   AppendInstruction(new (allocator_) HGoto(0u));
428 
429   // Fill the body.
430   current_block_ = current_block_->GetSingleSuccessor();
431   InitializeBlockLocals();
432   DCHECK(!IsBlockPopulated(current_block_));
433 
434   // Add the intermediate representation, if available, or invoke instruction.
435   size_t in_vregs = graph_->GetNumberOfInVRegs();
436   size_t number_of_arguments =
437       in_vregs - std::count(current_locals_->end() - in_vregs, current_locals_->end(), nullptr);
438   uint32_t method_idx = dex_compilation_unit_->GetDexMethodIndex();
439   const char* shorty = dex_file_->GetMethodShorty(method_idx);
440   RangeInstructionOperands operands(graph_->GetNumberOfVRegs() - in_vregs, in_vregs);
441   if (!BuildSimpleIntrinsic(method, kNoDexPc, operands, shorty)) {
442     // Some intrinsics without intermediate representation still yield a leaf method,
443     // so build the invoke. Use HInvokeStaticOrDirect even for methods that would
444     // normally use an HInvokeVirtual (sharpen the call).
445     MethodReference target_method(dex_file_, method_idx);
446     HInvokeStaticOrDirect::DispatchInfo dispatch_info = {
447         HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall,
448         HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
449         /* method_load_data= */ 0u
450     };
451     InvokeType invoke_type = dex_compilation_unit_->IsStatic() ? kStatic : kDirect;
452     HInvokeStaticOrDirect* invoke = new (allocator_) HInvokeStaticOrDirect(
453         allocator_,
454         number_of_arguments,
455         return_type_,
456         kNoDexPc,
457         method_idx,
458         method,
459         dispatch_info,
460         invoke_type,
461         target_method,
462         HInvokeStaticOrDirect::ClinitCheckRequirement::kNone);
463     HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false);
464   }
465 
466   // Add the return instruction.
467   if (return_type_ == DataType::Type::kVoid) {
468     AppendInstruction(new (allocator_) HReturnVoid());
469   } else {
470     AppendInstruction(new (allocator_) HReturn(latest_result_));
471   }
472 
473   // Fill the exit block.
474   DCHECK_EQ(current_block_->GetSingleSuccessor(), graph_->GetExitBlock());
475   current_block_ = graph_->GetExitBlock();
476   InitializeBlockLocals();
477   AppendInstruction(new (allocator_) HExit());
478 }
479 
FindNativeDebugInfoLocations()480 ArenaBitVector* HInstructionBuilder::FindNativeDebugInfoLocations() {
481   ArenaBitVector* locations = ArenaBitVector::Create(local_allocator_,
482                                                      code_item_accessor_.InsnsSizeInCodeUnits(),
483                                                      /* expandable= */ false,
484                                                      kArenaAllocGraphBuilder);
485   locations->ClearAllBits();
486   // The visitor gets called when the line number changes.
487   // In other words, it marks the start of new java statement.
488   code_item_accessor_.DecodeDebugPositionInfo([&](const DexFile::PositionInfo& entry) {
489     locations->SetBit(entry.address_);
490     return false;
491   });
492   // Instruction-specific tweaks.
493   for (const DexInstructionPcPair& inst : code_item_accessor_) {
494     switch (inst->Opcode()) {
495       case Instruction::MOVE_EXCEPTION: {
496         // Stop in native debugger after the exception has been moved.
497         // The compiler also expects the move at the start of basic block so
498         // we do not want to interfere by inserting native-debug-info before it.
499         locations->ClearBit(inst.DexPc());
500         DexInstructionIterator next = std::next(DexInstructionIterator(inst));
501         DCHECK(next.DexPc() != inst.DexPc());
502         if (next != code_item_accessor_.end()) {
503           locations->SetBit(next.DexPc());
504         }
505         break;
506       }
507       default:
508         break;
509     }
510   }
511   return locations;
512 }
513 
LoadLocal(uint32_t reg_number,DataType::Type type) const514 HInstruction* HInstructionBuilder::LoadLocal(uint32_t reg_number, DataType::Type type) const {
515   HInstruction* value = (*current_locals_)[reg_number];
516   DCHECK(value != nullptr);
517 
518   // If the operation requests a specific type, we make sure its input is of that type.
519   if (type != value->GetType()) {
520     if (DataType::IsFloatingPointType(type)) {
521       value = ssa_builder_->GetFloatOrDoubleEquivalent(value, type);
522     } else if (type == DataType::Type::kReference) {
523       value = ssa_builder_->GetReferenceTypeEquivalent(value);
524     }
525     DCHECK(value != nullptr);
526   }
527 
528   return value;
529 }
530 
UpdateLocal(uint32_t reg_number,HInstruction * stored_value)531 void HInstructionBuilder::UpdateLocal(uint32_t reg_number, HInstruction* stored_value) {
532   DataType::Type stored_type = stored_value->GetType();
533   DCHECK_NE(stored_type, DataType::Type::kVoid);
534 
535   // Storing into vreg `reg_number` may implicitly invalidate the surrounding
536   // registers. Consider the following cases:
537   // (1) Storing a wide value must overwrite previous values in both `reg_number`
538   //     and `reg_number+1`. We store `nullptr` in `reg_number+1`.
539   // (2) If vreg `reg_number-1` holds a wide value, writing into `reg_number`
540   //     must invalidate it. We store `nullptr` in `reg_number-1`.
541   // Consequently, storing a wide value into the high vreg of another wide value
542   // will invalidate both `reg_number-1` and `reg_number+1`.
543 
544   if (reg_number != 0) {
545     HInstruction* local_low = (*current_locals_)[reg_number - 1];
546     if (local_low != nullptr && DataType::Is64BitType(local_low->GetType())) {
547       // The vreg we are storing into was previously the high vreg of a pair.
548       // We need to invalidate its low vreg.
549       DCHECK((*current_locals_)[reg_number] == nullptr);
550       (*current_locals_)[reg_number - 1] = nullptr;
551     }
552   }
553 
554   (*current_locals_)[reg_number] = stored_value;
555   if (DataType::Is64BitType(stored_type)) {
556     // We are storing a pair. Invalidate the instruction in the high vreg.
557     (*current_locals_)[reg_number + 1] = nullptr;
558   }
559 }
560 
InitializeParameters()561 void HInstructionBuilder::InitializeParameters() {
562   DCHECK(current_block_->IsEntryBlock());
563 
564   // outer_compilation_unit_ is null only when unit testing.
565   if (outer_compilation_unit_ == nullptr) {
566     return;
567   }
568 
569   const char* shorty = dex_compilation_unit_->GetShorty();
570   uint16_t number_of_parameters = graph_->GetNumberOfInVRegs();
571   uint16_t locals_index = graph_->GetNumberOfLocalVRegs();
572   uint16_t parameter_index = 0;
573 
574   const dex::MethodId& referrer_method_id =
575       dex_file_->GetMethodId(dex_compilation_unit_->GetDexMethodIndex());
576   if (!dex_compilation_unit_->IsStatic()) {
577     // Add the implicit 'this' argument, not expressed in the signature.
578     HParameterValue* parameter = new (allocator_) HParameterValue(*dex_file_,
579                                                               referrer_method_id.class_idx_,
580                                                               parameter_index++,
581                                                               DataType::Type::kReference,
582                                                               /* is_this= */ true);
583     AppendInstruction(parameter);
584     UpdateLocal(locals_index++, parameter);
585     number_of_parameters--;
586     current_this_parameter_ = parameter;
587   } else {
588     DCHECK(current_this_parameter_ == nullptr);
589   }
590 
591   const dex::ProtoId& proto = dex_file_->GetMethodPrototype(referrer_method_id);
592   const dex::TypeList* arg_types = dex_file_->GetProtoParameters(proto);
593   for (int i = 0, shorty_pos = 1; i < number_of_parameters; i++) {
594     HParameterValue* parameter = new (allocator_) HParameterValue(
595         *dex_file_,
596         arg_types->GetTypeItem(shorty_pos - 1).type_idx_,
597         parameter_index++,
598         DataType::FromShorty(shorty[shorty_pos]),
599         /* is_this= */ false);
600     ++shorty_pos;
601     AppendInstruction(parameter);
602     // Store the parameter value in the local that the dex code will use
603     // to reference that parameter.
604     UpdateLocal(locals_index++, parameter);
605     if (DataType::Is64BitType(parameter->GetType())) {
606       i++;
607       locals_index++;
608       parameter_index++;
609     }
610   }
611 }
612 
613 template<typename T>
If_22t(const Instruction & instruction,uint32_t dex_pc)614 void HInstructionBuilder::If_22t(const Instruction& instruction, uint32_t dex_pc) {
615   HInstruction* first = LoadLocal(instruction.VRegA(), DataType::Type::kInt32);
616   HInstruction* second = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
617   T* comparison = new (allocator_) T(first, second, dex_pc);
618   AppendInstruction(comparison);
619   AppendInstruction(new (allocator_) HIf(comparison, dex_pc));
620   current_block_ = nullptr;
621 }
622 
623 template<typename T>
If_21t(const Instruction & instruction,uint32_t dex_pc)624 void HInstructionBuilder::If_21t(const Instruction& instruction, uint32_t dex_pc) {
625   HInstruction* value = LoadLocal(instruction.VRegA(), DataType::Type::kInt32);
626   T* comparison = new (allocator_) T(value, graph_->GetIntConstant(0, dex_pc), dex_pc);
627   AppendInstruction(comparison);
628   AppendInstruction(new (allocator_) HIf(comparison, dex_pc));
629   current_block_ = nullptr;
630 }
631 
632 template<typename T>
Unop_12x(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)633 void HInstructionBuilder::Unop_12x(const Instruction& instruction,
634                                    DataType::Type type,
635                                    uint32_t dex_pc) {
636   HInstruction* first = LoadLocal(instruction.VRegB(), type);
637   AppendInstruction(new (allocator_) T(type, first, dex_pc));
638   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
639 }
640 
Conversion_12x(const Instruction & instruction,DataType::Type input_type,DataType::Type result_type,uint32_t dex_pc)641 void HInstructionBuilder::Conversion_12x(const Instruction& instruction,
642                                          DataType::Type input_type,
643                                          DataType::Type result_type,
644                                          uint32_t dex_pc) {
645   HInstruction* first = LoadLocal(instruction.VRegB(), input_type);
646   AppendInstruction(new (allocator_) HTypeConversion(result_type, first, dex_pc));
647   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
648 }
649 
650 template<typename T>
Binop_23x(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)651 void HInstructionBuilder::Binop_23x(const Instruction& instruction,
652                                     DataType::Type type,
653                                     uint32_t dex_pc) {
654   HInstruction* first = LoadLocal(instruction.VRegB(), type);
655   HInstruction* second = LoadLocal(instruction.VRegC(), type);
656   AppendInstruction(new (allocator_) T(type, first, second, dex_pc));
657   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
658 }
659 
660 template<typename T>
Binop_23x_shift(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)661 void HInstructionBuilder::Binop_23x_shift(const Instruction& instruction,
662                                           DataType::Type type,
663                                           uint32_t dex_pc) {
664   HInstruction* first = LoadLocal(instruction.VRegB(), type);
665   HInstruction* second = LoadLocal(instruction.VRegC(), DataType::Type::kInt32);
666   AppendInstruction(new (allocator_) T(type, first, second, dex_pc));
667   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
668 }
669 
Binop_23x_cmp(const Instruction & instruction,DataType::Type type,ComparisonBias bias,uint32_t dex_pc)670 void HInstructionBuilder::Binop_23x_cmp(const Instruction& instruction,
671                                         DataType::Type type,
672                                         ComparisonBias bias,
673                                         uint32_t dex_pc) {
674   HInstruction* first = LoadLocal(instruction.VRegB(), type);
675   HInstruction* second = LoadLocal(instruction.VRegC(), type);
676   AppendInstruction(new (allocator_) HCompare(type, first, second, bias, dex_pc));
677   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
678 }
679 
680 template<typename T>
Binop_12x_shift(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)681 void HInstructionBuilder::Binop_12x_shift(const Instruction& instruction,
682                                           DataType::Type type,
683                                           uint32_t dex_pc) {
684   HInstruction* first = LoadLocal(instruction.VRegA(), type);
685   HInstruction* second = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
686   AppendInstruction(new (allocator_) T(type, first, second, dex_pc));
687   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
688 }
689 
690 template<typename T>
Binop_12x(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)691 void HInstructionBuilder::Binop_12x(const Instruction& instruction,
692                                     DataType::Type type,
693                                     uint32_t dex_pc) {
694   HInstruction* first = LoadLocal(instruction.VRegA(), type);
695   HInstruction* second = LoadLocal(instruction.VRegB(), type);
696   AppendInstruction(new (allocator_) T(type, first, second, dex_pc));
697   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
698 }
699 
700 template<typename T>
Binop_22s(const Instruction & instruction,bool reverse,uint32_t dex_pc)701 void HInstructionBuilder::Binop_22s(const Instruction& instruction, bool reverse, uint32_t dex_pc) {
702   HInstruction* first = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
703   HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22s(), dex_pc);
704   if (reverse) {
705     std::swap(first, second);
706   }
707   AppendInstruction(new (allocator_) T(DataType::Type::kInt32, first, second, dex_pc));
708   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
709 }
710 
711 template<typename T>
Binop_22b(const Instruction & instruction,bool reverse,uint32_t dex_pc)712 void HInstructionBuilder::Binop_22b(const Instruction& instruction, bool reverse, uint32_t dex_pc) {
713   HInstruction* first = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
714   HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22b(), dex_pc);
715   if (reverse) {
716     std::swap(first, second);
717   }
718   AppendInstruction(new (allocator_) T(DataType::Type::kInt32, first, second, dex_pc));
719   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
720 }
721 
722 // Does the method being compiled need any constructor barriers being inserted?
723 // (Always 'false' for methods that aren't <init>.)
RequiresConstructorBarrier(const DexCompilationUnit * cu)724 static bool RequiresConstructorBarrier(const DexCompilationUnit* cu) {
725   // Can be null in unit tests only.
726   if (UNLIKELY(cu == nullptr)) {
727     return false;
728   }
729 
730   // Constructor barriers are applicable only for <init> methods.
731   if (LIKELY(!cu->IsConstructor() || cu->IsStatic())) {
732     return false;
733   }
734 
735   return cu->RequiresConstructorBarrier();
736 }
737 
738 // Returns true if `block` has only one successor which starts at the next
739 // dex_pc after `instruction` at `dex_pc`.
IsFallthroughInstruction(const Instruction & instruction,uint32_t dex_pc,HBasicBlock * block)740 static bool IsFallthroughInstruction(const Instruction& instruction,
741                                      uint32_t dex_pc,
742                                      HBasicBlock* block) {
743   uint32_t next_dex_pc = dex_pc + instruction.SizeInCodeUnits();
744   return block->GetSingleSuccessor()->GetDexPc() == next_dex_pc;
745 }
746 
BuildSwitch(const Instruction & instruction,uint32_t dex_pc)747 void HInstructionBuilder::BuildSwitch(const Instruction& instruction, uint32_t dex_pc) {
748   HInstruction* value = LoadLocal(instruction.VRegA(), DataType::Type::kInt32);
749   DexSwitchTable table(instruction, dex_pc);
750 
751   if (table.GetNumEntries() == 0) {
752     // Empty Switch. Code falls through to the next block.
753     DCHECK(IsFallthroughInstruction(instruction, dex_pc, current_block_));
754     AppendInstruction(new (allocator_) HGoto(dex_pc));
755   } else if (table.ShouldBuildDecisionTree()) {
756     for (DexSwitchTableIterator it(table); !it.Done(); it.Advance()) {
757       HInstruction* case_value = graph_->GetIntConstant(it.CurrentKey(), dex_pc);
758       HEqual* comparison = new (allocator_) HEqual(value, case_value, dex_pc);
759       AppendInstruction(comparison);
760       AppendInstruction(new (allocator_) HIf(comparison, dex_pc));
761 
762       if (!it.IsLast()) {
763         current_block_ = FindBlockStartingAt(it.GetDexPcForCurrentIndex());
764       }
765     }
766   } else {
767     AppendInstruction(
768         new (allocator_) HPackedSwitch(table.GetEntryAt(0), table.GetNumEntries(), value, dex_pc));
769   }
770 
771   current_block_ = nullptr;
772 }
773 
BuildReturn(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)774 void HInstructionBuilder::BuildReturn(const Instruction& instruction,
775                                       DataType::Type type,
776                                       uint32_t dex_pc) {
777   if (type == DataType::Type::kVoid) {
778     // Only <init> (which is a return-void) could possibly have a constructor fence.
779     // This may insert additional redundant constructor fences from the super constructors.
780     // TODO: remove redundant constructor fences (b/36656456).
781     if (RequiresConstructorBarrier(dex_compilation_unit_)) {
782       // Compiling instance constructor.
783       DCHECK_STREQ("<init>", graph_->GetMethodName());
784 
785       HInstruction* fence_target = current_this_parameter_;
786       DCHECK(fence_target != nullptr);
787 
788       AppendInstruction(new (allocator_) HConstructorFence(fence_target, dex_pc, allocator_));
789       MaybeRecordStat(
790           compilation_stats_,
791           MethodCompilationStat::kConstructorFenceGeneratedFinal);
792     }
793     AppendInstruction(new (allocator_) HReturnVoid(dex_pc));
794   } else {
795     DCHECK(!RequiresConstructorBarrier(dex_compilation_unit_));
796     HInstruction* value = LoadLocal(instruction.VRegA(), type);
797     AppendInstruction(new (allocator_) HReturn(value, dex_pc));
798   }
799   current_block_ = nullptr;
800 }
801 
GetInvokeTypeFromOpCode(Instruction::Code opcode)802 static InvokeType GetInvokeTypeFromOpCode(Instruction::Code opcode) {
803   switch (opcode) {
804     case Instruction::INVOKE_STATIC:
805     case Instruction::INVOKE_STATIC_RANGE:
806       return kStatic;
807     case Instruction::INVOKE_DIRECT:
808     case Instruction::INVOKE_DIRECT_RANGE:
809       return kDirect;
810     case Instruction::INVOKE_VIRTUAL:
811     case Instruction::INVOKE_VIRTUAL_QUICK:
812     case Instruction::INVOKE_VIRTUAL_RANGE:
813     case Instruction::INVOKE_VIRTUAL_RANGE_QUICK:
814       return kVirtual;
815     case Instruction::INVOKE_INTERFACE:
816     case Instruction::INVOKE_INTERFACE_RANGE:
817       return kInterface;
818     case Instruction::INVOKE_SUPER_RANGE:
819     case Instruction::INVOKE_SUPER:
820       return kSuper;
821     default:
822       LOG(FATAL) << "Unexpected invoke opcode: " << opcode;
823       UNREACHABLE();
824   }
825 }
826 
827 // Try to resolve a method using the class linker. Return null if a method could
828 // not be resolved or the resolved method cannot be used for some reason.
829 // Also retrieve method data needed for creating the invoke intermediate
830 // representation while we hold the mutator lock here.
ResolveMethod(uint16_t method_idx,ArtMethod * referrer,const DexCompilationUnit & dex_compilation_unit,InvokeType * invoke_type,MethodReference * target_method,bool * is_string_constructor)831 static ArtMethod* ResolveMethod(uint16_t method_idx,
832                                 ArtMethod* referrer,
833                                 const DexCompilationUnit& dex_compilation_unit,
834                                 /*inout*/InvokeType* invoke_type,
835                                 /*out*/MethodReference* target_method,
836                                 /*out*/bool* is_string_constructor) {
837   ScopedObjectAccess soa(Thread::Current());
838 
839   ClassLinker* class_linker = dex_compilation_unit.GetClassLinker();
840   Handle<mirror::ClassLoader> class_loader = dex_compilation_unit.GetClassLoader();
841 
842   ArtMethod* resolved_method =
843       class_linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
844           method_idx,
845           dex_compilation_unit.GetDexCache(),
846           class_loader,
847           referrer,
848           *invoke_type);
849 
850   if (UNLIKELY(resolved_method == nullptr)) {
851     // Clean up any exception left by type resolution.
852     soa.Self()->ClearException();
853     return nullptr;
854   }
855   DCHECK(!soa.Self()->IsExceptionPending());
856 
857   // The referrer may be unresolved for AOT if we're compiling a class that cannot be
858   // resolved because, for example, we don't find a superclass in the classpath.
859   if (referrer == nullptr) {
860     // The class linker cannot check access without a referrer, so we have to do it.
861     // Fall back to HInvokeUnresolved if the method isn't public.
862     if (!resolved_method->IsPublic()) {
863       return nullptr;
864     }
865   }
866 
867   // We have to special case the invoke-super case, as ClassLinker::ResolveMethod does not.
868   // We need to look at the referrer's super class vtable. We need to do this to know if we need to
869   // make this an invoke-unresolved to handle cross-dex invokes or abstract super methods, both of
870   // which require runtime handling.
871   if (*invoke_type == kSuper) {
872     ObjPtr<mirror::Class> compiling_class = dex_compilation_unit.GetCompilingClass().Get();
873     if (compiling_class == nullptr) {
874       // We could not determine the method's class we need to wait until runtime.
875       DCHECK(Runtime::Current()->IsAotCompiler());
876       return nullptr;
877     }
878     ObjPtr<mirror::Class> referenced_class = class_linker->LookupResolvedType(
879         dex_compilation_unit.GetDexFile()->GetMethodId(method_idx).class_idx_,
880         dex_compilation_unit.GetDexCache().Get(),
881         class_loader.Get());
882     DCHECK(referenced_class != nullptr);  // We have already resolved a method from this class.
883     if (!referenced_class->IsAssignableFrom(compiling_class)) {
884       // We cannot statically determine the target method. The runtime will throw a
885       // NoSuchMethodError on this one.
886       return nullptr;
887     }
888     ArtMethod* actual_method;
889     if (referenced_class->IsInterface()) {
890       actual_method = referenced_class->FindVirtualMethodForInterfaceSuper(
891           resolved_method, class_linker->GetImagePointerSize());
892     } else {
893       uint16_t vtable_index = resolved_method->GetMethodIndex();
894       actual_method = compiling_class->GetSuperClass()->GetVTableEntry(
895           vtable_index, class_linker->GetImagePointerSize());
896     }
897     if (actual_method != resolved_method &&
898         !IsSameDexFile(*actual_method->GetDexFile(), *dex_compilation_unit.GetDexFile())) {
899       // The back-end code generator relies on this check in order to ensure that it will not
900       // attempt to read the dex_cache with a dex_method_index that is not from the correct
901       // dex_file. If we didn't do this check then the dex_method_index will not be updated in the
902       // builder, which means that the code-generator (and sharpening and inliner, maybe)
903       // might invoke an incorrect method.
904       // TODO: The actual method could still be referenced in the current dex file, so we
905       //       could try locating it.
906       // TODO: Remove the dex_file restriction.
907       return nullptr;
908     }
909     if (!actual_method->IsInvokable()) {
910       // Fail if the actual method cannot be invoked. Otherwise, the runtime resolution stub
911       // could resolve the callee to the wrong method.
912       return nullptr;
913     }
914     resolved_method = actual_method;
915   }
916 
917   if (*invoke_type == kInterface) {
918     if (resolved_method->GetDeclaringClass()->IsObjectClass()) {
919       // If the resolved method is from j.l.Object, emit a virtual call instead.
920       // The IMT conflict stub only handles interface methods.
921       *invoke_type = kVirtual;
922     } else {
923       DCHECK(resolved_method->GetDeclaringClass()->IsInterface());
924     }
925   }
926 
927   if (*invoke_type == kDirect || *invoke_type == kStatic || *invoke_type == kSuper) {
928     // Record the target method needed for HInvokeStaticOrDirect.
929     *target_method =
930         MethodReference(resolved_method->GetDexFile(), resolved_method->GetDexMethodIndex());
931   } else if (*invoke_type == kVirtual) {
932     // For HInvokeVirtual we need the vtable index.
933     *target_method = MethodReference(/*file=*/ nullptr, resolved_method->GetVtableIndex());
934   } else if (*invoke_type == kInterface) {
935     // For HInvokeInterface we need the IMT index.
936     *target_method = MethodReference(/*file=*/ nullptr, ImTable::GetImtIndex(resolved_method));
937   } else {
938     // For HInvokePolymorphic we don't need the target method yet
939     DCHECK_EQ(*invoke_type, kPolymorphic);
940     DCHECK(target_method == nullptr);
941   }
942 
943   *is_string_constructor =
944       resolved_method->IsConstructor() && resolved_method->GetDeclaringClass()->IsStringClass();
945 
946   return resolved_method;
947 }
948 
BuildInvoke(const Instruction & instruction,uint32_t dex_pc,uint32_t method_idx,const InstructionOperands & operands)949 bool HInstructionBuilder::BuildInvoke(const Instruction& instruction,
950                                       uint32_t dex_pc,
951                                       uint32_t method_idx,
952                                       const InstructionOperands& operands) {
953   InvokeType invoke_type = GetInvokeTypeFromOpCode(instruction.Opcode());
954   const char* shorty = dex_file_->GetMethodShorty(method_idx);
955   DataType::Type return_type = DataType::FromShorty(shorty[0]);
956 
957   // Remove the return type from the 'proto'.
958   size_t number_of_arguments = strlen(shorty) - 1;
959   if (invoke_type != kStatic) {  // instance call
960     // One extra argument for 'this'.
961     number_of_arguments++;
962   }
963 
964   MethodReference target_method(nullptr, 0u);
965   bool is_string_constructor = false;
966   ArtMethod* resolved_method = ResolveMethod(method_idx,
967                                              graph_->GetArtMethod(),
968                                              *dex_compilation_unit_,
969                                              &invoke_type,
970                                              &target_method,
971                                              &is_string_constructor);
972 
973   if (UNLIKELY(resolved_method == nullptr)) {
974     DCHECK(!Thread::Current()->IsExceptionPending());
975     MaybeRecordStat(compilation_stats_,
976                     MethodCompilationStat::kUnresolvedMethod);
977     HInvoke* invoke = new (allocator_) HInvokeUnresolved(allocator_,
978                                                          number_of_arguments,
979                                                          return_type,
980                                                          dex_pc,
981                                                          method_idx,
982                                                          invoke_type);
983     return HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ true);
984   }
985 
986   // Replace calls to String.<init> with StringFactory.
987   if (is_string_constructor) {
988     uint32_t string_init_entry_point = WellKnownClasses::StringInitToEntryPoint(resolved_method);
989     HInvokeStaticOrDirect::DispatchInfo dispatch_info = {
990         HInvokeStaticOrDirect::MethodLoadKind::kStringInit,
991         HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
992         dchecked_integral_cast<uint64_t>(string_init_entry_point)
993     };
994     // We pass null for the resolved_method to ensure optimizations
995     // don't rely on it.
996     HInvoke* invoke = new (allocator_) HInvokeStaticOrDirect(
997         allocator_,
998         number_of_arguments - 1,
999         /* return_type= */ DataType::Type::kReference,
1000         dex_pc,
1001         method_idx,
1002         /* resolved_method= */ nullptr,
1003         dispatch_info,
1004         invoke_type,
1005         target_method,
1006         HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit);
1007     return HandleStringInit(invoke, operands, shorty);
1008   }
1009 
1010   // Potential class initialization check, in the case of a static method call.
1011   HInvokeStaticOrDirect::ClinitCheckRequirement clinit_check_requirement =
1012       HInvokeStaticOrDirect::ClinitCheckRequirement::kNone;
1013   HClinitCheck* clinit_check = nullptr;
1014   if (invoke_type == kStatic) {
1015     clinit_check = ProcessClinitCheckForInvoke(dex_pc, resolved_method, &clinit_check_requirement);
1016   }
1017 
1018   // Try to build an HIR replacement for the intrinsic.
1019   if (UNLIKELY(resolved_method->IsIntrinsic())) {
1020     // All intrinsics are in the primary boot image, so their class can always be referenced
1021     // and we do not need to rely on the implicit class initialization check. The class should
1022     // be initialized but we do not require that here.
1023     DCHECK_NE(clinit_check_requirement, HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit);
1024     if (BuildSimpleIntrinsic(resolved_method, dex_pc, operands, shorty)) {
1025       return true;
1026     }
1027   }
1028 
1029   HInvoke* invoke = nullptr;
1030   if (invoke_type == kDirect || invoke_type == kStatic || invoke_type == kSuper) {
1031     if (invoke_type == kSuper) {
1032       if (IsSameDexFile(*target_method.dex_file, *dex_compilation_unit_->GetDexFile())) {
1033         // Update the method index to the one resolved. Note that this may be a no-op if
1034         // we resolved to the method referenced by the instruction.
1035         method_idx = target_method.index;
1036       }
1037     }
1038 
1039     HInvokeStaticOrDirect::DispatchInfo dispatch_info =
1040         HSharpening::SharpenInvokeStaticOrDirect(resolved_method, code_generator_);
1041     invoke = new (allocator_) HInvokeStaticOrDirect(allocator_,
1042                                                     number_of_arguments,
1043                                                     return_type,
1044                                                     dex_pc,
1045                                                     method_idx,
1046                                                     resolved_method,
1047                                                     dispatch_info,
1048                                                     invoke_type,
1049                                                     target_method,
1050                                                     clinit_check_requirement);
1051     if (clinit_check != nullptr) {
1052       // Add the class initialization check as last input of `invoke`.
1053       DCHECK_EQ(clinit_check_requirement, HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit);
1054       size_t clinit_check_index = invoke->InputCount() - 1u;
1055       DCHECK(invoke->InputAt(clinit_check_index) == nullptr);
1056       invoke->SetArgumentAt(clinit_check_index, clinit_check);
1057     }
1058   } else if (invoke_type == kVirtual) {
1059     DCHECK(target_method.dex_file == nullptr);
1060     invoke = new (allocator_) HInvokeVirtual(allocator_,
1061                                              number_of_arguments,
1062                                              return_type,
1063                                              dex_pc,
1064                                              method_idx,
1065                                              resolved_method,
1066                                              /*vtable_index=*/ target_method.index);
1067   } else {
1068     DCHECK_EQ(invoke_type, kInterface);
1069     invoke = new (allocator_) HInvokeInterface(allocator_,
1070                                                number_of_arguments,
1071                                                return_type,
1072                                                dex_pc,
1073                                                method_idx,
1074                                                resolved_method,
1075                                                /*imt_index=*/ target_method.index);
1076   }
1077   return HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false);
1078 }
1079 
BuildInvokePolymorphic(uint32_t dex_pc,uint32_t method_idx,dex::ProtoIndex proto_idx,const InstructionOperands & operands)1080 bool HInstructionBuilder::BuildInvokePolymorphic(uint32_t dex_pc,
1081                                                  uint32_t method_idx,
1082                                                  dex::ProtoIndex proto_idx,
1083                                                  const InstructionOperands& operands) {
1084   const char* shorty = dex_file_->GetShorty(proto_idx);
1085   DCHECK_EQ(1 + ArtMethod::NumArgRegisters(shorty), operands.GetNumberOfOperands());
1086   DataType::Type return_type = DataType::FromShorty(shorty[0]);
1087   size_t number_of_arguments = strlen(shorty);
1088   // We use ResolveMethod which is also used in BuildInvoke in order to
1089   // not duplicate code. As such, we need to provide is_string_constructor
1090   // even if we don't need it afterwards.
1091   InvokeType invoke_type = InvokeType::kPolymorphic;
1092   bool is_string_constructor = false;
1093   ArtMethod* resolved_method = ResolveMethod(method_idx,
1094                                             graph_->GetArtMethod(),
1095                                             *dex_compilation_unit_,
1096                                             &invoke_type,
1097                                             /* target_method= */ nullptr,
1098                                             &is_string_constructor);
1099   HInvoke* invoke = new (allocator_) HInvokePolymorphic(allocator_,
1100                                                         number_of_arguments,
1101                                                         return_type,
1102                                                         dex_pc,
1103                                                         method_idx,
1104                                                         resolved_method);
1105   return HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false);
1106 }
1107 
1108 
BuildInvokeCustom(uint32_t dex_pc,uint32_t call_site_idx,const InstructionOperands & operands)1109 bool HInstructionBuilder::BuildInvokeCustom(uint32_t dex_pc,
1110                                             uint32_t call_site_idx,
1111                                             const InstructionOperands& operands) {
1112   dex::ProtoIndex proto_idx = dex_file_->GetProtoIndexForCallSite(call_site_idx);
1113   const char* shorty = dex_file_->GetShorty(proto_idx);
1114   DataType::Type return_type = DataType::FromShorty(shorty[0]);
1115   size_t number_of_arguments = strlen(shorty) - 1;
1116   HInvoke* invoke = new (allocator_) HInvokeCustom(allocator_,
1117                                                    number_of_arguments,
1118                                                    call_site_idx,
1119                                                    return_type,
1120                                                    dex_pc);
1121   return HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false);
1122 }
1123 
BuildNewInstance(dex::TypeIndex type_index,uint32_t dex_pc)1124 HNewInstance* HInstructionBuilder::BuildNewInstance(dex::TypeIndex type_index, uint32_t dex_pc) {
1125   ScopedObjectAccess soa(Thread::Current());
1126 
1127   HLoadClass* load_class = BuildLoadClass(type_index, dex_pc);
1128 
1129   HInstruction* cls = load_class;
1130   Handle<mirror::Class> klass = load_class->GetClass();
1131 
1132   if (!IsInitialized(klass.Get())) {
1133     cls = new (allocator_) HClinitCheck(load_class, dex_pc);
1134     AppendInstruction(cls);
1135   }
1136 
1137   // Only the access check entrypoint handles the finalizable class case. If we
1138   // need access checks, then we haven't resolved the method and the class may
1139   // again be finalizable.
1140   QuickEntrypointEnum entrypoint = kQuickAllocObjectInitialized;
1141   if (load_class->NeedsAccessCheck() || klass->IsFinalizable() || !klass->IsInstantiable()) {
1142     entrypoint = kQuickAllocObjectWithChecks;
1143   }
1144   // We will always be able to resolve the string class since it is in the BCP.
1145   if (!klass.IsNull() && klass->IsStringClass()) {
1146     entrypoint = kQuickAllocStringObject;
1147   }
1148 
1149   // Consider classes we haven't resolved as potentially finalizable.
1150   bool finalizable = (klass == nullptr) || klass->IsFinalizable();
1151 
1152   HNewInstance* new_instance = new (allocator_) HNewInstance(
1153       cls,
1154       dex_pc,
1155       type_index,
1156       *dex_compilation_unit_->GetDexFile(),
1157       finalizable,
1158       entrypoint);
1159   AppendInstruction(new_instance);
1160 
1161   return new_instance;
1162 }
1163 
BuildConstructorFenceForAllocation(HInstruction * allocation)1164 void HInstructionBuilder::BuildConstructorFenceForAllocation(HInstruction* allocation) {
1165   DCHECK(allocation != nullptr &&
1166              (allocation->IsNewInstance() ||
1167               allocation->IsNewArray()));  // corresponding to "new" keyword in JLS.
1168 
1169   if (allocation->IsNewInstance()) {
1170     // STRING SPECIAL HANDLING:
1171     // -------------------------------
1172     // Strings have a real HNewInstance node but they end up always having 0 uses.
1173     // All uses of a String HNewInstance are always transformed to replace their input
1174     // of the HNewInstance with an input of the invoke to StringFactory.
1175     //
1176     // Do not emit an HConstructorFence here since it can inhibit some String new-instance
1177     // optimizations (to pass checker tests that rely on those optimizations).
1178     HNewInstance* new_inst = allocation->AsNewInstance();
1179     HLoadClass* load_class = new_inst->GetLoadClass();
1180 
1181     Thread* self = Thread::Current();
1182     ScopedObjectAccess soa(self);
1183     StackHandleScope<1> hs(self);
1184     Handle<mirror::Class> klass = load_class->GetClass();
1185     if (klass != nullptr && klass->IsStringClass()) {
1186       return;
1187       // Note: Do not use allocation->IsStringAlloc which requires
1188       // a valid ReferenceTypeInfo, but that doesn't get made until after reference type
1189       // propagation (and instruction builder is too early).
1190     }
1191     // (In terms of correctness, the StringFactory needs to provide its own
1192     // default initialization barrier, see below.)
1193   }
1194 
1195   // JLS 17.4.5 "Happens-before Order" describes:
1196   //
1197   //   The default initialization of any object happens-before any other actions (other than
1198   //   default-writes) of a program.
1199   //
1200   // In our implementation the default initialization of an object to type T means
1201   // setting all of its initial data (object[0..size)) to 0, and setting the
1202   // object's class header (i.e. object.getClass() == T.class).
1203   //
1204   // In practice this fence ensures that the writes to the object header
1205   // are visible to other threads if this object escapes the current thread.
1206   // (and in theory the 0-initializing, but that happens automatically
1207   // when new memory pages are mapped in by the OS).
1208   HConstructorFence* ctor_fence =
1209       new (allocator_) HConstructorFence(allocation, allocation->GetDexPc(), allocator_);
1210   AppendInstruction(ctor_fence);
1211   MaybeRecordStat(
1212       compilation_stats_,
1213       MethodCompilationStat::kConstructorFenceGeneratedNew);
1214 }
1215 
IsInBootImage(ObjPtr<mirror::Class> cls,const CompilerOptions & compiler_options)1216 static bool IsInBootImage(ObjPtr<mirror::Class> cls, const CompilerOptions& compiler_options)
1217     REQUIRES_SHARED(Locks::mutator_lock_) {
1218   if (Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(cls)) {
1219     return true;
1220   }
1221   if (compiler_options.IsBootImage() || compiler_options.IsBootImageExtension()) {
1222     std::string temp;
1223     const char* descriptor = cls->GetDescriptor(&temp);
1224     return compiler_options.IsImageClass(descriptor);
1225   } else {
1226     return false;
1227   }
1228 }
1229 
IsSubClass(ObjPtr<mirror::Class> to_test,ObjPtr<mirror::Class> super_class)1230 static bool IsSubClass(ObjPtr<mirror::Class> to_test, ObjPtr<mirror::Class> super_class)
1231     REQUIRES_SHARED(Locks::mutator_lock_) {
1232   return to_test != nullptr && !to_test->IsInterface() && to_test->IsSubClass(super_class);
1233 }
1234 
HasTrivialClinit(ObjPtr<mirror::Class> klass,PointerSize pointer_size)1235 static bool HasTrivialClinit(ObjPtr<mirror::Class> klass, PointerSize pointer_size)
1236     REQUIRES_SHARED(Locks::mutator_lock_) {
1237   // Check if the class has encoded fields that trigger bytecode execution.
1238   // (Encoded fields are just a different representation of <clinit>.)
1239   if (klass->NumStaticFields() != 0u) {
1240     DCHECK(klass->GetClassDef() != nullptr);
1241     EncodedStaticFieldValueIterator it(klass->GetDexFile(), *klass->GetClassDef());
1242     for (; it.HasNext(); it.Next()) {
1243       switch (it.GetValueType()) {
1244         case EncodedArrayValueIterator::ValueType::kBoolean:
1245         case EncodedArrayValueIterator::ValueType::kByte:
1246         case EncodedArrayValueIterator::ValueType::kShort:
1247         case EncodedArrayValueIterator::ValueType::kChar:
1248         case EncodedArrayValueIterator::ValueType::kInt:
1249         case EncodedArrayValueIterator::ValueType::kLong:
1250         case EncodedArrayValueIterator::ValueType::kFloat:
1251         case EncodedArrayValueIterator::ValueType::kDouble:
1252         case EncodedArrayValueIterator::ValueType::kNull:
1253         case EncodedArrayValueIterator::ValueType::kString:
1254           // Primitive, null or j.l.String initialization is permitted.
1255           break;
1256         case EncodedArrayValueIterator::ValueType::kType:
1257           // Type initialization can load classes and execute bytecode through a class loader
1258           // which can execute arbitrary bytecode. We do not optimize for known class loaders;
1259           // kType is rarely used (if ever).
1260           return false;
1261         default:
1262           // Other types in the encoded static field list are rejected by the DexFileVerifier.
1263           LOG(FATAL) << "Unexpected type " << it.GetValueType();
1264           UNREACHABLE();
1265       }
1266     }
1267   }
1268   // Check if the class has <clinit> that executes arbitrary code.
1269   // Initialization of static fields of the class itself with constants is allowed.
1270   ArtMethod* clinit = klass->FindClassInitializer(pointer_size);
1271   if (clinit != nullptr) {
1272     const DexFile& dex_file = *clinit->GetDexFile();
1273     CodeItemInstructionAccessor accessor(dex_file, clinit->GetCodeItem());
1274     for (DexInstructionPcPair it : accessor) {
1275       switch (it->Opcode()) {
1276         case Instruction::CONST_4:
1277         case Instruction::CONST_16:
1278         case Instruction::CONST:
1279         case Instruction::CONST_HIGH16:
1280         case Instruction::CONST_WIDE_16:
1281         case Instruction::CONST_WIDE_32:
1282         case Instruction::CONST_WIDE:
1283         case Instruction::CONST_WIDE_HIGH16:
1284         case Instruction::CONST_STRING:
1285         case Instruction::CONST_STRING_JUMBO:
1286           // Primitive, null or j.l.String initialization is permitted.
1287           break;
1288         case Instruction::RETURN_VOID:
1289         case Instruction::RETURN_VOID_NO_BARRIER:
1290           break;
1291         case Instruction::SPUT:
1292         case Instruction::SPUT_WIDE:
1293         case Instruction::SPUT_OBJECT:
1294         case Instruction::SPUT_BOOLEAN:
1295         case Instruction::SPUT_BYTE:
1296         case Instruction::SPUT_CHAR:
1297         case Instruction::SPUT_SHORT:
1298           // Only initialization of a static field of the same class is permitted.
1299           if (dex_file.GetFieldId(it->VRegB_21c()).class_idx_ != klass->GetDexTypeIndex()) {
1300             return false;
1301           }
1302           break;
1303         case Instruction::NEW_ARRAY:
1304           // Only primitive arrays are permitted.
1305           if (Primitive::GetType(dex_file.GetTypeDescriptor(dex_file.GetTypeId(
1306                   dex::TypeIndex(it->VRegC_22c())))[1]) == Primitive::kPrimNot) {
1307             return false;
1308           }
1309           break;
1310         case Instruction::APUT:
1311         case Instruction::APUT_WIDE:
1312         case Instruction::APUT_BOOLEAN:
1313         case Instruction::APUT_BYTE:
1314         case Instruction::APUT_CHAR:
1315         case Instruction::APUT_SHORT:
1316         case Instruction::FILL_ARRAY_DATA:
1317         case Instruction::NOP:
1318           // Allow initialization of primitive arrays (only constants can be stored).
1319           // Note: We expect NOPs used for fill-array-data-payload but accept all NOPs
1320           // (even unreferenced switch payloads if they make it through the verifier).
1321           break;
1322         default:
1323           return false;
1324       }
1325     }
1326   }
1327   return true;
1328 }
1329 
HasTrivialInitialization(ObjPtr<mirror::Class> cls,const CompilerOptions & compiler_options)1330 static bool HasTrivialInitialization(ObjPtr<mirror::Class> cls,
1331                                      const CompilerOptions& compiler_options)
1332     REQUIRES_SHARED(Locks::mutator_lock_) {
1333   Runtime* runtime = Runtime::Current();
1334   PointerSize pointer_size = runtime->GetClassLinker()->GetImagePointerSize();
1335 
1336   // Check the superclass chain.
1337   for (ObjPtr<mirror::Class> klass = cls; klass != nullptr; klass = klass->GetSuperClass()) {
1338     if (klass->IsInitialized() && IsInBootImage(klass, compiler_options)) {
1339       break;  // `klass` and its superclasses are already initialized in the boot image.
1340     }
1341     if (!HasTrivialClinit(klass, pointer_size)) {
1342       return false;
1343     }
1344   }
1345 
1346   // Also check interfaces with default methods as they need to be initialized as well.
1347   ObjPtr<mirror::IfTable> iftable = cls->GetIfTable();
1348   DCHECK(iftable != nullptr);
1349   for (int32_t i = 0, count = iftable->Count(); i != count; ++i) {
1350     ObjPtr<mirror::Class> iface = iftable->GetInterface(i);
1351     if (!iface->HasDefaultMethods()) {
1352       continue;  // Initializing `cls` does not initialize this interface.
1353     }
1354     if (iface->IsInitialized() && IsInBootImage(iface, compiler_options)) {
1355       continue;  // This interface is already initialized in the boot image.
1356     }
1357     if (!HasTrivialClinit(iface, pointer_size)) {
1358       return false;
1359     }
1360   }
1361   return true;
1362 }
1363 
IsInitialized(ObjPtr<mirror::Class> cls) const1364 bool HInstructionBuilder::IsInitialized(ObjPtr<mirror::Class> cls) const {
1365   if (cls == nullptr) {
1366     return false;
1367   }
1368 
1369   // Check if the class will be initialized at runtime.
1370   if (cls->IsInitialized()) {
1371     const CompilerOptions& compiler_options = code_generator_->GetCompilerOptions();
1372     if (compiler_options.IsAotCompiler()) {
1373       // Assume loaded only if klass is in the boot image. App classes cannot be assumed
1374       // loaded because we don't even know what class loader will be used to load them.
1375       if (IsInBootImage(cls, compiler_options)) {
1376         return true;
1377       }
1378     } else {
1379       DCHECK(compiler_options.IsJitCompiler());
1380       if (Runtime::Current()->GetJit()->CanAssumeInitialized(
1381               cls,
1382               compiler_options.IsJitCompilerForSharedCode())) {
1383         // For JIT, the class cannot revert to an uninitialized state.
1384         return true;
1385       }
1386     }
1387   }
1388 
1389   // We can avoid the class initialization check for `cls` in static methods and constructors
1390   // in the very same class; invoking a static method involves a class initialization check
1391   // and so does the instance allocation that must be executed before invoking a constructor.
1392   // Other instance methods of the same class can run on an escaped instance
1393   // of an erroneous class. Even a superclass may need to be checked as the subclass
1394   // can be completely initialized while the superclass is initializing and the subclass
1395   // remains initialized when the superclass initializer throws afterwards. b/62478025
1396   // Note: The HClinitCheck+HInvokeStaticOrDirect merging can still apply.
1397   auto is_static_method_or_constructor_of_cls = [cls](const DexCompilationUnit& compilation_unit)
1398       REQUIRES_SHARED(Locks::mutator_lock_) {
1399     return (compilation_unit.GetAccessFlags() & (kAccStatic | kAccConstructor)) != 0u &&
1400            compilation_unit.GetCompilingClass().Get() == cls;
1401   };
1402   if (is_static_method_or_constructor_of_cls(*outer_compilation_unit_) ||
1403       // Check also the innermost method. Though excessive copies of ClinitCheck can be
1404       // eliminated by GVN, that happens only after the decision whether to inline the
1405       // graph or not and that may depend on the presence of the ClinitCheck.
1406       // TODO: We should walk over the entire inlined method chain, but we don't pass that
1407       // information to the builder.
1408       is_static_method_or_constructor_of_cls(*dex_compilation_unit_)) {
1409     return true;
1410   }
1411 
1412   // Otherwise, we may be able to avoid the check if `cls` is a superclass of a method being
1413   // compiled here (anywhere in the inlining chain) as the `cls` must have started initializing
1414   // before calling any `cls` or subclass methods. Static methods require a clinit check and
1415   // instance methods require an instance which cannot be created before doing a clinit check.
1416   // When a subclass of `cls` starts initializing, it starts initializing its superclass
1417   // chain up to `cls` without running any bytecode, i.e. without any opportunity for circular
1418   // initialization weirdness.
1419   //
1420   // If the initialization of `cls` is trivial (`cls` and its superclasses and superinterfaces
1421   // with default methods initialize only their own static fields using constant values), it must
1422   // complete, either successfully or by throwing and marking `cls` erroneous, without allocating
1423   // any instances of `cls` or subclasses (or any other class) and without calling any methods.
1424   // If it completes by throwing, no instances of `cls` shall be created and no subclass method
1425   // bytecode shall execute (see above), therefore the instruction we're building shall be
1426   // unreachable. By reaching the instruction, we know that `cls` was initialized successfully.
1427   //
1428   // TODO: We should walk over the entire inlined methods chain, but we don't pass that
1429   // information to the builder. (We could also check if we're guaranteed a non-null instance
1430   // of `cls` at this location but that's outside the scope of the instruction builder.)
1431   bool is_subclass = IsSubClass(outer_compilation_unit_->GetCompilingClass().Get(), cls);
1432   if (dex_compilation_unit_ != outer_compilation_unit_) {
1433     is_subclass = is_subclass ||
1434                   IsSubClass(dex_compilation_unit_->GetCompilingClass().Get(), cls);
1435   }
1436   if (is_subclass && HasTrivialInitialization(cls, code_generator_->GetCompilerOptions())) {
1437     return true;
1438   }
1439 
1440   return false;
1441 }
1442 
ProcessClinitCheckForInvoke(uint32_t dex_pc,ArtMethod * resolved_method,HInvokeStaticOrDirect::ClinitCheckRequirement * clinit_check_requirement)1443 HClinitCheck* HInstructionBuilder::ProcessClinitCheckForInvoke(
1444     uint32_t dex_pc,
1445     ArtMethod* resolved_method,
1446     HInvokeStaticOrDirect::ClinitCheckRequirement* clinit_check_requirement) {
1447   ScopedObjectAccess soa(Thread::Current());
1448   ObjPtr<mirror::Class> klass = resolved_method->GetDeclaringClass();
1449 
1450   HClinitCheck* clinit_check = nullptr;
1451   if (IsInitialized(klass)) {
1452     *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone;
1453   } else {
1454     Handle<mirror::Class> h_klass = graph_->GetHandleCache()->NewHandle(klass);
1455     HLoadClass* cls = BuildLoadClass(h_klass->GetDexTypeIndex(),
1456                                      h_klass->GetDexFile(),
1457                                      h_klass,
1458                                      dex_pc,
1459                                      /* needs_access_check= */ false);
1460     if (cls != nullptr) {
1461       *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit;
1462       clinit_check = new (allocator_) HClinitCheck(cls, dex_pc);
1463       AppendInstruction(clinit_check);
1464     } else {
1465       // Let the invoke handle this with an implicit class initialization check.
1466       *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit;
1467     }
1468   }
1469   return clinit_check;
1470 }
1471 
SetupInvokeArguments(HInstruction * invoke,const InstructionOperands & operands,const char * shorty,ReceiverArg receiver_arg)1472 bool HInstructionBuilder::SetupInvokeArguments(HInstruction* invoke,
1473                                                const InstructionOperands& operands,
1474                                                const char* shorty,
1475                                                ReceiverArg receiver_arg) {
1476   // Note: The `invoke` can be an intrinsic replacement, so not necessaritly HInvoke.
1477   // In that case, do not log errors, they shall be reported when we try to build the HInvoke.
1478   uint32_t shorty_index = 1;  // Skip the return type.
1479   const size_t number_of_operands = operands.GetNumberOfOperands();
1480   bool argument_length_error = false;
1481 
1482   size_t start_index = 0u;
1483   size_t argument_index = 0u;
1484   if (receiver_arg != ReceiverArg::kNone) {
1485     if (number_of_operands == 0u) {
1486       argument_length_error = true;
1487     } else {
1488       start_index = 1u;
1489       if (receiver_arg != ReceiverArg::kIgnored) {
1490         uint32_t obj_reg = operands.GetOperand(0u);
1491         HInstruction* arg = (receiver_arg == ReceiverArg::kPlainArg)
1492             ? LoadLocal(obj_reg, DataType::Type::kReference)
1493             : LoadNullCheckedLocal(obj_reg, invoke->GetDexPc());
1494         if (receiver_arg != ReceiverArg::kNullCheckedOnly) {
1495           invoke->SetRawInputAt(0u, arg);
1496           argument_index = 1u;
1497         }
1498       }
1499     }
1500   }
1501 
1502   for (size_t i = start_index; i < number_of_operands; ++i, ++argument_index) {
1503     // Make sure we don't go over the expected arguments or over the number of
1504     // dex registers given. If the instruction was seen as dead by the verifier,
1505     // it hasn't been properly checked.
1506     if (UNLIKELY(shorty[shorty_index] == 0)) {
1507       argument_length_error = true;
1508       break;
1509     }
1510     DataType::Type type = DataType::FromShorty(shorty[shorty_index++]);
1511     bool is_wide = (type == DataType::Type::kInt64) || (type == DataType::Type::kFloat64);
1512     if (is_wide && ((i + 1 == number_of_operands) ||
1513                     (operands.GetOperand(i) + 1 != operands.GetOperand(i + 1)))) {
1514       if (invoke->IsInvoke()) {
1515         // Longs and doubles should be in pairs, that is, sequential registers. The verifier should
1516         // reject any class where this is violated. However, the verifier only does these checks
1517         // on non trivially dead instructions, so we just bailout the compilation.
1518         VLOG(compiler) << "Did not compile "
1519                        << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
1520                        << " because of non-sequential dex register pair in wide argument";
1521         MaybeRecordStat(compilation_stats_,
1522                         MethodCompilationStat::kNotCompiledMalformedOpcode);
1523       }
1524       return false;
1525     }
1526     HInstruction* arg = LoadLocal(operands.GetOperand(i), type);
1527     DCHECK(invoke->InputAt(argument_index) == nullptr);
1528     invoke->SetRawInputAt(argument_index, arg);
1529     if (is_wide) {
1530       ++i;
1531     }
1532   }
1533 
1534   argument_length_error = argument_length_error || shorty[shorty_index] != 0;
1535   if (argument_length_error) {
1536     if (invoke->IsInvoke()) {
1537       VLOG(compiler) << "Did not compile "
1538                      << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
1539                      << " because of wrong number of arguments in invoke instruction";
1540       MaybeRecordStat(compilation_stats_,
1541                       MethodCompilationStat::kNotCompiledMalformedOpcode);
1542     }
1543     return false;
1544   }
1545 
1546   if (invoke->IsInvokeStaticOrDirect() &&
1547       HInvokeStaticOrDirect::NeedsCurrentMethodInput(
1548           invoke->AsInvokeStaticOrDirect()->GetDispatchInfo())) {
1549     DCHECK_EQ(argument_index, invoke->AsInvokeStaticOrDirect()->GetCurrentMethodIndex());
1550     DCHECK(invoke->InputAt(argument_index) == nullptr);
1551     invoke->SetRawInputAt(argument_index, graph_->GetCurrentMethod());
1552   }
1553 
1554   return true;
1555 }
1556 
HandleInvoke(HInvoke * invoke,const InstructionOperands & operands,const char * shorty,bool is_unresolved)1557 bool HInstructionBuilder::HandleInvoke(HInvoke* invoke,
1558                                        const InstructionOperands& operands,
1559                                        const char* shorty,
1560                                        bool is_unresolved) {
1561   DCHECK(!invoke->IsInvokeStaticOrDirect() || !invoke->AsInvokeStaticOrDirect()->IsStringInit());
1562 
1563   ReceiverArg receiver_arg = (invoke->GetInvokeType() == InvokeType::kStatic)
1564       ? ReceiverArg::kNone
1565       : (is_unresolved ? ReceiverArg::kPlainArg : ReceiverArg::kNullCheckedArg);
1566   if (!SetupInvokeArguments(invoke, operands, shorty, receiver_arg)) {
1567     return false;
1568   }
1569 
1570   AppendInstruction(invoke);
1571   latest_result_ = invoke;
1572 
1573   return true;
1574 }
1575 
BuildSimpleIntrinsic(ArtMethod * method,uint32_t dex_pc,const InstructionOperands & operands,const char * shorty)1576 bool HInstructionBuilder::BuildSimpleIntrinsic(ArtMethod* method,
1577                                                uint32_t dex_pc,
1578                                                const InstructionOperands& operands,
1579                                                const char* shorty) {
1580   Intrinsics intrinsic = static_cast<Intrinsics>(method->GetIntrinsic());
1581   DCHECK_NE(intrinsic, Intrinsics::kNone);
1582   constexpr DataType::Type kInt32 = DataType::Type::kInt32;
1583   constexpr DataType::Type kInt64 = DataType::Type::kInt64;
1584   constexpr DataType::Type kFloat32 = DataType::Type::kFloat32;
1585   constexpr DataType::Type kFloat64 = DataType::Type::kFloat64;
1586   ReceiverArg receiver_arg = method->IsStatic() ? ReceiverArg::kNone : ReceiverArg::kNullCheckedArg;
1587   HInstruction* instruction = nullptr;
1588   switch (intrinsic) {
1589     case Intrinsics::kIntegerRotateRight:
1590     case Intrinsics::kIntegerRotateLeft:
1591       // For rotate left, we negate the distance below.
1592       instruction = new (allocator_) HRor(kInt32, /*value=*/ nullptr, /*distance=*/ nullptr);
1593       break;
1594     case Intrinsics::kLongRotateRight:
1595     case Intrinsics::kLongRotateLeft:
1596       // For rotate left, we negate the distance below.
1597       instruction = new (allocator_) HRor(kInt64, /*value=*/ nullptr, /*distance=*/ nullptr);
1598       break;
1599     case Intrinsics::kIntegerCompare:
1600       instruction = new (allocator_) HCompare(
1601           kInt32, /*first=*/ nullptr, /*second=*/ nullptr, ComparisonBias::kNoBias, dex_pc);
1602       break;
1603     case Intrinsics::kLongCompare:
1604       instruction = new (allocator_) HCompare(
1605           kInt64, /*first=*/ nullptr, /*second=*/ nullptr, ComparisonBias::kNoBias, dex_pc);
1606       break;
1607     case Intrinsics::kIntegerSignum:
1608       instruction = new (allocator_) HCompare(
1609           kInt32, /*first=*/ nullptr, graph_->GetIntConstant(0), ComparisonBias::kNoBias, dex_pc);
1610       break;
1611     case Intrinsics::kLongSignum:
1612       instruction = new (allocator_) HCompare(
1613           kInt64, /*first=*/ nullptr, graph_->GetLongConstant(0), ComparisonBias::kNoBias, dex_pc);
1614       break;
1615     case Intrinsics::kFloatIsNaN:
1616     case Intrinsics::kDoubleIsNaN: {
1617       // IsNaN(x) is the same as x != x.
1618       instruction = new (allocator_) HNotEqual(/*first=*/ nullptr, /*second=*/ nullptr, dex_pc);
1619       instruction->AsCondition()->SetBias(ComparisonBias::kLtBias);
1620       break;
1621     }
1622     case Intrinsics::kStringCharAt:
1623       // We treat String as an array to allow DCE and BCE to seamlessly work on strings.
1624       instruction = new (allocator_) HArrayGet(/*array=*/ nullptr,
1625                                                /*index=*/ nullptr,
1626                                                DataType::Type::kUint16,
1627                                                SideEffects::None(),  // Strings are immutable.
1628                                                dex_pc,
1629                                                /*is_string_char_at=*/ true);
1630       break;
1631     case Intrinsics::kStringIsEmpty:
1632     case Intrinsics::kStringLength:
1633       // We treat String as an array to allow DCE and BCE to seamlessly work on strings.
1634       // For String.isEmpty(), we add a comparison with 0 below.
1635       instruction =
1636           new (allocator_) HArrayLength(/*array=*/ nullptr, dex_pc, /* is_string_length= */ true);
1637       break;
1638     case Intrinsics::kUnsafeLoadFence:
1639       receiver_arg = ReceiverArg::kNullCheckedOnly;
1640       instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kLoadAny, dex_pc);
1641       break;
1642     case Intrinsics::kUnsafeStoreFence:
1643       receiver_arg = ReceiverArg::kNullCheckedOnly;
1644       instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kAnyStore, dex_pc);
1645       break;
1646     case Intrinsics::kUnsafeFullFence:
1647       receiver_arg = ReceiverArg::kNullCheckedOnly;
1648       instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kAnyAny, dex_pc);
1649       break;
1650     case Intrinsics::kVarHandleFullFence:
1651       instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kAnyAny, dex_pc);
1652       break;
1653     case Intrinsics::kVarHandleAcquireFence:
1654       instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kLoadAny, dex_pc);
1655       break;
1656     case Intrinsics::kVarHandleReleaseFence:
1657       instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kAnyStore, dex_pc);
1658       break;
1659     case Intrinsics::kVarHandleLoadLoadFence:
1660       instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kLoadAny, dex_pc);
1661       break;
1662     case Intrinsics::kVarHandleStoreStoreFence:
1663       instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kStoreStore, dex_pc);
1664       break;
1665     case Intrinsics::kMathMinIntInt:
1666       instruction = new (allocator_) HMin(kInt32, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
1667       break;
1668     case Intrinsics::kMathMinLongLong:
1669       instruction = new (allocator_) HMin(kInt64, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
1670       break;
1671     case Intrinsics::kMathMinFloatFloat:
1672       instruction = new (allocator_) HMin(kFloat32, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
1673       break;
1674     case Intrinsics::kMathMinDoubleDouble:
1675       instruction = new (allocator_) HMin(kFloat64, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
1676       break;
1677     case Intrinsics::kMathMaxIntInt:
1678       instruction = new (allocator_) HMax(kInt32, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
1679       break;
1680     case Intrinsics::kMathMaxLongLong:
1681       instruction = new (allocator_) HMax(kInt64, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
1682       break;
1683     case Intrinsics::kMathMaxFloatFloat:
1684       instruction = new (allocator_) HMax(kFloat32, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
1685       break;
1686     case Intrinsics::kMathMaxDoubleDouble:
1687       instruction = new (allocator_) HMax(kFloat64, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
1688       break;
1689     case Intrinsics::kMathAbsInt:
1690       instruction = new (allocator_) HAbs(kInt32, /*input=*/ nullptr, dex_pc);
1691       break;
1692     case Intrinsics::kMathAbsLong:
1693       instruction = new (allocator_) HAbs(kInt64, /*input=*/ nullptr, dex_pc);
1694       break;
1695     case Intrinsics::kMathAbsFloat:
1696       instruction = new (allocator_) HAbs(kFloat32, /*input=*/ nullptr, dex_pc);
1697       break;
1698     case Intrinsics::kMathAbsDouble:
1699       instruction = new (allocator_) HAbs(kFloat64, /*input=*/ nullptr, dex_pc);
1700       break;
1701     default:
1702       // We do not have intermediate representation for other intrinsics.
1703       return false;
1704   }
1705   DCHECK(instruction != nullptr);
1706   if (!SetupInvokeArguments(instruction, operands, shorty, receiver_arg)) {
1707     return false;
1708   }
1709 
1710   switch (intrinsic) {
1711     case Intrinsics::kIntegerRotateLeft:
1712     case Intrinsics::kLongRotateLeft: {
1713       // Negate the distance value for rotate left.
1714       DCHECK(instruction->IsRor());
1715       HNeg* neg = new (allocator_) HNeg(kInt32, instruction->InputAt(1u));
1716       AppendInstruction(neg);
1717       instruction->SetRawInputAt(1u, neg);
1718       break;
1719     }
1720     case Intrinsics::kFloatIsNaN:
1721     case Intrinsics::kDoubleIsNaN:
1722       // Set the second input to be the same as first.
1723       DCHECK(instruction->IsNotEqual());
1724       DCHECK(instruction->InputAt(1u) == nullptr);
1725       instruction->SetRawInputAt(1u, instruction->InputAt(0u));
1726       break;
1727     case Intrinsics::kStringCharAt: {
1728       // Add bounds check.
1729       HInstruction* array = instruction->InputAt(0u);
1730       HInstruction* index = instruction->InputAt(1u);
1731       HInstruction* length =
1732           new (allocator_) HArrayLength(array, dex_pc, /*is_string_length=*/ true);
1733       AppendInstruction(length);
1734       HBoundsCheck* bounds_check =
1735           new (allocator_) HBoundsCheck(index, length, dex_pc, /*is_string_char_at=*/ true);
1736       AppendInstruction(bounds_check);
1737       graph_->SetHasBoundsChecks(true);
1738       instruction->SetRawInputAt(1u, bounds_check);
1739       break;
1740     }
1741     case Intrinsics::kStringIsEmpty: {
1742       // Compare the length with 0.
1743       DCHECK(instruction->IsArrayLength());
1744       AppendInstruction(instruction);
1745       HEqual* equal = new (allocator_) HEqual(instruction, graph_->GetIntConstant(0), dex_pc);
1746       instruction = equal;
1747       break;
1748     }
1749     default:
1750       break;
1751   }
1752 
1753   AppendInstruction(instruction);
1754   latest_result_ = instruction;
1755 
1756   return true;
1757 }
1758 
HandleStringInit(HInvoke * invoke,const InstructionOperands & operands,const char * shorty)1759 bool HInstructionBuilder::HandleStringInit(HInvoke* invoke,
1760                                            const InstructionOperands& operands,
1761                                            const char* shorty) {
1762   DCHECK(invoke->IsInvokeStaticOrDirect());
1763   DCHECK(invoke->AsInvokeStaticOrDirect()->IsStringInit());
1764 
1765   if (!SetupInvokeArguments(invoke, operands, shorty, ReceiverArg::kIgnored)) {
1766     return false;
1767   }
1768 
1769   AppendInstruction(invoke);
1770 
1771   // This is a StringFactory call, not an actual String constructor. Its result
1772   // replaces the empty String pre-allocated by NewInstance.
1773   uint32_t orig_this_reg = operands.GetOperand(0);
1774   HInstruction* arg_this = LoadLocal(orig_this_reg, DataType::Type::kReference);
1775 
1776   // Replacing the NewInstance might render it redundant. Keep a list of these
1777   // to be visited once it is clear whether it has remaining uses.
1778   if (arg_this->IsNewInstance()) {
1779     ssa_builder_->AddUninitializedString(arg_this->AsNewInstance());
1780   } else {
1781     DCHECK(arg_this->IsPhi());
1782     // We can get a phi as input of a String.<init> if there is a loop between the
1783     // allocation and the String.<init> call. As we don't know which other phis might alias
1784     // with `arg_this`, we keep a record of those invocations so we can later replace
1785     // the allocation with the invocation.
1786     // Add the actual 'this' input so the analysis knows what is the allocation instruction.
1787     // The input will be removed during the analysis.
1788     invoke->AddInput(arg_this);
1789     ssa_builder_->AddUninitializedStringPhi(invoke);
1790   }
1791   // Walk over all vregs and replace any occurrence of `arg_this` with `invoke`.
1792   for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) {
1793     if ((*current_locals_)[vreg] == arg_this) {
1794       (*current_locals_)[vreg] = invoke;
1795     }
1796   }
1797   return true;
1798 }
1799 
GetFieldAccessType(const DexFile & dex_file,uint16_t field_index)1800 static DataType::Type GetFieldAccessType(const DexFile& dex_file, uint16_t field_index) {
1801   const dex::FieldId& field_id = dex_file.GetFieldId(field_index);
1802   const char* type = dex_file.GetFieldTypeDescriptor(field_id);
1803   return DataType::FromShorty(type[0]);
1804 }
1805 
BuildInstanceFieldAccess(const Instruction & instruction,uint32_t dex_pc,bool is_put,size_t quicken_index)1806 bool HInstructionBuilder::BuildInstanceFieldAccess(const Instruction& instruction,
1807                                                    uint32_t dex_pc,
1808                                                    bool is_put,
1809                                                    size_t quicken_index) {
1810   uint32_t source_or_dest_reg = instruction.VRegA_22c();
1811   uint32_t obj_reg = instruction.VRegB_22c();
1812   uint16_t field_index;
1813   if (instruction.IsQuickened()) {
1814     if (!CanDecodeQuickenedInfo()) {
1815       VLOG(compiler) << "Not compiled: Could not decode quickened instruction "
1816                      << instruction.Opcode();
1817       return false;
1818     }
1819     field_index = LookupQuickenedInfo(quicken_index);
1820   } else {
1821     field_index = instruction.VRegC_22c();
1822   }
1823 
1824   ScopedObjectAccess soa(Thread::Current());
1825   ArtField* resolved_field = ResolveField(field_index, /* is_static= */ false, is_put);
1826 
1827   // Generate an explicit null check on the reference, unless the field access
1828   // is unresolved. In that case, we rely on the runtime to perform various
1829   // checks first, followed by a null check.
1830   HInstruction* object = (resolved_field == nullptr)
1831       ? LoadLocal(obj_reg, DataType::Type::kReference)
1832       : LoadNullCheckedLocal(obj_reg, dex_pc);
1833 
1834   DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index);
1835   if (is_put) {
1836     HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
1837     HInstruction* field_set = nullptr;
1838     if (resolved_field == nullptr) {
1839       MaybeRecordStat(compilation_stats_,
1840                       MethodCompilationStat::kUnresolvedField);
1841       field_set = new (allocator_) HUnresolvedInstanceFieldSet(object,
1842                                                                value,
1843                                                                field_type,
1844                                                                field_index,
1845                                                                dex_pc);
1846     } else {
1847       uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex();
1848       field_set = new (allocator_) HInstanceFieldSet(object,
1849                                                      value,
1850                                                      resolved_field,
1851                                                      field_type,
1852                                                      resolved_field->GetOffset(),
1853                                                      resolved_field->IsVolatile(),
1854                                                      field_index,
1855                                                      class_def_index,
1856                                                      *dex_file_,
1857                                                      dex_pc);
1858     }
1859     AppendInstruction(field_set);
1860   } else {
1861     HInstruction* field_get = nullptr;
1862     if (resolved_field == nullptr) {
1863       MaybeRecordStat(compilation_stats_,
1864                       MethodCompilationStat::kUnresolvedField);
1865       field_get = new (allocator_) HUnresolvedInstanceFieldGet(object,
1866                                                                field_type,
1867                                                                field_index,
1868                                                                dex_pc);
1869     } else {
1870       uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex();
1871       field_get = new (allocator_) HInstanceFieldGet(object,
1872                                                      resolved_field,
1873                                                      field_type,
1874                                                      resolved_field->GetOffset(),
1875                                                      resolved_field->IsVolatile(),
1876                                                      field_index,
1877                                                      class_def_index,
1878                                                      *dex_file_,
1879                                                      dex_pc);
1880     }
1881     AppendInstruction(field_get);
1882     UpdateLocal(source_or_dest_reg, field_get);
1883   }
1884 
1885   return true;
1886 }
1887 
BuildUnresolvedStaticFieldAccess(const Instruction & instruction,uint32_t dex_pc,bool is_put,DataType::Type field_type)1888 void HInstructionBuilder::BuildUnresolvedStaticFieldAccess(const Instruction& instruction,
1889                                                            uint32_t dex_pc,
1890                                                            bool is_put,
1891                                                            DataType::Type field_type) {
1892   uint32_t source_or_dest_reg = instruction.VRegA_21c();
1893   uint16_t field_index = instruction.VRegB_21c();
1894 
1895   if (is_put) {
1896     HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
1897     AppendInstruction(
1898         new (allocator_) HUnresolvedStaticFieldSet(value, field_type, field_index, dex_pc));
1899   } else {
1900     AppendInstruction(new (allocator_) HUnresolvedStaticFieldGet(field_type, field_index, dex_pc));
1901     UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
1902   }
1903 }
1904 
ResolveField(uint16_t field_idx,bool is_static,bool is_put)1905 ArtField* HInstructionBuilder::ResolveField(uint16_t field_idx, bool is_static, bool is_put) {
1906   ScopedObjectAccess soa(Thread::Current());
1907 
1908   ClassLinker* class_linker = dex_compilation_unit_->GetClassLinker();
1909   Handle<mirror::ClassLoader> class_loader = dex_compilation_unit_->GetClassLoader();
1910 
1911   ArtField* resolved_field = class_linker->ResolveField(field_idx,
1912                                                         dex_compilation_unit_->GetDexCache(),
1913                                                         class_loader,
1914                                                         is_static);
1915   DCHECK_EQ(resolved_field == nullptr, soa.Self()->IsExceptionPending())
1916       << "field="
1917       << ((resolved_field == nullptr) ? "null" : resolved_field->PrettyField())
1918       << ", exception="
1919       << (soa.Self()->IsExceptionPending() ? soa.Self()->GetException()->Dump() : "null");
1920   if (UNLIKELY(resolved_field == nullptr)) {
1921     // Clean up any exception left by field resolution.
1922     soa.Self()->ClearException();
1923     return nullptr;
1924   }
1925 
1926   // Check static/instance. The class linker has a fast path for looking into the dex cache
1927   // and does not check static/instance if it hits it.
1928   if (UNLIKELY(resolved_field->IsStatic() != is_static)) {
1929     return nullptr;
1930   }
1931 
1932   // Check access.
1933   Handle<mirror::Class> compiling_class = dex_compilation_unit_->GetCompilingClass();
1934   if (compiling_class == nullptr) {
1935     if (!resolved_field->IsPublic()) {
1936       return nullptr;
1937     }
1938   } else if (!compiling_class->CanAccessResolvedField(resolved_field->GetDeclaringClass(),
1939                                                       resolved_field,
1940                                                       dex_compilation_unit_->GetDexCache().Get(),
1941                                                       field_idx)) {
1942     return nullptr;
1943   }
1944 
1945   if (is_put &&
1946       resolved_field->IsFinal() &&
1947       (compiling_class.Get() != resolved_field->GetDeclaringClass())) {
1948     // Final fields can only be updated within their own class.
1949     // TODO: Only allow it in constructors. b/34966607.
1950     return nullptr;
1951   }
1952 
1953   StackArtFieldHandleScope<1> rhs(soa.Self());
1954   ReflectiveHandle<ArtField> resolved_field_handle(rhs.NewHandle(resolved_field));
1955   if (resolved_field->ResolveType().IsNull()) {
1956     // ArtField::ResolveType() may fail as evidenced with a dexing bug (b/78788577).
1957     soa.Self()->ClearException();
1958     return nullptr;  // Failure
1959   }
1960   return resolved_field_handle.Get();
1961 }
1962 
BuildStaticFieldAccess(const Instruction & instruction,uint32_t dex_pc,bool is_put)1963 void HInstructionBuilder::BuildStaticFieldAccess(const Instruction& instruction,
1964                                                  uint32_t dex_pc,
1965                                                  bool is_put) {
1966   uint32_t source_or_dest_reg = instruction.VRegA_21c();
1967   uint16_t field_index = instruction.VRegB_21c();
1968 
1969   ScopedObjectAccess soa(Thread::Current());
1970   ArtField* resolved_field = ResolveField(field_index, /* is_static= */ true, is_put);
1971 
1972   if (resolved_field == nullptr) {
1973     MaybeRecordStat(compilation_stats_,
1974                     MethodCompilationStat::kUnresolvedField);
1975     DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index);
1976     BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type);
1977     return;
1978   }
1979 
1980   DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index);
1981 
1982   Handle<mirror::Class> klass =
1983       graph_->GetHandleCache()->NewHandle(resolved_field->GetDeclaringClass());
1984   HLoadClass* constant = BuildLoadClass(klass->GetDexTypeIndex(),
1985                                         klass->GetDexFile(),
1986                                         klass,
1987                                         dex_pc,
1988                                         /* needs_access_check= */ false);
1989 
1990   if (constant == nullptr) {
1991     // The class cannot be referenced from this compiled code. Generate
1992     // an unresolved access.
1993     MaybeRecordStat(compilation_stats_,
1994                     MethodCompilationStat::kUnresolvedFieldNotAFastAccess);
1995     BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type);
1996     return;
1997   }
1998 
1999   HInstruction* cls = constant;
2000   if (!IsInitialized(klass.Get())) {
2001     cls = new (allocator_) HClinitCheck(constant, dex_pc);
2002     AppendInstruction(cls);
2003   }
2004 
2005   uint16_t class_def_index = klass->GetDexClassDefIndex();
2006   if (is_put) {
2007     // We need to keep the class alive before loading the value.
2008     HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
2009     DCHECK_EQ(HPhi::ToPhiType(value->GetType()), HPhi::ToPhiType(field_type));
2010     AppendInstruction(new (allocator_) HStaticFieldSet(cls,
2011                                                        value,
2012                                                        resolved_field,
2013                                                        field_type,
2014                                                        resolved_field->GetOffset(),
2015                                                        resolved_field->IsVolatile(),
2016                                                        field_index,
2017                                                        class_def_index,
2018                                                        *dex_file_,
2019                                                        dex_pc));
2020   } else {
2021     AppendInstruction(new (allocator_) HStaticFieldGet(cls,
2022                                                        resolved_field,
2023                                                        field_type,
2024                                                        resolved_field->GetOffset(),
2025                                                        resolved_field->IsVolatile(),
2026                                                        field_index,
2027                                                        class_def_index,
2028                                                        *dex_file_,
2029                                                        dex_pc));
2030     UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
2031   }
2032 }
2033 
BuildCheckedDivRem(uint16_t out_vreg,uint16_t first_vreg,int64_t second_vreg_or_constant,uint32_t dex_pc,DataType::Type type,bool second_is_constant,bool isDiv)2034 void HInstructionBuilder::BuildCheckedDivRem(uint16_t out_vreg,
2035                                              uint16_t first_vreg,
2036                                              int64_t second_vreg_or_constant,
2037                                              uint32_t dex_pc,
2038                                              DataType::Type type,
2039                                              bool second_is_constant,
2040                                              bool isDiv) {
2041   DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
2042 
2043   HInstruction* first = LoadLocal(first_vreg, type);
2044   HInstruction* second = nullptr;
2045   if (second_is_constant) {
2046     if (type == DataType::Type::kInt32) {
2047       second = graph_->GetIntConstant(second_vreg_or_constant, dex_pc);
2048     } else {
2049       second = graph_->GetLongConstant(second_vreg_or_constant, dex_pc);
2050     }
2051   } else {
2052     second = LoadLocal(second_vreg_or_constant, type);
2053   }
2054 
2055   if (!second_is_constant
2056       || (type == DataType::Type::kInt32 && second->AsIntConstant()->GetValue() == 0)
2057       || (type == DataType::Type::kInt64 && second->AsLongConstant()->GetValue() == 0)) {
2058     second = new (allocator_) HDivZeroCheck(second, dex_pc);
2059     AppendInstruction(second);
2060   }
2061 
2062   if (isDiv) {
2063     AppendInstruction(new (allocator_) HDiv(type, first, second, dex_pc));
2064   } else {
2065     AppendInstruction(new (allocator_) HRem(type, first, second, dex_pc));
2066   }
2067   UpdateLocal(out_vreg, current_block_->GetLastInstruction());
2068 }
2069 
BuildArrayAccess(const Instruction & instruction,uint32_t dex_pc,bool is_put,DataType::Type anticipated_type)2070 void HInstructionBuilder::BuildArrayAccess(const Instruction& instruction,
2071                                            uint32_t dex_pc,
2072                                            bool is_put,
2073                                            DataType::Type anticipated_type) {
2074   uint8_t source_or_dest_reg = instruction.VRegA_23x();
2075   uint8_t array_reg = instruction.VRegB_23x();
2076   uint8_t index_reg = instruction.VRegC_23x();
2077 
2078   HInstruction* object = LoadNullCheckedLocal(array_reg, dex_pc);
2079   HInstruction* length = new (allocator_) HArrayLength(object, dex_pc);
2080   AppendInstruction(length);
2081   HInstruction* index = LoadLocal(index_reg, DataType::Type::kInt32);
2082   index = new (allocator_) HBoundsCheck(index, length, dex_pc);
2083   AppendInstruction(index);
2084   if (is_put) {
2085     HInstruction* value = LoadLocal(source_or_dest_reg, anticipated_type);
2086     // TODO: Insert a type check node if the type is Object.
2087     HArraySet* aset = new (allocator_) HArraySet(object, index, value, anticipated_type, dex_pc);
2088     ssa_builder_->MaybeAddAmbiguousArraySet(aset);
2089     AppendInstruction(aset);
2090   } else {
2091     HArrayGet* aget = new (allocator_) HArrayGet(object, index, anticipated_type, dex_pc);
2092     ssa_builder_->MaybeAddAmbiguousArrayGet(aget);
2093     AppendInstruction(aget);
2094     UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
2095   }
2096   graph_->SetHasBoundsChecks(true);
2097 }
2098 
BuildNewArray(uint32_t dex_pc,dex::TypeIndex type_index,HInstruction * length)2099 HNewArray* HInstructionBuilder::BuildNewArray(uint32_t dex_pc,
2100                                               dex::TypeIndex type_index,
2101                                               HInstruction* length) {
2102   HLoadClass* cls = BuildLoadClass(type_index, dex_pc);
2103 
2104   const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(type_index));
2105   DCHECK_EQ(descriptor[0], '[');
2106   size_t component_type_shift = Primitive::ComponentSizeShift(Primitive::GetType(descriptor[1]));
2107 
2108   HNewArray* new_array = new (allocator_) HNewArray(cls, length, dex_pc, component_type_shift);
2109   AppendInstruction(new_array);
2110   return new_array;
2111 }
2112 
BuildFilledNewArray(uint32_t dex_pc,dex::TypeIndex type_index,const InstructionOperands & operands)2113 HNewArray* HInstructionBuilder::BuildFilledNewArray(uint32_t dex_pc,
2114                                                     dex::TypeIndex type_index,
2115                                                     const InstructionOperands& operands) {
2116   const size_t number_of_operands = operands.GetNumberOfOperands();
2117   HInstruction* length = graph_->GetIntConstant(number_of_operands, dex_pc);
2118 
2119   HNewArray* new_array = BuildNewArray(dex_pc, type_index, length);
2120   const char* descriptor = dex_file_->StringByTypeIdx(type_index);
2121   DCHECK_EQ(descriptor[0], '[') << descriptor;
2122   char primitive = descriptor[1];
2123   DCHECK(primitive == 'I'
2124       || primitive == 'L'
2125       || primitive == '[') << descriptor;
2126   bool is_reference_array = (primitive == 'L') || (primitive == '[');
2127   DataType::Type type = is_reference_array ? DataType::Type::kReference : DataType::Type::kInt32;
2128 
2129   for (size_t i = 0; i < number_of_operands; ++i) {
2130     HInstruction* value = LoadLocal(operands.GetOperand(i), type);
2131     HInstruction* index = graph_->GetIntConstant(i, dex_pc);
2132     HArraySet* aset = new (allocator_) HArraySet(new_array, index, value, type, dex_pc);
2133     ssa_builder_->MaybeAddAmbiguousArraySet(aset);
2134     AppendInstruction(aset);
2135   }
2136   latest_result_ = new_array;
2137 
2138   return new_array;
2139 }
2140 
2141 template <typename T>
BuildFillArrayData(HInstruction * object,const T * data,uint32_t element_count,DataType::Type anticipated_type,uint32_t dex_pc)2142 void HInstructionBuilder::BuildFillArrayData(HInstruction* object,
2143                                              const T* data,
2144                                              uint32_t element_count,
2145                                              DataType::Type anticipated_type,
2146                                              uint32_t dex_pc) {
2147   for (uint32_t i = 0; i < element_count; ++i) {
2148     HInstruction* index = graph_->GetIntConstant(i, dex_pc);
2149     HInstruction* value = graph_->GetIntConstant(data[i], dex_pc);
2150     HArraySet* aset = new (allocator_) HArraySet(object, index, value, anticipated_type, dex_pc);
2151     ssa_builder_->MaybeAddAmbiguousArraySet(aset);
2152     AppendInstruction(aset);
2153   }
2154 }
2155 
BuildFillArrayData(const Instruction & instruction,uint32_t dex_pc)2156 void HInstructionBuilder::BuildFillArrayData(const Instruction& instruction, uint32_t dex_pc) {
2157   HInstruction* array = LoadNullCheckedLocal(instruction.VRegA_31t(), dex_pc);
2158 
2159   int32_t payload_offset = instruction.VRegB_31t() + dex_pc;
2160   const Instruction::ArrayDataPayload* payload =
2161       reinterpret_cast<const Instruction::ArrayDataPayload*>(
2162           code_item_accessor_.Insns() + payload_offset);
2163   const uint8_t* data = payload->data;
2164   uint32_t element_count = payload->element_count;
2165 
2166   if (element_count == 0u) {
2167     // For empty payload we emit only the null check above.
2168     return;
2169   }
2170 
2171   HInstruction* length = new (allocator_) HArrayLength(array, dex_pc);
2172   AppendInstruction(length);
2173 
2174   // Implementation of this DEX instruction seems to be that the bounds check is
2175   // done before doing any stores.
2176   HInstruction* last_index = graph_->GetIntConstant(payload->element_count - 1, dex_pc);
2177   AppendInstruction(new (allocator_) HBoundsCheck(last_index, length, dex_pc));
2178 
2179   switch (payload->element_width) {
2180     case 1:
2181       BuildFillArrayData(array,
2182                          reinterpret_cast<const int8_t*>(data),
2183                          element_count,
2184                          DataType::Type::kInt8,
2185                          dex_pc);
2186       break;
2187     case 2:
2188       BuildFillArrayData(array,
2189                          reinterpret_cast<const int16_t*>(data),
2190                          element_count,
2191                          DataType::Type::kInt16,
2192                          dex_pc);
2193       break;
2194     case 4:
2195       BuildFillArrayData(array,
2196                          reinterpret_cast<const int32_t*>(data),
2197                          element_count,
2198                          DataType::Type::kInt32,
2199                          dex_pc);
2200       break;
2201     case 8:
2202       BuildFillWideArrayData(array,
2203                              reinterpret_cast<const int64_t*>(data),
2204                              element_count,
2205                              dex_pc);
2206       break;
2207     default:
2208       LOG(FATAL) << "Unknown element width for " << payload->element_width;
2209   }
2210   graph_->SetHasBoundsChecks(true);
2211 }
2212 
BuildFillWideArrayData(HInstruction * object,const int64_t * data,uint32_t element_count,uint32_t dex_pc)2213 void HInstructionBuilder::BuildFillWideArrayData(HInstruction* object,
2214                                                  const int64_t* data,
2215                                                  uint32_t element_count,
2216                                                  uint32_t dex_pc) {
2217   for (uint32_t i = 0; i < element_count; ++i) {
2218     HInstruction* index = graph_->GetIntConstant(i, dex_pc);
2219     HInstruction* value = graph_->GetLongConstant(data[i], dex_pc);
2220     HArraySet* aset =
2221         new (allocator_) HArraySet(object, index, value, DataType::Type::kInt64, dex_pc);
2222     ssa_builder_->MaybeAddAmbiguousArraySet(aset);
2223     AppendInstruction(aset);
2224   }
2225 }
2226 
BuildLoadString(dex::StringIndex string_index,uint32_t dex_pc)2227 void HInstructionBuilder::BuildLoadString(dex::StringIndex string_index, uint32_t dex_pc) {
2228   HLoadString* load_string =
2229       new (allocator_) HLoadString(graph_->GetCurrentMethod(), string_index, *dex_file_, dex_pc);
2230   HSharpening::ProcessLoadString(load_string,
2231                                  code_generator_,
2232                                  *dex_compilation_unit_,
2233                                  graph_->GetHandleCache()->GetHandles());
2234   AppendInstruction(load_string);
2235 }
2236 
BuildLoadClass(dex::TypeIndex type_index,uint32_t dex_pc)2237 HLoadClass* HInstructionBuilder::BuildLoadClass(dex::TypeIndex type_index, uint32_t dex_pc) {
2238   ScopedObjectAccess soa(Thread::Current());
2239   const DexFile& dex_file = *dex_compilation_unit_->GetDexFile();
2240   Handle<mirror::Class> klass = ResolveClass(soa, type_index);
2241   bool needs_access_check = LoadClassNeedsAccessCheck(klass.Get());
2242   return BuildLoadClass(type_index, dex_file, klass, dex_pc, needs_access_check);
2243 }
2244 
BuildLoadClass(dex::TypeIndex type_index,const DexFile & dex_file,Handle<mirror::Class> klass,uint32_t dex_pc,bool needs_access_check)2245 HLoadClass* HInstructionBuilder::BuildLoadClass(dex::TypeIndex type_index,
2246                                                 const DexFile& dex_file,
2247                                                 Handle<mirror::Class> klass,
2248                                                 uint32_t dex_pc,
2249                                                 bool needs_access_check) {
2250   // Try to find a reference in the compiling dex file.
2251   const DexFile* actual_dex_file = &dex_file;
2252   if (!IsSameDexFile(dex_file, *dex_compilation_unit_->GetDexFile())) {
2253     dex::TypeIndex local_type_index =
2254         klass->FindTypeIndexInOtherDexFile(*dex_compilation_unit_->GetDexFile());
2255     if (local_type_index.IsValid()) {
2256       type_index = local_type_index;
2257       actual_dex_file = dex_compilation_unit_->GetDexFile();
2258     }
2259   }
2260 
2261   // Note: `klass` must be from `graph_->GetHandleCache()`.
2262   bool is_referrers_class =
2263       (klass != nullptr) && (outer_compilation_unit_->GetCompilingClass().Get() == klass.Get());
2264   HLoadClass* load_class = new (allocator_) HLoadClass(
2265       graph_->GetCurrentMethod(),
2266       type_index,
2267       *actual_dex_file,
2268       klass,
2269       is_referrers_class,
2270       dex_pc,
2271       needs_access_check);
2272 
2273   HLoadClass::LoadKind load_kind = HSharpening::ComputeLoadClassKind(load_class,
2274                                                                      code_generator_,
2275                                                                      *dex_compilation_unit_);
2276 
2277   if (load_kind == HLoadClass::LoadKind::kInvalid) {
2278     // We actually cannot reference this class, we're forced to bail.
2279     return nullptr;
2280   }
2281   // Load kind must be set before inserting the instruction into the graph.
2282   load_class->SetLoadKind(load_kind);
2283   AppendInstruction(load_class);
2284   return load_class;
2285 }
2286 
ResolveClass(ScopedObjectAccess & soa,dex::TypeIndex type_index)2287 Handle<mirror::Class> HInstructionBuilder::ResolveClass(ScopedObjectAccess& soa,
2288                                                         dex::TypeIndex type_index) {
2289   auto it = class_cache_.find(type_index);
2290   if (it != class_cache_.end()) {
2291     return it->second;
2292   }
2293 
2294   ObjPtr<mirror::Class> klass = dex_compilation_unit_->GetClassLinker()->ResolveType(
2295       type_index, dex_compilation_unit_->GetDexCache(), dex_compilation_unit_->GetClassLoader());
2296   DCHECK_EQ(klass == nullptr, soa.Self()->IsExceptionPending());
2297   soa.Self()->ClearException();  // Clean up the exception left by type resolution if any.
2298 
2299   Handle<mirror::Class> h_klass = graph_->GetHandleCache()->NewHandle(klass);
2300   class_cache_.Put(type_index, h_klass);
2301   return h_klass;
2302 }
2303 
LoadClassNeedsAccessCheck(ObjPtr<mirror::Class> klass)2304 bool HInstructionBuilder::LoadClassNeedsAccessCheck(ObjPtr<mirror::Class> klass) {
2305   if (klass == nullptr) {
2306     return true;
2307   } else if (klass->IsPublic()) {
2308     return false;
2309   } else {
2310     ObjPtr<mirror::Class> compiling_class = dex_compilation_unit_->GetCompilingClass().Get();
2311     return compiling_class == nullptr || !compiling_class->CanAccess(klass);
2312   }
2313 }
2314 
BuildLoadMethodHandle(uint16_t method_handle_index,uint32_t dex_pc)2315 void HInstructionBuilder::BuildLoadMethodHandle(uint16_t method_handle_index, uint32_t dex_pc) {
2316   const DexFile& dex_file = *dex_compilation_unit_->GetDexFile();
2317   HLoadMethodHandle* load_method_handle = new (allocator_) HLoadMethodHandle(
2318       graph_->GetCurrentMethod(), method_handle_index, dex_file, dex_pc);
2319   AppendInstruction(load_method_handle);
2320 }
2321 
BuildLoadMethodType(dex::ProtoIndex proto_index,uint32_t dex_pc)2322 void HInstructionBuilder::BuildLoadMethodType(dex::ProtoIndex proto_index, uint32_t dex_pc) {
2323   const DexFile& dex_file = *dex_compilation_unit_->GetDexFile();
2324   HLoadMethodType* load_method_type =
2325       new (allocator_) HLoadMethodType(graph_->GetCurrentMethod(), proto_index, dex_file, dex_pc);
2326   AppendInstruction(load_method_type);
2327 }
2328 
BuildTypeCheck(const Instruction & instruction,uint8_t destination,uint8_t reference,dex::TypeIndex type_index,uint32_t dex_pc)2329 void HInstructionBuilder::BuildTypeCheck(const Instruction& instruction,
2330                                          uint8_t destination,
2331                                          uint8_t reference,
2332                                          dex::TypeIndex type_index,
2333                                          uint32_t dex_pc) {
2334   HInstruction* object = LoadLocal(reference, DataType::Type::kReference);
2335 
2336   ScopedObjectAccess soa(Thread::Current());
2337   const DexFile& dex_file = *dex_compilation_unit_->GetDexFile();
2338   Handle<mirror::Class> klass = ResolveClass(soa, type_index);
2339   bool needs_access_check = LoadClassNeedsAccessCheck(klass.Get());
2340   TypeCheckKind check_kind = HSharpening::ComputeTypeCheckKind(
2341       klass.Get(), code_generator_, needs_access_check);
2342 
2343   HInstruction* class_or_null = nullptr;
2344   HIntConstant* bitstring_path_to_root = nullptr;
2345   HIntConstant* bitstring_mask = nullptr;
2346   if (check_kind == TypeCheckKind::kBitstringCheck) {
2347     // TODO: Allow using the bitstring check also if we need an access check.
2348     DCHECK(!needs_access_check);
2349     class_or_null = graph_->GetNullConstant(dex_pc);
2350     MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_);
2351     uint32_t path_to_root =
2352         SubtypeCheck<ObjPtr<mirror::Class>>::GetEncodedPathToRootForTarget(klass.Get());
2353     uint32_t mask = SubtypeCheck<ObjPtr<mirror::Class>>::GetEncodedPathToRootMask(klass.Get());
2354     bitstring_path_to_root = graph_->GetIntConstant(static_cast<int32_t>(path_to_root), dex_pc);
2355     bitstring_mask = graph_->GetIntConstant(static_cast<int32_t>(mask), dex_pc);
2356   } else {
2357     class_or_null = BuildLoadClass(type_index, dex_file, klass, dex_pc, needs_access_check);
2358   }
2359   DCHECK(class_or_null != nullptr);
2360 
2361   if (instruction.Opcode() == Instruction::INSTANCE_OF) {
2362     AppendInstruction(new (allocator_) HInstanceOf(object,
2363                                                    class_or_null,
2364                                                    check_kind,
2365                                                    klass,
2366                                                    dex_pc,
2367                                                    allocator_,
2368                                                    bitstring_path_to_root,
2369                                                    bitstring_mask));
2370     UpdateLocal(destination, current_block_->GetLastInstruction());
2371   } else {
2372     DCHECK_EQ(instruction.Opcode(), Instruction::CHECK_CAST);
2373     // We emit a CheckCast followed by a BoundType. CheckCast is a statement
2374     // which may throw. If it succeeds BoundType sets the new type of `object`
2375     // for all subsequent uses.
2376     AppendInstruction(
2377         new (allocator_) HCheckCast(object,
2378                                     class_or_null,
2379                                     check_kind,
2380                                     klass,
2381                                     dex_pc,
2382                                     allocator_,
2383                                     bitstring_path_to_root,
2384                                     bitstring_mask));
2385     AppendInstruction(new (allocator_) HBoundType(object, dex_pc));
2386     UpdateLocal(reference, current_block_->GetLastInstruction());
2387   }
2388 }
2389 
CanDecodeQuickenedInfo() const2390 bool HInstructionBuilder::CanDecodeQuickenedInfo() const {
2391   return !quicken_info_.IsNull();
2392 }
2393 
LookupQuickenedInfo(uint32_t quicken_index)2394 uint16_t HInstructionBuilder::LookupQuickenedInfo(uint32_t quicken_index) {
2395   DCHECK(CanDecodeQuickenedInfo());
2396   return quicken_info_.GetData(quicken_index);
2397 }
2398 
ProcessDexInstruction(const Instruction & instruction,uint32_t dex_pc,size_t quicken_index)2399 bool HInstructionBuilder::ProcessDexInstruction(const Instruction& instruction,
2400                                                 uint32_t dex_pc,
2401                                                 size_t quicken_index) {
2402   switch (instruction.Opcode()) {
2403     case Instruction::CONST_4: {
2404       int32_t register_index = instruction.VRegA();
2405       HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_11n(), dex_pc);
2406       UpdateLocal(register_index, constant);
2407       break;
2408     }
2409 
2410     case Instruction::CONST_16: {
2411       int32_t register_index = instruction.VRegA();
2412       HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21s(), dex_pc);
2413       UpdateLocal(register_index, constant);
2414       break;
2415     }
2416 
2417     case Instruction::CONST: {
2418       int32_t register_index = instruction.VRegA();
2419       HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_31i(), dex_pc);
2420       UpdateLocal(register_index, constant);
2421       break;
2422     }
2423 
2424     case Instruction::CONST_HIGH16: {
2425       int32_t register_index = instruction.VRegA();
2426       HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21h() << 16, dex_pc);
2427       UpdateLocal(register_index, constant);
2428       break;
2429     }
2430 
2431     case Instruction::CONST_WIDE_16: {
2432       int32_t register_index = instruction.VRegA();
2433       // Get 16 bits of constant value, sign extended to 64 bits.
2434       int64_t value = instruction.VRegB_21s();
2435       value <<= 48;
2436       value >>= 48;
2437       HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
2438       UpdateLocal(register_index, constant);
2439       break;
2440     }
2441 
2442     case Instruction::CONST_WIDE_32: {
2443       int32_t register_index = instruction.VRegA();
2444       // Get 32 bits of constant value, sign extended to 64 bits.
2445       int64_t value = instruction.VRegB_31i();
2446       value <<= 32;
2447       value >>= 32;
2448       HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
2449       UpdateLocal(register_index, constant);
2450       break;
2451     }
2452 
2453     case Instruction::CONST_WIDE: {
2454       int32_t register_index = instruction.VRegA();
2455       HLongConstant* constant = graph_->GetLongConstant(instruction.VRegB_51l(), dex_pc);
2456       UpdateLocal(register_index, constant);
2457       break;
2458     }
2459 
2460     case Instruction::CONST_WIDE_HIGH16: {
2461       int32_t register_index = instruction.VRegA();
2462       int64_t value = static_cast<int64_t>(instruction.VRegB_21h()) << 48;
2463       HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
2464       UpdateLocal(register_index, constant);
2465       break;
2466     }
2467 
2468     // Note that the SSA building will refine the types.
2469     case Instruction::MOVE:
2470     case Instruction::MOVE_FROM16:
2471     case Instruction::MOVE_16: {
2472       HInstruction* value = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
2473       UpdateLocal(instruction.VRegA(), value);
2474       break;
2475     }
2476 
2477     // Note that the SSA building will refine the types.
2478     case Instruction::MOVE_WIDE:
2479     case Instruction::MOVE_WIDE_FROM16:
2480     case Instruction::MOVE_WIDE_16: {
2481       HInstruction* value = LoadLocal(instruction.VRegB(), DataType::Type::kInt64);
2482       UpdateLocal(instruction.VRegA(), value);
2483       break;
2484     }
2485 
2486     case Instruction::MOVE_OBJECT:
2487     case Instruction::MOVE_OBJECT_16:
2488     case Instruction::MOVE_OBJECT_FROM16: {
2489       // The verifier has no notion of a null type, so a move-object of constant 0
2490       // will lead to the same constant 0 in the destination register. To mimic
2491       // this behavior, we just pretend we haven't seen a type change (int to reference)
2492       // for the 0 constant and phis. We rely on our type propagation to eventually get the
2493       // types correct.
2494       uint32_t reg_number = instruction.VRegB();
2495       HInstruction* value = (*current_locals_)[reg_number];
2496       if (value->IsIntConstant()) {
2497         DCHECK_EQ(value->AsIntConstant()->GetValue(), 0);
2498       } else if (value->IsPhi()) {
2499         DCHECK(value->GetType() == DataType::Type::kInt32 ||
2500                value->GetType() == DataType::Type::kReference);
2501       } else {
2502         value = LoadLocal(reg_number, DataType::Type::kReference);
2503       }
2504       UpdateLocal(instruction.VRegA(), value);
2505       break;
2506     }
2507 
2508     case Instruction::RETURN_VOID_NO_BARRIER:
2509     case Instruction::RETURN_VOID: {
2510       BuildReturn(instruction, DataType::Type::kVoid, dex_pc);
2511       break;
2512     }
2513 
2514 #define IF_XX(comparison, cond) \
2515     case Instruction::IF_##cond: If_22t<comparison>(instruction, dex_pc); break; \
2516     case Instruction::IF_##cond##Z: If_21t<comparison>(instruction, dex_pc); break
2517 
2518     IF_XX(HEqual, EQ);
2519     IF_XX(HNotEqual, NE);
2520     IF_XX(HLessThan, LT);
2521     IF_XX(HLessThanOrEqual, LE);
2522     IF_XX(HGreaterThan, GT);
2523     IF_XX(HGreaterThanOrEqual, GE);
2524 
2525     case Instruction::GOTO:
2526     case Instruction::GOTO_16:
2527     case Instruction::GOTO_32: {
2528       AppendInstruction(new (allocator_) HGoto(dex_pc));
2529       current_block_ = nullptr;
2530       break;
2531     }
2532 
2533     case Instruction::RETURN: {
2534       BuildReturn(instruction, return_type_, dex_pc);
2535       break;
2536     }
2537 
2538     case Instruction::RETURN_OBJECT: {
2539       BuildReturn(instruction, return_type_, dex_pc);
2540       break;
2541     }
2542 
2543     case Instruction::RETURN_WIDE: {
2544       BuildReturn(instruction, return_type_, dex_pc);
2545       break;
2546     }
2547 
2548     case Instruction::INVOKE_DIRECT:
2549     case Instruction::INVOKE_INTERFACE:
2550     case Instruction::INVOKE_STATIC:
2551     case Instruction::INVOKE_SUPER:
2552     case Instruction::INVOKE_VIRTUAL:
2553     case Instruction::INVOKE_VIRTUAL_QUICK: {
2554       uint16_t method_idx;
2555       if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_QUICK) {
2556         if (!CanDecodeQuickenedInfo()) {
2557           VLOG(compiler) << "Not compiled: Could not decode quickened instruction "
2558                          << instruction.Opcode();
2559           return false;
2560         }
2561         method_idx = LookupQuickenedInfo(quicken_index);
2562       } else {
2563         method_idx = instruction.VRegB_35c();
2564       }
2565       uint32_t args[5];
2566       uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args);
2567       VarArgsInstructionOperands operands(args, number_of_vreg_arguments);
2568       if (!BuildInvoke(instruction, dex_pc, method_idx, operands)) {
2569         return false;
2570       }
2571       break;
2572     }
2573 
2574     case Instruction::INVOKE_DIRECT_RANGE:
2575     case Instruction::INVOKE_INTERFACE_RANGE:
2576     case Instruction::INVOKE_STATIC_RANGE:
2577     case Instruction::INVOKE_SUPER_RANGE:
2578     case Instruction::INVOKE_VIRTUAL_RANGE:
2579     case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2580       uint16_t method_idx;
2581       if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK) {
2582         if (!CanDecodeQuickenedInfo()) {
2583           VLOG(compiler) << "Not compiled: Could not decode quickened instruction "
2584                          << instruction.Opcode();
2585           return false;
2586         }
2587         method_idx = LookupQuickenedInfo(quicken_index);
2588       } else {
2589         method_idx = instruction.VRegB_3rc();
2590       }
2591       RangeInstructionOperands operands(instruction.VRegC(), instruction.VRegA_3rc());
2592       if (!BuildInvoke(instruction, dex_pc, method_idx, operands)) {
2593         return false;
2594       }
2595       break;
2596     }
2597 
2598     case Instruction::INVOKE_POLYMORPHIC: {
2599       uint16_t method_idx = instruction.VRegB_45cc();
2600       dex::ProtoIndex proto_idx(instruction.VRegH_45cc());
2601       uint32_t args[5];
2602       uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args);
2603       VarArgsInstructionOperands operands(args, number_of_vreg_arguments);
2604       return BuildInvokePolymorphic(dex_pc, method_idx, proto_idx, operands);
2605     }
2606 
2607     case Instruction::INVOKE_POLYMORPHIC_RANGE: {
2608       uint16_t method_idx = instruction.VRegB_4rcc();
2609       dex::ProtoIndex proto_idx(instruction.VRegH_4rcc());
2610       RangeInstructionOperands operands(instruction.VRegC_4rcc(), instruction.VRegA_4rcc());
2611       return BuildInvokePolymorphic(dex_pc, method_idx, proto_idx, operands);
2612     }
2613 
2614     case Instruction::INVOKE_CUSTOM: {
2615       uint16_t call_site_idx = instruction.VRegB_35c();
2616       uint32_t args[5];
2617       uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args);
2618       VarArgsInstructionOperands operands(args, number_of_vreg_arguments);
2619       return BuildInvokeCustom(dex_pc, call_site_idx, operands);
2620     }
2621 
2622     case Instruction::INVOKE_CUSTOM_RANGE: {
2623       uint16_t call_site_idx = instruction.VRegB_3rc();
2624       RangeInstructionOperands operands(instruction.VRegC_3rc(), instruction.VRegA_3rc());
2625       return BuildInvokeCustom(dex_pc, call_site_idx, operands);
2626     }
2627 
2628     case Instruction::NEG_INT: {
2629       Unop_12x<HNeg>(instruction, DataType::Type::kInt32, dex_pc);
2630       break;
2631     }
2632 
2633     case Instruction::NEG_LONG: {
2634       Unop_12x<HNeg>(instruction, DataType::Type::kInt64, dex_pc);
2635       break;
2636     }
2637 
2638     case Instruction::NEG_FLOAT: {
2639       Unop_12x<HNeg>(instruction, DataType::Type::kFloat32, dex_pc);
2640       break;
2641     }
2642 
2643     case Instruction::NEG_DOUBLE: {
2644       Unop_12x<HNeg>(instruction, DataType::Type::kFloat64, dex_pc);
2645       break;
2646     }
2647 
2648     case Instruction::NOT_INT: {
2649       Unop_12x<HNot>(instruction, DataType::Type::kInt32, dex_pc);
2650       break;
2651     }
2652 
2653     case Instruction::NOT_LONG: {
2654       Unop_12x<HNot>(instruction, DataType::Type::kInt64, dex_pc);
2655       break;
2656     }
2657 
2658     case Instruction::INT_TO_LONG: {
2659       Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt64, dex_pc);
2660       break;
2661     }
2662 
2663     case Instruction::INT_TO_FLOAT: {
2664       Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kFloat32, dex_pc);
2665       break;
2666     }
2667 
2668     case Instruction::INT_TO_DOUBLE: {
2669       Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kFloat64, dex_pc);
2670       break;
2671     }
2672 
2673     case Instruction::LONG_TO_INT: {
2674       Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kInt32, dex_pc);
2675       break;
2676     }
2677 
2678     case Instruction::LONG_TO_FLOAT: {
2679       Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kFloat32, dex_pc);
2680       break;
2681     }
2682 
2683     case Instruction::LONG_TO_DOUBLE: {
2684       Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kFloat64, dex_pc);
2685       break;
2686     }
2687 
2688     case Instruction::FLOAT_TO_INT: {
2689       Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kInt32, dex_pc);
2690       break;
2691     }
2692 
2693     case Instruction::FLOAT_TO_LONG: {
2694       Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kInt64, dex_pc);
2695       break;
2696     }
2697 
2698     case Instruction::FLOAT_TO_DOUBLE: {
2699       Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kFloat64, dex_pc);
2700       break;
2701     }
2702 
2703     case Instruction::DOUBLE_TO_INT: {
2704       Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kInt32, dex_pc);
2705       break;
2706     }
2707 
2708     case Instruction::DOUBLE_TO_LONG: {
2709       Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kInt64, dex_pc);
2710       break;
2711     }
2712 
2713     case Instruction::DOUBLE_TO_FLOAT: {
2714       Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kFloat32, dex_pc);
2715       break;
2716     }
2717 
2718     case Instruction::INT_TO_BYTE: {
2719       Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt8, dex_pc);
2720       break;
2721     }
2722 
2723     case Instruction::INT_TO_SHORT: {
2724       Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt16, dex_pc);
2725       break;
2726     }
2727 
2728     case Instruction::INT_TO_CHAR: {
2729       Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kUint16, dex_pc);
2730       break;
2731     }
2732 
2733     case Instruction::ADD_INT: {
2734       Binop_23x<HAdd>(instruction, DataType::Type::kInt32, dex_pc);
2735       break;
2736     }
2737 
2738     case Instruction::ADD_LONG: {
2739       Binop_23x<HAdd>(instruction, DataType::Type::kInt64, dex_pc);
2740       break;
2741     }
2742 
2743     case Instruction::ADD_DOUBLE: {
2744       Binop_23x<HAdd>(instruction, DataType::Type::kFloat64, dex_pc);
2745       break;
2746     }
2747 
2748     case Instruction::ADD_FLOAT: {
2749       Binop_23x<HAdd>(instruction, DataType::Type::kFloat32, dex_pc);
2750       break;
2751     }
2752 
2753     case Instruction::SUB_INT: {
2754       Binop_23x<HSub>(instruction, DataType::Type::kInt32, dex_pc);
2755       break;
2756     }
2757 
2758     case Instruction::SUB_LONG: {
2759       Binop_23x<HSub>(instruction, DataType::Type::kInt64, dex_pc);
2760       break;
2761     }
2762 
2763     case Instruction::SUB_FLOAT: {
2764       Binop_23x<HSub>(instruction, DataType::Type::kFloat32, dex_pc);
2765       break;
2766     }
2767 
2768     case Instruction::SUB_DOUBLE: {
2769       Binop_23x<HSub>(instruction, DataType::Type::kFloat64, dex_pc);
2770       break;
2771     }
2772 
2773     case Instruction::ADD_INT_2ADDR: {
2774       Binop_12x<HAdd>(instruction, DataType::Type::kInt32, dex_pc);
2775       break;
2776     }
2777 
2778     case Instruction::MUL_INT: {
2779       Binop_23x<HMul>(instruction, DataType::Type::kInt32, dex_pc);
2780       break;
2781     }
2782 
2783     case Instruction::MUL_LONG: {
2784       Binop_23x<HMul>(instruction, DataType::Type::kInt64, dex_pc);
2785       break;
2786     }
2787 
2788     case Instruction::MUL_FLOAT: {
2789       Binop_23x<HMul>(instruction, DataType::Type::kFloat32, dex_pc);
2790       break;
2791     }
2792 
2793     case Instruction::MUL_DOUBLE: {
2794       Binop_23x<HMul>(instruction, DataType::Type::kFloat64, dex_pc);
2795       break;
2796     }
2797 
2798     case Instruction::DIV_INT: {
2799       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2800                          dex_pc, DataType::Type::kInt32, false, true);
2801       break;
2802     }
2803 
2804     case Instruction::DIV_LONG: {
2805       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2806                          dex_pc, DataType::Type::kInt64, false, true);
2807       break;
2808     }
2809 
2810     case Instruction::DIV_FLOAT: {
2811       Binop_23x<HDiv>(instruction, DataType::Type::kFloat32, dex_pc);
2812       break;
2813     }
2814 
2815     case Instruction::DIV_DOUBLE: {
2816       Binop_23x<HDiv>(instruction, DataType::Type::kFloat64, dex_pc);
2817       break;
2818     }
2819 
2820     case Instruction::REM_INT: {
2821       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2822                          dex_pc, DataType::Type::kInt32, false, false);
2823       break;
2824     }
2825 
2826     case Instruction::REM_LONG: {
2827       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2828                          dex_pc, DataType::Type::kInt64, false, false);
2829       break;
2830     }
2831 
2832     case Instruction::REM_FLOAT: {
2833       Binop_23x<HRem>(instruction, DataType::Type::kFloat32, dex_pc);
2834       break;
2835     }
2836 
2837     case Instruction::REM_DOUBLE: {
2838       Binop_23x<HRem>(instruction, DataType::Type::kFloat64, dex_pc);
2839       break;
2840     }
2841 
2842     case Instruction::AND_INT: {
2843       Binop_23x<HAnd>(instruction, DataType::Type::kInt32, dex_pc);
2844       break;
2845     }
2846 
2847     case Instruction::AND_LONG: {
2848       Binop_23x<HAnd>(instruction, DataType::Type::kInt64, dex_pc);
2849       break;
2850     }
2851 
2852     case Instruction::SHL_INT: {
2853       Binop_23x_shift<HShl>(instruction, DataType::Type::kInt32, dex_pc);
2854       break;
2855     }
2856 
2857     case Instruction::SHL_LONG: {
2858       Binop_23x_shift<HShl>(instruction, DataType::Type::kInt64, dex_pc);
2859       break;
2860     }
2861 
2862     case Instruction::SHR_INT: {
2863       Binop_23x_shift<HShr>(instruction, DataType::Type::kInt32, dex_pc);
2864       break;
2865     }
2866 
2867     case Instruction::SHR_LONG: {
2868       Binop_23x_shift<HShr>(instruction, DataType::Type::kInt64, dex_pc);
2869       break;
2870     }
2871 
2872     case Instruction::USHR_INT: {
2873       Binop_23x_shift<HUShr>(instruction, DataType::Type::kInt32, dex_pc);
2874       break;
2875     }
2876 
2877     case Instruction::USHR_LONG: {
2878       Binop_23x_shift<HUShr>(instruction, DataType::Type::kInt64, dex_pc);
2879       break;
2880     }
2881 
2882     case Instruction::OR_INT: {
2883       Binop_23x<HOr>(instruction, DataType::Type::kInt32, dex_pc);
2884       break;
2885     }
2886 
2887     case Instruction::OR_LONG: {
2888       Binop_23x<HOr>(instruction, DataType::Type::kInt64, dex_pc);
2889       break;
2890     }
2891 
2892     case Instruction::XOR_INT: {
2893       Binop_23x<HXor>(instruction, DataType::Type::kInt32, dex_pc);
2894       break;
2895     }
2896 
2897     case Instruction::XOR_LONG: {
2898       Binop_23x<HXor>(instruction, DataType::Type::kInt64, dex_pc);
2899       break;
2900     }
2901 
2902     case Instruction::ADD_LONG_2ADDR: {
2903       Binop_12x<HAdd>(instruction, DataType::Type::kInt64, dex_pc);
2904       break;
2905     }
2906 
2907     case Instruction::ADD_DOUBLE_2ADDR: {
2908       Binop_12x<HAdd>(instruction, DataType::Type::kFloat64, dex_pc);
2909       break;
2910     }
2911 
2912     case Instruction::ADD_FLOAT_2ADDR: {
2913       Binop_12x<HAdd>(instruction, DataType::Type::kFloat32, dex_pc);
2914       break;
2915     }
2916 
2917     case Instruction::SUB_INT_2ADDR: {
2918       Binop_12x<HSub>(instruction, DataType::Type::kInt32, dex_pc);
2919       break;
2920     }
2921 
2922     case Instruction::SUB_LONG_2ADDR: {
2923       Binop_12x<HSub>(instruction, DataType::Type::kInt64, dex_pc);
2924       break;
2925     }
2926 
2927     case Instruction::SUB_FLOAT_2ADDR: {
2928       Binop_12x<HSub>(instruction, DataType::Type::kFloat32, dex_pc);
2929       break;
2930     }
2931 
2932     case Instruction::SUB_DOUBLE_2ADDR: {
2933       Binop_12x<HSub>(instruction, DataType::Type::kFloat64, dex_pc);
2934       break;
2935     }
2936 
2937     case Instruction::MUL_INT_2ADDR: {
2938       Binop_12x<HMul>(instruction, DataType::Type::kInt32, dex_pc);
2939       break;
2940     }
2941 
2942     case Instruction::MUL_LONG_2ADDR: {
2943       Binop_12x<HMul>(instruction, DataType::Type::kInt64, dex_pc);
2944       break;
2945     }
2946 
2947     case Instruction::MUL_FLOAT_2ADDR: {
2948       Binop_12x<HMul>(instruction, DataType::Type::kFloat32, dex_pc);
2949       break;
2950     }
2951 
2952     case Instruction::MUL_DOUBLE_2ADDR: {
2953       Binop_12x<HMul>(instruction, DataType::Type::kFloat64, dex_pc);
2954       break;
2955     }
2956 
2957     case Instruction::DIV_INT_2ADDR: {
2958       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2959                          dex_pc, DataType::Type::kInt32, false, true);
2960       break;
2961     }
2962 
2963     case Instruction::DIV_LONG_2ADDR: {
2964       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2965                          dex_pc, DataType::Type::kInt64, false, true);
2966       break;
2967     }
2968 
2969     case Instruction::REM_INT_2ADDR: {
2970       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2971                          dex_pc, DataType::Type::kInt32, false, false);
2972       break;
2973     }
2974 
2975     case Instruction::REM_LONG_2ADDR: {
2976       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2977                          dex_pc, DataType::Type::kInt64, false, false);
2978       break;
2979     }
2980 
2981     case Instruction::REM_FLOAT_2ADDR: {
2982       Binop_12x<HRem>(instruction, DataType::Type::kFloat32, dex_pc);
2983       break;
2984     }
2985 
2986     case Instruction::REM_DOUBLE_2ADDR: {
2987       Binop_12x<HRem>(instruction, DataType::Type::kFloat64, dex_pc);
2988       break;
2989     }
2990 
2991     case Instruction::SHL_INT_2ADDR: {
2992       Binop_12x_shift<HShl>(instruction, DataType::Type::kInt32, dex_pc);
2993       break;
2994     }
2995 
2996     case Instruction::SHL_LONG_2ADDR: {
2997       Binop_12x_shift<HShl>(instruction, DataType::Type::kInt64, dex_pc);
2998       break;
2999     }
3000 
3001     case Instruction::SHR_INT_2ADDR: {
3002       Binop_12x_shift<HShr>(instruction, DataType::Type::kInt32, dex_pc);
3003       break;
3004     }
3005 
3006     case Instruction::SHR_LONG_2ADDR: {
3007       Binop_12x_shift<HShr>(instruction, DataType::Type::kInt64, dex_pc);
3008       break;
3009     }
3010 
3011     case Instruction::USHR_INT_2ADDR: {
3012       Binop_12x_shift<HUShr>(instruction, DataType::Type::kInt32, dex_pc);
3013       break;
3014     }
3015 
3016     case Instruction::USHR_LONG_2ADDR: {
3017       Binop_12x_shift<HUShr>(instruction, DataType::Type::kInt64, dex_pc);
3018       break;
3019     }
3020 
3021     case Instruction::DIV_FLOAT_2ADDR: {
3022       Binop_12x<HDiv>(instruction, DataType::Type::kFloat32, dex_pc);
3023       break;
3024     }
3025 
3026     case Instruction::DIV_DOUBLE_2ADDR: {
3027       Binop_12x<HDiv>(instruction, DataType::Type::kFloat64, dex_pc);
3028       break;
3029     }
3030 
3031     case Instruction::AND_INT_2ADDR: {
3032       Binop_12x<HAnd>(instruction, DataType::Type::kInt32, dex_pc);
3033       break;
3034     }
3035 
3036     case Instruction::AND_LONG_2ADDR: {
3037       Binop_12x<HAnd>(instruction, DataType::Type::kInt64, dex_pc);
3038       break;
3039     }
3040 
3041     case Instruction::OR_INT_2ADDR: {
3042       Binop_12x<HOr>(instruction, DataType::Type::kInt32, dex_pc);
3043       break;
3044     }
3045 
3046     case Instruction::OR_LONG_2ADDR: {
3047       Binop_12x<HOr>(instruction, DataType::Type::kInt64, dex_pc);
3048       break;
3049     }
3050 
3051     case Instruction::XOR_INT_2ADDR: {
3052       Binop_12x<HXor>(instruction, DataType::Type::kInt32, dex_pc);
3053       break;
3054     }
3055 
3056     case Instruction::XOR_LONG_2ADDR: {
3057       Binop_12x<HXor>(instruction, DataType::Type::kInt64, dex_pc);
3058       break;
3059     }
3060 
3061     case Instruction::ADD_INT_LIT16: {
3062       Binop_22s<HAdd>(instruction, false, dex_pc);
3063       break;
3064     }
3065 
3066     case Instruction::AND_INT_LIT16: {
3067       Binop_22s<HAnd>(instruction, false, dex_pc);
3068       break;
3069     }
3070 
3071     case Instruction::OR_INT_LIT16: {
3072       Binop_22s<HOr>(instruction, false, dex_pc);
3073       break;
3074     }
3075 
3076     case Instruction::XOR_INT_LIT16: {
3077       Binop_22s<HXor>(instruction, false, dex_pc);
3078       break;
3079     }
3080 
3081     case Instruction::RSUB_INT: {
3082       Binop_22s<HSub>(instruction, true, dex_pc);
3083       break;
3084     }
3085 
3086     case Instruction::MUL_INT_LIT16: {
3087       Binop_22s<HMul>(instruction, false, dex_pc);
3088       break;
3089     }
3090 
3091     case Instruction::ADD_INT_LIT8: {
3092       Binop_22b<HAdd>(instruction, false, dex_pc);
3093       break;
3094     }
3095 
3096     case Instruction::AND_INT_LIT8: {
3097       Binop_22b<HAnd>(instruction, false, dex_pc);
3098       break;
3099     }
3100 
3101     case Instruction::OR_INT_LIT8: {
3102       Binop_22b<HOr>(instruction, false, dex_pc);
3103       break;
3104     }
3105 
3106     case Instruction::XOR_INT_LIT8: {
3107       Binop_22b<HXor>(instruction, false, dex_pc);
3108       break;
3109     }
3110 
3111     case Instruction::RSUB_INT_LIT8: {
3112       Binop_22b<HSub>(instruction, true, dex_pc);
3113       break;
3114     }
3115 
3116     case Instruction::MUL_INT_LIT8: {
3117       Binop_22b<HMul>(instruction, false, dex_pc);
3118       break;
3119     }
3120 
3121     case Instruction::DIV_INT_LIT16:
3122     case Instruction::DIV_INT_LIT8: {
3123       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
3124                          dex_pc, DataType::Type::kInt32, true, true);
3125       break;
3126     }
3127 
3128     case Instruction::REM_INT_LIT16:
3129     case Instruction::REM_INT_LIT8: {
3130       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
3131                          dex_pc, DataType::Type::kInt32, true, false);
3132       break;
3133     }
3134 
3135     case Instruction::SHL_INT_LIT8: {
3136       Binop_22b<HShl>(instruction, false, dex_pc);
3137       break;
3138     }
3139 
3140     case Instruction::SHR_INT_LIT8: {
3141       Binop_22b<HShr>(instruction, false, dex_pc);
3142       break;
3143     }
3144 
3145     case Instruction::USHR_INT_LIT8: {
3146       Binop_22b<HUShr>(instruction, false, dex_pc);
3147       break;
3148     }
3149 
3150     case Instruction::NEW_INSTANCE: {
3151       HNewInstance* new_instance =
3152           BuildNewInstance(dex::TypeIndex(instruction.VRegB_21c()), dex_pc);
3153       DCHECK(new_instance != nullptr);
3154 
3155       UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
3156       BuildConstructorFenceForAllocation(new_instance);
3157       break;
3158     }
3159 
3160     case Instruction::NEW_ARRAY: {
3161       dex::TypeIndex type_index(instruction.VRegC_22c());
3162       HInstruction* length = LoadLocal(instruction.VRegB_22c(), DataType::Type::kInt32);
3163       HNewArray* new_array = BuildNewArray(dex_pc, type_index, length);
3164 
3165       UpdateLocal(instruction.VRegA_22c(), current_block_->GetLastInstruction());
3166       BuildConstructorFenceForAllocation(new_array);
3167       break;
3168     }
3169 
3170     case Instruction::FILLED_NEW_ARRAY: {
3171       dex::TypeIndex type_index(instruction.VRegB_35c());
3172       uint32_t args[5];
3173       uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args);
3174       VarArgsInstructionOperands operands(args, number_of_vreg_arguments);
3175       HNewArray* new_array = BuildFilledNewArray(dex_pc, type_index, operands);
3176       BuildConstructorFenceForAllocation(new_array);
3177       break;
3178     }
3179 
3180     case Instruction::FILLED_NEW_ARRAY_RANGE: {
3181       dex::TypeIndex type_index(instruction.VRegB_3rc());
3182       RangeInstructionOperands operands(instruction.VRegC_3rc(), instruction.VRegA_3rc());
3183       HNewArray* new_array = BuildFilledNewArray(dex_pc, type_index, operands);
3184       BuildConstructorFenceForAllocation(new_array);
3185       break;
3186     }
3187 
3188     case Instruction::FILL_ARRAY_DATA: {
3189       BuildFillArrayData(instruction, dex_pc);
3190       break;
3191     }
3192 
3193     case Instruction::MOVE_RESULT:
3194     case Instruction::MOVE_RESULT_WIDE:
3195     case Instruction::MOVE_RESULT_OBJECT: {
3196       DCHECK(latest_result_ != nullptr);
3197       UpdateLocal(instruction.VRegA(), latest_result_);
3198       latest_result_ = nullptr;
3199       break;
3200     }
3201 
3202     case Instruction::CMP_LONG: {
3203       Binop_23x_cmp(instruction, DataType::Type::kInt64, ComparisonBias::kNoBias, dex_pc);
3204       break;
3205     }
3206 
3207     case Instruction::CMPG_FLOAT: {
3208       Binop_23x_cmp(instruction, DataType::Type::kFloat32, ComparisonBias::kGtBias, dex_pc);
3209       break;
3210     }
3211 
3212     case Instruction::CMPG_DOUBLE: {
3213       Binop_23x_cmp(instruction, DataType::Type::kFloat64, ComparisonBias::kGtBias, dex_pc);
3214       break;
3215     }
3216 
3217     case Instruction::CMPL_FLOAT: {
3218       Binop_23x_cmp(instruction, DataType::Type::kFloat32, ComparisonBias::kLtBias, dex_pc);
3219       break;
3220     }
3221 
3222     case Instruction::CMPL_DOUBLE: {
3223       Binop_23x_cmp(instruction, DataType::Type::kFloat64, ComparisonBias::kLtBias, dex_pc);
3224       break;
3225     }
3226 
3227     case Instruction::NOP:
3228       break;
3229 
3230     case Instruction::IGET:
3231     case Instruction::IGET_QUICK:
3232     case Instruction::IGET_WIDE:
3233     case Instruction::IGET_WIDE_QUICK:
3234     case Instruction::IGET_OBJECT:
3235     case Instruction::IGET_OBJECT_QUICK:
3236     case Instruction::IGET_BOOLEAN:
3237     case Instruction::IGET_BOOLEAN_QUICK:
3238     case Instruction::IGET_BYTE:
3239     case Instruction::IGET_BYTE_QUICK:
3240     case Instruction::IGET_CHAR:
3241     case Instruction::IGET_CHAR_QUICK:
3242     case Instruction::IGET_SHORT:
3243     case Instruction::IGET_SHORT_QUICK: {
3244       if (!BuildInstanceFieldAccess(instruction, dex_pc, /* is_put= */ false, quicken_index)) {
3245         return false;
3246       }
3247       break;
3248     }
3249 
3250     case Instruction::IPUT:
3251     case Instruction::IPUT_QUICK:
3252     case Instruction::IPUT_WIDE:
3253     case Instruction::IPUT_WIDE_QUICK:
3254     case Instruction::IPUT_OBJECT:
3255     case Instruction::IPUT_OBJECT_QUICK:
3256     case Instruction::IPUT_BOOLEAN:
3257     case Instruction::IPUT_BOOLEAN_QUICK:
3258     case Instruction::IPUT_BYTE:
3259     case Instruction::IPUT_BYTE_QUICK:
3260     case Instruction::IPUT_CHAR:
3261     case Instruction::IPUT_CHAR_QUICK:
3262     case Instruction::IPUT_SHORT:
3263     case Instruction::IPUT_SHORT_QUICK: {
3264       if (!BuildInstanceFieldAccess(instruction, dex_pc, /* is_put= */ true, quicken_index)) {
3265         return false;
3266       }
3267       break;
3268     }
3269 
3270     case Instruction::SGET:
3271     case Instruction::SGET_WIDE:
3272     case Instruction::SGET_OBJECT:
3273     case Instruction::SGET_BOOLEAN:
3274     case Instruction::SGET_BYTE:
3275     case Instruction::SGET_CHAR:
3276     case Instruction::SGET_SHORT: {
3277       BuildStaticFieldAccess(instruction, dex_pc, /* is_put= */ false);
3278       break;
3279     }
3280 
3281     case Instruction::SPUT:
3282     case Instruction::SPUT_WIDE:
3283     case Instruction::SPUT_OBJECT:
3284     case Instruction::SPUT_BOOLEAN:
3285     case Instruction::SPUT_BYTE:
3286     case Instruction::SPUT_CHAR:
3287     case Instruction::SPUT_SHORT: {
3288       BuildStaticFieldAccess(instruction, dex_pc, /* is_put= */ true);
3289       break;
3290     }
3291 
3292 #define ARRAY_XX(kind, anticipated_type)                                          \
3293     case Instruction::AGET##kind: {                                               \
3294       BuildArrayAccess(instruction, dex_pc, false, anticipated_type);         \
3295       break;                                                                      \
3296     }                                                                             \
3297     case Instruction::APUT##kind: {                                               \
3298       BuildArrayAccess(instruction, dex_pc, true, anticipated_type);          \
3299       break;                                                                      \
3300     }
3301 
3302     ARRAY_XX(, DataType::Type::kInt32);
3303     ARRAY_XX(_WIDE, DataType::Type::kInt64);
3304     ARRAY_XX(_OBJECT, DataType::Type::kReference);
3305     ARRAY_XX(_BOOLEAN, DataType::Type::kBool);
3306     ARRAY_XX(_BYTE, DataType::Type::kInt8);
3307     ARRAY_XX(_CHAR, DataType::Type::kUint16);
3308     ARRAY_XX(_SHORT, DataType::Type::kInt16);
3309 
3310     case Instruction::ARRAY_LENGTH: {
3311       HInstruction* object = LoadNullCheckedLocal(instruction.VRegB_12x(), dex_pc);
3312       AppendInstruction(new (allocator_) HArrayLength(object, dex_pc));
3313       UpdateLocal(instruction.VRegA_12x(), current_block_->GetLastInstruction());
3314       break;
3315     }
3316 
3317     case Instruction::CONST_STRING: {
3318       dex::StringIndex string_index(instruction.VRegB_21c());
3319       BuildLoadString(string_index, dex_pc);
3320       UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
3321       break;
3322     }
3323 
3324     case Instruction::CONST_STRING_JUMBO: {
3325       dex::StringIndex string_index(instruction.VRegB_31c());
3326       BuildLoadString(string_index, dex_pc);
3327       UpdateLocal(instruction.VRegA_31c(), current_block_->GetLastInstruction());
3328       break;
3329     }
3330 
3331     case Instruction::CONST_CLASS: {
3332       dex::TypeIndex type_index(instruction.VRegB_21c());
3333       BuildLoadClass(type_index, dex_pc);
3334       UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
3335       break;
3336     }
3337 
3338     case Instruction::CONST_METHOD_HANDLE: {
3339       uint16_t method_handle_idx = instruction.VRegB_21c();
3340       BuildLoadMethodHandle(method_handle_idx, dex_pc);
3341       UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
3342       break;
3343     }
3344 
3345     case Instruction::CONST_METHOD_TYPE: {
3346       dex::ProtoIndex proto_idx(instruction.VRegB_21c());
3347       BuildLoadMethodType(proto_idx, dex_pc);
3348       UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
3349       break;
3350     }
3351 
3352     case Instruction::MOVE_EXCEPTION: {
3353       AppendInstruction(new (allocator_) HLoadException(dex_pc));
3354       UpdateLocal(instruction.VRegA_11x(), current_block_->GetLastInstruction());
3355       AppendInstruction(new (allocator_) HClearException(dex_pc));
3356       break;
3357     }
3358 
3359     case Instruction::THROW: {
3360       HInstruction* exception = LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference);
3361       AppendInstruction(new (allocator_) HThrow(exception, dex_pc));
3362       // We finished building this block. Set the current block to null to avoid
3363       // adding dead instructions to it.
3364       current_block_ = nullptr;
3365       break;
3366     }
3367 
3368     case Instruction::INSTANCE_OF: {
3369       uint8_t destination = instruction.VRegA_22c();
3370       uint8_t reference = instruction.VRegB_22c();
3371       dex::TypeIndex type_index(instruction.VRegC_22c());
3372       BuildTypeCheck(instruction, destination, reference, type_index, dex_pc);
3373       break;
3374     }
3375 
3376     case Instruction::CHECK_CAST: {
3377       uint8_t reference = instruction.VRegA_21c();
3378       dex::TypeIndex type_index(instruction.VRegB_21c());
3379       BuildTypeCheck(instruction, -1, reference, type_index, dex_pc);
3380       break;
3381     }
3382 
3383     case Instruction::MONITOR_ENTER: {
3384       AppendInstruction(new (allocator_) HMonitorOperation(
3385           LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference),
3386           HMonitorOperation::OperationKind::kEnter,
3387           dex_pc));
3388       graph_->SetHasMonitorOperations(true);
3389       break;
3390     }
3391 
3392     case Instruction::MONITOR_EXIT: {
3393       AppendInstruction(new (allocator_) HMonitorOperation(
3394           LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference),
3395           HMonitorOperation::OperationKind::kExit,
3396           dex_pc));
3397       graph_->SetHasMonitorOperations(true);
3398       break;
3399     }
3400 
3401     case Instruction::SPARSE_SWITCH:
3402     case Instruction::PACKED_SWITCH: {
3403       BuildSwitch(instruction, dex_pc);
3404       break;
3405     }
3406 
3407     case Instruction::UNUSED_3E:
3408     case Instruction::UNUSED_3F:
3409     case Instruction::UNUSED_40:
3410     case Instruction::UNUSED_41:
3411     case Instruction::UNUSED_42:
3412     case Instruction::UNUSED_43:
3413     case Instruction::UNUSED_79:
3414     case Instruction::UNUSED_7A:
3415     case Instruction::UNUSED_F3:
3416     case Instruction::UNUSED_F4:
3417     case Instruction::UNUSED_F5:
3418     case Instruction::UNUSED_F6:
3419     case Instruction::UNUSED_F7:
3420     case Instruction::UNUSED_F8:
3421     case Instruction::UNUSED_F9: {
3422       VLOG(compiler) << "Did not compile "
3423                      << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
3424                      << " because of unhandled instruction "
3425                      << instruction.Name();
3426       MaybeRecordStat(compilation_stats_,
3427                       MethodCompilationStat::kNotCompiledUnhandledInstruction);
3428       return false;
3429     }
3430   }
3431   return true;
3432 }  // NOLINT(readability/fn_size)
3433 
LookupResolvedType(dex::TypeIndex type_index,const DexCompilationUnit & compilation_unit) const3434 ObjPtr<mirror::Class> HInstructionBuilder::LookupResolvedType(
3435     dex::TypeIndex type_index,
3436     const DexCompilationUnit& compilation_unit) const {
3437   return compilation_unit.GetClassLinker()->LookupResolvedType(
3438         type_index, compilation_unit.GetDexCache().Get(), compilation_unit.GetClassLoader().Get());
3439 }
3440 
LookupReferrerClass() const3441 ObjPtr<mirror::Class> HInstructionBuilder::LookupReferrerClass() const {
3442   // TODO: Cache the result in a Handle<mirror::Class>.
3443   const dex::MethodId& method_id =
3444       dex_compilation_unit_->GetDexFile()->GetMethodId(dex_compilation_unit_->GetDexMethodIndex());
3445   return LookupResolvedType(method_id.class_idx_, *dex_compilation_unit_);
3446 }
3447 
3448 }  // namespace art
3449