1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "instruction_simplifier.h"
18
19 #include "art_method-inl.h"
20 #include "class_linker-inl.h"
21 #include "class_root-inl.h"
22 #include "data_type-inl.h"
23 #include "escape.h"
24 #include "intrinsics.h"
25 #include "mirror/class-inl.h"
26 #include "scoped_thread_state_change-inl.h"
27 #include "sharpening.h"
28 #include "string_builder_append.h"
29
30 namespace art {
31
32 // Whether to run an exhaustive test of individual HInstructions cloning when each instruction
33 // is replaced with its copy if it is clonable.
34 static constexpr bool kTestInstructionClonerExhaustively = false;
35
36 class InstructionSimplifierVisitor : public HGraphDelegateVisitor {
37 public:
InstructionSimplifierVisitor(HGraph * graph,CodeGenerator * codegen,OptimizingCompilerStats * stats,bool be_loop_friendly)38 InstructionSimplifierVisitor(HGraph* graph,
39 CodeGenerator* codegen,
40 OptimizingCompilerStats* stats,
41 bool be_loop_friendly)
42 : HGraphDelegateVisitor(graph),
43 codegen_(codegen),
44 stats_(stats),
45 be_loop_friendly_(be_loop_friendly) {}
46
47 bool Run();
48
49 private:
RecordSimplification()50 void RecordSimplification() {
51 simplification_occurred_ = true;
52 simplifications_at_current_position_++;
53 MaybeRecordStat(stats_, MethodCompilationStat::kInstructionSimplifications);
54 }
55
56 bool ReplaceRotateWithRor(HBinaryOperation* op, HUShr* ushr, HShl* shl);
57 bool TryReplaceWithRotate(HBinaryOperation* instruction);
58 bool TryReplaceWithRotateConstantPattern(HBinaryOperation* op, HUShr* ushr, HShl* shl);
59 bool TryReplaceWithRotateRegisterNegPattern(HBinaryOperation* op, HUShr* ushr, HShl* shl);
60 bool TryReplaceWithRotateRegisterSubPattern(HBinaryOperation* op, HUShr* ushr, HShl* shl);
61
62 bool TryMoveNegOnInputsAfterBinop(HBinaryOperation* binop);
63 // `op` should be either HOr or HAnd.
64 // De Morgan's laws:
65 // ~a & ~b = ~(a | b) and ~a | ~b = ~(a & b)
66 bool TryDeMorganNegationFactoring(HBinaryOperation* op);
67 bool TryHandleAssociativeAndCommutativeOperation(HBinaryOperation* instruction);
68 bool TrySubtractionChainSimplification(HBinaryOperation* instruction);
69 bool TryCombineVecMultiplyAccumulate(HVecMul* mul);
70 void TryToReuseDiv(HRem* rem);
71
72 void VisitShift(HBinaryOperation* shift);
73 void VisitEqual(HEqual* equal) override;
74 void VisitNotEqual(HNotEqual* equal) override;
75 void VisitBooleanNot(HBooleanNot* bool_not) override;
76 void VisitInstanceFieldSet(HInstanceFieldSet* equal) override;
77 void VisitStaticFieldSet(HStaticFieldSet* equal) override;
78 void VisitArraySet(HArraySet* equal) override;
79 void VisitTypeConversion(HTypeConversion* instruction) override;
80 void VisitNullCheck(HNullCheck* instruction) override;
81 void VisitArrayLength(HArrayLength* instruction) override;
82 void VisitCheckCast(HCheckCast* instruction) override;
83 void VisitAbs(HAbs* instruction) override;
84 void VisitAdd(HAdd* instruction) override;
85 void VisitAnd(HAnd* instruction) override;
86 void VisitCondition(HCondition* instruction) override;
87 void VisitGreaterThan(HGreaterThan* condition) override;
88 void VisitGreaterThanOrEqual(HGreaterThanOrEqual* condition) override;
89 void VisitLessThan(HLessThan* condition) override;
90 void VisitLessThanOrEqual(HLessThanOrEqual* condition) override;
91 void VisitBelow(HBelow* condition) override;
92 void VisitBelowOrEqual(HBelowOrEqual* condition) override;
93 void VisitAbove(HAbove* condition) override;
94 void VisitAboveOrEqual(HAboveOrEqual* condition) override;
95 void VisitDiv(HDiv* instruction) override;
96 void VisitRem(HRem* instruction) override;
97 void VisitMul(HMul* instruction) override;
98 void VisitNeg(HNeg* instruction) override;
99 void VisitNot(HNot* instruction) override;
100 void VisitOr(HOr* instruction) override;
101 void VisitShl(HShl* instruction) override;
102 void VisitShr(HShr* instruction) override;
103 void VisitSub(HSub* instruction) override;
104 void VisitUShr(HUShr* instruction) override;
105 void VisitXor(HXor* instruction) override;
106 void VisitSelect(HSelect* select) override;
107 void VisitIf(HIf* instruction) override;
108 void VisitInstanceOf(HInstanceOf* instruction) override;
109 void VisitInvoke(HInvoke* invoke) override;
110 void VisitDeoptimize(HDeoptimize* deoptimize) override;
111 void VisitVecMul(HVecMul* instruction) override;
112
113 bool CanEnsureNotNullAt(HInstruction* instr, HInstruction* at) const;
114
115 void SimplifySystemArrayCopy(HInvoke* invoke);
116 void SimplifyStringEquals(HInvoke* invoke);
117 void SimplifyFP2Int(HInvoke* invoke);
118 void SimplifyStringCharAt(HInvoke* invoke);
119 void SimplifyStringLength(HInvoke* invoke);
120 void SimplifyStringIndexOf(HInvoke* invoke);
121 void SimplifyNPEOnArgN(HInvoke* invoke, size_t);
122 void SimplifyReturnThis(HInvoke* invoke);
123 void SimplifyAllocationIntrinsic(HInvoke* invoke);
124
125 CodeGenerator* codegen_;
126 OptimizingCompilerStats* stats_;
127 bool simplification_occurred_ = false;
128 int simplifications_at_current_position_ = 0;
129 // Prohibit optimizations which can affect HInductionVarAnalysis/HLoopOptimization
130 // and prevent loop optimizations:
131 // true - avoid such optimizations.
132 // false - allow such optimizations.
133 // Checked by the following optimizations:
134 // - TryToReuseDiv: simplification of Div+Rem into Div+Mul+Sub.
135 bool be_loop_friendly_;
136 // We ensure we do not loop infinitely. The value should not be too high, since that
137 // would allow looping around the same basic block too many times. The value should
138 // not be too low either, however, since we want to allow revisiting a basic block
139 // with many statements and simplifications at least once.
140 static constexpr int kMaxSamePositionSimplifications = 50;
141 };
142
Run()143 bool InstructionSimplifier::Run() {
144 if (kTestInstructionClonerExhaustively) {
145 CloneAndReplaceInstructionVisitor visitor(graph_);
146 visitor.VisitReversePostOrder();
147 }
148
149 bool be_loop_friendly = (use_all_optimizations_ == false);
150
151 InstructionSimplifierVisitor visitor(graph_, codegen_, stats_, be_loop_friendly);
152 return visitor.Run();
153 }
154
Run()155 bool InstructionSimplifierVisitor::Run() {
156 bool didSimplify = false;
157 // Iterate in reverse post order to open up more simplifications to users
158 // of instructions that got simplified.
159 for (HBasicBlock* block : GetGraph()->GetReversePostOrder()) {
160 // The simplification of an instruction to another instruction may yield
161 // possibilities for other simplifications. So although we perform a reverse
162 // post order visit, we sometimes need to revisit an instruction index.
163 do {
164 simplification_occurred_ = false;
165 VisitBasicBlock(block);
166 if (simplification_occurred_) {
167 didSimplify = true;
168 }
169 } while (simplification_occurred_ &&
170 (simplifications_at_current_position_ < kMaxSamePositionSimplifications));
171 simplifications_at_current_position_ = 0;
172 }
173 return didSimplify;
174 }
175
176 namespace {
177
AreAllBitsSet(HConstant * constant)178 bool AreAllBitsSet(HConstant* constant) {
179 return Int64FromConstant(constant) == -1;
180 }
181
182 } // namespace
183
184 // Returns true if the code was simplified to use only one negation operation
185 // after the binary operation instead of one on each of the inputs.
TryMoveNegOnInputsAfterBinop(HBinaryOperation * binop)186 bool InstructionSimplifierVisitor::TryMoveNegOnInputsAfterBinop(HBinaryOperation* binop) {
187 DCHECK(binop->IsAdd() || binop->IsSub());
188 DCHECK(binop->GetLeft()->IsNeg() && binop->GetRight()->IsNeg());
189 HNeg* left_neg = binop->GetLeft()->AsNeg();
190 HNeg* right_neg = binop->GetRight()->AsNeg();
191 if (!left_neg->HasOnlyOneNonEnvironmentUse() ||
192 !right_neg->HasOnlyOneNonEnvironmentUse()) {
193 return false;
194 }
195 // Replace code looking like
196 // NEG tmp1, a
197 // NEG tmp2, b
198 // ADD dst, tmp1, tmp2
199 // with
200 // ADD tmp, a, b
201 // NEG dst, tmp
202 // Note that we cannot optimize `(-a) + (-b)` to `-(a + b)` for floating-point.
203 // When `a` is `-0.0` and `b` is `0.0`, the former expression yields `0.0`,
204 // while the later yields `-0.0`.
205 if (!DataType::IsIntegralType(binop->GetType())) {
206 return false;
207 }
208 binop->ReplaceInput(left_neg->GetInput(), 0);
209 binop->ReplaceInput(right_neg->GetInput(), 1);
210 left_neg->GetBlock()->RemoveInstruction(left_neg);
211 right_neg->GetBlock()->RemoveInstruction(right_neg);
212 HNeg* neg = new (GetGraph()->GetAllocator()) HNeg(binop->GetType(), binop);
213 binop->GetBlock()->InsertInstructionBefore(neg, binop->GetNext());
214 binop->ReplaceWithExceptInReplacementAtIndex(neg, 0);
215 RecordSimplification();
216 return true;
217 }
218
TryDeMorganNegationFactoring(HBinaryOperation * op)219 bool InstructionSimplifierVisitor::TryDeMorganNegationFactoring(HBinaryOperation* op) {
220 DCHECK(op->IsAnd() || op->IsOr()) << op->DebugName();
221 DataType::Type type = op->GetType();
222 HInstruction* left = op->GetLeft();
223 HInstruction* right = op->GetRight();
224
225 // We can apply De Morgan's laws if both inputs are Not's and are only used
226 // by `op`.
227 if (((left->IsNot() && right->IsNot()) ||
228 (left->IsBooleanNot() && right->IsBooleanNot())) &&
229 left->HasOnlyOneNonEnvironmentUse() &&
230 right->HasOnlyOneNonEnvironmentUse()) {
231 // Replace code looking like
232 // NOT nota, a
233 // NOT notb, b
234 // AND dst, nota, notb (respectively OR)
235 // with
236 // OR or, a, b (respectively AND)
237 // NOT dest, or
238 HInstruction* src_left = left->InputAt(0);
239 HInstruction* src_right = right->InputAt(0);
240 uint32_t dex_pc = op->GetDexPc();
241
242 // Remove the negations on the inputs.
243 left->ReplaceWith(src_left);
244 right->ReplaceWith(src_right);
245 left->GetBlock()->RemoveInstruction(left);
246 right->GetBlock()->RemoveInstruction(right);
247
248 // Replace the `HAnd` or `HOr`.
249 HBinaryOperation* hbin;
250 if (op->IsAnd()) {
251 hbin = new (GetGraph()->GetAllocator()) HOr(type, src_left, src_right, dex_pc);
252 } else {
253 hbin = new (GetGraph()->GetAllocator()) HAnd(type, src_left, src_right, dex_pc);
254 }
255 HInstruction* hnot;
256 if (left->IsBooleanNot()) {
257 hnot = new (GetGraph()->GetAllocator()) HBooleanNot(hbin, dex_pc);
258 } else {
259 hnot = new (GetGraph()->GetAllocator()) HNot(type, hbin, dex_pc);
260 }
261
262 op->GetBlock()->InsertInstructionBefore(hbin, op);
263 op->GetBlock()->ReplaceAndRemoveInstructionWith(op, hnot);
264
265 RecordSimplification();
266 return true;
267 }
268
269 return false;
270 }
271
TryCombineVecMultiplyAccumulate(HVecMul * mul)272 bool InstructionSimplifierVisitor::TryCombineVecMultiplyAccumulate(HVecMul* mul) {
273 DataType::Type type = mul->GetPackedType();
274 InstructionSet isa = codegen_->GetInstructionSet();
275 switch (isa) {
276 case InstructionSet::kArm64:
277 if (!(type == DataType::Type::kUint8 ||
278 type == DataType::Type::kInt8 ||
279 type == DataType::Type::kUint16 ||
280 type == DataType::Type::kInt16 ||
281 type == DataType::Type::kInt32)) {
282 return false;
283 }
284 break;
285 default:
286 return false;
287 }
288
289 ArenaAllocator* allocator = mul->GetBlock()->GetGraph()->GetAllocator();
290
291 if (mul->HasOnlyOneNonEnvironmentUse()) {
292 HInstruction* use = mul->GetUses().front().GetUser();
293 if (use->IsVecAdd() || use->IsVecSub()) {
294 // Replace code looking like
295 // VECMUL tmp, x, y
296 // VECADD/SUB dst, acc, tmp
297 // with
298 // VECMULACC dst, acc, x, y
299 // Note that we do not want to (unconditionally) perform the merge when the
300 // multiplication has multiple uses and it can be merged in all of them.
301 // Multiple uses could happen on the same control-flow path, and we would
302 // then increase the amount of work. In the future we could try to evaluate
303 // whether all uses are on different control-flow paths (using dominance and
304 // reverse-dominance information) and only perform the merge when they are.
305 HInstruction* accumulator = nullptr;
306 HVecBinaryOperation* binop = use->AsVecBinaryOperation();
307 HInstruction* binop_left = binop->GetLeft();
308 HInstruction* binop_right = binop->GetRight();
309 // This is always true since the `HVecMul` has only one use (which is checked above).
310 DCHECK_NE(binop_left, binop_right);
311 if (binop_right == mul) {
312 accumulator = binop_left;
313 } else if (use->IsVecAdd()) {
314 DCHECK_EQ(binop_left, mul);
315 accumulator = binop_right;
316 }
317
318 HInstruction::InstructionKind kind =
319 use->IsVecAdd() ? HInstruction::kAdd : HInstruction::kSub;
320 if (accumulator != nullptr) {
321 HVecMultiplyAccumulate* mulacc =
322 new (allocator) HVecMultiplyAccumulate(allocator,
323 kind,
324 accumulator,
325 mul->GetLeft(),
326 mul->GetRight(),
327 binop->GetPackedType(),
328 binop->GetVectorLength(),
329 binop->GetDexPc());
330
331 binop->GetBlock()->ReplaceAndRemoveInstructionWith(binop, mulacc);
332 DCHECK(!mul->HasUses());
333 mul->GetBlock()->RemoveInstruction(mul);
334 return true;
335 }
336 }
337 }
338
339 return false;
340 }
341
VisitShift(HBinaryOperation * instruction)342 void InstructionSimplifierVisitor::VisitShift(HBinaryOperation* instruction) {
343 DCHECK(instruction->IsShl() || instruction->IsShr() || instruction->IsUShr());
344 HInstruction* shift_amount = instruction->GetRight();
345 HInstruction* value = instruction->GetLeft();
346
347 int64_t implicit_mask = (value->GetType() == DataType::Type::kInt64)
348 ? kMaxLongShiftDistance
349 : kMaxIntShiftDistance;
350
351 if (shift_amount->IsConstant()) {
352 int64_t cst = Int64FromConstant(shift_amount->AsConstant());
353 int64_t masked_cst = cst & implicit_mask;
354 if (masked_cst == 0) {
355 // Replace code looking like
356 // SHL dst, value, 0
357 // with
358 // value
359 instruction->ReplaceWith(value);
360 instruction->GetBlock()->RemoveInstruction(instruction);
361 RecordSimplification();
362 return;
363 } else if (masked_cst != cst) {
364 // Replace code looking like
365 // SHL dst, value, cst
366 // where cst exceeds maximum distance with the equivalent
367 // SHL dst, value, cst & implicit_mask
368 // (as defined by shift semantics). This ensures other
369 // optimizations do not need to special case for such situations.
370 DCHECK_EQ(shift_amount->GetType(), DataType::Type::kInt32);
371 instruction->ReplaceInput(GetGraph()->GetIntConstant(masked_cst), /* index= */ 1);
372 RecordSimplification();
373 return;
374 }
375 }
376
377 // Shift operations implicitly mask the shift amount according to the type width. Get rid of
378 // unnecessary And/Or/Xor/Add/Sub/TypeConversion operations on the shift amount that do not
379 // affect the relevant bits.
380 // Replace code looking like
381 // AND adjusted_shift, shift, <superset of implicit mask>
382 // [OR/XOR/ADD/SUB adjusted_shift, shift, <value not overlapping with implicit mask>]
383 // [<conversion-from-integral-non-64-bit-type> adjusted_shift, shift]
384 // SHL dst, value, adjusted_shift
385 // with
386 // SHL dst, value, shift
387 if (shift_amount->IsAnd() ||
388 shift_amount->IsOr() ||
389 shift_amount->IsXor() ||
390 shift_amount->IsAdd() ||
391 shift_amount->IsSub()) {
392 int64_t required_result = shift_amount->IsAnd() ? implicit_mask : 0;
393 HBinaryOperation* bin_op = shift_amount->AsBinaryOperation();
394 HConstant* mask = bin_op->GetConstantRight();
395 if (mask != nullptr && (Int64FromConstant(mask) & implicit_mask) == required_result) {
396 instruction->ReplaceInput(bin_op->GetLeastConstantLeft(), 1);
397 RecordSimplification();
398 return;
399 }
400 } else if (shift_amount->IsTypeConversion()) {
401 DCHECK_NE(shift_amount->GetType(), DataType::Type::kBool); // We never convert to bool.
402 DataType::Type source_type = shift_amount->InputAt(0)->GetType();
403 // Non-integral and 64-bit source types require an explicit type conversion.
404 if (DataType::IsIntegralType(source_type) && !DataType::Is64BitType(source_type)) {
405 instruction->ReplaceInput(shift_amount->AsTypeConversion()->GetInput(), 1);
406 RecordSimplification();
407 return;
408 }
409 }
410 }
411
IsSubRegBitsMinusOther(HSub * sub,size_t reg_bits,HInstruction * other)412 static bool IsSubRegBitsMinusOther(HSub* sub, size_t reg_bits, HInstruction* other) {
413 return (sub->GetRight() == other &&
414 sub->GetLeft()->IsConstant() &&
415 (Int64FromConstant(sub->GetLeft()->AsConstant()) & (reg_bits - 1)) == 0);
416 }
417
ReplaceRotateWithRor(HBinaryOperation * op,HUShr * ushr,HShl * shl)418 bool InstructionSimplifierVisitor::ReplaceRotateWithRor(HBinaryOperation* op,
419 HUShr* ushr,
420 HShl* shl) {
421 DCHECK(op->IsAdd() || op->IsXor() || op->IsOr()) << op->DebugName();
422 HRor* ror =
423 new (GetGraph()->GetAllocator()) HRor(ushr->GetType(), ushr->GetLeft(), ushr->GetRight());
424 op->GetBlock()->ReplaceAndRemoveInstructionWith(op, ror);
425 if (!ushr->HasUses()) {
426 ushr->GetBlock()->RemoveInstruction(ushr);
427 }
428 if (!ushr->GetRight()->HasUses()) {
429 ushr->GetRight()->GetBlock()->RemoveInstruction(ushr->GetRight());
430 }
431 if (!shl->HasUses()) {
432 shl->GetBlock()->RemoveInstruction(shl);
433 }
434 if (!shl->GetRight()->HasUses()) {
435 shl->GetRight()->GetBlock()->RemoveInstruction(shl->GetRight());
436 }
437 RecordSimplification();
438 return true;
439 }
440
441 // Try to replace a binary operation flanked by one UShr and one Shl with a bitfield rotation.
TryReplaceWithRotate(HBinaryOperation * op)442 bool InstructionSimplifierVisitor::TryReplaceWithRotate(HBinaryOperation* op) {
443 DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
444 HInstruction* left = op->GetLeft();
445 HInstruction* right = op->GetRight();
446 // If we have an UShr and a Shl (in either order).
447 if ((left->IsUShr() && right->IsShl()) || (left->IsShl() && right->IsUShr())) {
448 HUShr* ushr = left->IsUShr() ? left->AsUShr() : right->AsUShr();
449 HShl* shl = left->IsShl() ? left->AsShl() : right->AsShl();
450 DCHECK(DataType::IsIntOrLongType(ushr->GetType()));
451 if (ushr->GetType() == shl->GetType() &&
452 ushr->GetLeft() == shl->GetLeft()) {
453 if (ushr->GetRight()->IsConstant() && shl->GetRight()->IsConstant()) {
454 // Shift distances are both constant, try replacing with Ror if they
455 // add up to the register size.
456 return TryReplaceWithRotateConstantPattern(op, ushr, shl);
457 } else if (ushr->GetRight()->IsSub() || shl->GetRight()->IsSub()) {
458 // Shift distances are potentially of the form x and (reg_size - x).
459 return TryReplaceWithRotateRegisterSubPattern(op, ushr, shl);
460 } else if (ushr->GetRight()->IsNeg() || shl->GetRight()->IsNeg()) {
461 // Shift distances are potentially of the form d and -d.
462 return TryReplaceWithRotateRegisterNegPattern(op, ushr, shl);
463 }
464 }
465 }
466 return false;
467 }
468
469 // Try replacing code looking like (x >>> #rdist OP x << #ldist):
470 // UShr dst, x, #rdist
471 // Shl tmp, x, #ldist
472 // OP dst, dst, tmp
473 // or like (x >>> #rdist OP x << #-ldist):
474 // UShr dst, x, #rdist
475 // Shl tmp, x, #-ldist
476 // OP dst, dst, tmp
477 // with
478 // Ror dst, x, #rdist
TryReplaceWithRotateConstantPattern(HBinaryOperation * op,HUShr * ushr,HShl * shl)479 bool InstructionSimplifierVisitor::TryReplaceWithRotateConstantPattern(HBinaryOperation* op,
480 HUShr* ushr,
481 HShl* shl) {
482 DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
483 size_t reg_bits = DataType::Size(ushr->GetType()) * kBitsPerByte;
484 size_t rdist = Int64FromConstant(ushr->GetRight()->AsConstant());
485 size_t ldist = Int64FromConstant(shl->GetRight()->AsConstant());
486 if (((ldist + rdist) & (reg_bits - 1)) == 0) {
487 ReplaceRotateWithRor(op, ushr, shl);
488 return true;
489 }
490 return false;
491 }
492
493 // Replace code looking like (x >>> -d OP x << d):
494 // Neg neg, d
495 // UShr dst, x, neg
496 // Shl tmp, x, d
497 // OP dst, dst, tmp
498 // with
499 // Neg neg, d
500 // Ror dst, x, neg
501 // *** OR ***
502 // Replace code looking like (x >>> d OP x << -d):
503 // UShr dst, x, d
504 // Neg neg, d
505 // Shl tmp, x, neg
506 // OP dst, dst, tmp
507 // with
508 // Ror dst, x, d
TryReplaceWithRotateRegisterNegPattern(HBinaryOperation * op,HUShr * ushr,HShl * shl)509 bool InstructionSimplifierVisitor::TryReplaceWithRotateRegisterNegPattern(HBinaryOperation* op,
510 HUShr* ushr,
511 HShl* shl) {
512 DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
513 DCHECK(ushr->GetRight()->IsNeg() || shl->GetRight()->IsNeg());
514 bool neg_is_left = shl->GetRight()->IsNeg();
515 HNeg* neg = neg_is_left ? shl->GetRight()->AsNeg() : ushr->GetRight()->AsNeg();
516 // And the shift distance being negated is the distance being shifted the other way.
517 if (neg->InputAt(0) == (neg_is_left ? ushr->GetRight() : shl->GetRight())) {
518 ReplaceRotateWithRor(op, ushr, shl);
519 }
520 return false;
521 }
522
523 // Try replacing code looking like (x >>> d OP x << (#bits - d)):
524 // UShr dst, x, d
525 // Sub ld, #bits, d
526 // Shl tmp, x, ld
527 // OP dst, dst, tmp
528 // with
529 // Ror dst, x, d
530 // *** OR ***
531 // Replace code looking like (x >>> (#bits - d) OP x << d):
532 // Sub rd, #bits, d
533 // UShr dst, x, rd
534 // Shl tmp, x, d
535 // OP dst, dst, tmp
536 // with
537 // Neg neg, d
538 // Ror dst, x, neg
TryReplaceWithRotateRegisterSubPattern(HBinaryOperation * op,HUShr * ushr,HShl * shl)539 bool InstructionSimplifierVisitor::TryReplaceWithRotateRegisterSubPattern(HBinaryOperation* op,
540 HUShr* ushr,
541 HShl* shl) {
542 DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
543 DCHECK(ushr->GetRight()->IsSub() || shl->GetRight()->IsSub());
544 size_t reg_bits = DataType::Size(ushr->GetType()) * kBitsPerByte;
545 HInstruction* shl_shift = shl->GetRight();
546 HInstruction* ushr_shift = ushr->GetRight();
547 if ((shl_shift->IsSub() && IsSubRegBitsMinusOther(shl_shift->AsSub(), reg_bits, ushr_shift)) ||
548 (ushr_shift->IsSub() && IsSubRegBitsMinusOther(ushr_shift->AsSub(), reg_bits, shl_shift))) {
549 return ReplaceRotateWithRor(op, ushr, shl);
550 }
551 return false;
552 }
553
VisitNullCheck(HNullCheck * null_check)554 void InstructionSimplifierVisitor::VisitNullCheck(HNullCheck* null_check) {
555 HInstruction* obj = null_check->InputAt(0);
556 if (!obj->CanBeNull()) {
557 null_check->ReplaceWith(obj);
558 null_check->GetBlock()->RemoveInstruction(null_check);
559 if (stats_ != nullptr) {
560 stats_->RecordStat(MethodCompilationStat::kRemovedNullCheck);
561 }
562 }
563 }
564
CanEnsureNotNullAt(HInstruction * input,HInstruction * at) const565 bool InstructionSimplifierVisitor::CanEnsureNotNullAt(HInstruction* input, HInstruction* at) const {
566 if (!input->CanBeNull()) {
567 return true;
568 }
569
570 for (const HUseListNode<HInstruction*>& use : input->GetUses()) {
571 HInstruction* user = use.GetUser();
572 if (user->IsNullCheck() && user->StrictlyDominates(at)) {
573 return true;
574 }
575 }
576
577 return false;
578 }
579
580 // Returns whether doing a type test between the class of `object` against `klass` has
581 // a statically known outcome. The result of the test is stored in `outcome`.
TypeCheckHasKnownOutcome(ReferenceTypeInfo class_rti,HInstruction * object,bool * outcome)582 static bool TypeCheckHasKnownOutcome(ReferenceTypeInfo class_rti,
583 HInstruction* object,
584 /*out*/bool* outcome) {
585 DCHECK(!object->IsNullConstant()) << "Null constants should be special cased";
586 ReferenceTypeInfo obj_rti = object->GetReferenceTypeInfo();
587 ScopedObjectAccess soa(Thread::Current());
588 if (!obj_rti.IsValid()) {
589 // We run the simplifier before the reference type propagation so type info might not be
590 // available.
591 return false;
592 }
593
594 if (!class_rti.IsValid()) {
595 // Happens when the loaded class is unresolved.
596 return false;
597 }
598 DCHECK(class_rti.IsExact());
599 if (class_rti.IsSupertypeOf(obj_rti)) {
600 *outcome = true;
601 return true;
602 } else if (obj_rti.IsExact()) {
603 // The test failed at compile time so will also fail at runtime.
604 *outcome = false;
605 return true;
606 } else if (!class_rti.IsInterface()
607 && !obj_rti.IsInterface()
608 && !obj_rti.IsSupertypeOf(class_rti)) {
609 // Different type hierarchy. The test will fail.
610 *outcome = false;
611 return true;
612 }
613 return false;
614 }
615
VisitCheckCast(HCheckCast * check_cast)616 void InstructionSimplifierVisitor::VisitCheckCast(HCheckCast* check_cast) {
617 HInstruction* object = check_cast->InputAt(0);
618 if (check_cast->GetTypeCheckKind() != TypeCheckKind::kBitstringCheck &&
619 check_cast->GetTargetClass()->NeedsAccessCheck()) {
620 // If we need to perform an access check we cannot remove the instruction.
621 return;
622 }
623
624 if (CanEnsureNotNullAt(object, check_cast)) {
625 check_cast->ClearMustDoNullCheck();
626 }
627
628 if (object->IsNullConstant()) {
629 check_cast->GetBlock()->RemoveInstruction(check_cast);
630 MaybeRecordStat(stats_, MethodCompilationStat::kRemovedCheckedCast);
631 return;
632 }
633
634 // Historical note: The `outcome` was initialized to please Valgrind - the compiler can reorder
635 // the return value check with the `outcome` check, b/27651442.
636 bool outcome = false;
637 if (TypeCheckHasKnownOutcome(check_cast->GetTargetClassRTI(), object, &outcome)) {
638 if (outcome) {
639 check_cast->GetBlock()->RemoveInstruction(check_cast);
640 MaybeRecordStat(stats_, MethodCompilationStat::kRemovedCheckedCast);
641 if (check_cast->GetTypeCheckKind() != TypeCheckKind::kBitstringCheck) {
642 HLoadClass* load_class = check_cast->GetTargetClass();
643 if (!load_class->HasUses()) {
644 // We cannot rely on DCE to remove the class because the `HLoadClass` thinks it can throw.
645 // However, here we know that it cannot because the checkcast was successfull, hence
646 // the class was already loaded.
647 load_class->GetBlock()->RemoveInstruction(load_class);
648 }
649 }
650 } else {
651 // Don't do anything for exceptional cases for now. Ideally we should remove
652 // all instructions and blocks this instruction dominates.
653 }
654 }
655 }
656
VisitInstanceOf(HInstanceOf * instruction)657 void InstructionSimplifierVisitor::VisitInstanceOf(HInstanceOf* instruction) {
658 HInstruction* object = instruction->InputAt(0);
659 if (instruction->GetTypeCheckKind() != TypeCheckKind::kBitstringCheck &&
660 instruction->GetTargetClass()->NeedsAccessCheck()) {
661 // If we need to perform an access check we cannot remove the instruction.
662 return;
663 }
664
665 bool can_be_null = true;
666 if (CanEnsureNotNullAt(object, instruction)) {
667 can_be_null = false;
668 instruction->ClearMustDoNullCheck();
669 }
670
671 HGraph* graph = GetGraph();
672 if (object->IsNullConstant()) {
673 MaybeRecordStat(stats_, MethodCompilationStat::kRemovedInstanceOf);
674 instruction->ReplaceWith(graph->GetIntConstant(0));
675 instruction->GetBlock()->RemoveInstruction(instruction);
676 RecordSimplification();
677 return;
678 }
679
680 // Historical note: The `outcome` was initialized to please Valgrind - the compiler can reorder
681 // the return value check with the `outcome` check, b/27651442.
682 bool outcome = false;
683 if (TypeCheckHasKnownOutcome(instruction->GetTargetClassRTI(), object, &outcome)) {
684 MaybeRecordStat(stats_, MethodCompilationStat::kRemovedInstanceOf);
685 if (outcome && can_be_null) {
686 // Type test will succeed, we just need a null test.
687 HNotEqual* test = new (graph->GetAllocator()) HNotEqual(graph->GetNullConstant(), object);
688 instruction->GetBlock()->InsertInstructionBefore(test, instruction);
689 instruction->ReplaceWith(test);
690 } else {
691 // We've statically determined the result of the instanceof.
692 instruction->ReplaceWith(graph->GetIntConstant(outcome));
693 }
694 RecordSimplification();
695 instruction->GetBlock()->RemoveInstruction(instruction);
696 if (outcome && instruction->GetTypeCheckKind() != TypeCheckKind::kBitstringCheck) {
697 HLoadClass* load_class = instruction->GetTargetClass();
698 if (!load_class->HasUses()) {
699 // We cannot rely on DCE to remove the class because the `HLoadClass` thinks it can throw.
700 // However, here we know that it cannot because the instanceof check was successfull, hence
701 // the class was already loaded.
702 load_class->GetBlock()->RemoveInstruction(load_class);
703 }
704 }
705 }
706 }
707
VisitInstanceFieldSet(HInstanceFieldSet * instruction)708 void InstructionSimplifierVisitor::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
709 if ((instruction->GetValue()->GetType() == DataType::Type::kReference)
710 && CanEnsureNotNullAt(instruction->GetValue(), instruction)) {
711 instruction->ClearValueCanBeNull();
712 }
713 }
714
VisitStaticFieldSet(HStaticFieldSet * instruction)715 void InstructionSimplifierVisitor::VisitStaticFieldSet(HStaticFieldSet* instruction) {
716 if ((instruction->GetValue()->GetType() == DataType::Type::kReference)
717 && CanEnsureNotNullAt(instruction->GetValue(), instruction)) {
718 instruction->ClearValueCanBeNull();
719 }
720 }
721
GetOppositeConditionSwapOps(ArenaAllocator * allocator,HInstruction * cond)722 static HCondition* GetOppositeConditionSwapOps(ArenaAllocator* allocator, HInstruction* cond) {
723 HInstruction *lhs = cond->InputAt(0);
724 HInstruction *rhs = cond->InputAt(1);
725 switch (cond->GetKind()) {
726 case HInstruction::kEqual:
727 return new (allocator) HEqual(rhs, lhs);
728 case HInstruction::kNotEqual:
729 return new (allocator) HNotEqual(rhs, lhs);
730 case HInstruction::kLessThan:
731 return new (allocator) HGreaterThan(rhs, lhs);
732 case HInstruction::kLessThanOrEqual:
733 return new (allocator) HGreaterThanOrEqual(rhs, lhs);
734 case HInstruction::kGreaterThan:
735 return new (allocator) HLessThan(rhs, lhs);
736 case HInstruction::kGreaterThanOrEqual:
737 return new (allocator) HLessThanOrEqual(rhs, lhs);
738 case HInstruction::kBelow:
739 return new (allocator) HAbove(rhs, lhs);
740 case HInstruction::kBelowOrEqual:
741 return new (allocator) HAboveOrEqual(rhs, lhs);
742 case HInstruction::kAbove:
743 return new (allocator) HBelow(rhs, lhs);
744 case HInstruction::kAboveOrEqual:
745 return new (allocator) HBelowOrEqual(rhs, lhs);
746 default:
747 LOG(FATAL) << "Unknown ConditionType " << cond->GetKind();
748 UNREACHABLE();
749 }
750 }
751
VisitEqual(HEqual * equal)752 void InstructionSimplifierVisitor::VisitEqual(HEqual* equal) {
753 HInstruction* input_const = equal->GetConstantRight();
754 if (input_const != nullptr) {
755 HInstruction* input_value = equal->GetLeastConstantLeft();
756 if ((input_value->GetType() == DataType::Type::kBool) && input_const->IsIntConstant()) {
757 HBasicBlock* block = equal->GetBlock();
758 // We are comparing the boolean to a constant which is of type int and can
759 // be any constant.
760 if (input_const->AsIntConstant()->IsTrue()) {
761 // Replace (bool_value == true) with bool_value
762 equal->ReplaceWith(input_value);
763 block->RemoveInstruction(equal);
764 RecordSimplification();
765 } else if (input_const->AsIntConstant()->IsFalse()) {
766 // Replace (bool_value == false) with !bool_value
767 equal->ReplaceWith(GetGraph()->InsertOppositeCondition(input_value, equal));
768 block->RemoveInstruction(equal);
769 RecordSimplification();
770 } else {
771 // Replace (bool_value == integer_not_zero_nor_one_constant) with false
772 equal->ReplaceWith(GetGraph()->GetIntConstant(0));
773 block->RemoveInstruction(equal);
774 RecordSimplification();
775 }
776 } else {
777 VisitCondition(equal);
778 }
779 } else {
780 VisitCondition(equal);
781 }
782 }
783
VisitNotEqual(HNotEqual * not_equal)784 void InstructionSimplifierVisitor::VisitNotEqual(HNotEqual* not_equal) {
785 HInstruction* input_const = not_equal->GetConstantRight();
786 if (input_const != nullptr) {
787 HInstruction* input_value = not_equal->GetLeastConstantLeft();
788 if ((input_value->GetType() == DataType::Type::kBool) && input_const->IsIntConstant()) {
789 HBasicBlock* block = not_equal->GetBlock();
790 // We are comparing the boolean to a constant which is of type int and can
791 // be any constant.
792 if (input_const->AsIntConstant()->IsTrue()) {
793 // Replace (bool_value != true) with !bool_value
794 not_equal->ReplaceWith(GetGraph()->InsertOppositeCondition(input_value, not_equal));
795 block->RemoveInstruction(not_equal);
796 RecordSimplification();
797 } else if (input_const->AsIntConstant()->IsFalse()) {
798 // Replace (bool_value != false) with bool_value
799 not_equal->ReplaceWith(input_value);
800 block->RemoveInstruction(not_equal);
801 RecordSimplification();
802 } else {
803 // Replace (bool_value != integer_not_zero_nor_one_constant) with true
804 not_equal->ReplaceWith(GetGraph()->GetIntConstant(1));
805 block->RemoveInstruction(not_equal);
806 RecordSimplification();
807 }
808 } else {
809 VisitCondition(not_equal);
810 }
811 } else {
812 VisitCondition(not_equal);
813 }
814 }
815
VisitBooleanNot(HBooleanNot * bool_not)816 void InstructionSimplifierVisitor::VisitBooleanNot(HBooleanNot* bool_not) {
817 HInstruction* input = bool_not->InputAt(0);
818 HInstruction* replace_with = nullptr;
819
820 if (input->IsIntConstant()) {
821 // Replace !(true/false) with false/true.
822 if (input->AsIntConstant()->IsTrue()) {
823 replace_with = GetGraph()->GetIntConstant(0);
824 } else {
825 DCHECK(input->AsIntConstant()->IsFalse()) << input->AsIntConstant()->GetValue();
826 replace_with = GetGraph()->GetIntConstant(1);
827 }
828 } else if (input->IsBooleanNot()) {
829 // Replace (!(!bool_value)) with bool_value.
830 replace_with = input->InputAt(0);
831 } else if (input->IsCondition() &&
832 // Don't change FP compares. The definition of compares involving
833 // NaNs forces the compares to be done as written by the user.
834 !DataType::IsFloatingPointType(input->InputAt(0)->GetType())) {
835 // Replace condition with its opposite.
836 replace_with = GetGraph()->InsertOppositeCondition(input->AsCondition(), bool_not);
837 }
838
839 if (replace_with != nullptr) {
840 bool_not->ReplaceWith(replace_with);
841 bool_not->GetBlock()->RemoveInstruction(bool_not);
842 RecordSimplification();
843 }
844 }
845
846 // Constructs a new ABS(x) node in the HIR.
NewIntegralAbs(ArenaAllocator * allocator,HInstruction * x,HInstruction * cursor)847 static HInstruction* NewIntegralAbs(ArenaAllocator* allocator,
848 HInstruction* x,
849 HInstruction* cursor) {
850 DataType::Type type = DataType::Kind(x->GetType());
851 DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
852 HAbs* abs = new (allocator) HAbs(type, x, cursor->GetDexPc());
853 cursor->GetBlock()->InsertInstructionBefore(abs, cursor);
854 return abs;
855 }
856
857 // Constructs a new MIN/MAX(x, y) node in the HIR.
NewIntegralMinMax(ArenaAllocator * allocator,HInstruction * x,HInstruction * y,HInstruction * cursor,bool is_min)858 static HInstruction* NewIntegralMinMax(ArenaAllocator* allocator,
859 HInstruction* x,
860 HInstruction* y,
861 HInstruction* cursor,
862 bool is_min) {
863 DataType::Type type = DataType::Kind(x->GetType());
864 DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
865 HBinaryOperation* minmax = nullptr;
866 if (is_min) {
867 minmax = new (allocator) HMin(type, x, y, cursor->GetDexPc());
868 } else {
869 minmax = new (allocator) HMax(type, x, y, cursor->GetDexPc());
870 }
871 cursor->GetBlock()->InsertInstructionBefore(minmax, cursor);
872 return minmax;
873 }
874
875 // Returns true if operands a and b consists of widening type conversions
876 // (either explicit or implicit) to the given to_type.
AreLowerPrecisionArgs(DataType::Type to_type,HInstruction * a,HInstruction * b)877 static bool AreLowerPrecisionArgs(DataType::Type to_type, HInstruction* a, HInstruction* b) {
878 if (a->IsTypeConversion() && a->GetType() == to_type) {
879 a = a->InputAt(0);
880 }
881 if (b->IsTypeConversion() && b->GetType() == to_type) {
882 b = b->InputAt(0);
883 }
884 DataType::Type type1 = a->GetType();
885 DataType::Type type2 = b->GetType();
886 return (type1 == DataType::Type::kUint8 && type2 == DataType::Type::kUint8) ||
887 (type1 == DataType::Type::kInt8 && type2 == DataType::Type::kInt8) ||
888 (type1 == DataType::Type::kInt16 && type2 == DataType::Type::kInt16) ||
889 (type1 == DataType::Type::kUint16 && type2 == DataType::Type::kUint16) ||
890 (type1 == DataType::Type::kInt32 && type2 == DataType::Type::kInt32 &&
891 to_type == DataType::Type::kInt64);
892 }
893
894 // Returns an acceptable substitution for "a" on the select
895 // construct "a <cmp> b ? c : .." during MIN/MAX recognition.
AllowInMinMax(IfCondition cmp,HInstruction * a,HInstruction * b,HInstruction * c)896 static HInstruction* AllowInMinMax(IfCondition cmp,
897 HInstruction* a,
898 HInstruction* b,
899 HInstruction* c) {
900 int64_t value = 0;
901 if (IsInt64AndGet(b, /*out*/ &value) &&
902 (((cmp == kCondLT || cmp == kCondLE) && c->IsMax()) ||
903 ((cmp == kCondGT || cmp == kCondGE) && c->IsMin()))) {
904 HConstant* other = c->AsBinaryOperation()->GetConstantRight();
905 if (other != nullptr && a == c->AsBinaryOperation()->GetLeastConstantLeft()) {
906 int64_t other_value = Int64FromConstant(other);
907 bool is_max = (cmp == kCondLT || cmp == kCondLE);
908 // Allow the max for a < 100 ? max(a, -100) : ..
909 // or the min for a > -100 ? min(a, 100) : ..
910 if (is_max ? (value >= other_value) : (value <= other_value)) {
911 return c;
912 }
913 }
914 }
915 return nullptr;
916 }
917
VisitSelect(HSelect * select)918 void InstructionSimplifierVisitor::VisitSelect(HSelect* select) {
919 HInstruction* replace_with = nullptr;
920 HInstruction* condition = select->GetCondition();
921 HInstruction* true_value = select->GetTrueValue();
922 HInstruction* false_value = select->GetFalseValue();
923
924 if (condition->IsBooleanNot()) {
925 // Change ((!cond) ? x : y) to (cond ? y : x).
926 condition = condition->InputAt(0);
927 std::swap(true_value, false_value);
928 select->ReplaceInput(false_value, 0);
929 select->ReplaceInput(true_value, 1);
930 select->ReplaceInput(condition, 2);
931 RecordSimplification();
932 }
933
934 if (true_value == false_value) {
935 // Replace (cond ? x : x) with (x).
936 replace_with = true_value;
937 } else if (condition->IsIntConstant()) {
938 if (condition->AsIntConstant()->IsTrue()) {
939 // Replace (true ? x : y) with (x).
940 replace_with = true_value;
941 } else {
942 // Replace (false ? x : y) with (y).
943 DCHECK(condition->AsIntConstant()->IsFalse()) << condition->AsIntConstant()->GetValue();
944 replace_with = false_value;
945 }
946 } else if (true_value->IsIntConstant() && false_value->IsIntConstant()) {
947 if (true_value->AsIntConstant()->IsTrue() && false_value->AsIntConstant()->IsFalse()) {
948 // Replace (cond ? true : false) with (cond).
949 replace_with = condition;
950 } else if (true_value->AsIntConstant()->IsFalse() && false_value->AsIntConstant()->IsTrue()) {
951 // Replace (cond ? false : true) with (!cond).
952 replace_with = GetGraph()->InsertOppositeCondition(condition, select);
953 }
954 } else if (condition->IsCondition()) {
955 IfCondition cmp = condition->AsCondition()->GetCondition();
956 HInstruction* a = condition->InputAt(0);
957 HInstruction* b = condition->InputAt(1);
958 DataType::Type t_type = true_value->GetType();
959 DataType::Type f_type = false_value->GetType();
960 // Here we have a <cmp> b ? true_value : false_value.
961 // Test if both values are compatible integral types (resulting MIN/MAX/ABS
962 // type will be int or long, like the condition). Replacements are general,
963 // but assume conditions prefer constants on the right.
964 if (DataType::IsIntegralType(t_type) && DataType::Kind(t_type) == DataType::Kind(f_type)) {
965 // Allow a < 100 ? max(a, -100) : ..
966 // or a > -100 ? min(a, 100) : ..
967 // to use min/max instead of a to detect nested min/max expressions.
968 HInstruction* new_a = AllowInMinMax(cmp, a, b, true_value);
969 if (new_a != nullptr) {
970 a = new_a;
971 }
972 // Try to replace typical integral MIN/MAX/ABS constructs.
973 if ((cmp == kCondLT || cmp == kCondLE || cmp == kCondGT || cmp == kCondGE) &&
974 ((a == true_value && b == false_value) ||
975 (b == true_value && a == false_value))) {
976 // Found a < b ? a : b (MIN) or a < b ? b : a (MAX)
977 // or a > b ? a : b (MAX) or a > b ? b : a (MIN).
978 bool is_min = (cmp == kCondLT || cmp == kCondLE) == (a == true_value);
979 replace_with = NewIntegralMinMax(GetGraph()->GetAllocator(), a, b, select, is_min);
980 } else if (((cmp == kCondLT || cmp == kCondLE) && true_value->IsNeg()) ||
981 ((cmp == kCondGT || cmp == kCondGE) && false_value->IsNeg())) {
982 bool negLeft = (cmp == kCondLT || cmp == kCondLE);
983 HInstruction* the_negated = negLeft ? true_value->InputAt(0) : false_value->InputAt(0);
984 HInstruction* not_negated = negLeft ? false_value : true_value;
985 if (a == the_negated && a == not_negated && IsInt64Value(b, 0)) {
986 // Found a < 0 ? -a : a
987 // or a > 0 ? a : -a
988 // which can be replaced by ABS(a).
989 replace_with = NewIntegralAbs(GetGraph()->GetAllocator(), a, select);
990 }
991 } else if (true_value->IsSub() && false_value->IsSub()) {
992 HInstruction* true_sub1 = true_value->InputAt(0);
993 HInstruction* true_sub2 = true_value->InputAt(1);
994 HInstruction* false_sub1 = false_value->InputAt(0);
995 HInstruction* false_sub2 = false_value->InputAt(1);
996 if ((((cmp == kCondGT || cmp == kCondGE) &&
997 (a == true_sub1 && b == true_sub2 && a == false_sub2 && b == false_sub1)) ||
998 ((cmp == kCondLT || cmp == kCondLE) &&
999 (a == true_sub2 && b == true_sub1 && a == false_sub1 && b == false_sub2))) &&
1000 AreLowerPrecisionArgs(t_type, a, b)) {
1001 // Found a > b ? a - b : b - a
1002 // or a < b ? b - a : a - b
1003 // which can be replaced by ABS(a - b) for lower precision operands a, b.
1004 replace_with = NewIntegralAbs(GetGraph()->GetAllocator(), true_value, select);
1005 }
1006 }
1007 }
1008 }
1009
1010 if (replace_with != nullptr) {
1011 select->ReplaceWith(replace_with);
1012 select->GetBlock()->RemoveInstruction(select);
1013 RecordSimplification();
1014 }
1015 }
1016
VisitIf(HIf * instruction)1017 void InstructionSimplifierVisitor::VisitIf(HIf* instruction) {
1018 HInstruction* condition = instruction->InputAt(0);
1019 if (condition->IsBooleanNot()) {
1020 // Swap successors if input is negated.
1021 instruction->ReplaceInput(condition->InputAt(0), 0);
1022 instruction->GetBlock()->SwapSuccessors();
1023 RecordSimplification();
1024 }
1025 }
1026
VisitArrayLength(HArrayLength * instruction)1027 void InstructionSimplifierVisitor::VisitArrayLength(HArrayLength* instruction) {
1028 HInstruction* input = instruction->InputAt(0);
1029 // If the array is a NewArray with constant size, replace the array length
1030 // with the constant instruction. This helps the bounds check elimination phase.
1031 if (input->IsNewArray()) {
1032 input = input->AsNewArray()->GetLength();
1033 if (input->IsIntConstant()) {
1034 instruction->ReplaceWith(input);
1035 }
1036 }
1037 }
1038
VisitArraySet(HArraySet * instruction)1039 void InstructionSimplifierVisitor::VisitArraySet(HArraySet* instruction) {
1040 HInstruction* value = instruction->GetValue();
1041 if (value->GetType() != DataType::Type::kReference) {
1042 return;
1043 }
1044
1045 if (CanEnsureNotNullAt(value, instruction)) {
1046 instruction->ClearValueCanBeNull();
1047 }
1048
1049 if (value->IsArrayGet()) {
1050 if (value->AsArrayGet()->GetArray() == instruction->GetArray()) {
1051 // If the code is just swapping elements in the array, no need for a type check.
1052 instruction->ClearNeedsTypeCheck();
1053 return;
1054 }
1055 }
1056
1057 if (value->IsNullConstant()) {
1058 instruction->ClearNeedsTypeCheck();
1059 return;
1060 }
1061
1062 ScopedObjectAccess soa(Thread::Current());
1063 ReferenceTypeInfo array_rti = instruction->GetArray()->GetReferenceTypeInfo();
1064 ReferenceTypeInfo value_rti = value->GetReferenceTypeInfo();
1065 if (!array_rti.IsValid()) {
1066 return;
1067 }
1068
1069 if (value_rti.IsValid() && array_rti.CanArrayHold(value_rti)) {
1070 instruction->ClearNeedsTypeCheck();
1071 return;
1072 }
1073
1074 if (array_rti.IsObjectArray()) {
1075 if (array_rti.IsExact()) {
1076 instruction->ClearNeedsTypeCheck();
1077 return;
1078 }
1079 instruction->SetStaticTypeOfArrayIsObjectArray();
1080 }
1081 }
1082
IsTypeConversionLossless(DataType::Type input_type,DataType::Type result_type)1083 static bool IsTypeConversionLossless(DataType::Type input_type, DataType::Type result_type) {
1084 // Make sure all implicit conversions have been simplified and no new ones have been introduced.
1085 DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
1086 << input_type << "," << result_type;
1087 // The conversion to a larger type is loss-less with the exception of two cases,
1088 // - conversion to the unsigned type Uint16, where we may lose some bits, and
1089 // - conversion from float to long, the only FP to integral conversion with smaller FP type.
1090 // For integral to FP conversions this holds because the FP mantissa is large enough.
1091 // Note: The size check excludes Uint8 as the result type.
1092 return DataType::Size(result_type) > DataType::Size(input_type) &&
1093 result_type != DataType::Type::kUint16 &&
1094 !(result_type == DataType::Type::kInt64 && input_type == DataType::Type::kFloat32);
1095 }
1096
TryReplaceFieldOrArrayGetType(HInstruction * maybe_get,DataType::Type new_type)1097 static inline bool TryReplaceFieldOrArrayGetType(HInstruction* maybe_get, DataType::Type new_type) {
1098 if (maybe_get->IsInstanceFieldGet()) {
1099 maybe_get->AsInstanceFieldGet()->SetType(new_type);
1100 return true;
1101 } else if (maybe_get->IsStaticFieldGet()) {
1102 maybe_get->AsStaticFieldGet()->SetType(new_type);
1103 return true;
1104 } else if (maybe_get->IsArrayGet() && !maybe_get->AsArrayGet()->IsStringCharAt()) {
1105 maybe_get->AsArrayGet()->SetType(new_type);
1106 return true;
1107 } else {
1108 return false;
1109 }
1110 }
1111
1112 // The type conversion is only used for storing into a field/element of the
1113 // same/narrower size.
IsTypeConversionForStoringIntoNoWiderFieldOnly(HTypeConversion * type_conversion)1114 static bool IsTypeConversionForStoringIntoNoWiderFieldOnly(HTypeConversion* type_conversion) {
1115 if (type_conversion->HasEnvironmentUses()) {
1116 return false;
1117 }
1118 DataType::Type input_type = type_conversion->GetInputType();
1119 DataType::Type result_type = type_conversion->GetResultType();
1120 if (!DataType::IsIntegralType(input_type) ||
1121 !DataType::IsIntegralType(result_type) ||
1122 input_type == DataType::Type::kInt64 ||
1123 result_type == DataType::Type::kInt64) {
1124 // Type conversion is needed if non-integer types are involved, or 64-bit
1125 // types are involved, which may use different number of registers.
1126 return false;
1127 }
1128 if (DataType::Size(input_type) >= DataType::Size(result_type)) {
1129 // Type conversion is not necessary when storing to a field/element of the
1130 // same/smaller size.
1131 } else {
1132 // We do not handle this case here.
1133 return false;
1134 }
1135
1136 // Check if the converted value is only used for storing into heap.
1137 for (const HUseListNode<HInstruction*>& use : type_conversion->GetUses()) {
1138 HInstruction* instruction = use.GetUser();
1139 if (instruction->IsInstanceFieldSet() &&
1140 instruction->AsInstanceFieldSet()->GetFieldType() == result_type) {
1141 DCHECK_EQ(instruction->AsInstanceFieldSet()->GetValue(), type_conversion);
1142 continue;
1143 }
1144 if (instruction->IsStaticFieldSet() &&
1145 instruction->AsStaticFieldSet()->GetFieldType() == result_type) {
1146 DCHECK_EQ(instruction->AsStaticFieldSet()->GetValue(), type_conversion);
1147 continue;
1148 }
1149 if (instruction->IsArraySet() &&
1150 instruction->AsArraySet()->GetComponentType() == result_type &&
1151 // not index use.
1152 instruction->AsArraySet()->GetIndex() != type_conversion) {
1153 DCHECK_EQ(instruction->AsArraySet()->GetValue(), type_conversion);
1154 continue;
1155 }
1156 // The use is not as a store value, or the field/element type is not the
1157 // same as the result_type, keep the type conversion.
1158 return false;
1159 }
1160 // Codegen automatically handles the type conversion during the store.
1161 return true;
1162 }
1163
VisitTypeConversion(HTypeConversion * instruction)1164 void InstructionSimplifierVisitor::VisitTypeConversion(HTypeConversion* instruction) {
1165 HInstruction* input = instruction->GetInput();
1166 DataType::Type input_type = input->GetType();
1167 DataType::Type result_type = instruction->GetResultType();
1168 if (instruction->IsImplicitConversion()) {
1169 instruction->ReplaceWith(input);
1170 instruction->GetBlock()->RemoveInstruction(instruction);
1171 RecordSimplification();
1172 return;
1173 }
1174
1175 if (input->IsTypeConversion()) {
1176 HTypeConversion* input_conversion = input->AsTypeConversion();
1177 HInstruction* original_input = input_conversion->GetInput();
1178 DataType::Type original_type = original_input->GetType();
1179
1180 // When the first conversion is lossless, a direct conversion from the original type
1181 // to the final type yields the same result, even for a lossy second conversion, for
1182 // example float->double->int or int->double->float.
1183 bool is_first_conversion_lossless = IsTypeConversionLossless(original_type, input_type);
1184
1185 // For integral conversions, see if the first conversion loses only bits that the second
1186 // doesn't need, i.e. the final type is no wider than the intermediate. If so, direct
1187 // conversion yields the same result, for example long->int->short or int->char->short.
1188 bool integral_conversions_with_non_widening_second =
1189 DataType::IsIntegralType(input_type) &&
1190 DataType::IsIntegralType(original_type) &&
1191 DataType::IsIntegralType(result_type) &&
1192 DataType::Size(result_type) <= DataType::Size(input_type);
1193
1194 if (is_first_conversion_lossless || integral_conversions_with_non_widening_second) {
1195 // If the merged conversion is implicit, do the simplification unconditionally.
1196 if (DataType::IsTypeConversionImplicit(original_type, result_type)) {
1197 instruction->ReplaceWith(original_input);
1198 instruction->GetBlock()->RemoveInstruction(instruction);
1199 if (!input_conversion->HasUses()) {
1200 // Don't wait for DCE.
1201 input_conversion->GetBlock()->RemoveInstruction(input_conversion);
1202 }
1203 RecordSimplification();
1204 return;
1205 }
1206 // Otherwise simplify only if the first conversion has no other use.
1207 if (input_conversion->HasOnlyOneNonEnvironmentUse()) {
1208 input_conversion->ReplaceWith(original_input);
1209 input_conversion->GetBlock()->RemoveInstruction(input_conversion);
1210 RecordSimplification();
1211 return;
1212 }
1213 }
1214 } else if (input->IsAnd() && DataType::IsIntegralType(result_type)) {
1215 DCHECK(DataType::IsIntegralType(input_type));
1216 HAnd* input_and = input->AsAnd();
1217 HConstant* constant = input_and->GetConstantRight();
1218 if (constant != nullptr) {
1219 int64_t value = Int64FromConstant(constant);
1220 DCHECK_NE(value, -1); // "& -1" would have been optimized away in VisitAnd().
1221 size_t trailing_ones = CTZ(~static_cast<uint64_t>(value));
1222 if (trailing_ones >= kBitsPerByte * DataType::Size(result_type)) {
1223 // The `HAnd` is useless, for example in `(byte) (x & 0xff)`, get rid of it.
1224 HInstruction* original_input = input_and->GetLeastConstantLeft();
1225 if (DataType::IsTypeConversionImplicit(original_input->GetType(), result_type)) {
1226 instruction->ReplaceWith(original_input);
1227 instruction->GetBlock()->RemoveInstruction(instruction);
1228 RecordSimplification();
1229 return;
1230 } else if (input->HasOnlyOneNonEnvironmentUse()) {
1231 input_and->ReplaceWith(original_input);
1232 input_and->GetBlock()->RemoveInstruction(input_and);
1233 RecordSimplification();
1234 return;
1235 }
1236 }
1237 }
1238 } else if (input->HasOnlyOneNonEnvironmentUse() &&
1239 ((input_type == DataType::Type::kInt8 && result_type == DataType::Type::kUint8) ||
1240 (input_type == DataType::Type::kUint8 && result_type == DataType::Type::kInt8) ||
1241 (input_type == DataType::Type::kInt16 && result_type == DataType::Type::kUint16) ||
1242 (input_type == DataType::Type::kUint16 && result_type == DataType::Type::kInt16))) {
1243 // Try to modify the type of the load to `result_type` and remove the explicit type conversion.
1244 if (TryReplaceFieldOrArrayGetType(input, result_type)) {
1245 instruction->ReplaceWith(input);
1246 instruction->GetBlock()->RemoveInstruction(instruction);
1247 RecordSimplification();
1248 return;
1249 }
1250 }
1251
1252 if (IsTypeConversionForStoringIntoNoWiderFieldOnly(instruction)) {
1253 instruction->ReplaceWith(input);
1254 instruction->GetBlock()->RemoveInstruction(instruction);
1255 RecordSimplification();
1256 return;
1257 }
1258 }
1259
VisitAbs(HAbs * instruction)1260 void InstructionSimplifierVisitor::VisitAbs(HAbs* instruction) {
1261 HInstruction* input = instruction->GetInput();
1262 if (DataType::IsZeroExtension(input->GetType(), instruction->GetResultType())) {
1263 // Zero extension from narrow to wide can never set sign bit in the wider
1264 // operand, making the subsequent Abs redundant (e.g., abs(b & 0xff) for byte b).
1265 instruction->ReplaceWith(input);
1266 instruction->GetBlock()->RemoveInstruction(instruction);
1267 RecordSimplification();
1268 }
1269 }
1270
VisitAdd(HAdd * instruction)1271 void InstructionSimplifierVisitor::VisitAdd(HAdd* instruction) {
1272 HConstant* input_cst = instruction->GetConstantRight();
1273 HInstruction* input_other = instruction->GetLeastConstantLeft();
1274 bool integral_type = DataType::IsIntegralType(instruction->GetType());
1275 if ((input_cst != nullptr) && input_cst->IsArithmeticZero()) {
1276 // Replace code looking like
1277 // ADD dst, src, 0
1278 // with
1279 // src
1280 // Note that we cannot optimize `x + 0.0` to `x` for floating-point. When
1281 // `x` is `-0.0`, the former expression yields `0.0`, while the later
1282 // yields `-0.0`.
1283 if (integral_type) {
1284 instruction->ReplaceWith(input_other);
1285 instruction->GetBlock()->RemoveInstruction(instruction);
1286 RecordSimplification();
1287 return;
1288 }
1289 }
1290
1291 HInstruction* left = instruction->GetLeft();
1292 HInstruction* right = instruction->GetRight();
1293 bool left_is_neg = left->IsNeg();
1294 bool right_is_neg = right->IsNeg();
1295
1296 if (left_is_neg && right_is_neg) {
1297 if (TryMoveNegOnInputsAfterBinop(instruction)) {
1298 return;
1299 }
1300 }
1301
1302 HNeg* neg = left_is_neg ? left->AsNeg() : right->AsNeg();
1303 if (left_is_neg != right_is_neg && neg->HasOnlyOneNonEnvironmentUse()) {
1304 // Replace code looking like
1305 // NEG tmp, b
1306 // ADD dst, a, tmp
1307 // with
1308 // SUB dst, a, b
1309 // We do not perform the optimization if the input negation has environment
1310 // uses or multiple non-environment uses as it could lead to worse code. In
1311 // particular, we do not want the live range of `b` to be extended if we are
1312 // not sure the initial 'NEG' instruction can be removed.
1313 HInstruction* other = left_is_neg ? right : left;
1314 HSub* sub =
1315 new(GetGraph()->GetAllocator()) HSub(instruction->GetType(), other, neg->GetInput());
1316 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, sub);
1317 RecordSimplification();
1318 neg->GetBlock()->RemoveInstruction(neg);
1319 return;
1320 }
1321
1322 if (TryReplaceWithRotate(instruction)) {
1323 return;
1324 }
1325
1326 // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
1327 // so no need to return.
1328 TryHandleAssociativeAndCommutativeOperation(instruction);
1329
1330 if ((left->IsSub() || right->IsSub()) &&
1331 TrySubtractionChainSimplification(instruction)) {
1332 return;
1333 }
1334
1335 if (integral_type) {
1336 // Replace code patterns looking like
1337 // SUB dst1, x, y SUB dst1, x, y
1338 // ADD dst2, dst1, y ADD dst2, y, dst1
1339 // with
1340 // SUB dst1, x, y
1341 // ADD instruction is not needed in this case, we may use
1342 // one of inputs of SUB instead.
1343 if (left->IsSub() && left->InputAt(1) == right) {
1344 instruction->ReplaceWith(left->InputAt(0));
1345 RecordSimplification();
1346 instruction->GetBlock()->RemoveInstruction(instruction);
1347 return;
1348 } else if (right->IsSub() && right->InputAt(1) == left) {
1349 instruction->ReplaceWith(right->InputAt(0));
1350 RecordSimplification();
1351 instruction->GetBlock()->RemoveInstruction(instruction);
1352 return;
1353 }
1354 }
1355 }
1356
VisitAnd(HAnd * instruction)1357 void InstructionSimplifierVisitor::VisitAnd(HAnd* instruction) {
1358 DCHECK(DataType::IsIntegralType(instruction->GetType()));
1359 HConstant* input_cst = instruction->GetConstantRight();
1360 HInstruction* input_other = instruction->GetLeastConstantLeft();
1361
1362 if (input_cst != nullptr) {
1363 int64_t value = Int64FromConstant(input_cst);
1364 if (value == -1 ||
1365 // Similar cases under zero extension.
1366 (DataType::IsUnsignedType(input_other->GetType()) &&
1367 ((DataType::MaxValueOfIntegralType(input_other->GetType()) & ~value) == 0))) {
1368 // Replace code looking like
1369 // AND dst, src, 0xFFF...FF
1370 // with
1371 // src
1372 instruction->ReplaceWith(input_other);
1373 instruction->GetBlock()->RemoveInstruction(instruction);
1374 RecordSimplification();
1375 return;
1376 }
1377 if (input_other->IsTypeConversion() &&
1378 input_other->GetType() == DataType::Type::kInt64 &&
1379 DataType::IsIntegralType(input_other->InputAt(0)->GetType()) &&
1380 IsInt<32>(value) &&
1381 input_other->HasOnlyOneNonEnvironmentUse()) {
1382 // The AND can be reordered before the TypeConversion. Replace
1383 // LongConstant cst, <32-bit-constant-sign-extended-to-64-bits>
1384 // TypeConversion<Int64> tmp, src
1385 // AND dst, tmp, cst
1386 // with
1387 // IntConstant cst, <32-bit-constant>
1388 // AND tmp, src, cst
1389 // TypeConversion<Int64> dst, tmp
1390 // This helps 32-bit targets and does not hurt 64-bit targets.
1391 // This also simplifies detection of other patterns, such as Uint8 loads.
1392 HInstruction* new_and_input = input_other->InputAt(0);
1393 // Implicit conversion Int64->Int64 would have been removed previously.
1394 DCHECK_NE(new_and_input->GetType(), DataType::Type::kInt64);
1395 HConstant* new_const = GetGraph()->GetConstant(DataType::Type::kInt32, value);
1396 HAnd* new_and =
1397 new (GetGraph()->GetAllocator()) HAnd(DataType::Type::kInt32, new_and_input, new_const);
1398 instruction->GetBlock()->InsertInstructionBefore(new_and, instruction);
1399 HTypeConversion* new_conversion =
1400 new (GetGraph()->GetAllocator()) HTypeConversion(DataType::Type::kInt64, new_and);
1401 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, new_conversion);
1402 input_other->GetBlock()->RemoveInstruction(input_other);
1403 RecordSimplification();
1404 // Try to process the new And now, do not wait for the next round of simplifications.
1405 instruction = new_and;
1406 input_other = new_and_input;
1407 }
1408 // Eliminate And from UShr+And if the And-mask contains all the bits that
1409 // can be non-zero after UShr. Transform Shr+And to UShr if the And-mask
1410 // precisely clears the shifted-in sign bits.
1411 if ((input_other->IsUShr() || input_other->IsShr()) && input_other->InputAt(1)->IsConstant()) {
1412 size_t reg_bits = (instruction->GetResultType() == DataType::Type::kInt64) ? 64 : 32;
1413 size_t shift = Int64FromConstant(input_other->InputAt(1)->AsConstant()) & (reg_bits - 1);
1414 size_t num_tail_bits_set = CTZ(value + 1);
1415 if ((num_tail_bits_set >= reg_bits - shift) && input_other->IsUShr()) {
1416 // This AND clears only bits known to be clear, for example "(x >>> 24) & 0xff".
1417 instruction->ReplaceWith(input_other);
1418 instruction->GetBlock()->RemoveInstruction(instruction);
1419 RecordSimplification();
1420 return;
1421 } else if ((num_tail_bits_set == reg_bits - shift) && IsPowerOfTwo(value + 1) &&
1422 input_other->HasOnlyOneNonEnvironmentUse()) {
1423 DCHECK(input_other->IsShr()); // For UShr, we would have taken the branch above.
1424 // Replace SHR+AND with USHR, for example "(x >> 24) & 0xff" -> "x >>> 24".
1425 HUShr* ushr = new (GetGraph()->GetAllocator()) HUShr(instruction->GetType(),
1426 input_other->InputAt(0),
1427 input_other->InputAt(1),
1428 input_other->GetDexPc());
1429 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, ushr);
1430 input_other->GetBlock()->RemoveInstruction(input_other);
1431 RecordSimplification();
1432 return;
1433 }
1434 }
1435 if ((value == 0xff || value == 0xffff) && instruction->GetType() != DataType::Type::kInt64) {
1436 // Transform AND to a type conversion to Uint8/Uint16. If `input_other` is a field
1437 // or array Get with only a single use, short-circuit the subsequent simplification
1438 // of the Get+TypeConversion and change the Get's type to `new_type` instead.
1439 DataType::Type new_type = (value == 0xff) ? DataType::Type::kUint8 : DataType::Type::kUint16;
1440 DataType::Type find_type = (value == 0xff) ? DataType::Type::kInt8 : DataType::Type::kInt16;
1441 if (input_other->GetType() == find_type &&
1442 input_other->HasOnlyOneNonEnvironmentUse() &&
1443 TryReplaceFieldOrArrayGetType(input_other, new_type)) {
1444 instruction->ReplaceWith(input_other);
1445 instruction->GetBlock()->RemoveInstruction(instruction);
1446 } else if (DataType::IsTypeConversionImplicit(input_other->GetType(), new_type)) {
1447 instruction->ReplaceWith(input_other);
1448 instruction->GetBlock()->RemoveInstruction(instruction);
1449 } else {
1450 HTypeConversion* type_conversion = new (GetGraph()->GetAllocator()) HTypeConversion(
1451 new_type, input_other, instruction->GetDexPc());
1452 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, type_conversion);
1453 }
1454 RecordSimplification();
1455 return;
1456 }
1457 }
1458
1459 // We assume that GVN has run before, so we only perform a pointer comparison.
1460 // If for some reason the values are equal but the pointers are different, we
1461 // are still correct and only miss an optimization opportunity.
1462 if (instruction->GetLeft() == instruction->GetRight()) {
1463 // Replace code looking like
1464 // AND dst, src, src
1465 // with
1466 // src
1467 instruction->ReplaceWith(instruction->GetLeft());
1468 instruction->GetBlock()->RemoveInstruction(instruction);
1469 RecordSimplification();
1470 return;
1471 }
1472
1473 if (TryDeMorganNegationFactoring(instruction)) {
1474 return;
1475 }
1476
1477 // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
1478 // so no need to return.
1479 TryHandleAssociativeAndCommutativeOperation(instruction);
1480 }
1481
VisitGreaterThan(HGreaterThan * condition)1482 void InstructionSimplifierVisitor::VisitGreaterThan(HGreaterThan* condition) {
1483 VisitCondition(condition);
1484 }
1485
VisitGreaterThanOrEqual(HGreaterThanOrEqual * condition)1486 void InstructionSimplifierVisitor::VisitGreaterThanOrEqual(HGreaterThanOrEqual* condition) {
1487 VisitCondition(condition);
1488 }
1489
VisitLessThan(HLessThan * condition)1490 void InstructionSimplifierVisitor::VisitLessThan(HLessThan* condition) {
1491 VisitCondition(condition);
1492 }
1493
VisitLessThanOrEqual(HLessThanOrEqual * condition)1494 void InstructionSimplifierVisitor::VisitLessThanOrEqual(HLessThanOrEqual* condition) {
1495 VisitCondition(condition);
1496 }
1497
VisitBelow(HBelow * condition)1498 void InstructionSimplifierVisitor::VisitBelow(HBelow* condition) {
1499 VisitCondition(condition);
1500 }
1501
VisitBelowOrEqual(HBelowOrEqual * condition)1502 void InstructionSimplifierVisitor::VisitBelowOrEqual(HBelowOrEqual* condition) {
1503 VisitCondition(condition);
1504 }
1505
VisitAbove(HAbove * condition)1506 void InstructionSimplifierVisitor::VisitAbove(HAbove* condition) {
1507 VisitCondition(condition);
1508 }
1509
VisitAboveOrEqual(HAboveOrEqual * condition)1510 void InstructionSimplifierVisitor::VisitAboveOrEqual(HAboveOrEqual* condition) {
1511 VisitCondition(condition);
1512 }
1513
1514 // Recognize the following pattern:
1515 // obj.getClass() ==/!= Foo.class
1516 // And replace it with a constant value if the type of `obj` is statically known.
RecognizeAndSimplifyClassCheck(HCondition * condition)1517 static bool RecognizeAndSimplifyClassCheck(HCondition* condition) {
1518 HInstruction* input_one = condition->InputAt(0);
1519 HInstruction* input_two = condition->InputAt(1);
1520 HLoadClass* load_class = input_one->IsLoadClass()
1521 ? input_one->AsLoadClass()
1522 : input_two->AsLoadClass();
1523 if (load_class == nullptr) {
1524 return false;
1525 }
1526
1527 ReferenceTypeInfo class_rti = load_class->GetLoadedClassRTI();
1528 if (!class_rti.IsValid()) {
1529 // Unresolved class.
1530 return false;
1531 }
1532
1533 HInstanceFieldGet* field_get = (load_class == input_one)
1534 ? input_two->AsInstanceFieldGet()
1535 : input_one->AsInstanceFieldGet();
1536 if (field_get == nullptr) {
1537 return false;
1538 }
1539
1540 HInstruction* receiver = field_get->InputAt(0);
1541 ReferenceTypeInfo receiver_type = receiver->GetReferenceTypeInfo();
1542 if (!receiver_type.IsExact()) {
1543 return false;
1544 }
1545
1546 {
1547 ScopedObjectAccess soa(Thread::Current());
1548 ArtField* field = GetClassRoot<mirror::Object>()->GetInstanceField(0);
1549 DCHECK_EQ(std::string(field->GetName()), "shadow$_klass_");
1550 if (field_get->GetFieldInfo().GetField() != field) {
1551 return false;
1552 }
1553
1554 // We can replace the compare.
1555 int value = 0;
1556 if (receiver_type.IsEqual(class_rti)) {
1557 value = condition->IsEqual() ? 1 : 0;
1558 } else {
1559 value = condition->IsNotEqual() ? 1 : 0;
1560 }
1561 condition->ReplaceWith(condition->GetBlock()->GetGraph()->GetIntConstant(value));
1562 return true;
1563 }
1564 }
1565
VisitCondition(HCondition * condition)1566 void InstructionSimplifierVisitor::VisitCondition(HCondition* condition) {
1567 if (condition->IsEqual() || condition->IsNotEqual()) {
1568 if (RecognizeAndSimplifyClassCheck(condition)) {
1569 return;
1570 }
1571 }
1572
1573 // Reverse condition if left is constant. Our code generators prefer constant
1574 // on the right hand side.
1575 if (condition->GetLeft()->IsConstant() && !condition->GetRight()->IsConstant()) {
1576 HBasicBlock* block = condition->GetBlock();
1577 HCondition* replacement =
1578 GetOppositeConditionSwapOps(block->GetGraph()->GetAllocator(), condition);
1579 // If it is a fp we must set the opposite bias.
1580 if (replacement != nullptr) {
1581 if (condition->IsLtBias()) {
1582 replacement->SetBias(ComparisonBias::kGtBias);
1583 } else if (condition->IsGtBias()) {
1584 replacement->SetBias(ComparisonBias::kLtBias);
1585 }
1586 block->ReplaceAndRemoveInstructionWith(condition, replacement);
1587 RecordSimplification();
1588
1589 condition = replacement;
1590 }
1591 }
1592
1593 HInstruction* left = condition->GetLeft();
1594 HInstruction* right = condition->GetRight();
1595
1596 // Try to fold an HCompare into this HCondition.
1597
1598 // We can only replace an HCondition which compares a Compare to 0.
1599 // Both 'dx' and 'jack' generate a compare to 0 when compiling a
1600 // condition with a long, float or double comparison as input.
1601 if (!left->IsCompare() || !right->IsConstant() || right->AsIntConstant()->GetValue() != 0) {
1602 // Conversion is not possible.
1603 return;
1604 }
1605
1606 // Is the Compare only used for this purpose?
1607 if (!left->GetUses().HasExactlyOneElement()) {
1608 // Someone else also wants the result of the compare.
1609 return;
1610 }
1611
1612 if (!left->GetEnvUses().empty()) {
1613 // There is a reference to the compare result in an environment. Do we really need it?
1614 if (GetGraph()->IsDebuggable()) {
1615 return;
1616 }
1617
1618 // We have to ensure that there are no deopt points in the sequence.
1619 if (left->HasAnyEnvironmentUseBefore(condition)) {
1620 return;
1621 }
1622 }
1623
1624 // Clean up any environment uses from the HCompare, if any.
1625 left->RemoveEnvironmentUsers();
1626
1627 // We have decided to fold the HCompare into the HCondition. Transfer the information.
1628 condition->SetBias(left->AsCompare()->GetBias());
1629
1630 // Replace the operands of the HCondition.
1631 condition->ReplaceInput(left->InputAt(0), 0);
1632 condition->ReplaceInput(left->InputAt(1), 1);
1633
1634 // Remove the HCompare.
1635 left->GetBlock()->RemoveInstruction(left);
1636
1637 RecordSimplification();
1638 }
1639
1640 // Return whether x / divisor == x * (1.0f / divisor), for every float x.
CanDivideByReciprocalMultiplyFloat(int32_t divisor)1641 static constexpr bool CanDivideByReciprocalMultiplyFloat(int32_t divisor) {
1642 // True, if the most significant bits of divisor are 0.
1643 return ((divisor & 0x7fffff) == 0);
1644 }
1645
1646 // Return whether x / divisor == x * (1.0 / divisor), for every double x.
CanDivideByReciprocalMultiplyDouble(int64_t divisor)1647 static constexpr bool CanDivideByReciprocalMultiplyDouble(int64_t divisor) {
1648 // True, if the most significant bits of divisor are 0.
1649 return ((divisor & ((UINT64_C(1) << 52) - 1)) == 0);
1650 }
1651
VisitDiv(HDiv * instruction)1652 void InstructionSimplifierVisitor::VisitDiv(HDiv* instruction) {
1653 HConstant* input_cst = instruction->GetConstantRight();
1654 HInstruction* input_other = instruction->GetLeastConstantLeft();
1655 DataType::Type type = instruction->GetType();
1656
1657 if ((input_cst != nullptr) && input_cst->IsOne()) {
1658 // Replace code looking like
1659 // DIV dst, src, 1
1660 // with
1661 // src
1662 instruction->ReplaceWith(input_other);
1663 instruction->GetBlock()->RemoveInstruction(instruction);
1664 RecordSimplification();
1665 return;
1666 }
1667
1668 if ((input_cst != nullptr) && input_cst->IsMinusOne()) {
1669 // Replace code looking like
1670 // DIV dst, src, -1
1671 // with
1672 // NEG dst, src
1673 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(
1674 instruction, new (GetGraph()->GetAllocator()) HNeg(type, input_other));
1675 RecordSimplification();
1676 return;
1677 }
1678
1679 if ((input_cst != nullptr) && DataType::IsFloatingPointType(type)) {
1680 // Try replacing code looking like
1681 // DIV dst, src, constant
1682 // with
1683 // MUL dst, src, 1 / constant
1684 HConstant* reciprocal = nullptr;
1685 if (type == DataType::Type::kFloat64) {
1686 double value = input_cst->AsDoubleConstant()->GetValue();
1687 if (CanDivideByReciprocalMultiplyDouble(bit_cast<int64_t, double>(value))) {
1688 reciprocal = GetGraph()->GetDoubleConstant(1.0 / value);
1689 }
1690 } else {
1691 DCHECK_EQ(type, DataType::Type::kFloat32);
1692 float value = input_cst->AsFloatConstant()->GetValue();
1693 if (CanDivideByReciprocalMultiplyFloat(bit_cast<int32_t, float>(value))) {
1694 reciprocal = GetGraph()->GetFloatConstant(1.0f / value);
1695 }
1696 }
1697
1698 if (reciprocal != nullptr) {
1699 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(
1700 instruction, new (GetGraph()->GetAllocator()) HMul(type, input_other, reciprocal));
1701 RecordSimplification();
1702 return;
1703 }
1704 }
1705 }
1706
1707
1708 // Search HDiv having the specified dividend and divisor which is in the specified basic block.
1709 // Return nullptr if nothing has been found.
FindDivWithInputsInBasicBlock(HInstruction * dividend,HInstruction * divisor,HBasicBlock * basic_block)1710 static HInstruction* FindDivWithInputsInBasicBlock(HInstruction* dividend,
1711 HInstruction* divisor,
1712 HBasicBlock* basic_block) {
1713 for (const HUseListNode<HInstruction*>& use : dividend->GetUses()) {
1714 HInstruction* user = use.GetUser();
1715 if (user->GetBlock() == basic_block && user->IsDiv() && user->InputAt(1) == divisor) {
1716 return user;
1717 }
1718 }
1719 return nullptr;
1720 }
1721
1722 // If there is Div with the same inputs as Rem and in the same basic block, it can be reused.
1723 // Rem is replaced with Mul+Sub which use the found Div.
TryToReuseDiv(HRem * rem)1724 void InstructionSimplifierVisitor::TryToReuseDiv(HRem* rem) {
1725 // As the optimization replaces Rem with Mul+Sub they prevent some loop optimizations
1726 // if the Rem is in a loop.
1727 // Check if it is allowed to optimize such Rems.
1728 if (rem->IsInLoop() && be_loop_friendly_) {
1729 return;
1730 }
1731 DataType::Type type = rem->GetResultType();
1732 if (!DataType::IsIntOrLongType(type)) {
1733 return;
1734 }
1735
1736 HBasicBlock* basic_block = rem->GetBlock();
1737 HInstruction* dividend = rem->GetLeft();
1738 HInstruction* divisor = rem->GetRight();
1739
1740 if (divisor->IsConstant()) {
1741 HConstant* input_cst = rem->GetConstantRight();
1742 DCHECK(input_cst->IsIntConstant() || input_cst->IsLongConstant());
1743 int64_t cst_value = Int64FromConstant(input_cst);
1744 if (cst_value == std::numeric_limits<int64_t>::min() || IsPowerOfTwo(std::abs(cst_value))) {
1745 // Such cases are usually handled in the code generator because they don't need Div at all.
1746 return;
1747 }
1748 }
1749
1750 HInstruction* quotient = FindDivWithInputsInBasicBlock(dividend, divisor, basic_block);
1751 if (quotient == nullptr) {
1752 return;
1753 }
1754 if (!quotient->StrictlyDominates(rem)) {
1755 quotient->MoveBefore(rem);
1756 }
1757
1758 ArenaAllocator* allocator = GetGraph()->GetAllocator();
1759 HInstruction* mul = new (allocator) HMul(type, quotient, divisor);
1760 basic_block->InsertInstructionBefore(mul, rem);
1761 HInstruction* sub = new (allocator) HSub(type, dividend, mul);
1762 basic_block->InsertInstructionBefore(sub, rem);
1763 rem->ReplaceWith(sub);
1764 basic_block->RemoveInstruction(rem);
1765 RecordSimplification();
1766 }
1767
VisitRem(HRem * rem)1768 void InstructionSimplifierVisitor::VisitRem(HRem* rem) {
1769 TryToReuseDiv(rem);
1770 }
1771
VisitMul(HMul * instruction)1772 void InstructionSimplifierVisitor::VisitMul(HMul* instruction) {
1773 HConstant* input_cst = instruction->GetConstantRight();
1774 HInstruction* input_other = instruction->GetLeastConstantLeft();
1775 DataType::Type type = instruction->GetType();
1776 HBasicBlock* block = instruction->GetBlock();
1777 ArenaAllocator* allocator = GetGraph()->GetAllocator();
1778
1779 if (input_cst == nullptr) {
1780 return;
1781 }
1782
1783 if (input_cst->IsOne()) {
1784 // Replace code looking like
1785 // MUL dst, src, 1
1786 // with
1787 // src
1788 instruction->ReplaceWith(input_other);
1789 instruction->GetBlock()->RemoveInstruction(instruction);
1790 RecordSimplification();
1791 return;
1792 }
1793
1794 if (input_cst->IsMinusOne() &&
1795 (DataType::IsFloatingPointType(type) || DataType::IsIntOrLongType(type))) {
1796 // Replace code looking like
1797 // MUL dst, src, -1
1798 // with
1799 // NEG dst, src
1800 HNeg* neg = new (allocator) HNeg(type, input_other);
1801 block->ReplaceAndRemoveInstructionWith(instruction, neg);
1802 RecordSimplification();
1803 return;
1804 }
1805
1806 if (DataType::IsFloatingPointType(type) &&
1807 ((input_cst->IsFloatConstant() && input_cst->AsFloatConstant()->GetValue() == 2.0f) ||
1808 (input_cst->IsDoubleConstant() && input_cst->AsDoubleConstant()->GetValue() == 2.0))) {
1809 // Replace code looking like
1810 // FP_MUL dst, src, 2.0
1811 // with
1812 // FP_ADD dst, src, src
1813 // The 'int' and 'long' cases are handled below.
1814 block->ReplaceAndRemoveInstructionWith(instruction,
1815 new (allocator) HAdd(type, input_other, input_other));
1816 RecordSimplification();
1817 return;
1818 }
1819
1820 if (DataType::IsIntOrLongType(type)) {
1821 int64_t factor = Int64FromConstant(input_cst);
1822 // Even though constant propagation also takes care of the zero case, other
1823 // optimizations can lead to having a zero multiplication.
1824 if (factor == 0) {
1825 // Replace code looking like
1826 // MUL dst, src, 0
1827 // with
1828 // 0
1829 instruction->ReplaceWith(input_cst);
1830 instruction->GetBlock()->RemoveInstruction(instruction);
1831 RecordSimplification();
1832 return;
1833 } else if (IsPowerOfTwo(factor)) {
1834 // Replace code looking like
1835 // MUL dst, src, pow_of_2
1836 // with
1837 // SHL dst, src, log2(pow_of_2)
1838 HIntConstant* shift = GetGraph()->GetIntConstant(WhichPowerOf2(factor));
1839 HShl* shl = new (allocator) HShl(type, input_other, shift);
1840 block->ReplaceAndRemoveInstructionWith(instruction, shl);
1841 RecordSimplification();
1842 return;
1843 } else if (IsPowerOfTwo(factor - 1)) {
1844 // Transform code looking like
1845 // MUL dst, src, (2^n + 1)
1846 // into
1847 // SHL tmp, src, n
1848 // ADD dst, src, tmp
1849 HShl* shl = new (allocator) HShl(type,
1850 input_other,
1851 GetGraph()->GetIntConstant(WhichPowerOf2(factor - 1)));
1852 HAdd* add = new (allocator) HAdd(type, input_other, shl);
1853
1854 block->InsertInstructionBefore(shl, instruction);
1855 block->ReplaceAndRemoveInstructionWith(instruction, add);
1856 RecordSimplification();
1857 return;
1858 } else if (IsPowerOfTwo(factor + 1)) {
1859 // Transform code looking like
1860 // MUL dst, src, (2^n - 1)
1861 // into
1862 // SHL tmp, src, n
1863 // SUB dst, tmp, src
1864 HShl* shl = new (allocator) HShl(type,
1865 input_other,
1866 GetGraph()->GetIntConstant(WhichPowerOf2(factor + 1)));
1867 HSub* sub = new (allocator) HSub(type, shl, input_other);
1868
1869 block->InsertInstructionBefore(shl, instruction);
1870 block->ReplaceAndRemoveInstructionWith(instruction, sub);
1871 RecordSimplification();
1872 return;
1873 }
1874 }
1875
1876 // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
1877 // so no need to return.
1878 TryHandleAssociativeAndCommutativeOperation(instruction);
1879 }
1880
VisitNeg(HNeg * instruction)1881 void InstructionSimplifierVisitor::VisitNeg(HNeg* instruction) {
1882 HInstruction* input = instruction->GetInput();
1883 if (input->IsNeg()) {
1884 // Replace code looking like
1885 // NEG tmp, src
1886 // NEG dst, tmp
1887 // with
1888 // src
1889 HNeg* previous_neg = input->AsNeg();
1890 instruction->ReplaceWith(previous_neg->GetInput());
1891 instruction->GetBlock()->RemoveInstruction(instruction);
1892 // We perform the optimization even if the input negation has environment
1893 // uses since it allows removing the current instruction. But we only delete
1894 // the input negation only if it is does not have any uses left.
1895 if (!previous_neg->HasUses()) {
1896 previous_neg->GetBlock()->RemoveInstruction(previous_neg);
1897 }
1898 RecordSimplification();
1899 return;
1900 }
1901
1902 if (input->IsSub() && input->HasOnlyOneNonEnvironmentUse() &&
1903 !DataType::IsFloatingPointType(input->GetType())) {
1904 // Replace code looking like
1905 // SUB tmp, a, b
1906 // NEG dst, tmp
1907 // with
1908 // SUB dst, b, a
1909 // We do not perform the optimization if the input subtraction has
1910 // environment uses or multiple non-environment uses as it could lead to
1911 // worse code. In particular, we do not want the live ranges of `a` and `b`
1912 // to be extended if we are not sure the initial 'SUB' instruction can be
1913 // removed.
1914 // We do not perform optimization for fp because we could lose the sign of zero.
1915 HSub* sub = input->AsSub();
1916 HSub* new_sub = new (GetGraph()->GetAllocator()) HSub(
1917 instruction->GetType(), sub->GetRight(), sub->GetLeft());
1918 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, new_sub);
1919 if (!sub->HasUses()) {
1920 sub->GetBlock()->RemoveInstruction(sub);
1921 }
1922 RecordSimplification();
1923 }
1924 }
1925
VisitNot(HNot * instruction)1926 void InstructionSimplifierVisitor::VisitNot(HNot* instruction) {
1927 HInstruction* input = instruction->GetInput();
1928 if (input->IsNot()) {
1929 // Replace code looking like
1930 // NOT tmp, src
1931 // NOT dst, tmp
1932 // with
1933 // src
1934 // We perform the optimization even if the input negation has environment
1935 // uses since it allows removing the current instruction. But we only delete
1936 // the input negation only if it is does not have any uses left.
1937 HNot* previous_not = input->AsNot();
1938 instruction->ReplaceWith(previous_not->GetInput());
1939 instruction->GetBlock()->RemoveInstruction(instruction);
1940 if (!previous_not->HasUses()) {
1941 previous_not->GetBlock()->RemoveInstruction(previous_not);
1942 }
1943 RecordSimplification();
1944 }
1945 }
1946
VisitOr(HOr * instruction)1947 void InstructionSimplifierVisitor::VisitOr(HOr* instruction) {
1948 HConstant* input_cst = instruction->GetConstantRight();
1949 HInstruction* input_other = instruction->GetLeastConstantLeft();
1950
1951 if ((input_cst != nullptr) && input_cst->IsZeroBitPattern()) {
1952 // Replace code looking like
1953 // OR dst, src, 0
1954 // with
1955 // src
1956 instruction->ReplaceWith(input_other);
1957 instruction->GetBlock()->RemoveInstruction(instruction);
1958 RecordSimplification();
1959 return;
1960 }
1961
1962 // We assume that GVN has run before, so we only perform a pointer comparison.
1963 // If for some reason the values are equal but the pointers are different, we
1964 // are still correct and only miss an optimization opportunity.
1965 if (instruction->GetLeft() == instruction->GetRight()) {
1966 // Replace code looking like
1967 // OR dst, src, src
1968 // with
1969 // src
1970 instruction->ReplaceWith(instruction->GetLeft());
1971 instruction->GetBlock()->RemoveInstruction(instruction);
1972 RecordSimplification();
1973 return;
1974 }
1975
1976 if (TryDeMorganNegationFactoring(instruction)) return;
1977
1978 if (TryReplaceWithRotate(instruction)) {
1979 return;
1980 }
1981
1982 // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
1983 // so no need to return.
1984 TryHandleAssociativeAndCommutativeOperation(instruction);
1985 }
1986
VisitShl(HShl * instruction)1987 void InstructionSimplifierVisitor::VisitShl(HShl* instruction) {
1988 VisitShift(instruction);
1989 }
1990
VisitShr(HShr * instruction)1991 void InstructionSimplifierVisitor::VisitShr(HShr* instruction) {
1992 VisitShift(instruction);
1993 }
1994
VisitSub(HSub * instruction)1995 void InstructionSimplifierVisitor::VisitSub(HSub* instruction) {
1996 HConstant* input_cst = instruction->GetConstantRight();
1997 HInstruction* input_other = instruction->GetLeastConstantLeft();
1998
1999 DataType::Type type = instruction->GetType();
2000 if (DataType::IsFloatingPointType(type)) {
2001 return;
2002 }
2003
2004 if ((input_cst != nullptr) && input_cst->IsArithmeticZero()) {
2005 // Replace code looking like
2006 // SUB dst, src, 0
2007 // with
2008 // src
2009 // Note that we cannot optimize `x - 0.0` to `x` for floating-point. When
2010 // `x` is `-0.0`, the former expression yields `0.0`, while the later
2011 // yields `-0.0`.
2012 instruction->ReplaceWith(input_other);
2013 instruction->GetBlock()->RemoveInstruction(instruction);
2014 RecordSimplification();
2015 return;
2016 }
2017
2018 HBasicBlock* block = instruction->GetBlock();
2019 ArenaAllocator* allocator = GetGraph()->GetAllocator();
2020
2021 HInstruction* left = instruction->GetLeft();
2022 HInstruction* right = instruction->GetRight();
2023 if (left->IsConstant()) {
2024 if (Int64FromConstant(left->AsConstant()) == 0) {
2025 // Replace code looking like
2026 // SUB dst, 0, src
2027 // with
2028 // NEG dst, src
2029 // Note that we cannot optimize `0.0 - x` to `-x` for floating-point. When
2030 // `x` is `0.0`, the former expression yields `0.0`, while the later
2031 // yields `-0.0`.
2032 HNeg* neg = new (allocator) HNeg(type, right);
2033 block->ReplaceAndRemoveInstructionWith(instruction, neg);
2034 RecordSimplification();
2035 return;
2036 }
2037 }
2038
2039 if (left->IsNeg() && right->IsNeg()) {
2040 if (TryMoveNegOnInputsAfterBinop(instruction)) {
2041 return;
2042 }
2043 }
2044
2045 if (right->IsNeg() && right->HasOnlyOneNonEnvironmentUse()) {
2046 // Replace code looking like
2047 // NEG tmp, b
2048 // SUB dst, a, tmp
2049 // with
2050 // ADD dst, a, b
2051 HAdd* add = new(GetGraph()->GetAllocator()) HAdd(type, left, right->AsNeg()->GetInput());
2052 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, add);
2053 RecordSimplification();
2054 right->GetBlock()->RemoveInstruction(right);
2055 return;
2056 }
2057
2058 if (left->IsNeg() && left->HasOnlyOneNonEnvironmentUse()) {
2059 // Replace code looking like
2060 // NEG tmp, a
2061 // SUB dst, tmp, b
2062 // with
2063 // ADD tmp, a, b
2064 // NEG dst, tmp
2065 // The second version is not intrinsically better, but enables more
2066 // transformations.
2067 HAdd* add = new(GetGraph()->GetAllocator()) HAdd(type, left->AsNeg()->GetInput(), right);
2068 instruction->GetBlock()->InsertInstructionBefore(add, instruction);
2069 HNeg* neg = new (GetGraph()->GetAllocator()) HNeg(instruction->GetType(), add);
2070 instruction->GetBlock()->InsertInstructionBefore(neg, instruction);
2071 instruction->ReplaceWith(neg);
2072 instruction->GetBlock()->RemoveInstruction(instruction);
2073 RecordSimplification();
2074 left->GetBlock()->RemoveInstruction(left);
2075 return;
2076 }
2077
2078 if (TrySubtractionChainSimplification(instruction)) {
2079 return;
2080 }
2081
2082 if (left->IsAdd()) {
2083 // Replace code patterns looking like
2084 // ADD dst1, x, y ADD dst1, x, y
2085 // SUB dst2, dst1, y SUB dst2, dst1, x
2086 // with
2087 // ADD dst1, x, y
2088 // SUB instruction is not needed in this case, we may use
2089 // one of inputs of ADD instead.
2090 // It is applicable to integral types only.
2091 DCHECK(DataType::IsIntegralType(type));
2092 if (left->InputAt(1) == right) {
2093 instruction->ReplaceWith(left->InputAt(0));
2094 RecordSimplification();
2095 instruction->GetBlock()->RemoveInstruction(instruction);
2096 return;
2097 } else if (left->InputAt(0) == right) {
2098 instruction->ReplaceWith(left->InputAt(1));
2099 RecordSimplification();
2100 instruction->GetBlock()->RemoveInstruction(instruction);
2101 return;
2102 }
2103 }
2104 }
2105
VisitUShr(HUShr * instruction)2106 void InstructionSimplifierVisitor::VisitUShr(HUShr* instruction) {
2107 VisitShift(instruction);
2108 }
2109
VisitXor(HXor * instruction)2110 void InstructionSimplifierVisitor::VisitXor(HXor* instruction) {
2111 HConstant* input_cst = instruction->GetConstantRight();
2112 HInstruction* input_other = instruction->GetLeastConstantLeft();
2113
2114 if ((input_cst != nullptr) && input_cst->IsZeroBitPattern()) {
2115 // Replace code looking like
2116 // XOR dst, src, 0
2117 // with
2118 // src
2119 instruction->ReplaceWith(input_other);
2120 instruction->GetBlock()->RemoveInstruction(instruction);
2121 RecordSimplification();
2122 return;
2123 }
2124
2125 if ((input_cst != nullptr) && input_cst->IsOne()
2126 && input_other->GetType() == DataType::Type::kBool) {
2127 // Replace code looking like
2128 // XOR dst, src, 1
2129 // with
2130 // BOOLEAN_NOT dst, src
2131 HBooleanNot* boolean_not = new (GetGraph()->GetAllocator()) HBooleanNot(input_other);
2132 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, boolean_not);
2133 RecordSimplification();
2134 return;
2135 }
2136
2137 if ((input_cst != nullptr) && AreAllBitsSet(input_cst)) {
2138 // Replace code looking like
2139 // XOR dst, src, 0xFFF...FF
2140 // with
2141 // NOT dst, src
2142 HNot* bitwise_not = new (GetGraph()->GetAllocator()) HNot(instruction->GetType(), input_other);
2143 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, bitwise_not);
2144 RecordSimplification();
2145 return;
2146 }
2147
2148 HInstruction* left = instruction->GetLeft();
2149 HInstruction* right = instruction->GetRight();
2150 if (((left->IsNot() && right->IsNot()) ||
2151 (left->IsBooleanNot() && right->IsBooleanNot())) &&
2152 left->HasOnlyOneNonEnvironmentUse() &&
2153 right->HasOnlyOneNonEnvironmentUse()) {
2154 // Replace code looking like
2155 // NOT nota, a
2156 // NOT notb, b
2157 // XOR dst, nota, notb
2158 // with
2159 // XOR dst, a, b
2160 instruction->ReplaceInput(left->InputAt(0), 0);
2161 instruction->ReplaceInput(right->InputAt(0), 1);
2162 left->GetBlock()->RemoveInstruction(left);
2163 right->GetBlock()->RemoveInstruction(right);
2164 RecordSimplification();
2165 return;
2166 }
2167
2168 if (TryReplaceWithRotate(instruction)) {
2169 return;
2170 }
2171
2172 // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
2173 // so no need to return.
2174 TryHandleAssociativeAndCommutativeOperation(instruction);
2175 }
2176
SimplifyStringEquals(HInvoke * instruction)2177 void InstructionSimplifierVisitor::SimplifyStringEquals(HInvoke* instruction) {
2178 HInstruction* argument = instruction->InputAt(1);
2179 HInstruction* receiver = instruction->InputAt(0);
2180 if (receiver == argument) {
2181 // Because String.equals is an instance call, the receiver is
2182 // a null check if we don't know it's null. The argument however, will
2183 // be the actual object. So we cannot end up in a situation where both
2184 // are equal but could be null.
2185 DCHECK(CanEnsureNotNullAt(argument, instruction));
2186 instruction->ReplaceWith(GetGraph()->GetIntConstant(1));
2187 instruction->GetBlock()->RemoveInstruction(instruction);
2188 } else {
2189 StringEqualsOptimizations optimizations(instruction);
2190 if (CanEnsureNotNullAt(argument, instruction)) {
2191 optimizations.SetArgumentNotNull();
2192 }
2193 ScopedObjectAccess soa(Thread::Current());
2194 ReferenceTypeInfo argument_rti = argument->GetReferenceTypeInfo();
2195 if (argument_rti.IsValid() && argument_rti.IsStringClass()) {
2196 optimizations.SetArgumentIsString();
2197 }
2198 }
2199 }
2200
IsArrayLengthOf(HInstruction * potential_length,HInstruction * potential_array)2201 static bool IsArrayLengthOf(HInstruction* potential_length, HInstruction* potential_array) {
2202 if (potential_length->IsArrayLength()) {
2203 return potential_length->InputAt(0) == potential_array;
2204 }
2205
2206 if (potential_array->IsNewArray()) {
2207 return potential_array->AsNewArray()->GetLength() == potential_length;
2208 }
2209
2210 return false;
2211 }
2212
SimplifySystemArrayCopy(HInvoke * instruction)2213 void InstructionSimplifierVisitor::SimplifySystemArrayCopy(HInvoke* instruction) {
2214 HInstruction* source = instruction->InputAt(0);
2215 HInstruction* destination = instruction->InputAt(2);
2216 HInstruction* count = instruction->InputAt(4);
2217 SystemArrayCopyOptimizations optimizations(instruction);
2218 if (CanEnsureNotNullAt(source, instruction)) {
2219 optimizations.SetSourceIsNotNull();
2220 }
2221 if (CanEnsureNotNullAt(destination, instruction)) {
2222 optimizations.SetDestinationIsNotNull();
2223 }
2224 if (destination == source) {
2225 optimizations.SetDestinationIsSource();
2226 }
2227
2228 if (IsArrayLengthOf(count, source)) {
2229 optimizations.SetCountIsSourceLength();
2230 }
2231
2232 if (IsArrayLengthOf(count, destination)) {
2233 optimizations.SetCountIsDestinationLength();
2234 }
2235
2236 {
2237 ScopedObjectAccess soa(Thread::Current());
2238 DataType::Type source_component_type = DataType::Type::kVoid;
2239 DataType::Type destination_component_type = DataType::Type::kVoid;
2240 ReferenceTypeInfo destination_rti = destination->GetReferenceTypeInfo();
2241 if (destination_rti.IsValid()) {
2242 if (destination_rti.IsObjectArray()) {
2243 if (destination_rti.IsExact()) {
2244 optimizations.SetDoesNotNeedTypeCheck();
2245 }
2246 optimizations.SetDestinationIsTypedObjectArray();
2247 }
2248 if (destination_rti.IsPrimitiveArrayClass()) {
2249 destination_component_type = DataTypeFromPrimitive(
2250 destination_rti.GetTypeHandle()->GetComponentType()->GetPrimitiveType());
2251 optimizations.SetDestinationIsPrimitiveArray();
2252 } else if (destination_rti.IsNonPrimitiveArrayClass()) {
2253 optimizations.SetDestinationIsNonPrimitiveArray();
2254 }
2255 }
2256 ReferenceTypeInfo source_rti = source->GetReferenceTypeInfo();
2257 if (source_rti.IsValid()) {
2258 if (destination_rti.IsValid() && destination_rti.CanArrayHoldValuesOf(source_rti)) {
2259 optimizations.SetDoesNotNeedTypeCheck();
2260 }
2261 if (source_rti.IsPrimitiveArrayClass()) {
2262 optimizations.SetSourceIsPrimitiveArray();
2263 source_component_type = DataTypeFromPrimitive(
2264 source_rti.GetTypeHandle()->GetComponentType()->GetPrimitiveType());
2265 } else if (source_rti.IsNonPrimitiveArrayClass()) {
2266 optimizations.SetSourceIsNonPrimitiveArray();
2267 }
2268 }
2269 // For primitive arrays, use their optimized ArtMethod implementations.
2270 if ((source_component_type != DataType::Type::kVoid) &&
2271 (source_component_type == destination_component_type)) {
2272 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2273 PointerSize image_size = class_linker->GetImagePointerSize();
2274 HInvokeStaticOrDirect* invoke = instruction->AsInvokeStaticOrDirect();
2275 ObjPtr<mirror::Class> system = invoke->GetResolvedMethod()->GetDeclaringClass();
2276 ArtMethod* method = nullptr;
2277 switch (source_component_type) {
2278 case DataType::Type::kBool:
2279 method = system->FindClassMethod("arraycopy", "([ZI[ZII)V", image_size);
2280 break;
2281 case DataType::Type::kInt8:
2282 method = system->FindClassMethod("arraycopy", "([BI[BII)V", image_size);
2283 break;
2284 case DataType::Type::kUint16:
2285 method = system->FindClassMethod("arraycopy", "([CI[CII)V", image_size);
2286 break;
2287 case DataType::Type::kInt16:
2288 method = system->FindClassMethod("arraycopy", "([SI[SII)V", image_size);
2289 break;
2290 case DataType::Type::kInt32:
2291 method = system->FindClassMethod("arraycopy", "([II[III)V", image_size);
2292 break;
2293 case DataType::Type::kFloat32:
2294 method = system->FindClassMethod("arraycopy", "([FI[FII)V", image_size);
2295 break;
2296 case DataType::Type::kInt64:
2297 method = system->FindClassMethod("arraycopy", "([JI[JII)V", image_size);
2298 break;
2299 case DataType::Type::kFloat64:
2300 method = system->FindClassMethod("arraycopy", "([DI[DII)V", image_size);
2301 break;
2302 default:
2303 LOG(FATAL) << "Unreachable";
2304 }
2305 DCHECK(method != nullptr);
2306 DCHECK(method->IsStatic());
2307 DCHECK(method->GetDeclaringClass() == system);
2308 invoke->SetResolvedMethod(method);
2309 // Sharpen the new invoke. Note that we do not update the dex method index of
2310 // the invoke, as we would need to look it up in the current dex file, and it
2311 // is unlikely that it exists. The most usual situation for such typed
2312 // arraycopy methods is a direct pointer to the boot image.
2313 invoke->SetDispatchInfo(HSharpening::SharpenInvokeStaticOrDirect(method, codegen_));
2314 }
2315 }
2316 }
2317
SimplifyFP2Int(HInvoke * invoke)2318 void InstructionSimplifierVisitor::SimplifyFP2Int(HInvoke* invoke) {
2319 DCHECK(invoke->IsInvokeStaticOrDirect());
2320 uint32_t dex_pc = invoke->GetDexPc();
2321 HInstruction* x = invoke->InputAt(0);
2322 DataType::Type type = x->GetType();
2323 // Set proper bit pattern for NaN and replace intrinsic with raw version.
2324 HInstruction* nan;
2325 if (type == DataType::Type::kFloat64) {
2326 nan = GetGraph()->GetLongConstant(0x7ff8000000000000L);
2327 invoke->SetIntrinsic(Intrinsics::kDoubleDoubleToRawLongBits,
2328 kNeedsEnvironmentOrCache,
2329 kNoSideEffects,
2330 kNoThrow);
2331 } else {
2332 DCHECK_EQ(type, DataType::Type::kFloat32);
2333 nan = GetGraph()->GetIntConstant(0x7fc00000);
2334 invoke->SetIntrinsic(Intrinsics::kFloatFloatToRawIntBits,
2335 kNeedsEnvironmentOrCache,
2336 kNoSideEffects,
2337 kNoThrow);
2338 }
2339 // Test IsNaN(x), which is the same as x != x.
2340 HCondition* condition = new (GetGraph()->GetAllocator()) HNotEqual(x, x, dex_pc);
2341 condition->SetBias(ComparisonBias::kLtBias);
2342 invoke->GetBlock()->InsertInstructionBefore(condition, invoke->GetNext());
2343 // Select between the two.
2344 HInstruction* select = new (GetGraph()->GetAllocator()) HSelect(condition, nan, invoke, dex_pc);
2345 invoke->GetBlock()->InsertInstructionBefore(select, condition->GetNext());
2346 invoke->ReplaceWithExceptInReplacementAtIndex(select, 0); // false at index 0
2347 }
2348
SimplifyStringCharAt(HInvoke * invoke)2349 void InstructionSimplifierVisitor::SimplifyStringCharAt(HInvoke* invoke) {
2350 HInstruction* str = invoke->InputAt(0);
2351 HInstruction* index = invoke->InputAt(1);
2352 uint32_t dex_pc = invoke->GetDexPc();
2353 ArenaAllocator* allocator = GetGraph()->GetAllocator();
2354 // We treat String as an array to allow DCE and BCE to seamlessly work on strings,
2355 // so create the HArrayLength, HBoundsCheck and HArrayGet.
2356 HArrayLength* length = new (allocator) HArrayLength(str, dex_pc, /* is_string_length= */ true);
2357 invoke->GetBlock()->InsertInstructionBefore(length, invoke);
2358 HBoundsCheck* bounds_check = new (allocator) HBoundsCheck(
2359 index, length, dex_pc, /* is_string_char_at= */ true);
2360 invoke->GetBlock()->InsertInstructionBefore(bounds_check, invoke);
2361 HArrayGet* array_get = new (allocator) HArrayGet(str,
2362 bounds_check,
2363 DataType::Type::kUint16,
2364 SideEffects::None(), // Strings are immutable.
2365 dex_pc,
2366 /* is_string_char_at= */ true);
2367 invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, array_get);
2368 bounds_check->CopyEnvironmentFrom(invoke->GetEnvironment());
2369 GetGraph()->SetHasBoundsChecks(true);
2370 }
2371
SimplifyStringLength(HInvoke * invoke)2372 void InstructionSimplifierVisitor::SimplifyStringLength(HInvoke* invoke) {
2373 HInstruction* str = invoke->InputAt(0);
2374 uint32_t dex_pc = invoke->GetDexPc();
2375 // We treat String as an array to allow DCE and BCE to seamlessly work on strings,
2376 // so create the HArrayLength.
2377 HArrayLength* length =
2378 new (GetGraph()->GetAllocator()) HArrayLength(str, dex_pc, /* is_string_length= */ true);
2379 invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, length);
2380 }
2381
SimplifyStringIndexOf(HInvoke * invoke)2382 void InstructionSimplifierVisitor::SimplifyStringIndexOf(HInvoke* invoke) {
2383 DCHECK(invoke->GetIntrinsic() == Intrinsics::kStringIndexOf ||
2384 invoke->GetIntrinsic() == Intrinsics::kStringIndexOfAfter);
2385 if (invoke->InputAt(0)->IsLoadString()) {
2386 HLoadString* load_string = invoke->InputAt(0)->AsLoadString();
2387 const DexFile& dex_file = load_string->GetDexFile();
2388 uint32_t utf16_length;
2389 const char* data =
2390 dex_file.StringDataAndUtf16LengthByIdx(load_string->GetStringIndex(), &utf16_length);
2391 if (utf16_length == 0) {
2392 invoke->ReplaceWith(GetGraph()->GetIntConstant(-1));
2393 invoke->GetBlock()->RemoveInstruction(invoke);
2394 RecordSimplification();
2395 return;
2396 }
2397 if (utf16_length == 1 && invoke->GetIntrinsic() == Intrinsics::kStringIndexOf) {
2398 // Simplify to HSelect(HEquals(., load_string.charAt(0)), 0, -1).
2399 // If the sought character is supplementary, this gives the correct result, i.e. -1.
2400 uint32_t c = GetUtf16FromUtf8(&data);
2401 DCHECK_EQ(GetTrailingUtf16Char(c), 0u);
2402 DCHECK_EQ(GetLeadingUtf16Char(c), c);
2403 uint32_t dex_pc = invoke->GetDexPc();
2404 ArenaAllocator* allocator = GetGraph()->GetAllocator();
2405 HEqual* equal =
2406 new (allocator) HEqual(invoke->InputAt(1), GetGraph()->GetIntConstant(c), dex_pc);
2407 invoke->GetBlock()->InsertInstructionBefore(equal, invoke);
2408 HSelect* result = new (allocator) HSelect(equal,
2409 GetGraph()->GetIntConstant(0),
2410 GetGraph()->GetIntConstant(-1),
2411 dex_pc);
2412 invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, result);
2413 RecordSimplification();
2414 return;
2415 }
2416 }
2417 }
2418
2419 // This method should only be used on intrinsics whose sole way of throwing an
2420 // exception is raising a NPE when the nth argument is null. If that argument
2421 // is provably non-null, we can clear the flag.
SimplifyNPEOnArgN(HInvoke * invoke,size_t n)2422 void InstructionSimplifierVisitor::SimplifyNPEOnArgN(HInvoke* invoke, size_t n) {
2423 HInstruction* arg = invoke->InputAt(n);
2424 if (invoke->CanThrow() && !arg->CanBeNull()) {
2425 invoke->SetCanThrow(false);
2426 }
2427 }
2428
2429 // Methods that return "this" can replace the returned value with the receiver.
SimplifyReturnThis(HInvoke * invoke)2430 void InstructionSimplifierVisitor::SimplifyReturnThis(HInvoke* invoke) {
2431 if (invoke->HasUses()) {
2432 HInstruction* receiver = invoke->InputAt(0);
2433 invoke->ReplaceWith(receiver);
2434 RecordSimplification();
2435 }
2436 }
2437
2438 // Helper method for StringBuffer escape analysis.
NoEscapeForStringBufferReference(HInstruction * reference,HInstruction * user)2439 static bool NoEscapeForStringBufferReference(HInstruction* reference, HInstruction* user) {
2440 if (user->IsInvokeStaticOrDirect()) {
2441 // Any constructor on StringBuffer is okay.
2442 return user->AsInvokeStaticOrDirect()->GetResolvedMethod() != nullptr &&
2443 user->AsInvokeStaticOrDirect()->GetResolvedMethod()->IsConstructor() &&
2444 user->InputAt(0) == reference;
2445 } else if (user->IsInvokeVirtual()) {
2446 switch (user->AsInvokeVirtual()->GetIntrinsic()) {
2447 case Intrinsics::kStringBufferLength:
2448 case Intrinsics::kStringBufferToString:
2449 DCHECK_EQ(user->InputAt(0), reference);
2450 return true;
2451 case Intrinsics::kStringBufferAppend:
2452 // Returns "this", so only okay if no further uses.
2453 DCHECK_EQ(user->InputAt(0), reference);
2454 DCHECK_NE(user->InputAt(1), reference);
2455 return !user->HasUses();
2456 default:
2457 break;
2458 }
2459 }
2460 return false;
2461 }
2462
TryReplaceStringBuilderAppend(HInvoke * invoke)2463 static bool TryReplaceStringBuilderAppend(HInvoke* invoke) {
2464 DCHECK_EQ(invoke->GetIntrinsic(), Intrinsics::kStringBuilderToString);
2465 if (invoke->CanThrowIntoCatchBlock()) {
2466 return false;
2467 }
2468
2469 HBasicBlock* block = invoke->GetBlock();
2470 HInstruction* sb = invoke->InputAt(0);
2471
2472 // We support only a new StringBuilder, otherwise we cannot ensure that
2473 // the StringBuilder data does not need to be populated for other users.
2474 if (!sb->IsNewInstance()) {
2475 return false;
2476 }
2477
2478 // For now, we support only single-block recognition.
2479 // (Ternary operators feeding the append could be implemented.)
2480 for (const HUseListNode<HInstruction*>& use : sb->GetUses()) {
2481 if (use.GetUser()->GetBlock() != block) {
2482 return false;
2483 }
2484 // The append pattern uses the StringBuilder only as the first argument.
2485 if (use.GetIndex() != 0u) {
2486 return false;
2487 }
2488 }
2489
2490 // Collect args and check for unexpected uses.
2491 // We expect one call to a constructor with no arguments, one constructor fence (unless
2492 // eliminated), some number of append calls and one call to StringBuilder.toString().
2493 bool seen_constructor = false;
2494 bool seen_constructor_fence = false;
2495 bool seen_to_string = false;
2496 uint32_t format = 0u;
2497 uint32_t num_args = 0u;
2498 HInstruction* args[StringBuilderAppend::kMaxArgs]; // Added in reverse order.
2499 for (HBackwardInstructionIterator iter(block->GetInstructions()); !iter.Done(); iter.Advance()) {
2500 HInstruction* user = iter.Current();
2501 // Instructions of interest apply to `sb`, skip those that do not involve `sb`.
2502 if (user->InputCount() == 0u || user->InputAt(0u) != sb) {
2503 continue;
2504 }
2505 // We visit the uses in reverse order, so the StringBuilder.toString() must come first.
2506 if (!seen_to_string) {
2507 if (user == invoke) {
2508 seen_to_string = true;
2509 continue;
2510 } else {
2511 return false;
2512 }
2513 }
2514 // Then we should see the arguments.
2515 if (user->IsInvokeVirtual()) {
2516 HInvokeVirtual* as_invoke_virtual = user->AsInvokeVirtual();
2517 DCHECK(!seen_constructor);
2518 DCHECK(!seen_constructor_fence);
2519 StringBuilderAppend::Argument arg;
2520 switch (as_invoke_virtual->GetIntrinsic()) {
2521 case Intrinsics::kStringBuilderAppendObject:
2522 // TODO: Unimplemented, needs to call String.valueOf().
2523 return false;
2524 case Intrinsics::kStringBuilderAppendString:
2525 arg = StringBuilderAppend::Argument::kString;
2526 break;
2527 case Intrinsics::kStringBuilderAppendCharArray:
2528 // TODO: Unimplemented, StringBuilder.append(char[]) can throw NPE and we would
2529 // not have the correct stack trace for it.
2530 return false;
2531 case Intrinsics::kStringBuilderAppendBoolean:
2532 arg = StringBuilderAppend::Argument::kBoolean;
2533 break;
2534 case Intrinsics::kStringBuilderAppendChar:
2535 arg = StringBuilderAppend::Argument::kChar;
2536 break;
2537 case Intrinsics::kStringBuilderAppendInt:
2538 arg = StringBuilderAppend::Argument::kInt;
2539 break;
2540 case Intrinsics::kStringBuilderAppendLong:
2541 arg = StringBuilderAppend::Argument::kLong;
2542 break;
2543 case Intrinsics::kStringBuilderAppendCharSequence: {
2544 ReferenceTypeInfo rti = user->AsInvokeVirtual()->InputAt(1)->GetReferenceTypeInfo();
2545 if (!rti.IsValid()) {
2546 return false;
2547 }
2548 ScopedObjectAccess soa(Thread::Current());
2549 Handle<mirror::Class> input_type = rti.GetTypeHandle();
2550 DCHECK(input_type != nullptr);
2551 if (input_type.Get() == GetClassRoot<mirror::String>()) {
2552 arg = StringBuilderAppend::Argument::kString;
2553 } else {
2554 // TODO: Check and implement for StringBuilder. We could find the StringBuilder's
2555 // internal char[] inconsistent with the length, or the string compression
2556 // of the result could be compromised with a concurrent modification, and
2557 // we would need to throw appropriate exceptions.
2558 return false;
2559 }
2560 break;
2561 }
2562 case Intrinsics::kStringBuilderAppendFloat:
2563 case Intrinsics::kStringBuilderAppendDouble:
2564 // TODO: Unimplemented, needs to call FloatingDecimal.getBinaryToASCIIConverter().
2565 return false;
2566 default: {
2567 return false;
2568 }
2569 }
2570 // Uses of the append return value should have been replaced with the first input.
2571 DCHECK(!as_invoke_virtual->HasUses());
2572 DCHECK(!as_invoke_virtual->HasEnvironmentUses());
2573 if (num_args == StringBuilderAppend::kMaxArgs) {
2574 return false;
2575 }
2576 format = (format << StringBuilderAppend::kBitsPerArg) | static_cast<uint32_t>(arg);
2577 args[num_args] = as_invoke_virtual->InputAt(1u);
2578 ++num_args;
2579 } else if (user->IsInvokeStaticOrDirect() &&
2580 user->AsInvokeStaticOrDirect()->GetResolvedMethod() != nullptr &&
2581 user->AsInvokeStaticOrDirect()->GetResolvedMethod()->IsConstructor() &&
2582 user->AsInvokeStaticOrDirect()->GetNumberOfArguments() == 1u) {
2583 // After arguments, we should see the constructor.
2584 // We accept only the constructor with no extra arguments.
2585 DCHECK(!seen_constructor);
2586 DCHECK(!seen_constructor_fence);
2587 seen_constructor = true;
2588 } else if (user->IsConstructorFence()) {
2589 // The last use we see is the constructor fence.
2590 DCHECK(seen_constructor);
2591 DCHECK(!seen_constructor_fence);
2592 seen_constructor_fence = true;
2593 } else {
2594 return false;
2595 }
2596 }
2597
2598 if (num_args == 0u) {
2599 return false;
2600 }
2601
2602 // Check environment uses.
2603 for (const HUseListNode<HEnvironment*>& use : sb->GetEnvUses()) {
2604 HInstruction* holder = use.GetUser()->GetHolder();
2605 if (holder->GetBlock() != block) {
2606 return false;
2607 }
2608 // Accept only calls on the StringBuilder (which shall all be removed).
2609 // TODO: Carve-out for const-string? Or rely on environment pruning (to be implemented)?
2610 if (holder->InputCount() == 0 || holder->InputAt(0) != sb) {
2611 return false;
2612 }
2613 }
2614
2615 // Create replacement instruction.
2616 HIntConstant* fmt = block->GetGraph()->GetIntConstant(static_cast<int32_t>(format));
2617 ArenaAllocator* allocator = block->GetGraph()->GetAllocator();
2618 HStringBuilderAppend* append =
2619 new (allocator) HStringBuilderAppend(fmt, num_args, allocator, invoke->GetDexPc());
2620 append->SetReferenceTypeInfo(invoke->GetReferenceTypeInfo());
2621 for (size_t i = 0; i != num_args; ++i) {
2622 append->SetArgumentAt(i, args[num_args - 1u - i]);
2623 }
2624 block->InsertInstructionBefore(append, invoke);
2625 DCHECK(!invoke->CanBeNull());
2626 DCHECK(!append->CanBeNull());
2627 invoke->ReplaceWith(append);
2628 // Copy environment, except for the StringBuilder uses.
2629 for (HEnvironment* env = invoke->GetEnvironment(); env != nullptr; env = env->GetParent()) {
2630 for (size_t i = 0, size = env->Size(); i != size; ++i) {
2631 if (env->GetInstructionAt(i) == sb) {
2632 env->RemoveAsUserOfInput(i);
2633 env->SetRawEnvAt(i, /*instruction=*/ nullptr);
2634 }
2635 }
2636 }
2637 append->CopyEnvironmentFrom(invoke->GetEnvironment());
2638 // Remove the old instruction.
2639 block->RemoveInstruction(invoke);
2640 // Remove the StringBuilder's uses and StringBuilder.
2641 while (sb->HasNonEnvironmentUses()) {
2642 block->RemoveInstruction(sb->GetUses().front().GetUser());
2643 }
2644 DCHECK(!sb->HasEnvironmentUses());
2645 block->RemoveInstruction(sb);
2646 return true;
2647 }
2648
2649 // Certain allocation intrinsics are not removed by dead code elimination
2650 // because of potentially throwing an OOM exception or other side effects.
2651 // This method removes such intrinsics when special circumstances allow.
SimplifyAllocationIntrinsic(HInvoke * invoke)2652 void InstructionSimplifierVisitor::SimplifyAllocationIntrinsic(HInvoke* invoke) {
2653 if (!invoke->HasUses()) {
2654 // Instruction has no uses. If unsynchronized, we can remove right away, safely ignoring
2655 // the potential OOM of course. Otherwise, we must ensure the receiver object of this
2656 // call does not escape since only thread-local synchronization may be removed.
2657 bool is_synchronized = invoke->GetIntrinsic() == Intrinsics::kStringBufferToString;
2658 HInstruction* receiver = invoke->InputAt(0);
2659 if (!is_synchronized || DoesNotEscape(receiver, NoEscapeForStringBufferReference)) {
2660 invoke->GetBlock()->RemoveInstruction(invoke);
2661 RecordSimplification();
2662 }
2663 } else if (invoke->GetIntrinsic() == Intrinsics::kStringBuilderToString &&
2664 TryReplaceStringBuilderAppend(invoke)) {
2665 RecordSimplification();
2666 }
2667 }
2668
VisitInvoke(HInvoke * instruction)2669 void InstructionSimplifierVisitor::VisitInvoke(HInvoke* instruction) {
2670 switch (instruction->GetIntrinsic()) {
2671 case Intrinsics::kStringEquals:
2672 SimplifyStringEquals(instruction);
2673 break;
2674 case Intrinsics::kSystemArrayCopy:
2675 SimplifySystemArrayCopy(instruction);
2676 break;
2677 case Intrinsics::kFloatFloatToIntBits:
2678 case Intrinsics::kDoubleDoubleToLongBits:
2679 SimplifyFP2Int(instruction);
2680 break;
2681 case Intrinsics::kStringCharAt:
2682 // Instruction builder creates intermediate representation directly
2683 // but the inliner can sharpen CharSequence.charAt() to String.charAt().
2684 SimplifyStringCharAt(instruction);
2685 break;
2686 case Intrinsics::kStringLength:
2687 // Instruction builder creates intermediate representation directly
2688 // but the inliner can sharpen CharSequence.length() to String.length().
2689 SimplifyStringLength(instruction);
2690 break;
2691 case Intrinsics::kStringIndexOf:
2692 case Intrinsics::kStringIndexOfAfter:
2693 SimplifyStringIndexOf(instruction);
2694 break;
2695 case Intrinsics::kStringStringIndexOf:
2696 case Intrinsics::kStringStringIndexOfAfter:
2697 SimplifyNPEOnArgN(instruction, 1); // 0th has own NullCheck
2698 break;
2699 case Intrinsics::kStringBufferAppend:
2700 case Intrinsics::kStringBuilderAppendObject:
2701 case Intrinsics::kStringBuilderAppendString:
2702 case Intrinsics::kStringBuilderAppendCharSequence:
2703 case Intrinsics::kStringBuilderAppendCharArray:
2704 case Intrinsics::kStringBuilderAppendBoolean:
2705 case Intrinsics::kStringBuilderAppendChar:
2706 case Intrinsics::kStringBuilderAppendInt:
2707 case Intrinsics::kStringBuilderAppendLong:
2708 case Intrinsics::kStringBuilderAppendFloat:
2709 case Intrinsics::kStringBuilderAppendDouble:
2710 SimplifyReturnThis(instruction);
2711 break;
2712 case Intrinsics::kStringBufferToString:
2713 case Intrinsics::kStringBuilderToString:
2714 SimplifyAllocationIntrinsic(instruction);
2715 break;
2716 case Intrinsics::kIntegerRotateRight:
2717 case Intrinsics::kLongRotateRight:
2718 case Intrinsics::kIntegerRotateLeft:
2719 case Intrinsics::kLongRotateLeft:
2720 case Intrinsics::kIntegerCompare:
2721 case Intrinsics::kLongCompare:
2722 case Intrinsics::kIntegerSignum:
2723 case Intrinsics::kLongSignum:
2724 case Intrinsics::kFloatIsNaN:
2725 case Intrinsics::kDoubleIsNaN:
2726 case Intrinsics::kStringIsEmpty:
2727 case Intrinsics::kUnsafeLoadFence:
2728 case Intrinsics::kUnsafeStoreFence:
2729 case Intrinsics::kUnsafeFullFence:
2730 case Intrinsics::kVarHandleFullFence:
2731 case Intrinsics::kVarHandleAcquireFence:
2732 case Intrinsics::kVarHandleReleaseFence:
2733 case Intrinsics::kVarHandleLoadLoadFence:
2734 case Intrinsics::kVarHandleStoreStoreFence:
2735 case Intrinsics::kMathMinIntInt:
2736 case Intrinsics::kMathMinLongLong:
2737 case Intrinsics::kMathMinFloatFloat:
2738 case Intrinsics::kMathMinDoubleDouble:
2739 case Intrinsics::kMathMaxIntInt:
2740 case Intrinsics::kMathMaxLongLong:
2741 case Intrinsics::kMathMaxFloatFloat:
2742 case Intrinsics::kMathMaxDoubleDouble:
2743 case Intrinsics::kMathAbsInt:
2744 case Intrinsics::kMathAbsLong:
2745 case Intrinsics::kMathAbsFloat:
2746 case Intrinsics::kMathAbsDouble:
2747 // These are replaced by intermediate representation in the instruction builder.
2748 LOG(FATAL) << "Unexpected " << static_cast<Intrinsics>(instruction->GetIntrinsic());
2749 UNREACHABLE();
2750 default:
2751 break;
2752 }
2753 }
2754
VisitDeoptimize(HDeoptimize * deoptimize)2755 void InstructionSimplifierVisitor::VisitDeoptimize(HDeoptimize* deoptimize) {
2756 HInstruction* cond = deoptimize->InputAt(0);
2757 if (cond->IsConstant()) {
2758 if (cond->AsIntConstant()->IsFalse()) {
2759 // Never deopt: instruction can be removed.
2760 if (deoptimize->GuardsAnInput()) {
2761 deoptimize->ReplaceWith(deoptimize->GuardedInput());
2762 }
2763 deoptimize->GetBlock()->RemoveInstruction(deoptimize);
2764 } else {
2765 // Always deopt.
2766 }
2767 }
2768 }
2769
2770 // Replace code looking like
2771 // OP y, x, const1
2772 // OP z, y, const2
2773 // with
2774 // OP z, x, const3
2775 // where OP is both an associative and a commutative operation.
TryHandleAssociativeAndCommutativeOperation(HBinaryOperation * instruction)2776 bool InstructionSimplifierVisitor::TryHandleAssociativeAndCommutativeOperation(
2777 HBinaryOperation* instruction) {
2778 DCHECK(instruction->IsCommutative());
2779
2780 if (!DataType::IsIntegralType(instruction->GetType())) {
2781 return false;
2782 }
2783
2784 HInstruction* left = instruction->GetLeft();
2785 HInstruction* right = instruction->GetRight();
2786 // Variable names as described above.
2787 HConstant* const2;
2788 HBinaryOperation* y;
2789
2790 if (instruction->GetKind() == left->GetKind() && right->IsConstant()) {
2791 const2 = right->AsConstant();
2792 y = left->AsBinaryOperation();
2793 } else if (left->IsConstant() && instruction->GetKind() == right->GetKind()) {
2794 const2 = left->AsConstant();
2795 y = right->AsBinaryOperation();
2796 } else {
2797 // The node does not match the pattern.
2798 return false;
2799 }
2800
2801 // If `y` has more than one use, we do not perform the optimization
2802 // because it might increase code size (e.g. if the new constant is
2803 // no longer encodable as an immediate operand in the target ISA).
2804 if (!y->HasOnlyOneNonEnvironmentUse()) {
2805 return false;
2806 }
2807
2808 // GetConstantRight() can return both left and right constants
2809 // for commutative operations.
2810 HConstant* const1 = y->GetConstantRight();
2811 if (const1 == nullptr) {
2812 return false;
2813 }
2814
2815 instruction->ReplaceInput(const1, 0);
2816 instruction->ReplaceInput(const2, 1);
2817 HConstant* const3 = instruction->TryStaticEvaluation();
2818 DCHECK(const3 != nullptr);
2819 instruction->ReplaceInput(y->GetLeastConstantLeft(), 0);
2820 instruction->ReplaceInput(const3, 1);
2821 RecordSimplification();
2822 return true;
2823 }
2824
AsAddOrSub(HInstruction * binop)2825 static HBinaryOperation* AsAddOrSub(HInstruction* binop) {
2826 return (binop->IsAdd() || binop->IsSub()) ? binop->AsBinaryOperation() : nullptr;
2827 }
2828
2829 // Helper function that performs addition statically, considering the result type.
ComputeAddition(DataType::Type type,int64_t x,int64_t y)2830 static int64_t ComputeAddition(DataType::Type type, int64_t x, int64_t y) {
2831 // Use the Compute() method for consistency with TryStaticEvaluation().
2832 if (type == DataType::Type::kInt32) {
2833 return HAdd::Compute<int32_t>(x, y);
2834 } else {
2835 DCHECK_EQ(type, DataType::Type::kInt64);
2836 return HAdd::Compute<int64_t>(x, y);
2837 }
2838 }
2839
2840 // Helper function that handles the child classes of HConstant
2841 // and returns an integer with the appropriate sign.
GetValue(HConstant * constant,bool is_negated)2842 static int64_t GetValue(HConstant* constant, bool is_negated) {
2843 int64_t ret = Int64FromConstant(constant);
2844 return is_negated ? -ret : ret;
2845 }
2846
2847 // Replace code looking like
2848 // OP1 y, x, const1
2849 // OP2 z, y, const2
2850 // with
2851 // OP3 z, x, const3
2852 // where OPx is either ADD or SUB, and at least one of OP{1,2} is SUB.
TrySubtractionChainSimplification(HBinaryOperation * instruction)2853 bool InstructionSimplifierVisitor::TrySubtractionChainSimplification(
2854 HBinaryOperation* instruction) {
2855 DCHECK(instruction->IsAdd() || instruction->IsSub()) << instruction->DebugName();
2856
2857 DataType::Type type = instruction->GetType();
2858 if (!DataType::IsIntegralType(type)) {
2859 return false;
2860 }
2861
2862 HInstruction* left = instruction->GetLeft();
2863 HInstruction* right = instruction->GetRight();
2864 // Variable names as described above.
2865 HConstant* const2 = right->IsConstant() ? right->AsConstant() : left->AsConstant();
2866 if (const2 == nullptr) {
2867 return false;
2868 }
2869
2870 HBinaryOperation* y = (AsAddOrSub(left) != nullptr)
2871 ? left->AsBinaryOperation()
2872 : AsAddOrSub(right);
2873 // If y has more than one use, we do not perform the optimization because
2874 // it might increase code size (e.g. if the new constant is no longer
2875 // encodable as an immediate operand in the target ISA).
2876 if ((y == nullptr) || !y->HasOnlyOneNonEnvironmentUse()) {
2877 return false;
2878 }
2879
2880 left = y->GetLeft();
2881 HConstant* const1 = left->IsConstant() ? left->AsConstant() : y->GetRight()->AsConstant();
2882 if (const1 == nullptr) {
2883 return false;
2884 }
2885
2886 HInstruction* x = (const1 == left) ? y->GetRight() : left;
2887 // If both inputs are constants, let the constant folding pass deal with it.
2888 if (x->IsConstant()) {
2889 return false;
2890 }
2891
2892 bool is_const2_negated = (const2 == right) && instruction->IsSub();
2893 int64_t const2_val = GetValue(const2, is_const2_negated);
2894 bool is_y_negated = (y == right) && instruction->IsSub();
2895 right = y->GetRight();
2896 bool is_const1_negated = is_y_negated ^ ((const1 == right) && y->IsSub());
2897 int64_t const1_val = GetValue(const1, is_const1_negated);
2898 bool is_x_negated = is_y_negated ^ ((x == right) && y->IsSub());
2899 int64_t const3_val = ComputeAddition(type, const1_val, const2_val);
2900 HBasicBlock* block = instruction->GetBlock();
2901 HConstant* const3 = block->GetGraph()->GetConstant(type, const3_val);
2902 ArenaAllocator* allocator = instruction->GetAllocator();
2903 HInstruction* z;
2904
2905 if (is_x_negated) {
2906 z = new (allocator) HSub(type, const3, x, instruction->GetDexPc());
2907 } else {
2908 z = new (allocator) HAdd(type, x, const3, instruction->GetDexPc());
2909 }
2910
2911 block->ReplaceAndRemoveInstructionWith(instruction, z);
2912 RecordSimplification();
2913 return true;
2914 }
2915
VisitVecMul(HVecMul * instruction)2916 void InstructionSimplifierVisitor::VisitVecMul(HVecMul* instruction) {
2917 if (TryCombineVecMultiplyAccumulate(instruction)) {
2918 RecordSimplification();
2919 }
2920 }
2921
2922 } // namespace art
2923