1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "time_utils.h"
18
19 #include <inttypes.h>
20 #include <stdio.h>
21
22 #include <limits>
23 #include <sstream>
24
25 #include "android-base/stringprintf.h"
26
27 #include "logging.h"
28
29 #if defined(__APPLE__)
30 #include <sys/time.h>
31 #endif
32
33 namespace art {
34
35 namespace {
36
37 #if !defined(__linux__)
GetTimeOfDay(struct timeval * tv,struct timezone * tz)38 int GetTimeOfDay(struct timeval* tv, struct timezone* tz) {
39 #ifdef _WIN32
40 return mingw_gettimeofday(tv, tz);
41 #else
42 return gettimeofday(tv, tz);
43 #endif
44 }
45 #endif
46
47 } // namespace
48
49 using android::base::StringPrintf;
50
PrettyDuration(uint64_t nano_duration,size_t max_fraction_digits)51 std::string PrettyDuration(uint64_t nano_duration, size_t max_fraction_digits) {
52 if (nano_duration == 0) {
53 return "0";
54 } else {
55 return FormatDuration(nano_duration, GetAppropriateTimeUnit(nano_duration),
56 max_fraction_digits);
57 }
58 }
59
GetAppropriateTimeUnit(uint64_t nano_duration)60 TimeUnit GetAppropriateTimeUnit(uint64_t nano_duration) {
61 const uint64_t one_sec = 1000 * 1000 * 1000;
62 const uint64_t one_ms = 1000 * 1000;
63 const uint64_t one_us = 1000;
64 if (nano_duration >= one_sec) {
65 return kTimeUnitSecond;
66 } else if (nano_duration >= one_ms) {
67 return kTimeUnitMillisecond;
68 } else if (nano_duration >= one_us) {
69 return kTimeUnitMicrosecond;
70 } else {
71 return kTimeUnitNanosecond;
72 }
73 }
74
GetNsToTimeUnitDivisor(TimeUnit time_unit)75 uint64_t GetNsToTimeUnitDivisor(TimeUnit time_unit) {
76 const uint64_t one_sec = 1000 * 1000 * 1000;
77 const uint64_t one_ms = 1000 * 1000;
78 const uint64_t one_us = 1000;
79
80 switch (time_unit) {
81 case kTimeUnitSecond:
82 return one_sec;
83 case kTimeUnitMillisecond:
84 return one_ms;
85 case kTimeUnitMicrosecond:
86 return one_us;
87 case kTimeUnitNanosecond:
88 return 1;
89 }
90 return 0;
91 }
92
FormatDuration(uint64_t nano_duration,TimeUnit time_unit,size_t max_fraction_digits)93 std::string FormatDuration(uint64_t nano_duration, TimeUnit time_unit,
94 size_t max_fraction_digits) {
95 const char* unit = nullptr;
96 uint64_t divisor = GetNsToTimeUnitDivisor(time_unit);
97 switch (time_unit) {
98 case kTimeUnitSecond:
99 unit = "s";
100 break;
101 case kTimeUnitMillisecond:
102 unit = "ms";
103 break;
104 case kTimeUnitMicrosecond:
105 unit = "us";
106 break;
107 case kTimeUnitNanosecond:
108 unit = "ns";
109 break;
110 }
111 const uint64_t whole_part = nano_duration / divisor;
112 uint64_t fractional_part = nano_duration % divisor;
113 if (fractional_part == 0) {
114 return StringPrintf("%" PRIu64 "%s", whole_part, unit);
115 } else {
116 static constexpr size_t kMaxDigits = 30;
117 size_t avail_digits = kMaxDigits;
118 char fraction_buffer[kMaxDigits];
119 char* ptr = fraction_buffer;
120 uint64_t multiplier = 10;
121 // This infinite loops if fractional part is 0.
122 while (avail_digits > 1 && fractional_part * multiplier < divisor) {
123 multiplier *= 10;
124 *ptr++ = '0';
125 avail_digits--;
126 }
127 snprintf(ptr, avail_digits, "%" PRIu64, fractional_part);
128 fraction_buffer[std::min(kMaxDigits - 1, max_fraction_digits)] = '\0';
129 return StringPrintf("%" PRIu64 ".%s%s", whole_part, fraction_buffer, unit);
130 }
131 }
132
GetIsoDate()133 std::string GetIsoDate() {
134 tm tmbuf;
135 int ns;
136 #ifdef _WIN32
137 time_t now = time(nullptr);
138 localtime_s(&tmbuf, &now);
139 tm* ptm = &tmbuf;
140 ns = 0;
141 #else
142 timespec now;
143 clock_gettime(CLOCK_REALTIME, &now);
144 tm* ptm = localtime_r(&now.tv_sec, &tmbuf);
145 ns = now.tv_nsec;
146 #endif
147 char zone[16] = {};
148 strftime(zone, sizeof(zone), "%z", ptm);
149 return StringPrintf("%04d-%02d-%02d %02d:%02d:%02d.%09d%s",
150 ptm->tm_year + 1900, ptm->tm_mon+1, ptm->tm_mday,
151 ptm->tm_hour, ptm->tm_min, ptm->tm_sec, ns, zone);
152 }
153
MilliTime()154 uint64_t MilliTime() {
155 #if defined(__linux__)
156 timespec now;
157 clock_gettime(CLOCK_MONOTONIC, &now);
158 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000) + now.tv_nsec / UINT64_C(1000000);
159 #else
160 timeval now;
161 GetTimeOfDay(&now, nullptr);
162 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000) + now.tv_usec / UINT64_C(1000);
163 #endif
164 }
165
MicroTime()166 uint64_t MicroTime() {
167 #if defined(__linux__)
168 timespec now;
169 clock_gettime(CLOCK_MONOTONIC, &now);
170 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
171 #else
172 timeval now;
173 GetTimeOfDay(&now, nullptr);
174 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_usec;
175 #endif
176 }
177
NanoTime()178 uint64_t NanoTime() {
179 #if defined(__linux__)
180 timespec now;
181 clock_gettime(CLOCK_MONOTONIC, &now);
182 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000000) + now.tv_nsec;
183 #else
184 timeval now;
185 GetTimeOfDay(&now, nullptr);
186 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000000) + now.tv_usec * UINT64_C(1000);
187 #endif
188 }
189
ThreadCpuNanoTime()190 uint64_t ThreadCpuNanoTime() {
191 #if defined(__linux__)
192 timespec now;
193 clock_gettime(CLOCK_THREAD_CPUTIME_ID, &now);
194 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000000) + now.tv_nsec;
195 #else
196 UNIMPLEMENTED(WARNING);
197 return -1;
198 #endif
199 }
200
ProcessCpuNanoTime()201 uint64_t ProcessCpuNanoTime() {
202 #if defined(__linux__)
203 timespec now;
204 clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &now);
205 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000000) + now.tv_nsec;
206 #else
207 // We cannot use clock_gettime() here. Return the process wall clock time
208 // (using art::NanoTime, which relies on gettimeofday()) as approximation of
209 // the process CPU time instead.
210 //
211 // Note: clock_gettime() is available from macOS 10.12 (Darwin 16), but we try
212 // to keep things simple here.
213 return NanoTime();
214 #endif
215 }
216
NanoSleep(uint64_t ns)217 void NanoSleep(uint64_t ns) {
218 timespec tm;
219 tm.tv_sec = ns / MsToNs(1000);
220 tm.tv_nsec = ns - static_cast<uint64_t>(tm.tv_sec) * MsToNs(1000);
221 nanosleep(&tm, nullptr);
222 }
223
InitTimeSpec(bool absolute,int clock,int64_t ms,int32_t ns,timespec * ts)224 void InitTimeSpec(bool absolute, int clock, int64_t ms, int32_t ns, timespec* ts) {
225 if (absolute) {
226 #if defined(__linux__)
227 clock_gettime(clock, ts);
228 #else
229 UNUSED(clock);
230 timeval tv;
231 GetTimeOfDay(&tv, nullptr);
232 ts->tv_sec = tv.tv_sec;
233 ts->tv_nsec = tv.tv_usec * 1000;
234 #endif
235 } else {
236 ts->tv_sec = 0;
237 ts->tv_nsec = 0;
238 }
239
240 int64_t end_sec = ts->tv_sec + ms / 1000;
241 constexpr int32_t int32_max = std::numeric_limits<int32_t>::max();
242 if (UNLIKELY(end_sec >= int32_max)) {
243 // Either ms was intended to denote an infinite timeout, or we have a
244 // problem. The former generally uses the largest possible millisecond
245 // or nanosecond value. Log only in the latter case.
246 constexpr int64_t int64_max = std::numeric_limits<int64_t>::max();
247 if (ms != int64_max && ms != int64_max / (1000 * 1000)) {
248 LOG(INFO) << "Note: end time exceeds INT32_MAX: " << end_sec;
249 }
250 end_sec = int32_max - 1; // Allow for increment below.
251 }
252 ts->tv_sec = end_sec;
253 ts->tv_nsec = (ts->tv_nsec + (ms % 1000) * 1000000) + ns;
254
255 // Catch rollover.
256 if (ts->tv_nsec >= 1000000000L) {
257 ts->tv_sec++;
258 ts->tv_nsec -= 1000000000L;
259 }
260 }
261
262 } // namespace art
263