1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "runtime.h"
18
19 // sys/mount.h has to come before linux/fs.h due to redefinition of MS_RDONLY, MS_BIND, etc
20 #include <sys/mount.h>
21 #ifdef __linux__
22 #include <linux/fs.h>
23 #include <sys/prctl.h>
24 #endif
25
26 #include <fcntl.h>
27 #include <signal.h>
28 #include <sys/syscall.h>
29
30 #if defined(__APPLE__)
31 #include <crt_externs.h> // for _NSGetEnviron
32 #endif
33
34 #include <cstdio>
35 #include <cstdlib>
36 #include <limits>
37 #include <thread>
38 #include <unordered_set>
39 #include <vector>
40
41 #include "android-base/strings.h"
42
43 #include "aot_class_linker.h"
44 #include "arch/arm/registers_arm.h"
45 #include "arch/arm64/registers_arm64.h"
46 #include "arch/context.h"
47 #include "arch/instruction_set_features.h"
48 #include "arch/x86/registers_x86.h"
49 #include "arch/x86_64/registers_x86_64.h"
50 #include "art_field-inl.h"
51 #include "art_method-inl.h"
52 #include "asm_support.h"
53 #include "base/aborting.h"
54 #include "base/arena_allocator.h"
55 #include "base/atomic.h"
56 #include "base/dumpable.h"
57 #include "base/enums.h"
58 #include "base/file_utils.h"
59 #include "base/malloc_arena_pool.h"
60 #include "base/mem_map_arena_pool.h"
61 #include "base/memory_tool.h"
62 #include "base/mutex.h"
63 #include "base/os.h"
64 #include "base/quasi_atomic.h"
65 #include "base/sdk_version.h"
66 #include "base/stl_util.h"
67 #include "base/systrace.h"
68 #include "base/unix_file/fd_file.h"
69 #include "base/utils.h"
70 #include "class_linker-inl.h"
71 #include "class_root-inl.h"
72 #include "compiler_callbacks.h"
73 #include "debugger.h"
74 #include "dex/art_dex_file_loader.h"
75 #include "dex/dex_file_loader.h"
76 #include "elf_file.h"
77 #include "entrypoints/runtime_asm_entrypoints.h"
78 #include "experimental_flags.h"
79 #include "fault_handler.h"
80 #include "gc/accounting/card_table-inl.h"
81 #include "gc/heap.h"
82 #include "gc/scoped_gc_critical_section.h"
83 #include "gc/space/image_space.h"
84 #include "gc/space/space-inl.h"
85 #include "gc/system_weak.h"
86 #include "gc/task_processor.h"
87 #include "handle_scope-inl.h"
88 #include "hidden_api.h"
89 #include "image-inl.h"
90 #include "instrumentation.h"
91 #include "intern_table-inl.h"
92 #include "interpreter/interpreter.h"
93 #include "jit/jit.h"
94 #include "jit/jit_code_cache.h"
95 #include "jit/profile_saver.h"
96 #include "jni/java_vm_ext.h"
97 #include "jni/jni_id_manager.h"
98 #include "jni_id_type.h"
99 #include "linear_alloc.h"
100 #include "memory_representation.h"
101 #include "mirror/array.h"
102 #include "mirror/class-alloc-inl.h"
103 #include "mirror/class-inl.h"
104 #include "mirror/class_ext.h"
105 #include "mirror/class_loader-inl.h"
106 #include "mirror/emulated_stack_frame.h"
107 #include "mirror/field.h"
108 #include "mirror/method.h"
109 #include "mirror/method_handle_impl.h"
110 #include "mirror/method_handles_lookup.h"
111 #include "mirror/method_type.h"
112 #include "mirror/stack_trace_element.h"
113 #include "mirror/throwable.h"
114 #include "mirror/var_handle.h"
115 #include "monitor.h"
116 #include "native/dalvik_system_DexFile.h"
117 #include "native/dalvik_system_BaseDexClassLoader.h"
118 #include "native/dalvik_system_VMDebug.h"
119 #include "native/dalvik_system_VMRuntime.h"
120 #include "native/dalvik_system_VMStack.h"
121 #include "native/dalvik_system_ZygoteHooks.h"
122 #include "native/java_lang_Class.h"
123 #include "native/java_lang_Object.h"
124 #include "native/java_lang_String.h"
125 #include "native/java_lang_StringFactory.h"
126 #include "native/java_lang_System.h"
127 #include "native/java_lang_Thread.h"
128 #include "native/java_lang_Throwable.h"
129 #include "native/java_lang_VMClassLoader.h"
130 #include "native/java_lang_invoke_MethodHandleImpl.h"
131 #include "native/java_lang_ref_FinalizerReference.h"
132 #include "native/java_lang_ref_Reference.h"
133 #include "native/java_lang_reflect_Array.h"
134 #include "native/java_lang_reflect_Constructor.h"
135 #include "native/java_lang_reflect_Executable.h"
136 #include "native/java_lang_reflect_Field.h"
137 #include "native/java_lang_reflect_Method.h"
138 #include "native/java_lang_reflect_Parameter.h"
139 #include "native/java_lang_reflect_Proxy.h"
140 #include "native/java_util_concurrent_atomic_AtomicLong.h"
141 #include "native/libcore_util_CharsetUtils.h"
142 #include "native/org_apache_harmony_dalvik_ddmc_DdmServer.h"
143 #include "native/org_apache_harmony_dalvik_ddmc_DdmVmInternal.h"
144 #include "native/sun_misc_Unsafe.h"
145 #include "native_bridge_art_interface.h"
146 #include "native_stack_dump.h"
147 #include "nativehelper/scoped_local_ref.h"
148 #include "oat.h"
149 #include "oat_file.h"
150 #include "oat_file_manager.h"
151 #include "oat_quick_method_header.h"
152 #include "object_callbacks.h"
153 #include "parsed_options.h"
154 #include "quick/quick_method_frame_info.h"
155 #include "reflection.h"
156 #include "runtime_callbacks.h"
157 #include "runtime_common.h"
158 #include "runtime_intrinsics.h"
159 #include "runtime_options.h"
160 #include "scoped_thread_state_change-inl.h"
161 #include "sigchain.h"
162 #include "signal_catcher.h"
163 #include "signal_set.h"
164 #include "thread.h"
165 #include "thread_list.h"
166 #include "ti/agent.h"
167 #include "trace.h"
168 #include "transaction.h"
169 #include "vdex_file.h"
170 #include "verifier/class_verifier.h"
171 #include "well_known_classes.h"
172
173 #ifdef ART_TARGET_ANDROID
174 #include <android/set_abort_message.h>
175 #endif
176
177 // Static asserts to check the values of generated assembly-support macros.
178 #define ASM_DEFINE(NAME, EXPR) static_assert((NAME) == (EXPR), "Unexpected value of " #NAME);
179 #include "asm_defines.def"
180 #undef ASM_DEFINE
181
182 namespace art {
183
184 // If a signal isn't handled properly, enable a handler that attempts to dump the Java stack.
185 static constexpr bool kEnableJavaStackTraceHandler = false;
186 // Tuned by compiling GmsCore under perf and measuring time spent in DescriptorEquals for class
187 // linking.
188 static constexpr double kLowMemoryMinLoadFactor = 0.5;
189 static constexpr double kLowMemoryMaxLoadFactor = 0.8;
190 static constexpr double kNormalMinLoadFactor = 0.4;
191 static constexpr double kNormalMaxLoadFactor = 0.7;
192
193 // Extra added to the default heap growth multiplier. Used to adjust the GC ergonomics for the read
194 // barrier config.
195 static constexpr double kExtraDefaultHeapGrowthMultiplier = kUseReadBarrier ? 1.0 : 0.0;
196
197 Runtime* Runtime::instance_ = nullptr;
198
199 struct TraceConfig {
200 Trace::TraceMode trace_mode;
201 Trace::TraceOutputMode trace_output_mode;
202 std::string trace_file;
203 size_t trace_file_size;
204 };
205
206 namespace {
207
208 #ifdef __APPLE__
GetEnviron()209 inline char** GetEnviron() {
210 // When Google Test is built as a framework on MacOS X, the environ variable
211 // is unavailable. Apple's documentation (man environ) recommends using
212 // _NSGetEnviron() instead.
213 return *_NSGetEnviron();
214 }
215 #else
216 // Some POSIX platforms expect you to declare environ. extern "C" makes
217 // it reside in the global namespace.
218 extern "C" char** environ;
219 inline char** GetEnviron() { return environ; }
220 #endif
221
CheckConstants()222 void CheckConstants() {
223 CHECK_EQ(mirror::Array::kFirstElementOffset, mirror::Array::FirstElementOffset());
224 }
225
226 } // namespace
227
Runtime()228 Runtime::Runtime()
229 : resolution_method_(nullptr),
230 imt_conflict_method_(nullptr),
231 imt_unimplemented_method_(nullptr),
232 instruction_set_(InstructionSet::kNone),
233 compiler_callbacks_(nullptr),
234 is_zygote_(false),
235 is_primary_zygote_(false),
236 is_system_server_(false),
237 must_relocate_(false),
238 is_concurrent_gc_enabled_(true),
239 is_explicit_gc_disabled_(false),
240 image_dex2oat_enabled_(true),
241 default_stack_size_(0),
242 heap_(nullptr),
243 max_spins_before_thin_lock_inflation_(Monitor::kDefaultMaxSpinsBeforeThinLockInflation),
244 monitor_list_(nullptr),
245 monitor_pool_(nullptr),
246 thread_list_(nullptr),
247 intern_table_(nullptr),
248 class_linker_(nullptr),
249 signal_catcher_(nullptr),
250 java_vm_(nullptr),
251 thread_pool_ref_count_(0u),
252 fault_message_(nullptr),
253 threads_being_born_(0),
254 shutdown_cond_(new ConditionVariable("Runtime shutdown", *Locks::runtime_shutdown_lock_)),
255 shutting_down_(false),
256 shutting_down_started_(false),
257 started_(false),
258 finished_starting_(false),
259 vfprintf_(nullptr),
260 exit_(nullptr),
261 abort_(nullptr),
262 stats_enabled_(false),
263 is_running_on_memory_tool_(kRunningOnMemoryTool),
264 instrumentation_(),
265 main_thread_group_(nullptr),
266 system_thread_group_(nullptr),
267 system_class_loader_(nullptr),
268 dump_gc_performance_on_shutdown_(false),
269 preinitialization_transactions_(),
270 verify_(verifier::VerifyMode::kNone),
271 target_sdk_version_(static_cast<uint32_t>(SdkVersion::kUnset)),
272 implicit_null_checks_(false),
273 implicit_so_checks_(false),
274 implicit_suspend_checks_(false),
275 no_sig_chain_(false),
276 force_native_bridge_(false),
277 is_native_bridge_loaded_(false),
278 is_native_debuggable_(false),
279 async_exceptions_thrown_(false),
280 non_standard_exits_enabled_(false),
281 is_java_debuggable_(false),
282 zygote_max_failed_boots_(0),
283 experimental_flags_(ExperimentalFlags::kNone),
284 oat_file_manager_(nullptr),
285 is_low_memory_mode_(false),
286 safe_mode_(false),
287 hidden_api_policy_(hiddenapi::EnforcementPolicy::kDisabled),
288 core_platform_api_policy_(hiddenapi::EnforcementPolicy::kDisabled),
289 test_api_policy_(hiddenapi::EnforcementPolicy::kDisabled),
290 dedupe_hidden_api_warnings_(true),
291 hidden_api_access_event_log_rate_(0),
292 dump_native_stack_on_sig_quit_(true),
293 pruned_dalvik_cache_(false),
294 // Initially assume we perceive jank in case the process state is never updated.
295 process_state_(kProcessStateJankPerceptible),
296 zygote_no_threads_(false),
297 verifier_logging_threshold_ms_(100),
298 verifier_missing_kthrow_fatal_(false),
299 perfetto_hprof_enabled_(false) {
300 static_assert(Runtime::kCalleeSaveSize ==
301 static_cast<uint32_t>(CalleeSaveType::kLastCalleeSaveType), "Unexpected size");
302 CheckConstants();
303
304 std::fill(callee_save_methods_, callee_save_methods_ + arraysize(callee_save_methods_), 0u);
305 interpreter::CheckInterpreterAsmConstants();
306 callbacks_.reset(new RuntimeCallbacks());
307 for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) {
308 deoptimization_counts_[i] = 0u;
309 }
310 }
311
~Runtime()312 Runtime::~Runtime() {
313 ScopedTrace trace("Runtime shutdown");
314 if (is_native_bridge_loaded_) {
315 UnloadNativeBridge();
316 }
317
318 Thread* self = Thread::Current();
319 const bool attach_shutdown_thread = self == nullptr;
320 if (attach_shutdown_thread) {
321 // We can only create a peer if the runtime is actually started. This is only not true during
322 // some tests. If there is extreme memory pressure the allocation of the thread peer can fail.
323 // In this case we will just try again without allocating a peer so that shutdown can continue.
324 // Very few things are actually capable of distinguishing between the peer & peerless states so
325 // this should be fine.
326 bool thread_attached = AttachCurrentThread("Shutdown thread",
327 /* as_daemon= */ false,
328 GetSystemThreadGroup(),
329 /* create_peer= */ IsStarted());
330 if (UNLIKELY(!thread_attached)) {
331 LOG(WARNING) << "Failed to attach shutdown thread. Trying again without a peer.";
332 CHECK(AttachCurrentThread("Shutdown thread (no java peer)",
333 /* as_daemon= */ false,
334 /* thread_group=*/ nullptr,
335 /* create_peer= */ false));
336 }
337 self = Thread::Current();
338 } else {
339 LOG(WARNING) << "Current thread not detached in Runtime shutdown";
340 }
341
342 if (dump_gc_performance_on_shutdown_) {
343 heap_->CalculatePreGcWeightedAllocatedBytes();
344 uint64_t process_cpu_end_time = ProcessCpuNanoTime();
345 ScopedLogSeverity sls(LogSeverity::INFO);
346 // This can't be called from the Heap destructor below because it
347 // could call RosAlloc::InspectAll() which needs the thread_list
348 // to be still alive.
349 heap_->DumpGcPerformanceInfo(LOG_STREAM(INFO));
350
351 uint64_t process_cpu_time = process_cpu_end_time - heap_->GetProcessCpuStartTime();
352 uint64_t gc_cpu_time = heap_->GetTotalGcCpuTime();
353 float ratio = static_cast<float>(gc_cpu_time) / process_cpu_time;
354 LOG_STREAM(INFO) << "GC CPU time " << PrettyDuration(gc_cpu_time)
355 << " out of process CPU time " << PrettyDuration(process_cpu_time)
356 << " (" << ratio << ")"
357 << "\n";
358 double pre_gc_weighted_allocated_bytes =
359 heap_->GetPreGcWeightedAllocatedBytes() / process_cpu_time;
360 // Here we don't use process_cpu_time for normalization, because VM shutdown is not a real
361 // GC. Both numerator and denominator take into account until the end of the last GC,
362 // instead of the whole process life time like pre_gc_weighted_allocated_bytes.
363 double post_gc_weighted_allocated_bytes =
364 heap_->GetPostGcWeightedAllocatedBytes() /
365 (heap_->GetPostGCLastProcessCpuTime() - heap_->GetProcessCpuStartTime());
366
367 LOG_STREAM(INFO) << "Average bytes allocated at GC start, weighted by CPU time between GCs: "
368 << static_cast<uint64_t>(pre_gc_weighted_allocated_bytes)
369 << " (" << PrettySize(pre_gc_weighted_allocated_bytes) << ")";
370 LOG_STREAM(INFO) << "Average bytes allocated at GC end, weighted by CPU time between GCs: "
371 << static_cast<uint64_t>(post_gc_weighted_allocated_bytes)
372 << " (" << PrettySize(post_gc_weighted_allocated_bytes) << ")"
373 << "\n";
374 }
375
376 // Wait for the workers of thread pools to be created since there can't be any
377 // threads attaching during shutdown.
378 WaitForThreadPoolWorkersToStart();
379 if (jit_ != nullptr) {
380 jit_->WaitForWorkersToBeCreated();
381 // Stop the profile saver thread before marking the runtime as shutting down.
382 // The saver will try to dump the profiles before being sopped and that
383 // requires holding the mutator lock.
384 jit_->StopProfileSaver();
385 // Delete thread pool before the thread list since we don't want to wait forever on the
386 // JIT compiler threads. Also this should be run before marking the runtime
387 // as shutting down as some tasks may require mutator access.
388 jit_->DeleteThreadPool();
389 }
390 if (oat_file_manager_ != nullptr) {
391 oat_file_manager_->WaitForWorkersToBeCreated();
392 }
393
394 {
395 ScopedTrace trace2("Wait for shutdown cond");
396 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
397 shutting_down_started_ = true;
398 while (threads_being_born_ > 0) {
399 shutdown_cond_->Wait(self);
400 }
401 shutting_down_ = true;
402 }
403 // Shutdown and wait for the daemons.
404 CHECK(self != nullptr);
405 if (IsFinishedStarting()) {
406 ScopedTrace trace2("Waiting for Daemons");
407 self->ClearException();
408 self->GetJniEnv()->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
409 WellKnownClasses::java_lang_Daemons_stop);
410 }
411
412 // Shutdown any trace running.
413 Trace::Shutdown();
414
415 // Report death. Clients may require a working thread, still, so do it before GC completes and
416 // all non-daemon threads are done.
417 {
418 ScopedObjectAccess soa(self);
419 callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kDeath);
420 }
421
422 if (attach_shutdown_thread) {
423 DetachCurrentThread();
424 self = nullptr;
425 }
426
427 // Make sure to let the GC complete if it is running.
428 heap_->WaitForGcToComplete(gc::kGcCauseBackground, self);
429 heap_->DeleteThreadPool();
430 if (oat_file_manager_ != nullptr) {
431 oat_file_manager_->DeleteThreadPool();
432 }
433 DeleteThreadPool();
434 CHECK(thread_pool_ == nullptr);
435
436 // Make sure our internal threads are dead before we start tearing down things they're using.
437 GetRuntimeCallbacks()->StopDebugger();
438 // Deletion ordering is tricky. Null out everything we've deleted.
439 delete signal_catcher_;
440 signal_catcher_ = nullptr;
441
442 // Make sure all other non-daemon threads have terminated, and all daemon threads are suspended.
443 // Also wait for daemon threads to quiesce, so that in addition to being "suspended", they
444 // no longer access monitor and thread list data structures. We leak user daemon threads
445 // themselves, since we have no mechanism for shutting them down.
446 {
447 ScopedTrace trace2("Delete thread list");
448 thread_list_->ShutDown();
449 }
450
451 // TODO Maybe do some locking.
452 for (auto& agent : agents_) {
453 agent->Unload();
454 }
455
456 // TODO Maybe do some locking
457 for (auto& plugin : plugins_) {
458 plugin.Unload();
459 }
460
461 // Finally delete the thread list.
462 // Thread_list_ can be accessed by "suspended" threads, e.g. in InflateThinLocked.
463 // We assume that by this point, we've waited long enough for things to quiesce.
464 delete thread_list_;
465 thread_list_ = nullptr;
466
467 // Delete the JIT after thread list to ensure that there is no remaining threads which could be
468 // accessing the instrumentation when we delete it.
469 if (jit_ != nullptr) {
470 VLOG(jit) << "Deleting jit";
471 jit_.reset(nullptr);
472 jit_code_cache_.reset(nullptr);
473 }
474
475 // Shutdown the fault manager if it was initialized.
476 fault_manager.Shutdown();
477
478 ScopedTrace trace2("Delete state");
479 delete monitor_list_;
480 monitor_list_ = nullptr;
481 delete monitor_pool_;
482 monitor_pool_ = nullptr;
483 delete class_linker_;
484 class_linker_ = nullptr;
485 delete heap_;
486 heap_ = nullptr;
487 delete intern_table_;
488 intern_table_ = nullptr;
489 delete oat_file_manager_;
490 oat_file_manager_ = nullptr;
491 Thread::Shutdown();
492 QuasiAtomic::Shutdown();
493 verifier::ClassVerifier::Shutdown();
494
495 // Destroy allocators before shutting down the MemMap because they may use it.
496 java_vm_.reset();
497 linear_alloc_.reset();
498 low_4gb_arena_pool_.reset();
499 arena_pool_.reset();
500 jit_arena_pool_.reset();
501 protected_fault_page_.Reset();
502 MemMap::Shutdown();
503
504 // TODO: acquire a static mutex on Runtime to avoid racing.
505 CHECK(instance_ == nullptr || instance_ == this);
506 instance_ = nullptr;
507
508 // Well-known classes must be deleted or it is impossible to successfully start another Runtime
509 // instance. We rely on a small initialization order issue in Runtime::Start() that requires
510 // elements of WellKnownClasses to be null, see b/65500943.
511 WellKnownClasses::Clear();
512 }
513
514 struct AbortState {
Dumpart::AbortState515 void Dump(std::ostream& os) const {
516 if (gAborting > 1) {
517 os << "Runtime aborting --- recursively, so no thread-specific detail!\n";
518 DumpRecursiveAbort(os);
519 return;
520 }
521 gAborting++;
522 os << "Runtime aborting...\n";
523 if (Runtime::Current() == nullptr) {
524 os << "(Runtime does not yet exist!)\n";
525 DumpNativeStack(os, GetTid(), nullptr, " native: ", nullptr);
526 return;
527 }
528 Thread* self = Thread::Current();
529
530 // Dump all threads first and then the aborting thread. While this is counter the logical flow,
531 // it improves the chance of relevant data surviving in the Android logs.
532
533 DumpAllThreads(os, self);
534
535 if (self == nullptr) {
536 os << "(Aborting thread was not attached to runtime!)\n";
537 DumpNativeStack(os, GetTid(), nullptr, " native: ", nullptr);
538 } else {
539 os << "Aborting thread:\n";
540 if (Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self)) {
541 DumpThread(os, self);
542 } else {
543 if (Locks::mutator_lock_->SharedTryLock(self)) {
544 DumpThread(os, self);
545 Locks::mutator_lock_->SharedUnlock(self);
546 }
547 }
548 }
549 }
550
551 // No thread-safety analysis as we do explicitly test for holding the mutator lock.
DumpThreadart::AbortState552 void DumpThread(std::ostream& os, Thread* self) const NO_THREAD_SAFETY_ANALYSIS {
553 DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self));
554 self->Dump(os);
555 if (self->IsExceptionPending()) {
556 mirror::Throwable* exception = self->GetException();
557 os << "Pending exception " << exception->Dump();
558 }
559 }
560
DumpAllThreadsart::AbortState561 void DumpAllThreads(std::ostream& os, Thread* self) const {
562 Runtime* runtime = Runtime::Current();
563 if (runtime != nullptr) {
564 ThreadList* thread_list = runtime->GetThreadList();
565 if (thread_list != nullptr) {
566 // Dump requires ThreadListLock and ThreadSuspendCountLock to not be held (they will be
567 // grabbed).
568 // TODO(b/134167395): Change Dump to work with the locks held, and have a loop with timeout
569 // acquiring the locks.
570 bool tll_already_held = Locks::thread_list_lock_->IsExclusiveHeld(self);
571 bool tscl_already_held = Locks::thread_suspend_count_lock_->IsExclusiveHeld(self);
572 if (tll_already_held || tscl_already_held) {
573 os << "Skipping all-threads dump as locks are held:"
574 << (tll_already_held ? "" : " thread_list_lock")
575 << (tscl_already_held ? "" : " thread_suspend_count_lock")
576 << "\n";
577 return;
578 }
579 bool ml_already_exlusively_held = Locks::mutator_lock_->IsExclusiveHeld(self);
580 if (ml_already_exlusively_held) {
581 os << "Skipping all-threads dump as mutator lock is exclusively held.";
582 return;
583 }
584 bool ml_already_held = Locks::mutator_lock_->IsSharedHeld(self);
585 if (!ml_already_held) {
586 os << "Dumping all threads without mutator lock held\n";
587 }
588 os << "All threads:\n";
589 thread_list->Dump(os);
590 }
591 }
592 }
593
594 // For recursive aborts.
DumpRecursiveAbortart::AbortState595 void DumpRecursiveAbort(std::ostream& os) const NO_THREAD_SAFETY_ANALYSIS {
596 // The only thing we'll attempt is dumping the native stack of the current thread. We will only
597 // try this if we haven't exceeded an arbitrary amount of recursions, to recover and actually
598 // die.
599 // Note: as we're using a global counter for the recursive abort detection, there is a potential
600 // race here and it is not OK to just print when the counter is "2" (one from
601 // Runtime::Abort(), one from previous Dump() call). Use a number that seems large enough.
602 static constexpr size_t kOnlyPrintWhenRecursionLessThan = 100u;
603 if (gAborting < kOnlyPrintWhenRecursionLessThan) {
604 gAborting++;
605 DumpNativeStack(os, GetTid());
606 }
607 }
608 };
609
Abort(const char * msg)610 void Runtime::Abort(const char* msg) {
611 auto old_value = gAborting.fetch_add(1); // set before taking any locks
612
613 // Only set the first abort message.
614 if (old_value == 0) {
615 #ifdef ART_TARGET_ANDROID
616 android_set_abort_message(msg);
617 #else
618 // Set the runtime fault message in case our unexpected-signal code will run.
619 Runtime* current = Runtime::Current();
620 if (current != nullptr) {
621 current->SetFaultMessage(msg);
622 }
623 #endif
624 }
625
626 // May be coming from an unattached thread.
627 if (Thread::Current() == nullptr) {
628 Runtime* current = Runtime::Current();
629 if (current != nullptr && current->IsStarted() && !current->IsShuttingDown(nullptr)) {
630 // We do not flag this to the unexpected-signal handler so that that may dump the stack.
631 abort();
632 UNREACHABLE();
633 }
634 }
635
636 {
637 // Ensure that we don't have multiple threads trying to abort at once,
638 // which would result in significantly worse diagnostics.
639 ScopedThreadStateChange tsc(Thread::Current(), kNativeForAbort);
640 Locks::abort_lock_->ExclusiveLock(Thread::Current());
641 }
642
643 // Get any pending output out of the way.
644 fflush(nullptr);
645
646 // Many people have difficulty distinguish aborts from crashes,
647 // so be explicit.
648 // Note: use cerr on the host to print log lines immediately, so we get at least some output
649 // in case of recursive aborts. We lose annotation with the source file and line number
650 // here, which is a minor issue. The same is significantly more complicated on device,
651 // which is why we ignore the issue there.
652 AbortState state;
653 if (kIsTargetBuild) {
654 LOG(FATAL_WITHOUT_ABORT) << Dumpable<AbortState>(state);
655 } else {
656 std::cerr << Dumpable<AbortState>(state);
657 }
658
659 // Sometimes we dump long messages, and the Android abort message only retains the first line.
660 // In those cases, just log the message again, to avoid logcat limits.
661 if (msg != nullptr && strchr(msg, '\n') != nullptr) {
662 LOG(FATAL_WITHOUT_ABORT) << msg;
663 }
664
665 FlagRuntimeAbort();
666
667 // Call the abort hook if we have one.
668 if (Runtime::Current() != nullptr && Runtime::Current()->abort_ != nullptr) {
669 LOG(FATAL_WITHOUT_ABORT) << "Calling abort hook...";
670 Runtime::Current()->abort_();
671 // notreached
672 LOG(FATAL_WITHOUT_ABORT) << "Unexpectedly returned from abort hook!";
673 }
674
675 abort();
676 // notreached
677 }
678
PreZygoteFork()679 void Runtime::PreZygoteFork() {
680 if (GetJit() != nullptr) {
681 GetJit()->PreZygoteFork();
682 }
683 heap_->PreZygoteFork();
684 PreZygoteForkNativeBridge();
685 }
686
PostZygoteFork()687 void Runtime::PostZygoteFork() {
688 if (GetJit() != nullptr) {
689 GetJit()->PostZygoteFork();
690 }
691 // Reset all stats.
692 ResetStats(0xFFFFFFFF);
693 }
694
CallExitHook(jint status)695 void Runtime::CallExitHook(jint status) {
696 if (exit_ != nullptr) {
697 ScopedThreadStateChange tsc(Thread::Current(), kNative);
698 exit_(status);
699 LOG(WARNING) << "Exit hook returned instead of exiting!";
700 }
701 }
702
SweepSystemWeaks(IsMarkedVisitor * visitor)703 void Runtime::SweepSystemWeaks(IsMarkedVisitor* visitor) {
704 GetInternTable()->SweepInternTableWeaks(visitor);
705 GetMonitorList()->SweepMonitorList(visitor);
706 GetJavaVM()->SweepJniWeakGlobals(visitor);
707 GetHeap()->SweepAllocationRecords(visitor);
708 if (GetJit() != nullptr) {
709 // Visit JIT literal tables. Objects in these tables are classes and strings
710 // and only classes can be affected by class unloading. The strings always
711 // stay alive as they are strongly interned.
712 // TODO: Move this closer to CleanupClassLoaders, to avoid blocking weak accesses
713 // from mutators. See b/32167580.
714 GetJit()->GetCodeCache()->SweepRootTables(visitor);
715 }
716 thread_list_->SweepInterpreterCaches(visitor);
717
718 // All other generic system-weak holders.
719 for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
720 holder->Sweep(visitor);
721 }
722 }
723
ParseOptions(const RuntimeOptions & raw_options,bool ignore_unrecognized,RuntimeArgumentMap * runtime_options)724 bool Runtime::ParseOptions(const RuntimeOptions& raw_options,
725 bool ignore_unrecognized,
726 RuntimeArgumentMap* runtime_options) {
727 Locks::Init();
728 InitLogging(/* argv= */ nullptr, Abort); // Calls Locks::Init() as a side effect.
729 bool parsed = ParsedOptions::Parse(raw_options, ignore_unrecognized, runtime_options);
730 if (!parsed) {
731 LOG(ERROR) << "Failed to parse options";
732 return false;
733 }
734 return true;
735 }
736
737 // Callback to check whether it is safe to call Abort (e.g., to use a call to
738 // LOG(FATAL)). It is only safe to call Abort if the runtime has been created,
739 // properly initialized, and has not shut down.
IsSafeToCallAbort()740 static bool IsSafeToCallAbort() NO_THREAD_SAFETY_ANALYSIS {
741 Runtime* runtime = Runtime::Current();
742 return runtime != nullptr && runtime->IsStarted() && !runtime->IsShuttingDownLocked();
743 }
744
Create(RuntimeArgumentMap && runtime_options)745 bool Runtime::Create(RuntimeArgumentMap&& runtime_options) {
746 // TODO: acquire a static mutex on Runtime to avoid racing.
747 if (Runtime::instance_ != nullptr) {
748 return false;
749 }
750 instance_ = new Runtime;
751 Locks::SetClientCallback(IsSafeToCallAbort);
752 if (!instance_->Init(std::move(runtime_options))) {
753 // TODO: Currently deleting the instance will abort the runtime on destruction. Now This will
754 // leak memory, instead. Fix the destructor. b/19100793.
755 // delete instance_;
756 instance_ = nullptr;
757 return false;
758 }
759 return true;
760 }
761
Create(const RuntimeOptions & raw_options,bool ignore_unrecognized)762 bool Runtime::Create(const RuntimeOptions& raw_options, bool ignore_unrecognized) {
763 RuntimeArgumentMap runtime_options;
764 return ParseOptions(raw_options, ignore_unrecognized, &runtime_options) &&
765 Create(std::move(runtime_options));
766 }
767
CreateSystemClassLoader(Runtime * runtime)768 static jobject CreateSystemClassLoader(Runtime* runtime) {
769 if (runtime->IsAotCompiler() && !runtime->GetCompilerCallbacks()->IsBootImage()) {
770 return nullptr;
771 }
772
773 ScopedObjectAccess soa(Thread::Current());
774 ClassLinker* cl = Runtime::Current()->GetClassLinker();
775 auto pointer_size = cl->GetImagePointerSize();
776
777 StackHandleScope<2> hs(soa.Self());
778 Handle<mirror::Class> class_loader_class(
779 hs.NewHandle(soa.Decode<mirror::Class>(WellKnownClasses::java_lang_ClassLoader)));
780 CHECK(cl->EnsureInitialized(soa.Self(), class_loader_class, true, true));
781
782 ArtMethod* getSystemClassLoader = class_loader_class->FindClassMethod(
783 "getSystemClassLoader", "()Ljava/lang/ClassLoader;", pointer_size);
784 CHECK(getSystemClassLoader != nullptr);
785 CHECK(getSystemClassLoader->IsStatic());
786
787 JValue result = InvokeWithJValues(soa,
788 nullptr,
789 getSystemClassLoader,
790 nullptr);
791 JNIEnv* env = soa.Self()->GetJniEnv();
792 ScopedLocalRef<jobject> system_class_loader(env, soa.AddLocalReference<jobject>(result.GetL()));
793 CHECK(system_class_loader.get() != nullptr);
794
795 soa.Self()->SetClassLoaderOverride(system_class_loader.get());
796
797 Handle<mirror::Class> thread_class(
798 hs.NewHandle(soa.Decode<mirror::Class>(WellKnownClasses::java_lang_Thread)));
799 CHECK(cl->EnsureInitialized(soa.Self(), thread_class, true, true));
800
801 ArtField* contextClassLoader =
802 thread_class->FindDeclaredInstanceField("contextClassLoader", "Ljava/lang/ClassLoader;");
803 CHECK(contextClassLoader != nullptr);
804
805 // We can't run in a transaction yet.
806 contextClassLoader->SetObject<false>(
807 soa.Self()->GetPeer(),
808 soa.Decode<mirror::ClassLoader>(system_class_loader.get()).Ptr());
809
810 return env->NewGlobalRef(system_class_loader.get());
811 }
812
GetCompilerExecutable() const813 std::string Runtime::GetCompilerExecutable() const {
814 if (!compiler_executable_.empty()) {
815 return compiler_executable_;
816 }
817 std::string compiler_executable = GetArtBinDir() + "/dex2oat";
818 if (kIsDebugBuild) {
819 compiler_executable += 'd';
820 }
821 if (kIsTargetBuild) {
822 compiler_executable += Is64BitInstructionSet(kRuntimeISA) ? "64" : "32";
823 }
824 return compiler_executable;
825 }
826
RunRootClinits(Thread * self)827 void Runtime::RunRootClinits(Thread* self) {
828 class_linker_->RunRootClinits(self);
829
830 GcRoot<mirror::Throwable>* exceptions[] = {
831 &pre_allocated_OutOfMemoryError_when_throwing_exception_,
832 // &pre_allocated_OutOfMemoryError_when_throwing_oome_, // Same class as above.
833 // &pre_allocated_OutOfMemoryError_when_handling_stack_overflow_, // Same class as above.
834 &pre_allocated_NoClassDefFoundError_,
835 };
836 for (GcRoot<mirror::Throwable>* exception : exceptions) {
837 StackHandleScope<1> hs(self);
838 Handle<mirror::Class> klass = hs.NewHandle<mirror::Class>(exception->Read()->GetClass());
839 class_linker_->EnsureInitialized(self, klass, true, true);
840 self->AssertNoPendingException();
841 }
842 }
843
Start()844 bool Runtime::Start() {
845 VLOG(startup) << "Runtime::Start entering";
846
847 CHECK(!no_sig_chain_) << "A started runtime should have sig chain enabled";
848
849 // If a debug host build, disable ptrace restriction for debugging and test timeout thread dump.
850 // Only 64-bit as prctl() may fail in 32 bit userspace on a 64-bit kernel.
851 #if defined(__linux__) && !defined(ART_TARGET_ANDROID) && defined(__x86_64__)
852 if (kIsDebugBuild) {
853 if (prctl(PR_SET_PTRACER, PR_SET_PTRACER_ANY) != 0) {
854 PLOG(WARNING) << "Failed setting PR_SET_PTRACER to PR_SET_PTRACER_ANY";
855 }
856 }
857 #endif
858
859 // Restore main thread state to kNative as expected by native code.
860 Thread* self = Thread::Current();
861
862 self->TransitionFromRunnableToSuspended(kNative);
863
864 DoAndMaybeSwitchInterpreter([=](){ started_ = true; });
865
866 if (!IsImageDex2OatEnabled() || !GetHeap()->HasBootImageSpace()) {
867 ScopedObjectAccess soa(self);
868 StackHandleScope<3> hs(soa.Self());
869
870 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots = GetClassLinker()->GetClassRoots();
871 auto class_class(hs.NewHandle<mirror::Class>(GetClassRoot<mirror::Class>(class_roots)));
872 auto string_class(hs.NewHandle<mirror::Class>(GetClassRoot<mirror::String>(class_roots)));
873 auto field_class(hs.NewHandle<mirror::Class>(GetClassRoot<mirror::Field>(class_roots)));
874
875 class_linker_->EnsureInitialized(soa.Self(), class_class, true, true);
876 class_linker_->EnsureInitialized(soa.Self(), string_class, true, true);
877 self->AssertNoPendingException();
878 // Field class is needed for register_java_net_InetAddress in libcore, b/28153851.
879 class_linker_->EnsureInitialized(soa.Self(), field_class, true, true);
880 self->AssertNoPendingException();
881 }
882
883 // InitNativeMethods needs to be after started_ so that the classes
884 // it touches will have methods linked to the oat file if necessary.
885 {
886 ScopedTrace trace2("InitNativeMethods");
887 InitNativeMethods();
888 }
889
890 // IntializeIntrinsics needs to be called after the WellKnownClasses::Init in InitNativeMethods
891 // because in checking the invocation types of intrinsic methods ArtMethod::GetInvokeType()
892 // needs the SignaturePolymorphic annotation class which is initialized in WellKnownClasses::Init.
893 InitializeIntrinsics();
894
895 // InitializeCorePlatformApiPrivateFields() needs to be called after well known class
896 // initializtion in InitNativeMethods().
897 art::hiddenapi::InitializeCorePlatformApiPrivateFields();
898
899 // Initialize well known thread group values that may be accessed threads while attaching.
900 InitThreadGroups(self);
901
902 Thread::FinishStartup();
903
904 // Create the JIT either if we have to use JIT compilation or save profiling info. This is
905 // done after FinishStartup as the JIT pool needs Java thread peers, which require the main
906 // ThreadGroup to exist.
907 //
908 // TODO(calin): We use the JIT class as a proxy for JIT compilation and for
909 // recoding profiles. Maybe we should consider changing the name to be more clear it's
910 // not only about compiling. b/28295073.
911 if (jit_options_->UseJitCompilation() || jit_options_->GetSaveProfilingInfo()) {
912 // Try to load compiler pre zygote to reduce PSS. b/27744947
913 std::string error_msg;
914 if (!jit::Jit::LoadCompilerLibrary(&error_msg)) {
915 LOG(WARNING) << "Failed to load JIT compiler with error " << error_msg;
916 }
917 CreateJitCodeCache(/*rwx_memory_allowed=*/true);
918 CreateJit();
919 }
920
921 // Send the start phase event. We have to wait till here as this is when the main thread peer
922 // has just been generated, important root clinits have been run and JNI is completely functional.
923 {
924 ScopedObjectAccess soa(self);
925 callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kStart);
926 }
927
928 system_class_loader_ = CreateSystemClassLoader(this);
929
930 if (!is_zygote_) {
931 if (is_native_bridge_loaded_) {
932 PreInitializeNativeBridge(".");
933 }
934 NativeBridgeAction action = force_native_bridge_
935 ? NativeBridgeAction::kInitialize
936 : NativeBridgeAction::kUnload;
937 InitNonZygoteOrPostFork(self->GetJniEnv(),
938 /* is_system_server= */ false,
939 /* is_child_zygote= */ false,
940 action,
941 GetInstructionSetString(kRuntimeISA));
942 }
943
944 StartDaemonThreads();
945
946 // Make sure the environment is still clean (no lingering local refs from starting daemon
947 // threads).
948 {
949 ScopedObjectAccess soa(self);
950 self->GetJniEnv()->AssertLocalsEmpty();
951 }
952
953 // Send the initialized phase event. Send it after starting the Daemon threads so that agents
954 // cannot delay the daemon threads from starting forever.
955 {
956 ScopedObjectAccess soa(self);
957 callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInit);
958 }
959
960 {
961 ScopedObjectAccess soa(self);
962 self->GetJniEnv()->AssertLocalsEmpty();
963 }
964
965 VLOG(startup) << "Runtime::Start exiting";
966 finished_starting_ = true;
967
968 if (trace_config_.get() != nullptr && trace_config_->trace_file != "") {
969 ScopedThreadStateChange tsc(self, kWaitingForMethodTracingStart);
970 Trace::Start(trace_config_->trace_file.c_str(),
971 static_cast<int>(trace_config_->trace_file_size),
972 0,
973 trace_config_->trace_output_mode,
974 trace_config_->trace_mode,
975 0);
976 }
977
978 // In case we have a profile path passed as a command line argument,
979 // register the current class path for profiling now. Note that we cannot do
980 // this before we create the JIT and having it here is the most convenient way.
981 // This is used when testing profiles with dalvikvm command as there is no
982 // framework to register the dex files for profiling.
983 if (jit_.get() != nullptr && jit_options_->GetSaveProfilingInfo() &&
984 !jit_options_->GetProfileSaverOptions().GetProfilePath().empty()) {
985 std::vector<std::string> dex_filenames;
986 Split(class_path_string_, ':', &dex_filenames);
987 RegisterAppInfo(dex_filenames, jit_options_->GetProfileSaverOptions().GetProfilePath());
988 }
989
990 return true;
991 }
992
EndThreadBirth()993 void Runtime::EndThreadBirth() REQUIRES(Locks::runtime_shutdown_lock_) {
994 DCHECK_GT(threads_being_born_, 0U);
995 threads_being_born_--;
996 if (shutting_down_started_ && threads_being_born_ == 0) {
997 shutdown_cond_->Broadcast(Thread::Current());
998 }
999 }
1000
InitNonZygoteOrPostFork(JNIEnv * env,bool is_system_server,bool is_child_zygote,NativeBridgeAction action,const char * isa,bool profile_system_server)1001 void Runtime::InitNonZygoteOrPostFork(
1002 JNIEnv* env,
1003 bool is_system_server,
1004 // This is true when we are initializing a child-zygote. It requires
1005 // native bridge initialization to be able to run guest native code in
1006 // doPreload().
1007 bool is_child_zygote,
1008 NativeBridgeAction action,
1009 const char* isa,
1010 bool profile_system_server) {
1011 if (is_native_bridge_loaded_) {
1012 switch (action) {
1013 case NativeBridgeAction::kUnload:
1014 UnloadNativeBridge();
1015 is_native_bridge_loaded_ = false;
1016 break;
1017 case NativeBridgeAction::kInitialize:
1018 InitializeNativeBridge(env, isa);
1019 break;
1020 }
1021 }
1022
1023 if (is_child_zygote) {
1024 // If creating a child-zygote we only initialize native bridge. The rest of
1025 // runtime post-fork logic would spin up threads for Binder and JDWP.
1026 // Instead, the Java side of the child process will call a static main in a
1027 // class specified by the parent.
1028 return;
1029 }
1030
1031 DCHECK(!IsZygote());
1032
1033 if (is_system_server && profile_system_server) {
1034 // Set the system server package name to "android".
1035 // This is used to tell the difference between samples provided by system server
1036 // and samples generated by other apps when processing boot image profiles.
1037 SetProcessPackageName("android");
1038 jit_options_->SetWaitForJitNotificationsToSaveProfile(false);
1039 VLOG(profiler) << "Enabling system server profiles";
1040 }
1041
1042 // Create the thread pools.
1043 heap_->CreateThreadPool();
1044 // Avoid creating the runtime thread pool for system server since it will not be used and would
1045 // waste memory.
1046 if (!is_system_server) {
1047 ScopedTrace timing("CreateThreadPool");
1048 constexpr size_t kStackSize = 64 * KB;
1049 constexpr size_t kMaxRuntimeWorkers = 4u;
1050 const size_t num_workers =
1051 std::min(static_cast<size_t>(std::thread::hardware_concurrency()), kMaxRuntimeWorkers);
1052 MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
1053 CHECK(thread_pool_ == nullptr);
1054 thread_pool_.reset(new ThreadPool("Runtime", num_workers, /*create_peers=*/false, kStackSize));
1055 thread_pool_->StartWorkers(Thread::Current());
1056 }
1057
1058 // Reset the gc performance data at zygote fork so that the GCs
1059 // before fork aren't attributed to an app.
1060 heap_->ResetGcPerformanceInfo();
1061
1062 StartSignalCatcher();
1063
1064 ScopedObjectAccess soa(Thread::Current());
1065 if (IsPerfettoHprofEnabled() &&
1066 (Dbg::IsJdwpAllowed() || IsProfileableFromShell() || IsJavaDebuggable() ||
1067 Runtime::Current()->IsSystemServer())) {
1068 std::string err;
1069 ScopedTrace tr("perfetto_hprof init.");
1070 ScopedThreadSuspension sts(Thread::Current(), ThreadState::kNative);
1071 if (!EnsurePerfettoPlugin(&err)) {
1072 LOG(WARNING) << "Failed to load perfetto_hprof: " << err;
1073 }
1074 }
1075 if (LIKELY(automatically_set_jni_ids_indirection_) && CanSetJniIdType()) {
1076 if (IsJavaDebuggable()) {
1077 SetJniIdType(JniIdType::kIndices);
1078 } else {
1079 SetJniIdType(JniIdType::kPointer);
1080 }
1081 }
1082 // Start the JDWP thread. If the command-line debugger flags specified "suspend=y",
1083 // this will pause the runtime (in the internal debugger implementation), so we probably want
1084 // this to come last.
1085 GetRuntimeCallbacks()->StartDebugger();
1086 }
1087
StartSignalCatcher()1088 void Runtime::StartSignalCatcher() {
1089 if (!is_zygote_) {
1090 signal_catcher_ = new SignalCatcher();
1091 }
1092 }
1093
IsShuttingDown(Thread * self)1094 bool Runtime::IsShuttingDown(Thread* self) {
1095 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
1096 return IsShuttingDownLocked();
1097 }
1098
StartDaemonThreads()1099 void Runtime::StartDaemonThreads() {
1100 ScopedTrace trace(__FUNCTION__);
1101 VLOG(startup) << "Runtime::StartDaemonThreads entering";
1102
1103 Thread* self = Thread::Current();
1104
1105 // Must be in the kNative state for calling native methods.
1106 CHECK_EQ(self->GetState(), kNative);
1107
1108 JNIEnv* env = self->GetJniEnv();
1109 env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
1110 WellKnownClasses::java_lang_Daemons_start);
1111 if (env->ExceptionCheck()) {
1112 env->ExceptionDescribe();
1113 LOG(FATAL) << "Error starting java.lang.Daemons";
1114 }
1115
1116 VLOG(startup) << "Runtime::StartDaemonThreads exiting";
1117 }
1118
OpenBootDexFiles(ArrayRef<const std::string> dex_filenames,ArrayRef<const std::string> dex_locations,std::vector<std::unique_ptr<const DexFile>> * dex_files)1119 static size_t OpenBootDexFiles(ArrayRef<const std::string> dex_filenames,
1120 ArrayRef<const std::string> dex_locations,
1121 std::vector<std::unique_ptr<const DexFile>>* dex_files) {
1122 DCHECK(dex_files != nullptr) << "OpenDexFiles: out-param is nullptr";
1123 size_t failure_count = 0;
1124 const ArtDexFileLoader dex_file_loader;
1125 for (size_t i = 0; i < dex_filenames.size(); i++) {
1126 const char* dex_filename = dex_filenames[i].c_str();
1127 const char* dex_location = dex_locations[i].c_str();
1128 static constexpr bool kVerifyChecksum = true;
1129 std::string error_msg;
1130 if (!OS::FileExists(dex_filename)) {
1131 LOG(WARNING) << "Skipping non-existent dex file '" << dex_filename << "'";
1132 continue;
1133 }
1134 bool verify = Runtime::Current()->IsVerificationEnabled();
1135 if (!dex_file_loader.Open(dex_filename,
1136 dex_location,
1137 verify,
1138 kVerifyChecksum,
1139 &error_msg,
1140 dex_files)) {
1141 LOG(WARNING) << "Failed to open .dex from file '" << dex_filename << "': " << error_msg;
1142 ++failure_count;
1143 }
1144 }
1145 return failure_count;
1146 }
1147
SetSentinel(ObjPtr<mirror::Object> sentinel)1148 void Runtime::SetSentinel(ObjPtr<mirror::Object> sentinel) {
1149 CHECK(sentinel_.Read() == nullptr);
1150 CHECK(sentinel != nullptr);
1151 CHECK(!heap_->IsMovableObject(sentinel));
1152 sentinel_ = GcRoot<mirror::Object>(sentinel);
1153 }
1154
GetSentinel()1155 GcRoot<mirror::Object> Runtime::GetSentinel() {
1156 return sentinel_;
1157 }
1158
CreatePreAllocatedException(Thread * self,Runtime * runtime,GcRoot<mirror::Throwable> * exception,const char * exception_class_descriptor,const char * msg)1159 static inline void CreatePreAllocatedException(Thread* self,
1160 Runtime* runtime,
1161 GcRoot<mirror::Throwable>* exception,
1162 const char* exception_class_descriptor,
1163 const char* msg)
1164 REQUIRES_SHARED(Locks::mutator_lock_) {
1165 DCHECK_EQ(self, Thread::Current());
1166 ClassLinker* class_linker = runtime->GetClassLinker();
1167 // Allocate an object without initializing the class to allow non-trivial Throwable.<clinit>().
1168 ObjPtr<mirror::Class> klass = class_linker->FindSystemClass(self, exception_class_descriptor);
1169 CHECK(klass != nullptr);
1170 gc::AllocatorType allocator_type = runtime->GetHeap()->GetCurrentAllocator();
1171 ObjPtr<mirror::Throwable> exception_object = ObjPtr<mirror::Throwable>::DownCast(
1172 klass->Alloc(self, allocator_type));
1173 CHECK(exception_object != nullptr);
1174 *exception = GcRoot<mirror::Throwable>(exception_object);
1175 // Initialize the "detailMessage" field.
1176 ObjPtr<mirror::String> message = mirror::String::AllocFromModifiedUtf8(self, msg);
1177 CHECK(message != nullptr);
1178 ObjPtr<mirror::Class> throwable = GetClassRoot<mirror::Throwable>(class_linker);
1179 ArtField* detailMessageField =
1180 throwable->FindDeclaredInstanceField("detailMessage", "Ljava/lang/String;");
1181 CHECK(detailMessageField != nullptr);
1182 detailMessageField->SetObject</* kTransactionActive= */ false>(exception->Read(), message);
1183 }
1184
Init(RuntimeArgumentMap && runtime_options_in)1185 bool Runtime::Init(RuntimeArgumentMap&& runtime_options_in) {
1186 // (b/30160149): protect subprocesses from modifications to LD_LIBRARY_PATH, etc.
1187 // Take a snapshot of the environment at the time the runtime was created, for use by Exec, etc.
1188 env_snapshot_.TakeSnapshot();
1189
1190 using Opt = RuntimeArgumentMap;
1191 Opt runtime_options(std::move(runtime_options_in));
1192 ScopedTrace trace(__FUNCTION__);
1193 CHECK_EQ(sysconf(_SC_PAGE_SIZE), kPageSize);
1194
1195 // Early override for logging output.
1196 if (runtime_options.Exists(Opt::UseStderrLogger)) {
1197 android::base::SetLogger(android::base::StderrLogger);
1198 }
1199
1200 MemMap::Init();
1201
1202 verifier_missing_kthrow_fatal_ = runtime_options.GetOrDefault(Opt::VerifierMissingKThrowFatal);
1203 perfetto_hprof_enabled_ = runtime_options.GetOrDefault(Opt::PerfettoHprof);
1204
1205 // Try to reserve a dedicated fault page. This is allocated for clobbered registers and sentinels.
1206 // If we cannot reserve it, log a warning.
1207 // Note: We allocate this first to have a good chance of grabbing the page. The address (0xebad..)
1208 // is out-of-the-way enough that it should not collide with boot image mapping.
1209 // Note: Don't request an error message. That will lead to a maps dump in the case of failure,
1210 // leading to logspam.
1211 {
1212 constexpr uintptr_t kSentinelAddr =
1213 RoundDown(static_cast<uintptr_t>(Context::kBadGprBase), kPageSize);
1214 protected_fault_page_ = MemMap::MapAnonymous("Sentinel fault page",
1215 reinterpret_cast<uint8_t*>(kSentinelAddr),
1216 kPageSize,
1217 PROT_NONE,
1218 /*low_4gb=*/ true,
1219 /*reuse=*/ false,
1220 /*reservation=*/ nullptr,
1221 /*error_msg=*/ nullptr);
1222 if (!protected_fault_page_.IsValid()) {
1223 LOG(WARNING) << "Could not reserve sentinel fault page";
1224 } else if (reinterpret_cast<uintptr_t>(protected_fault_page_.Begin()) != kSentinelAddr) {
1225 LOG(WARNING) << "Could not reserve sentinel fault page at the right address.";
1226 protected_fault_page_.Reset();
1227 }
1228 }
1229
1230 VLOG(startup) << "Runtime::Init -verbose:startup enabled";
1231
1232 QuasiAtomic::Startup();
1233
1234 oat_file_manager_ = new OatFileManager;
1235
1236 jni_id_manager_.reset(new jni::JniIdManager);
1237
1238 Thread::SetSensitiveThreadHook(runtime_options.GetOrDefault(Opt::HookIsSensitiveThread));
1239 Monitor::Init(runtime_options.GetOrDefault(Opt::LockProfThreshold),
1240 runtime_options.GetOrDefault(Opt::StackDumpLockProfThreshold));
1241
1242 image_location_ = runtime_options.GetOrDefault(Opt::Image);
1243
1244 SetInstructionSet(runtime_options.GetOrDefault(Opt::ImageInstructionSet));
1245 boot_class_path_ = runtime_options.ReleaseOrDefault(Opt::BootClassPath);
1246 boot_class_path_locations_ = runtime_options.ReleaseOrDefault(Opt::BootClassPathLocations);
1247 DCHECK(boot_class_path_locations_.empty() ||
1248 boot_class_path_locations_.size() == boot_class_path_.size());
1249 if (boot_class_path_.empty()) {
1250 // Try to extract the boot class path from the system boot image.
1251 if (image_location_.empty()) {
1252 LOG(ERROR) << "Empty boot class path, cannot continue without image.";
1253 return false;
1254 }
1255 std::string system_oat_filename = ImageHeader::GetOatLocationFromImageLocation(
1256 GetSystemImageFilename(image_location_.c_str(), instruction_set_));
1257 std::string system_oat_location = ImageHeader::GetOatLocationFromImageLocation(image_location_);
1258 std::string error_msg;
1259 std::unique_ptr<OatFile> oat_file(OatFile::Open(/*zip_fd=*/ -1,
1260 system_oat_filename,
1261 system_oat_location,
1262 /*executable=*/ false,
1263 /*low_4gb=*/ false,
1264 &error_msg));
1265 if (oat_file == nullptr) {
1266 LOG(ERROR) << "Could not open boot oat file for extracting boot class path: " << error_msg;
1267 return false;
1268 }
1269 const OatHeader& oat_header = oat_file->GetOatHeader();
1270 const char* oat_boot_class_path = oat_header.GetStoreValueByKey(OatHeader::kBootClassPathKey);
1271 if (oat_boot_class_path != nullptr) {
1272 Split(oat_boot_class_path, ':', &boot_class_path_);
1273 }
1274 if (boot_class_path_.empty()) {
1275 LOG(ERROR) << "Boot class path missing from boot image oat file " << oat_file->GetLocation();
1276 return false;
1277 }
1278 }
1279
1280 class_path_string_ = runtime_options.ReleaseOrDefault(Opt::ClassPath);
1281 properties_ = runtime_options.ReleaseOrDefault(Opt::PropertiesList);
1282
1283 compiler_callbacks_ = runtime_options.GetOrDefault(Opt::CompilerCallbacksPtr);
1284 must_relocate_ = runtime_options.GetOrDefault(Opt::Relocate);
1285 is_zygote_ = runtime_options.Exists(Opt::Zygote);
1286 is_primary_zygote_ = runtime_options.Exists(Opt::PrimaryZygote);
1287 is_explicit_gc_disabled_ = runtime_options.Exists(Opt::DisableExplicitGC);
1288 image_dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::ImageDex2Oat);
1289 dump_native_stack_on_sig_quit_ = runtime_options.GetOrDefault(Opt::DumpNativeStackOnSigQuit);
1290
1291 vfprintf_ = runtime_options.GetOrDefault(Opt::HookVfprintf);
1292 exit_ = runtime_options.GetOrDefault(Opt::HookExit);
1293 abort_ = runtime_options.GetOrDefault(Opt::HookAbort);
1294
1295 default_stack_size_ = runtime_options.GetOrDefault(Opt::StackSize);
1296
1297 compiler_executable_ = runtime_options.ReleaseOrDefault(Opt::Compiler);
1298 compiler_options_ = runtime_options.ReleaseOrDefault(Opt::CompilerOptions);
1299 for (const std::string& option : Runtime::Current()->GetCompilerOptions()) {
1300 if (option == "--debuggable") {
1301 SetJavaDebuggable(true);
1302 break;
1303 }
1304 }
1305 image_compiler_options_ = runtime_options.ReleaseOrDefault(Opt::ImageCompilerOptions);
1306
1307 finalizer_timeout_ms_ = runtime_options.GetOrDefault(Opt::FinalizerTimeoutMs);
1308 max_spins_before_thin_lock_inflation_ =
1309 runtime_options.GetOrDefault(Opt::MaxSpinsBeforeThinLockInflation);
1310
1311 monitor_list_ = new MonitorList;
1312 monitor_pool_ = MonitorPool::Create();
1313 thread_list_ = new ThreadList(runtime_options.GetOrDefault(Opt::ThreadSuspendTimeout));
1314 intern_table_ = new InternTable;
1315
1316 verify_ = runtime_options.GetOrDefault(Opt::Verify);
1317
1318 target_sdk_version_ = runtime_options.GetOrDefault(Opt::TargetSdkVersion);
1319
1320 // Set hidden API enforcement policy. The checks are disabled by default and
1321 // we only enable them if:
1322 // (a) runtime was started with a command line flag that enables the checks, or
1323 // (b) Zygote forked a new process that is not exempt (see ZygoteHooks).
1324 hidden_api_policy_ = runtime_options.GetOrDefault(Opt::HiddenApiPolicy);
1325 DCHECK(!is_zygote_ || hidden_api_policy_ == hiddenapi::EnforcementPolicy::kDisabled);
1326
1327 // Set core platform API enforcement policy. The checks are disabled by default and
1328 // can be enabled with a command line flag. AndroidRuntime will pass the flag if
1329 // a system property is set.
1330 core_platform_api_policy_ = runtime_options.GetOrDefault(Opt::CorePlatformApiPolicy);
1331 if (core_platform_api_policy_ != hiddenapi::EnforcementPolicy::kDisabled) {
1332 LOG(INFO) << "Core platform API reporting enabled, enforcing="
1333 << (core_platform_api_policy_ == hiddenapi::EnforcementPolicy::kEnabled ? "true" : "false");
1334 }
1335
1336 no_sig_chain_ = runtime_options.Exists(Opt::NoSigChain);
1337 force_native_bridge_ = runtime_options.Exists(Opt::ForceNativeBridge);
1338
1339 Split(runtime_options.GetOrDefault(Opt::CpuAbiList), ',', &cpu_abilist_);
1340
1341 fingerprint_ = runtime_options.ReleaseOrDefault(Opt::Fingerprint);
1342
1343 if (runtime_options.GetOrDefault(Opt::Interpret)) {
1344 GetInstrumentation()->ForceInterpretOnly();
1345 }
1346
1347 zygote_max_failed_boots_ = runtime_options.GetOrDefault(Opt::ZygoteMaxFailedBoots);
1348 experimental_flags_ = runtime_options.GetOrDefault(Opt::Experimental);
1349 is_low_memory_mode_ = runtime_options.Exists(Opt::LowMemoryMode);
1350 madvise_random_access_ = runtime_options.GetOrDefault(Opt::MadviseRandomAccess);
1351
1352 jni_ids_indirection_ = runtime_options.GetOrDefault(Opt::OpaqueJniIds);
1353 automatically_set_jni_ids_indirection_ =
1354 runtime_options.GetOrDefault(Opt::AutoPromoteOpaqueJniIds);
1355
1356 plugins_ = runtime_options.ReleaseOrDefault(Opt::Plugins);
1357 agent_specs_ = runtime_options.ReleaseOrDefault(Opt::AgentPath);
1358 // TODO Add back in -agentlib
1359 // for (auto lib : runtime_options.ReleaseOrDefault(Opt::AgentLib)) {
1360 // agents_.push_back(lib);
1361 // }
1362
1363 float foreground_heap_growth_multiplier;
1364 if (is_low_memory_mode_ && !runtime_options.Exists(Opt::ForegroundHeapGrowthMultiplier)) {
1365 // If low memory mode, use 1.0 as the multiplier by default.
1366 foreground_heap_growth_multiplier = 1.0f;
1367 } else {
1368 foreground_heap_growth_multiplier =
1369 runtime_options.GetOrDefault(Opt::ForegroundHeapGrowthMultiplier) +
1370 kExtraDefaultHeapGrowthMultiplier;
1371 }
1372 XGcOption xgc_option = runtime_options.GetOrDefault(Opt::GcOption);
1373
1374 // Generational CC collection is currently only compatible with Baker read barriers.
1375 bool use_generational_cc = kUseBakerReadBarrier && xgc_option.generational_cc;
1376
1377 image_space_loading_order_ = runtime_options.GetOrDefault(Opt::ImageSpaceLoadingOrder);
1378
1379 heap_ = new gc::Heap(runtime_options.GetOrDefault(Opt::MemoryInitialSize),
1380 runtime_options.GetOrDefault(Opt::HeapGrowthLimit),
1381 runtime_options.GetOrDefault(Opt::HeapMinFree),
1382 runtime_options.GetOrDefault(Opt::HeapMaxFree),
1383 runtime_options.GetOrDefault(Opt::HeapTargetUtilization),
1384 foreground_heap_growth_multiplier,
1385 runtime_options.GetOrDefault(Opt::StopForNativeAllocs),
1386 runtime_options.GetOrDefault(Opt::MemoryMaximumSize),
1387 runtime_options.GetOrDefault(Opt::NonMovingSpaceCapacity),
1388 GetBootClassPath(),
1389 GetBootClassPathLocations(),
1390 image_location_,
1391 instruction_set_,
1392 // Override the collector type to CC if the read barrier config.
1393 kUseReadBarrier ? gc::kCollectorTypeCC : xgc_option.collector_type_,
1394 kUseReadBarrier ? BackgroundGcOption(gc::kCollectorTypeCCBackground)
1395 : runtime_options.GetOrDefault(Opt::BackgroundGc),
1396 runtime_options.GetOrDefault(Opt::LargeObjectSpace),
1397 runtime_options.GetOrDefault(Opt::LargeObjectThreshold),
1398 runtime_options.GetOrDefault(Opt::ParallelGCThreads),
1399 runtime_options.GetOrDefault(Opt::ConcGCThreads),
1400 runtime_options.Exists(Opt::LowMemoryMode),
1401 runtime_options.GetOrDefault(Opt::LongPauseLogThreshold),
1402 runtime_options.GetOrDefault(Opt::LongGCLogThreshold),
1403 runtime_options.Exists(Opt::IgnoreMaxFootprint),
1404 runtime_options.GetOrDefault(Opt::AlwaysLogExplicitGcs),
1405 runtime_options.GetOrDefault(Opt::UseTLAB),
1406 xgc_option.verify_pre_gc_heap_,
1407 xgc_option.verify_pre_sweeping_heap_,
1408 xgc_option.verify_post_gc_heap_,
1409 xgc_option.verify_pre_gc_rosalloc_,
1410 xgc_option.verify_pre_sweeping_rosalloc_,
1411 xgc_option.verify_post_gc_rosalloc_,
1412 xgc_option.gcstress_,
1413 xgc_option.measure_,
1414 runtime_options.GetOrDefault(Opt::EnableHSpaceCompactForOOM),
1415 use_generational_cc,
1416 runtime_options.GetOrDefault(Opt::HSpaceCompactForOOMMinIntervalsMs),
1417 runtime_options.Exists(Opt::DumpRegionInfoBeforeGC),
1418 runtime_options.Exists(Opt::DumpRegionInfoAfterGC),
1419 image_space_loading_order_);
1420
1421 dump_gc_performance_on_shutdown_ = runtime_options.Exists(Opt::DumpGCPerformanceOnShutdown);
1422
1423 jdwp_options_ = runtime_options.GetOrDefault(Opt::JdwpOptions);
1424 jdwp_provider_ = CanonicalizeJdwpProvider(runtime_options.GetOrDefault(Opt::JdwpProvider),
1425 IsJavaDebuggable());
1426 switch (jdwp_provider_) {
1427 case JdwpProvider::kNone: {
1428 VLOG(jdwp) << "Disabling all JDWP support.";
1429 if (!jdwp_options_.empty()) {
1430 bool has_transport = jdwp_options_.find("transport") != std::string::npos;
1431 std::string adb_connection_args =
1432 std::string(" -XjdwpProvider:adbconnection -XjdwpOptions:") + jdwp_options_;
1433 LOG(WARNING) << "Jdwp options given when jdwp is disabled! You probably want to enable "
1434 << "jdwp with one of:" << std::endl
1435 << " -Xplugin:libopenjdkjvmti" << (kIsDebugBuild ? "d" : "") << ".so "
1436 << "-agentpath:libjdwp.so=" << jdwp_options_ << std::endl
1437 << (has_transport ? "" : adb_connection_args);
1438 }
1439 break;
1440 }
1441 case JdwpProvider::kAdbConnection: {
1442 constexpr const char* plugin_name = kIsDebugBuild ? "libadbconnectiond.so"
1443 : "libadbconnection.so";
1444 plugins_.push_back(Plugin::Create(plugin_name));
1445 break;
1446 }
1447 case JdwpProvider::kUnset: {
1448 LOG(FATAL) << "Illegal jdwp provider " << jdwp_provider_ << " was not filtered out!";
1449 }
1450 }
1451 callbacks_->AddThreadLifecycleCallback(Dbg::GetThreadLifecycleCallback());
1452
1453 jit_options_.reset(jit::JitOptions::CreateFromRuntimeArguments(runtime_options));
1454 if (IsAotCompiler()) {
1455 // If we are already the compiler at this point, we must be dex2oat. Don't create the jit in
1456 // this case.
1457 // If runtime_options doesn't have UseJIT set to true then CreateFromRuntimeArguments returns
1458 // null and we don't create the jit.
1459 jit_options_->SetUseJitCompilation(false);
1460 jit_options_->SetSaveProfilingInfo(false);
1461 }
1462
1463 // Use MemMap arena pool for jit, malloc otherwise. Malloc arenas are faster to allocate but
1464 // can't be trimmed as easily.
1465 const bool use_malloc = IsAotCompiler();
1466 if (use_malloc) {
1467 arena_pool_.reset(new MallocArenaPool());
1468 jit_arena_pool_.reset(new MallocArenaPool());
1469 } else {
1470 arena_pool_.reset(new MemMapArenaPool(/* low_4gb= */ false));
1471 jit_arena_pool_.reset(new MemMapArenaPool(/* low_4gb= */ false, "CompilerMetadata"));
1472 }
1473
1474 if (IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA)) {
1475 // 4gb, no malloc. Explanation in header.
1476 low_4gb_arena_pool_.reset(new MemMapArenaPool(/* low_4gb= */ true));
1477 }
1478 linear_alloc_.reset(CreateLinearAlloc());
1479
1480 BlockSignals();
1481 InitPlatformSignalHandlers();
1482
1483 // Change the implicit checks flags based on runtime architecture.
1484 switch (kRuntimeISA) {
1485 case InstructionSet::kArm:
1486 case InstructionSet::kThumb2:
1487 case InstructionSet::kX86:
1488 case InstructionSet::kArm64:
1489 case InstructionSet::kX86_64:
1490 implicit_null_checks_ = true;
1491 // Historical note: Installing stack protection was not playing well with Valgrind.
1492 implicit_so_checks_ = true;
1493 break;
1494 default:
1495 // Keep the defaults.
1496 break;
1497 }
1498
1499 if (!no_sig_chain_) {
1500 // Dex2Oat's Runtime does not need the signal chain or the fault handler.
1501 if (implicit_null_checks_ || implicit_so_checks_ || implicit_suspend_checks_) {
1502 fault_manager.Init();
1503
1504 // These need to be in a specific order. The null point check handler must be
1505 // after the suspend check and stack overflow check handlers.
1506 //
1507 // Note: the instances attach themselves to the fault manager and are handled by it. The
1508 // manager will delete the instance on Shutdown().
1509 if (implicit_suspend_checks_) {
1510 new SuspensionHandler(&fault_manager);
1511 }
1512
1513 if (implicit_so_checks_) {
1514 new StackOverflowHandler(&fault_manager);
1515 }
1516
1517 if (implicit_null_checks_) {
1518 new NullPointerHandler(&fault_manager);
1519 }
1520
1521 if (kEnableJavaStackTraceHandler) {
1522 new JavaStackTraceHandler(&fault_manager);
1523 }
1524 }
1525 }
1526
1527 verifier_logging_threshold_ms_ = runtime_options.GetOrDefault(Opt::VerifierLoggingThreshold);
1528
1529 std::string error_msg;
1530 java_vm_ = JavaVMExt::Create(this, runtime_options, &error_msg);
1531 if (java_vm_.get() == nullptr) {
1532 LOG(ERROR) << "Could not initialize JavaVMExt: " << error_msg;
1533 return false;
1534 }
1535
1536 // Add the JniEnv handler.
1537 // TODO Refactor this stuff.
1538 java_vm_->AddEnvironmentHook(JNIEnvExt::GetEnvHandler);
1539
1540 Thread::Startup();
1541
1542 // ClassLinker needs an attached thread, but we can't fully attach a thread without creating
1543 // objects. We can't supply a thread group yet; it will be fixed later. Since we are the main
1544 // thread, we do not get a java peer.
1545 Thread* self = Thread::Attach("main", false, nullptr, false);
1546 CHECK_EQ(self->GetThreadId(), ThreadList::kMainThreadId);
1547 CHECK(self != nullptr);
1548
1549 self->SetIsRuntimeThread(IsAotCompiler());
1550
1551 // Set us to runnable so tools using a runtime can allocate and GC by default
1552 self->TransitionFromSuspendedToRunnable();
1553
1554 // Now we're attached, we can take the heap locks and validate the heap.
1555 GetHeap()->EnableObjectValidation();
1556
1557 CHECK_GE(GetHeap()->GetContinuousSpaces().size(), 1U);
1558
1559 if (UNLIKELY(IsAotCompiler())) {
1560 class_linker_ = new AotClassLinker(intern_table_);
1561 } else {
1562 class_linker_ = new ClassLinker(
1563 intern_table_,
1564 runtime_options.GetOrDefault(Opt::FastClassNotFoundException));
1565 }
1566 if (GetHeap()->HasBootImageSpace()) {
1567 bool result = class_linker_->InitFromBootImage(&error_msg);
1568 if (!result) {
1569 LOG(ERROR) << "Could not initialize from image: " << error_msg;
1570 return false;
1571 }
1572 if (kIsDebugBuild) {
1573 for (auto image_space : GetHeap()->GetBootImageSpaces()) {
1574 image_space->VerifyImageAllocations();
1575 }
1576 }
1577 {
1578 ScopedTrace trace2("AddImageStringsToTable");
1579 for (gc::space::ImageSpace* image_space : heap_->GetBootImageSpaces()) {
1580 GetInternTable()->AddImageStringsToTable(image_space, VoidFunctor());
1581 }
1582 }
1583 if (heap_->GetBootImageSpaces().size() != GetBootClassPath().size()) {
1584 // The boot image did not contain all boot class path components. Load the rest.
1585 DCHECK_LT(heap_->GetBootImageSpaces().size(), GetBootClassPath().size());
1586 size_t start = heap_->GetBootImageSpaces().size();
1587 DCHECK_LT(start, GetBootClassPath().size());
1588 std::vector<std::unique_ptr<const DexFile>> extra_boot_class_path;
1589 if (runtime_options.Exists(Opt::BootClassPathDexList)) {
1590 extra_boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList));
1591 } else {
1592 OpenBootDexFiles(ArrayRef<const std::string>(GetBootClassPath()).SubArray(start),
1593 ArrayRef<const std::string>(GetBootClassPathLocations()).SubArray(start),
1594 &extra_boot_class_path);
1595 }
1596 class_linker_->AddExtraBootDexFiles(self, std::move(extra_boot_class_path));
1597 }
1598 if (IsJavaDebuggable() || jit_options_->GetProfileSaverOptions().GetProfileBootClassPath()) {
1599 // Deoptimize the boot image if debuggable as the code may have been compiled non-debuggable.
1600 // Also deoptimize if we are profiling the boot class path.
1601 ScopedThreadSuspension sts(self, ThreadState::kNative);
1602 ScopedSuspendAll ssa(__FUNCTION__);
1603 DeoptimizeBootImage();
1604 }
1605 } else {
1606 std::vector<std::unique_ptr<const DexFile>> boot_class_path;
1607 if (runtime_options.Exists(Opt::BootClassPathDexList)) {
1608 boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList));
1609 } else {
1610 OpenBootDexFiles(ArrayRef<const std::string>(GetBootClassPath()),
1611 ArrayRef<const std::string>(GetBootClassPathLocations()),
1612 &boot_class_path);
1613 }
1614 if (!class_linker_->InitWithoutImage(std::move(boot_class_path), &error_msg)) {
1615 LOG(ERROR) << "Could not initialize without image: " << error_msg;
1616 return false;
1617 }
1618
1619 // TODO: Should we move the following to InitWithoutImage?
1620 SetInstructionSet(instruction_set_);
1621 for (uint32_t i = 0; i < kCalleeSaveSize; i++) {
1622 CalleeSaveType type = CalleeSaveType(i);
1623 if (!HasCalleeSaveMethod(type)) {
1624 SetCalleeSaveMethod(CreateCalleeSaveMethod(), type);
1625 }
1626 }
1627 }
1628
1629 CHECK(class_linker_ != nullptr);
1630
1631 verifier::ClassVerifier::Init(class_linker_);
1632
1633 if (runtime_options.Exists(Opt::MethodTrace)) {
1634 trace_config_.reset(new TraceConfig());
1635 trace_config_->trace_file = runtime_options.ReleaseOrDefault(Opt::MethodTraceFile);
1636 trace_config_->trace_file_size = runtime_options.ReleaseOrDefault(Opt::MethodTraceFileSize);
1637 trace_config_->trace_mode = Trace::TraceMode::kMethodTracing;
1638 trace_config_->trace_output_mode = runtime_options.Exists(Opt::MethodTraceStreaming) ?
1639 Trace::TraceOutputMode::kStreaming :
1640 Trace::TraceOutputMode::kFile;
1641 }
1642
1643 // TODO: move this to just be an Trace::Start argument
1644 Trace::SetDefaultClockSource(runtime_options.GetOrDefault(Opt::ProfileClock));
1645
1646 if (GetHeap()->HasBootImageSpace()) {
1647 const ImageHeader& image_header = GetHeap()->GetBootImageSpaces()[0]->GetImageHeader();
1648 ObjPtr<mirror::ObjectArray<mirror::Object>> boot_image_live_objects =
1649 ObjPtr<mirror::ObjectArray<mirror::Object>>::DownCast(
1650 image_header.GetImageRoot(ImageHeader::kBootImageLiveObjects));
1651 pre_allocated_OutOfMemoryError_when_throwing_exception_ = GcRoot<mirror::Throwable>(
1652 boot_image_live_objects->Get(ImageHeader::kOomeWhenThrowingException)->AsThrowable());
1653 DCHECK(pre_allocated_OutOfMemoryError_when_throwing_exception_.Read()->GetClass()
1654 ->DescriptorEquals("Ljava/lang/OutOfMemoryError;"));
1655 pre_allocated_OutOfMemoryError_when_throwing_oome_ = GcRoot<mirror::Throwable>(
1656 boot_image_live_objects->Get(ImageHeader::kOomeWhenThrowingOome)->AsThrowable());
1657 DCHECK(pre_allocated_OutOfMemoryError_when_throwing_oome_.Read()->GetClass()
1658 ->DescriptorEquals("Ljava/lang/OutOfMemoryError;"));
1659 pre_allocated_OutOfMemoryError_when_handling_stack_overflow_ = GcRoot<mirror::Throwable>(
1660 boot_image_live_objects->Get(ImageHeader::kOomeWhenHandlingStackOverflow)->AsThrowable());
1661 DCHECK(pre_allocated_OutOfMemoryError_when_handling_stack_overflow_.Read()->GetClass()
1662 ->DescriptorEquals("Ljava/lang/OutOfMemoryError;"));
1663 pre_allocated_NoClassDefFoundError_ = GcRoot<mirror::Throwable>(
1664 boot_image_live_objects->Get(ImageHeader::kNoClassDefFoundError)->AsThrowable());
1665 DCHECK(pre_allocated_NoClassDefFoundError_.Read()->GetClass()
1666 ->DescriptorEquals("Ljava/lang/NoClassDefFoundError;"));
1667 } else {
1668 // Pre-allocate an OutOfMemoryError for the case when we fail to
1669 // allocate the exception to be thrown.
1670 CreatePreAllocatedException(self,
1671 this,
1672 &pre_allocated_OutOfMemoryError_when_throwing_exception_,
1673 "Ljava/lang/OutOfMemoryError;",
1674 "OutOfMemoryError thrown while trying to throw an exception; "
1675 "no stack trace available");
1676 // Pre-allocate an OutOfMemoryError for the double-OOME case.
1677 CreatePreAllocatedException(self,
1678 this,
1679 &pre_allocated_OutOfMemoryError_when_throwing_oome_,
1680 "Ljava/lang/OutOfMemoryError;",
1681 "OutOfMemoryError thrown while trying to throw OutOfMemoryError; "
1682 "no stack trace available");
1683 // Pre-allocate an OutOfMemoryError for the case when we fail to
1684 // allocate while handling a stack overflow.
1685 CreatePreAllocatedException(self,
1686 this,
1687 &pre_allocated_OutOfMemoryError_when_handling_stack_overflow_,
1688 "Ljava/lang/OutOfMemoryError;",
1689 "OutOfMemoryError thrown while trying to handle a stack overflow; "
1690 "no stack trace available");
1691
1692 // Pre-allocate a NoClassDefFoundError for the common case of failing to find a system class
1693 // ahead of checking the application's class loader.
1694 CreatePreAllocatedException(self,
1695 this,
1696 &pre_allocated_NoClassDefFoundError_,
1697 "Ljava/lang/NoClassDefFoundError;",
1698 "Class not found using the boot class loader; "
1699 "no stack trace available");
1700 }
1701
1702 // Class-roots are setup, we can now finish initializing the JniIdManager.
1703 GetJniIdManager()->Init(self);
1704
1705 // Runtime initialization is largely done now.
1706 // We load plugins first since that can modify the runtime state slightly.
1707 // Load all plugins
1708 {
1709 // The init method of plugins expect the state of the thread to be non runnable.
1710 ScopedThreadSuspension sts(self, ThreadState::kNative);
1711 for (auto& plugin : plugins_) {
1712 std::string err;
1713 if (!plugin.Load(&err)) {
1714 LOG(FATAL) << plugin << " failed to load: " << err;
1715 }
1716 }
1717 }
1718
1719 // Look for a native bridge.
1720 //
1721 // The intended flow here is, in the case of a running system:
1722 //
1723 // Runtime::Init() (zygote):
1724 // LoadNativeBridge -> dlopen from cmd line parameter.
1725 // |
1726 // V
1727 // Runtime::Start() (zygote):
1728 // No-op wrt native bridge.
1729 // |
1730 // | start app
1731 // V
1732 // DidForkFromZygote(action)
1733 // action = kUnload -> dlclose native bridge.
1734 // action = kInitialize -> initialize library
1735 //
1736 //
1737 // The intended flow here is, in the case of a simple dalvikvm call:
1738 //
1739 // Runtime::Init():
1740 // LoadNativeBridge -> dlopen from cmd line parameter.
1741 // |
1742 // V
1743 // Runtime::Start():
1744 // DidForkFromZygote(kInitialize) -> try to initialize any native bridge given.
1745 // No-op wrt native bridge.
1746 {
1747 std::string native_bridge_file_name = runtime_options.ReleaseOrDefault(Opt::NativeBridge);
1748 is_native_bridge_loaded_ = LoadNativeBridge(native_bridge_file_name);
1749 }
1750
1751 // Startup agents
1752 // TODO Maybe we should start a new thread to run these on. Investigate RI behavior more.
1753 for (auto& agent_spec : agent_specs_) {
1754 // TODO Check err
1755 int res = 0;
1756 std::string err = "";
1757 ti::LoadError error;
1758 std::unique_ptr<ti::Agent> agent = agent_spec.Load(&res, &error, &err);
1759
1760 if (agent != nullptr) {
1761 agents_.push_back(std::move(agent));
1762 continue;
1763 }
1764
1765 switch (error) {
1766 case ti::LoadError::kInitializationError:
1767 LOG(FATAL) << "Unable to initialize agent!";
1768 UNREACHABLE();
1769
1770 case ti::LoadError::kLoadingError:
1771 LOG(ERROR) << "Unable to load an agent: " << err;
1772 continue;
1773
1774 case ti::LoadError::kNoError:
1775 break;
1776 }
1777 LOG(FATAL) << "Unreachable";
1778 UNREACHABLE();
1779 }
1780 {
1781 ScopedObjectAccess soa(self);
1782 callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInitialAgents);
1783 }
1784
1785 if (IsZygote() && IsPerfettoHprofEnabled()) {
1786 constexpr const char* plugin_name = kIsDebugBuild ?
1787 "libperfetto_hprofd.so" : "libperfetto_hprof.so";
1788 // Load eagerly in Zygote to improve app startup times. This will make
1789 // subsequent dlopens for the library no-ops.
1790 dlopen(plugin_name, RTLD_NOW | RTLD_LOCAL);
1791 }
1792
1793 VLOG(startup) << "Runtime::Init exiting";
1794
1795 // Set OnlyUseSystemOatFiles only after boot classpath has been set up.
1796 if (runtime_options.Exists(Opt::OnlyUseSystemOatFiles)) {
1797 oat_file_manager_->SetOnlyUseSystemOatFiles();
1798 }
1799
1800 return true;
1801 }
1802
EnsurePluginLoaded(const char * plugin_name,std::string * error_msg)1803 bool Runtime::EnsurePluginLoaded(const char* plugin_name, std::string* error_msg) {
1804 // Is the plugin already loaded?
1805 for (const Plugin& p : plugins_) {
1806 if (p.GetLibrary() == plugin_name) {
1807 return true;
1808 }
1809 }
1810 Plugin new_plugin = Plugin::Create(plugin_name);
1811
1812 if (!new_plugin.Load(error_msg)) {
1813 return false;
1814 }
1815 plugins_.push_back(std::move(new_plugin));
1816 return true;
1817 }
1818
EnsurePerfettoPlugin(std::string * error_msg)1819 bool Runtime::EnsurePerfettoPlugin(std::string* error_msg) {
1820 constexpr const char* plugin_name = kIsDebugBuild ?
1821 "libperfetto_hprofd.so" : "libperfetto_hprof.so";
1822 return EnsurePluginLoaded(plugin_name, error_msg);
1823 }
1824
EnsureJvmtiPlugin(Runtime * runtime,std::string * error_msg)1825 static bool EnsureJvmtiPlugin(Runtime* runtime,
1826 std::string* error_msg) {
1827 // TODO Rename Dbg::IsJdwpAllowed is IsDebuggingAllowed.
1828 DCHECK(Dbg::IsJdwpAllowed() || !runtime->IsJavaDebuggable())
1829 << "Being debuggable requires that jdwp (i.e. debugging) is allowed.";
1830 // Is the process debuggable? Otherwise, do not attempt to load the plugin unless we are
1831 // specifically allowed.
1832 if (!Dbg::IsJdwpAllowed()) {
1833 *error_msg = "Process is not allowed to load openjdkjvmti plugin. Process must be debuggable";
1834 return false;
1835 }
1836
1837 constexpr const char* plugin_name = kIsDebugBuild ? "libopenjdkjvmtid.so" : "libopenjdkjvmti.so";
1838 return runtime->EnsurePluginLoaded(plugin_name, error_msg);
1839 }
1840
1841 // Attach a new agent and add it to the list of runtime agents
1842 //
1843 // TODO: once we decide on the threading model for agents,
1844 // revisit this and make sure we're doing this on the right thread
1845 // (and we synchronize access to any shared data structures like "agents_")
1846 //
AttachAgent(JNIEnv * env,const std::string & agent_arg,jobject class_loader)1847 void Runtime::AttachAgent(JNIEnv* env, const std::string& agent_arg, jobject class_loader) {
1848 std::string error_msg;
1849 if (!EnsureJvmtiPlugin(this, &error_msg)) {
1850 LOG(WARNING) << "Could not load plugin: " << error_msg;
1851 ScopedObjectAccess soa(Thread::Current());
1852 ThrowIOException("%s", error_msg.c_str());
1853 return;
1854 }
1855
1856 ti::AgentSpec agent_spec(agent_arg);
1857
1858 int res = 0;
1859 ti::LoadError error;
1860 std::unique_ptr<ti::Agent> agent = agent_spec.Attach(env, class_loader, &res, &error, &error_msg);
1861
1862 if (agent != nullptr) {
1863 agents_.push_back(std::move(agent));
1864 } else {
1865 LOG(WARNING) << "Agent attach failed (result=" << error << ") : " << error_msg;
1866 ScopedObjectAccess soa(Thread::Current());
1867 ThrowIOException("%s", error_msg.c_str());
1868 }
1869 }
1870
InitNativeMethods()1871 void Runtime::InitNativeMethods() {
1872 VLOG(startup) << "Runtime::InitNativeMethods entering";
1873 Thread* self = Thread::Current();
1874 JNIEnv* env = self->GetJniEnv();
1875
1876 // Must be in the kNative state for calling native methods (JNI_OnLoad code).
1877 CHECK_EQ(self->GetState(), kNative);
1878
1879 // Set up the native methods provided by the runtime itself.
1880 RegisterRuntimeNativeMethods(env);
1881
1882 // Initialize classes used in JNI. The initialization requires runtime native
1883 // methods to be loaded first.
1884 WellKnownClasses::Init(env);
1885
1886 // Then set up libjavacore / libopenjdk / libicu_jni ,which are just
1887 // a regular JNI libraries with a regular JNI_OnLoad. Most JNI libraries can
1888 // just use System.loadLibrary, but libcore can't because it's the library
1889 // that implements System.loadLibrary!
1890
1891 // libicu_jni has to be initialized before libopenjdk{d} due to runtime dependency from
1892 // libopenjdk{d} to Icu4cMetadata native methods in libicu_jni. See http://b/143888405
1893 {
1894 std::string error_msg;
1895 if (!java_vm_->LoadNativeLibrary(
1896 env, "libicu_jni.so", nullptr, WellKnownClasses::java_lang_Object, &error_msg)) {
1897 LOG(FATAL) << "LoadNativeLibrary failed for \"libicu_jni.so\": " << error_msg;
1898 }
1899 }
1900 {
1901 std::string error_msg;
1902 if (!java_vm_->LoadNativeLibrary(
1903 env, "libjavacore.so", nullptr, WellKnownClasses::java_lang_Object, &error_msg)) {
1904 LOG(FATAL) << "LoadNativeLibrary failed for \"libjavacore.so\": " << error_msg;
1905 }
1906 }
1907 {
1908 constexpr const char* kOpenJdkLibrary = kIsDebugBuild
1909 ? "libopenjdkd.so"
1910 : "libopenjdk.so";
1911 std::string error_msg;
1912 if (!java_vm_->LoadNativeLibrary(
1913 env, kOpenJdkLibrary, nullptr, WellKnownClasses::java_lang_Object, &error_msg)) {
1914 LOG(FATAL) << "LoadNativeLibrary failed for \"" << kOpenJdkLibrary << "\": " << error_msg;
1915 }
1916 }
1917
1918 // Initialize well known classes that may invoke runtime native methods.
1919 WellKnownClasses::LateInit(env);
1920
1921 VLOG(startup) << "Runtime::InitNativeMethods exiting";
1922 }
1923
ReclaimArenaPoolMemory()1924 void Runtime::ReclaimArenaPoolMemory() {
1925 arena_pool_->LockReclaimMemory();
1926 }
1927
InitThreadGroups(Thread * self)1928 void Runtime::InitThreadGroups(Thread* self) {
1929 JNIEnvExt* env = self->GetJniEnv();
1930 ScopedJniEnvLocalRefState env_state(env);
1931 main_thread_group_ =
1932 env->NewGlobalRef(env->GetStaticObjectField(
1933 WellKnownClasses::java_lang_ThreadGroup,
1934 WellKnownClasses::java_lang_ThreadGroup_mainThreadGroup));
1935 CHECK(main_thread_group_ != nullptr || IsAotCompiler());
1936 system_thread_group_ =
1937 env->NewGlobalRef(env->GetStaticObjectField(
1938 WellKnownClasses::java_lang_ThreadGroup,
1939 WellKnownClasses::java_lang_ThreadGroup_systemThreadGroup));
1940 CHECK(system_thread_group_ != nullptr || IsAotCompiler());
1941 }
1942
GetMainThreadGroup() const1943 jobject Runtime::GetMainThreadGroup() const {
1944 CHECK(main_thread_group_ != nullptr || IsAotCompiler());
1945 return main_thread_group_;
1946 }
1947
GetSystemThreadGroup() const1948 jobject Runtime::GetSystemThreadGroup() const {
1949 CHECK(system_thread_group_ != nullptr || IsAotCompiler());
1950 return system_thread_group_;
1951 }
1952
GetSystemClassLoader() const1953 jobject Runtime::GetSystemClassLoader() const {
1954 CHECK(system_class_loader_ != nullptr || IsAotCompiler());
1955 return system_class_loader_;
1956 }
1957
RegisterRuntimeNativeMethods(JNIEnv * env)1958 void Runtime::RegisterRuntimeNativeMethods(JNIEnv* env) {
1959 register_dalvik_system_DexFile(env);
1960 register_dalvik_system_BaseDexClassLoader(env);
1961 register_dalvik_system_VMDebug(env);
1962 register_dalvik_system_VMRuntime(env);
1963 register_dalvik_system_VMStack(env);
1964 register_dalvik_system_ZygoteHooks(env);
1965 register_java_lang_Class(env);
1966 register_java_lang_Object(env);
1967 register_java_lang_invoke_MethodHandleImpl(env);
1968 register_java_lang_ref_FinalizerReference(env);
1969 register_java_lang_reflect_Array(env);
1970 register_java_lang_reflect_Constructor(env);
1971 register_java_lang_reflect_Executable(env);
1972 register_java_lang_reflect_Field(env);
1973 register_java_lang_reflect_Method(env);
1974 register_java_lang_reflect_Parameter(env);
1975 register_java_lang_reflect_Proxy(env);
1976 register_java_lang_ref_Reference(env);
1977 register_java_lang_String(env);
1978 register_java_lang_StringFactory(env);
1979 register_java_lang_System(env);
1980 register_java_lang_Thread(env);
1981 register_java_lang_Throwable(env);
1982 register_java_lang_VMClassLoader(env);
1983 register_java_util_concurrent_atomic_AtomicLong(env);
1984 register_libcore_util_CharsetUtils(env);
1985 register_org_apache_harmony_dalvik_ddmc_DdmServer(env);
1986 register_org_apache_harmony_dalvik_ddmc_DdmVmInternal(env);
1987 register_sun_misc_Unsafe(env);
1988 }
1989
operator <<(std::ostream & os,const DeoptimizationKind & kind)1990 std::ostream& operator<<(std::ostream& os, const DeoptimizationKind& kind) {
1991 os << GetDeoptimizationKindName(kind);
1992 return os;
1993 }
1994
DumpDeoptimizations(std::ostream & os)1995 void Runtime::DumpDeoptimizations(std::ostream& os) {
1996 for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) {
1997 if (deoptimization_counts_[i] != 0) {
1998 os << "Number of "
1999 << GetDeoptimizationKindName(static_cast<DeoptimizationKind>(i))
2000 << " deoptimizations: "
2001 << deoptimization_counts_[i]
2002 << "\n";
2003 }
2004 }
2005 }
2006
DumpForSigQuit(std::ostream & os)2007 void Runtime::DumpForSigQuit(std::ostream& os) {
2008 GetClassLinker()->DumpForSigQuit(os);
2009 GetInternTable()->DumpForSigQuit(os);
2010 GetJavaVM()->DumpForSigQuit(os);
2011 GetHeap()->DumpForSigQuit(os);
2012 oat_file_manager_->DumpForSigQuit(os);
2013 if (GetJit() != nullptr) {
2014 GetJit()->DumpForSigQuit(os);
2015 } else {
2016 os << "Running non JIT\n";
2017 }
2018 DumpDeoptimizations(os);
2019 TrackedAllocators::Dump(os);
2020 os << "\n";
2021
2022 thread_list_->DumpForSigQuit(os);
2023 BaseMutex::DumpAll(os);
2024
2025 // Inform anyone else who is interested in SigQuit.
2026 {
2027 ScopedObjectAccess soa(Thread::Current());
2028 callbacks_->SigQuit();
2029 }
2030 }
2031
DumpLockHolders(std::ostream & os)2032 void Runtime::DumpLockHolders(std::ostream& os) {
2033 uint64_t mutator_lock_owner = Locks::mutator_lock_->GetExclusiveOwnerTid();
2034 pid_t thread_list_lock_owner = GetThreadList()->GetLockOwner();
2035 pid_t classes_lock_owner = GetClassLinker()->GetClassesLockOwner();
2036 pid_t dex_lock_owner = GetClassLinker()->GetDexLockOwner();
2037 if ((thread_list_lock_owner | classes_lock_owner | dex_lock_owner) != 0) {
2038 os << "Mutator lock exclusive owner tid: " << mutator_lock_owner << "\n"
2039 << "ThreadList lock owner tid: " << thread_list_lock_owner << "\n"
2040 << "ClassLinker classes lock owner tid: " << classes_lock_owner << "\n"
2041 << "ClassLinker dex lock owner tid: " << dex_lock_owner << "\n";
2042 }
2043 }
2044
SetStatsEnabled(bool new_state)2045 void Runtime::SetStatsEnabled(bool new_state) {
2046 Thread* self = Thread::Current();
2047 MutexLock mu(self, *Locks::instrument_entrypoints_lock_);
2048 if (new_state == true) {
2049 GetStats()->Clear(~0);
2050 // TODO: wouldn't it make more sense to clear _all_ threads' stats?
2051 self->GetStats()->Clear(~0);
2052 if (stats_enabled_ != new_state) {
2053 GetInstrumentation()->InstrumentQuickAllocEntryPointsLocked();
2054 }
2055 } else if (stats_enabled_ != new_state) {
2056 GetInstrumentation()->UninstrumentQuickAllocEntryPointsLocked();
2057 }
2058 stats_enabled_ = new_state;
2059 }
2060
ResetStats(int kinds)2061 void Runtime::ResetStats(int kinds) {
2062 GetStats()->Clear(kinds & 0xffff);
2063 // TODO: wouldn't it make more sense to clear _all_ threads' stats?
2064 Thread::Current()->GetStats()->Clear(kinds >> 16);
2065 }
2066
GetStat(int kind)2067 uint64_t Runtime::GetStat(int kind) {
2068 RuntimeStats* stats;
2069 if (kind < (1<<16)) {
2070 stats = GetStats();
2071 } else {
2072 stats = Thread::Current()->GetStats();
2073 kind >>= 16;
2074 }
2075 switch (kind) {
2076 case KIND_ALLOCATED_OBJECTS:
2077 return stats->allocated_objects;
2078 case KIND_ALLOCATED_BYTES:
2079 return stats->allocated_bytes;
2080 case KIND_FREED_OBJECTS:
2081 return stats->freed_objects;
2082 case KIND_FREED_BYTES:
2083 return stats->freed_bytes;
2084 case KIND_GC_INVOCATIONS:
2085 return stats->gc_for_alloc_count;
2086 case KIND_CLASS_INIT_COUNT:
2087 return stats->class_init_count;
2088 case KIND_CLASS_INIT_TIME:
2089 return stats->class_init_time_ns;
2090 case KIND_EXT_ALLOCATED_OBJECTS:
2091 case KIND_EXT_ALLOCATED_BYTES:
2092 case KIND_EXT_FREED_OBJECTS:
2093 case KIND_EXT_FREED_BYTES:
2094 return 0; // backward compatibility
2095 default:
2096 LOG(FATAL) << "Unknown statistic " << kind;
2097 UNREACHABLE();
2098 }
2099 }
2100
BlockSignals()2101 void Runtime::BlockSignals() {
2102 SignalSet signals;
2103 signals.Add(SIGPIPE);
2104 // SIGQUIT is used to dump the runtime's state (including stack traces).
2105 signals.Add(SIGQUIT);
2106 // SIGUSR1 is used to initiate a GC.
2107 signals.Add(SIGUSR1);
2108 signals.Block();
2109 }
2110
AttachCurrentThread(const char * thread_name,bool as_daemon,jobject thread_group,bool create_peer)2111 bool Runtime::AttachCurrentThread(const char* thread_name, bool as_daemon, jobject thread_group,
2112 bool create_peer) {
2113 ScopedTrace trace(__FUNCTION__);
2114 Thread* self = Thread::Attach(thread_name, as_daemon, thread_group, create_peer);
2115 // Run ThreadGroup.add to notify the group that this thread is now started.
2116 if (self != nullptr && create_peer && !IsAotCompiler()) {
2117 ScopedObjectAccess soa(self);
2118 self->NotifyThreadGroup(soa, thread_group);
2119 }
2120 return self != nullptr;
2121 }
2122
DetachCurrentThread()2123 void Runtime::DetachCurrentThread() {
2124 ScopedTrace trace(__FUNCTION__);
2125 Thread* self = Thread::Current();
2126 if (self == nullptr) {
2127 LOG(FATAL) << "attempting to detach thread that is not attached";
2128 }
2129 if (self->HasManagedStack()) {
2130 LOG(FATAL) << *Thread::Current() << " attempting to detach while still running code";
2131 }
2132 thread_list_->Unregister(self);
2133 }
2134
GetPreAllocatedOutOfMemoryErrorWhenThrowingException()2135 mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenThrowingException() {
2136 mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_throwing_exception_.Read();
2137 if (oome == nullptr) {
2138 LOG(ERROR) << "Failed to return pre-allocated OOME-when-throwing-exception";
2139 }
2140 return oome;
2141 }
2142
GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME()2143 mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME() {
2144 mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_throwing_oome_.Read();
2145 if (oome == nullptr) {
2146 LOG(ERROR) << "Failed to return pre-allocated OOME-when-throwing-OOME";
2147 }
2148 return oome;
2149 }
2150
GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow()2151 mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow() {
2152 mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_handling_stack_overflow_.Read();
2153 if (oome == nullptr) {
2154 LOG(ERROR) << "Failed to return pre-allocated OOME-when-handling-stack-overflow";
2155 }
2156 return oome;
2157 }
2158
GetPreAllocatedNoClassDefFoundError()2159 mirror::Throwable* Runtime::GetPreAllocatedNoClassDefFoundError() {
2160 mirror::Throwable* ncdfe = pre_allocated_NoClassDefFoundError_.Read();
2161 if (ncdfe == nullptr) {
2162 LOG(ERROR) << "Failed to return pre-allocated NoClassDefFoundError";
2163 }
2164 return ncdfe;
2165 }
2166
VisitConstantRoots(RootVisitor * visitor)2167 void Runtime::VisitConstantRoots(RootVisitor* visitor) {
2168 // Visiting the roots of these ArtMethods is not currently required since all the GcRoots are
2169 // null.
2170 BufferedRootVisitor<16> buffered_visitor(visitor, RootInfo(kRootVMInternal));
2171 const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize();
2172 if (HasResolutionMethod()) {
2173 resolution_method_->VisitRoots(buffered_visitor, pointer_size);
2174 }
2175 if (HasImtConflictMethod()) {
2176 imt_conflict_method_->VisitRoots(buffered_visitor, pointer_size);
2177 }
2178 if (imt_unimplemented_method_ != nullptr) {
2179 imt_unimplemented_method_->VisitRoots(buffered_visitor, pointer_size);
2180 }
2181 for (uint32_t i = 0; i < kCalleeSaveSize; ++i) {
2182 auto* m = reinterpret_cast<ArtMethod*>(callee_save_methods_[i]);
2183 if (m != nullptr) {
2184 m->VisitRoots(buffered_visitor, pointer_size);
2185 }
2186 }
2187 }
2188
VisitConcurrentRoots(RootVisitor * visitor,VisitRootFlags flags)2189 void Runtime::VisitConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
2190 intern_table_->VisitRoots(visitor, flags);
2191 class_linker_->VisitRoots(visitor, flags);
2192 jni_id_manager_->VisitRoots(visitor);
2193 heap_->VisitAllocationRecords(visitor);
2194 if ((flags & kVisitRootFlagNewRoots) == 0) {
2195 // Guaranteed to have no new roots in the constant roots.
2196 VisitConstantRoots(visitor);
2197 }
2198 }
2199
VisitTransactionRoots(RootVisitor * visitor)2200 void Runtime::VisitTransactionRoots(RootVisitor* visitor) {
2201 for (auto& transaction : preinitialization_transactions_) {
2202 transaction->VisitRoots(visitor);
2203 }
2204 }
2205
VisitNonThreadRoots(RootVisitor * visitor)2206 void Runtime::VisitNonThreadRoots(RootVisitor* visitor) {
2207 java_vm_->VisitRoots(visitor);
2208 sentinel_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2209 pre_allocated_OutOfMemoryError_when_throwing_exception_
2210 .VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2211 pre_allocated_OutOfMemoryError_when_throwing_oome_
2212 .VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2213 pre_allocated_OutOfMemoryError_when_handling_stack_overflow_
2214 .VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2215 pre_allocated_NoClassDefFoundError_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2216 VisitImageRoots(visitor);
2217 verifier::ClassVerifier::VisitStaticRoots(visitor);
2218 VisitTransactionRoots(visitor);
2219 }
2220
VisitNonConcurrentRoots(RootVisitor * visitor,VisitRootFlags flags)2221 void Runtime::VisitNonConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
2222 VisitThreadRoots(visitor, flags);
2223 VisitNonThreadRoots(visitor);
2224 }
2225
VisitThreadRoots(RootVisitor * visitor,VisitRootFlags flags)2226 void Runtime::VisitThreadRoots(RootVisitor* visitor, VisitRootFlags flags) {
2227 thread_list_->VisitRoots(visitor, flags);
2228 }
2229
VisitRoots(RootVisitor * visitor,VisitRootFlags flags)2230 void Runtime::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
2231 VisitNonConcurrentRoots(visitor, flags);
2232 VisitConcurrentRoots(visitor, flags);
2233 }
2234
VisitReflectiveTargets(ReflectiveValueVisitor * visitor)2235 void Runtime::VisitReflectiveTargets(ReflectiveValueVisitor *visitor) {
2236 thread_list_->VisitReflectiveTargets(visitor);
2237 heap_->VisitReflectiveTargets(visitor);
2238 jni_id_manager_->VisitReflectiveTargets(visitor);
2239 callbacks_->VisitReflectiveTargets(visitor);
2240 }
2241
VisitImageRoots(RootVisitor * visitor)2242 void Runtime::VisitImageRoots(RootVisitor* visitor) {
2243 for (auto* space : GetHeap()->GetContinuousSpaces()) {
2244 if (space->IsImageSpace()) {
2245 auto* image_space = space->AsImageSpace();
2246 const auto& image_header = image_space->GetImageHeader();
2247 for (int32_t i = 0, size = image_header.GetImageRoots()->GetLength(); i != size; ++i) {
2248 mirror::Object* obj =
2249 image_header.GetImageRoot(static_cast<ImageHeader::ImageRoot>(i)).Ptr();
2250 if (obj != nullptr) {
2251 mirror::Object* after_obj = obj;
2252 visitor->VisitRoot(&after_obj, RootInfo(kRootStickyClass));
2253 CHECK_EQ(after_obj, obj);
2254 }
2255 }
2256 }
2257 }
2258 }
2259
CreateRuntimeMethod(ClassLinker * class_linker,LinearAlloc * linear_alloc)2260 static ArtMethod* CreateRuntimeMethod(ClassLinker* class_linker, LinearAlloc* linear_alloc)
2261 REQUIRES_SHARED(Locks::mutator_lock_) {
2262 const PointerSize image_pointer_size = class_linker->GetImagePointerSize();
2263 const size_t method_alignment = ArtMethod::Alignment(image_pointer_size);
2264 const size_t method_size = ArtMethod::Size(image_pointer_size);
2265 LengthPrefixedArray<ArtMethod>* method_array = class_linker->AllocArtMethodArray(
2266 Thread::Current(),
2267 linear_alloc,
2268 1);
2269 ArtMethod* method = &method_array->At(0, method_size, method_alignment);
2270 CHECK(method != nullptr);
2271 method->SetDexMethodIndex(dex::kDexNoIndex);
2272 CHECK(method->IsRuntimeMethod());
2273 return method;
2274 }
2275
CreateImtConflictMethod(LinearAlloc * linear_alloc)2276 ArtMethod* Runtime::CreateImtConflictMethod(LinearAlloc* linear_alloc) {
2277 ClassLinker* const class_linker = GetClassLinker();
2278 ArtMethod* method = CreateRuntimeMethod(class_linker, linear_alloc);
2279 // When compiling, the code pointer will get set later when the image is loaded.
2280 const PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
2281 if (IsAotCompiler()) {
2282 method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
2283 } else {
2284 method->SetEntryPointFromQuickCompiledCode(GetQuickImtConflictStub());
2285 }
2286 // Create empty conflict table.
2287 method->SetImtConflictTable(class_linker->CreateImtConflictTable(/*count=*/0u, linear_alloc),
2288 pointer_size);
2289 return method;
2290 }
2291
SetImtConflictMethod(ArtMethod * method)2292 void Runtime::SetImtConflictMethod(ArtMethod* method) {
2293 CHECK(method != nullptr);
2294 CHECK(method->IsRuntimeMethod());
2295 imt_conflict_method_ = method;
2296 }
2297
CreateResolutionMethod()2298 ArtMethod* Runtime::CreateResolutionMethod() {
2299 auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc());
2300 // When compiling, the code pointer will get set later when the image is loaded.
2301 if (IsAotCompiler()) {
2302 PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
2303 method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
2304 method->SetEntryPointFromJniPtrSize(nullptr, pointer_size);
2305 } else {
2306 method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub());
2307 method->SetEntryPointFromJni(GetJniDlsymLookupCriticalStub());
2308 }
2309 return method;
2310 }
2311
CreateCalleeSaveMethod()2312 ArtMethod* Runtime::CreateCalleeSaveMethod() {
2313 auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc());
2314 PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
2315 method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
2316 DCHECK_NE(instruction_set_, InstructionSet::kNone);
2317 DCHECK(method->IsRuntimeMethod());
2318 return method;
2319 }
2320
DisallowNewSystemWeaks()2321 void Runtime::DisallowNewSystemWeaks() {
2322 CHECK(!kUseReadBarrier);
2323 monitor_list_->DisallowNewMonitors();
2324 intern_table_->ChangeWeakRootState(gc::kWeakRootStateNoReadsOrWrites);
2325 java_vm_->DisallowNewWeakGlobals();
2326 heap_->DisallowNewAllocationRecords();
2327 if (GetJit() != nullptr) {
2328 GetJit()->GetCodeCache()->DisallowInlineCacheAccess();
2329 }
2330
2331 // All other generic system-weak holders.
2332 for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
2333 holder->Disallow();
2334 }
2335 }
2336
AllowNewSystemWeaks()2337 void Runtime::AllowNewSystemWeaks() {
2338 CHECK(!kUseReadBarrier);
2339 monitor_list_->AllowNewMonitors();
2340 intern_table_->ChangeWeakRootState(gc::kWeakRootStateNormal); // TODO: Do this in the sweeping.
2341 java_vm_->AllowNewWeakGlobals();
2342 heap_->AllowNewAllocationRecords();
2343 if (GetJit() != nullptr) {
2344 GetJit()->GetCodeCache()->AllowInlineCacheAccess();
2345 }
2346
2347 // All other generic system-weak holders.
2348 for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
2349 holder->Allow();
2350 }
2351 }
2352
BroadcastForNewSystemWeaks(bool broadcast_for_checkpoint)2353 void Runtime::BroadcastForNewSystemWeaks(bool broadcast_for_checkpoint) {
2354 // This is used for the read barrier case that uses the thread-local
2355 // Thread::GetWeakRefAccessEnabled() flag and the checkpoint while weak ref access is disabled
2356 // (see ThreadList::RunCheckpoint).
2357 monitor_list_->BroadcastForNewMonitors();
2358 intern_table_->BroadcastForNewInterns();
2359 java_vm_->BroadcastForNewWeakGlobals();
2360 heap_->BroadcastForNewAllocationRecords();
2361 if (GetJit() != nullptr) {
2362 GetJit()->GetCodeCache()->BroadcastForInlineCacheAccess();
2363 }
2364
2365 // All other generic system-weak holders.
2366 for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
2367 holder->Broadcast(broadcast_for_checkpoint);
2368 }
2369 }
2370
SetInstructionSet(InstructionSet instruction_set)2371 void Runtime::SetInstructionSet(InstructionSet instruction_set) {
2372 instruction_set_ = instruction_set;
2373 switch (instruction_set) {
2374 case InstructionSet::kThumb2:
2375 // kThumb2 is the same as kArm, use the canonical value.
2376 instruction_set_ = InstructionSet::kArm;
2377 break;
2378 case InstructionSet::kArm:
2379 case InstructionSet::kArm64:
2380 case InstructionSet::kX86:
2381 case InstructionSet::kX86_64:
2382 break;
2383 default:
2384 UNIMPLEMENTED(FATAL) << instruction_set_;
2385 UNREACHABLE();
2386 }
2387 }
2388
ClearInstructionSet()2389 void Runtime::ClearInstructionSet() {
2390 instruction_set_ = InstructionSet::kNone;
2391 }
2392
SetCalleeSaveMethod(ArtMethod * method,CalleeSaveType type)2393 void Runtime::SetCalleeSaveMethod(ArtMethod* method, CalleeSaveType type) {
2394 DCHECK_LT(static_cast<uint32_t>(type), kCalleeSaveSize);
2395 CHECK(method != nullptr);
2396 callee_save_methods_[static_cast<size_t>(type)] = reinterpret_cast<uintptr_t>(method);
2397 }
2398
ClearCalleeSaveMethods()2399 void Runtime::ClearCalleeSaveMethods() {
2400 for (size_t i = 0; i < kCalleeSaveSize; ++i) {
2401 callee_save_methods_[i] = reinterpret_cast<uintptr_t>(nullptr);
2402 }
2403 }
2404
RegisterAppInfo(const std::vector<std::string> & code_paths,const std::string & profile_output_filename)2405 void Runtime::RegisterAppInfo(const std::vector<std::string>& code_paths,
2406 const std::string& profile_output_filename) {
2407 if (jit_.get() == nullptr) {
2408 // We are not JITing. Nothing to do.
2409 return;
2410 }
2411
2412 VLOG(profiler) << "Register app with " << profile_output_filename
2413 << " " << android::base::Join(code_paths, ':');
2414
2415 if (profile_output_filename.empty()) {
2416 LOG(WARNING) << "JIT profile information will not be recorded: profile filename is empty.";
2417 return;
2418 }
2419 if (!OS::FileExists(profile_output_filename.c_str(), /*check_file_type=*/ false)) {
2420 LOG(WARNING) << "JIT profile information will not be recorded: profile file does not exist.";
2421 return;
2422 }
2423 if (code_paths.empty()) {
2424 LOG(WARNING) << "JIT profile information will not be recorded: code paths is empty.";
2425 return;
2426 }
2427
2428 jit_->StartProfileSaver(profile_output_filename, code_paths);
2429 }
2430
2431 // Transaction support.
IsActiveTransaction() const2432 bool Runtime::IsActiveTransaction() const {
2433 return !preinitialization_transactions_.empty() && !GetTransaction()->IsRollingBack();
2434 }
2435
EnterTransactionMode(bool strict,mirror::Class * root)2436 void Runtime::EnterTransactionMode(bool strict, mirror::Class* root) {
2437 DCHECK(IsAotCompiler());
2438 if (preinitialization_transactions_.empty()) { // Top-level transaction?
2439 // Make initialized classes visibly initialized now. If that happened during the transaction
2440 // and then the transaction was aborted, we would roll back the status update but not the
2441 // ClassLinker's bookkeeping structures, so these classes would never be visibly initialized.
2442 GetClassLinker()->MakeInitializedClassesVisiblyInitialized(Thread::Current(), /*wait=*/ true);
2443 }
2444 preinitialization_transactions_.push_back(std::make_unique<Transaction>(strict, root));
2445 }
2446
ExitTransactionMode()2447 void Runtime::ExitTransactionMode() {
2448 DCHECK(IsAotCompiler());
2449 DCHECK(IsActiveTransaction());
2450 preinitialization_transactions_.pop_back();
2451 }
2452
RollbackAndExitTransactionMode()2453 void Runtime::RollbackAndExitTransactionMode() {
2454 DCHECK(IsAotCompiler());
2455 DCHECK(IsActiveTransaction());
2456 preinitialization_transactions_.back()->Rollback();
2457 preinitialization_transactions_.pop_back();
2458 }
2459
IsTransactionAborted() const2460 bool Runtime::IsTransactionAborted() const {
2461 if (!IsActiveTransaction()) {
2462 return false;
2463 } else {
2464 DCHECK(IsAotCompiler());
2465 return GetTransaction()->IsAborted();
2466 }
2467 }
2468
RollbackAllTransactions()2469 void Runtime::RollbackAllTransactions() {
2470 // If transaction is aborted, all transactions will be kept in the list.
2471 // Rollback and exit all of them.
2472 while (IsActiveTransaction()) {
2473 RollbackAndExitTransactionMode();
2474 }
2475 }
2476
IsActiveStrictTransactionMode() const2477 bool Runtime::IsActiveStrictTransactionMode() const {
2478 return IsActiveTransaction() && GetTransaction()->IsStrict();
2479 }
2480
GetTransaction() const2481 const std::unique_ptr<Transaction>& Runtime::GetTransaction() const {
2482 DCHECK(!preinitialization_transactions_.empty());
2483 return preinitialization_transactions_.back();
2484 }
2485
AbortTransactionAndThrowAbortError(Thread * self,const std::string & abort_message)2486 void Runtime::AbortTransactionAndThrowAbortError(Thread* self, const std::string& abort_message) {
2487 DCHECK(IsAotCompiler());
2488 DCHECK(IsActiveTransaction());
2489 // Throwing an exception may cause its class initialization. If we mark the transaction
2490 // aborted before that, we may warn with a false alarm. Throwing the exception before
2491 // marking the transaction aborted avoids that.
2492 // But now the transaction can be nested, and abort the transaction will relax the constraints
2493 // for constructing stack trace.
2494 GetTransaction()->Abort(abort_message);
2495 GetTransaction()->ThrowAbortError(self, &abort_message);
2496 }
2497
ThrowTransactionAbortError(Thread * self)2498 void Runtime::ThrowTransactionAbortError(Thread* self) {
2499 DCHECK(IsAotCompiler());
2500 DCHECK(IsActiveTransaction());
2501 // Passing nullptr means we rethrow an exception with the earlier transaction abort message.
2502 GetTransaction()->ThrowAbortError(self, nullptr);
2503 }
2504
RecordWriteFieldBoolean(mirror::Object * obj,MemberOffset field_offset,uint8_t value,bool is_volatile) const2505 void Runtime::RecordWriteFieldBoolean(mirror::Object* obj, MemberOffset field_offset,
2506 uint8_t value, bool is_volatile) const {
2507 DCHECK(IsAotCompiler());
2508 DCHECK(IsActiveTransaction());
2509 GetTransaction()->RecordWriteFieldBoolean(obj, field_offset, value, is_volatile);
2510 }
2511
RecordWriteFieldByte(mirror::Object * obj,MemberOffset field_offset,int8_t value,bool is_volatile) const2512 void Runtime::RecordWriteFieldByte(mirror::Object* obj, MemberOffset field_offset,
2513 int8_t value, bool is_volatile) const {
2514 DCHECK(IsAotCompiler());
2515 DCHECK(IsActiveTransaction());
2516 GetTransaction()->RecordWriteFieldByte(obj, field_offset, value, is_volatile);
2517 }
2518
RecordWriteFieldChar(mirror::Object * obj,MemberOffset field_offset,uint16_t value,bool is_volatile) const2519 void Runtime::RecordWriteFieldChar(mirror::Object* obj, MemberOffset field_offset,
2520 uint16_t value, bool is_volatile) const {
2521 DCHECK(IsAotCompiler());
2522 DCHECK(IsActiveTransaction());
2523 GetTransaction()->RecordWriteFieldChar(obj, field_offset, value, is_volatile);
2524 }
2525
RecordWriteFieldShort(mirror::Object * obj,MemberOffset field_offset,int16_t value,bool is_volatile) const2526 void Runtime::RecordWriteFieldShort(mirror::Object* obj, MemberOffset field_offset,
2527 int16_t value, bool is_volatile) const {
2528 DCHECK(IsAotCompiler());
2529 DCHECK(IsActiveTransaction());
2530 GetTransaction()->RecordWriteFieldShort(obj, field_offset, value, is_volatile);
2531 }
2532
RecordWriteField32(mirror::Object * obj,MemberOffset field_offset,uint32_t value,bool is_volatile) const2533 void Runtime::RecordWriteField32(mirror::Object* obj, MemberOffset field_offset,
2534 uint32_t value, bool is_volatile) const {
2535 DCHECK(IsAotCompiler());
2536 DCHECK(IsActiveTransaction());
2537 GetTransaction()->RecordWriteField32(obj, field_offset, value, is_volatile);
2538 }
2539
RecordWriteField64(mirror::Object * obj,MemberOffset field_offset,uint64_t value,bool is_volatile) const2540 void Runtime::RecordWriteField64(mirror::Object* obj, MemberOffset field_offset,
2541 uint64_t value, bool is_volatile) const {
2542 DCHECK(IsAotCompiler());
2543 DCHECK(IsActiveTransaction());
2544 GetTransaction()->RecordWriteField64(obj, field_offset, value, is_volatile);
2545 }
2546
RecordWriteFieldReference(mirror::Object * obj,MemberOffset field_offset,ObjPtr<mirror::Object> value,bool is_volatile) const2547 void Runtime::RecordWriteFieldReference(mirror::Object* obj,
2548 MemberOffset field_offset,
2549 ObjPtr<mirror::Object> value,
2550 bool is_volatile) const {
2551 DCHECK(IsAotCompiler());
2552 DCHECK(IsActiveTransaction());
2553 GetTransaction()->RecordWriteFieldReference(obj,
2554 field_offset,
2555 value.Ptr(),
2556 is_volatile);
2557 }
2558
RecordWriteArray(mirror::Array * array,size_t index,uint64_t value) const2559 void Runtime::RecordWriteArray(mirror::Array* array, size_t index, uint64_t value) const {
2560 DCHECK(IsAotCompiler());
2561 DCHECK(IsActiveTransaction());
2562 GetTransaction()->RecordWriteArray(array, index, value);
2563 }
2564
RecordStrongStringInsertion(ObjPtr<mirror::String> s) const2565 void Runtime::RecordStrongStringInsertion(ObjPtr<mirror::String> s) const {
2566 DCHECK(IsAotCompiler());
2567 DCHECK(IsActiveTransaction());
2568 GetTransaction()->RecordStrongStringInsertion(s);
2569 }
2570
RecordWeakStringInsertion(ObjPtr<mirror::String> s) const2571 void Runtime::RecordWeakStringInsertion(ObjPtr<mirror::String> s) const {
2572 DCHECK(IsAotCompiler());
2573 DCHECK(IsActiveTransaction());
2574 GetTransaction()->RecordWeakStringInsertion(s);
2575 }
2576
RecordStrongStringRemoval(ObjPtr<mirror::String> s) const2577 void Runtime::RecordStrongStringRemoval(ObjPtr<mirror::String> s) const {
2578 DCHECK(IsAotCompiler());
2579 DCHECK(IsActiveTransaction());
2580 GetTransaction()->RecordStrongStringRemoval(s);
2581 }
2582
RecordWeakStringRemoval(ObjPtr<mirror::String> s) const2583 void Runtime::RecordWeakStringRemoval(ObjPtr<mirror::String> s) const {
2584 DCHECK(IsAotCompiler());
2585 DCHECK(IsActiveTransaction());
2586 GetTransaction()->RecordWeakStringRemoval(s);
2587 }
2588
RecordResolveString(ObjPtr<mirror::DexCache> dex_cache,dex::StringIndex string_idx) const2589 void Runtime::RecordResolveString(ObjPtr<mirror::DexCache> dex_cache,
2590 dex::StringIndex string_idx) const {
2591 DCHECK(IsAotCompiler());
2592 DCHECK(IsActiveTransaction());
2593 GetTransaction()->RecordResolveString(dex_cache, string_idx);
2594 }
2595
SetFaultMessage(const std::string & message)2596 void Runtime::SetFaultMessage(const std::string& message) {
2597 std::string* new_msg = new std::string(message);
2598 std::string* cur_msg = fault_message_.exchange(new_msg);
2599 delete cur_msg;
2600 }
2601
GetFaultMessage()2602 std::string Runtime::GetFaultMessage() {
2603 // Retrieve the message. Temporarily replace with null so that SetFaultMessage will not delete
2604 // the string in parallel.
2605 std::string* cur_msg = fault_message_.exchange(nullptr);
2606
2607 // Make a copy of the string.
2608 std::string ret = cur_msg == nullptr ? "" : *cur_msg;
2609
2610 // Put the message back if it hasn't been updated.
2611 std::string* null_str = nullptr;
2612 if (!fault_message_.compare_exchange_strong(null_str, cur_msg)) {
2613 // Already replaced.
2614 delete cur_msg;
2615 }
2616
2617 return ret;
2618 }
2619
AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector<std::string> * argv) const2620 void Runtime::AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector<std::string>* argv)
2621 const {
2622 if (GetInstrumentation()->InterpretOnly()) {
2623 argv->push_back("--compiler-filter=quicken");
2624 }
2625
2626 // Make the dex2oat instruction set match that of the launching runtime. If we have multiple
2627 // architecture support, dex2oat may be compiled as a different instruction-set than that
2628 // currently being executed.
2629 std::string instruction_set("--instruction-set=");
2630 instruction_set += GetInstructionSetString(kRuntimeISA);
2631 argv->push_back(instruction_set);
2632
2633 if (InstructionSetFeatures::IsRuntimeDetectionSupported()) {
2634 argv->push_back("--instruction-set-features=runtime");
2635 } else {
2636 std::unique_ptr<const InstructionSetFeatures> features(
2637 InstructionSetFeatures::FromCppDefines());
2638 std::string feature_string("--instruction-set-features=");
2639 feature_string += features->GetFeatureString();
2640 argv->push_back(feature_string);
2641 }
2642 }
2643
CreateJitCodeCache(bool rwx_memory_allowed)2644 void Runtime::CreateJitCodeCache(bool rwx_memory_allowed) {
2645 if (kIsDebugBuild && GetInstrumentation()->IsForcedInterpretOnly()) {
2646 DCHECK(!jit_options_->UseJitCompilation());
2647 }
2648
2649 if (!jit_options_->UseJitCompilation() && !jit_options_->GetSaveProfilingInfo()) {
2650 return;
2651 }
2652
2653 std::string error_msg;
2654 bool profiling_only = !jit_options_->UseJitCompilation();
2655 jit_code_cache_.reset(jit::JitCodeCache::Create(profiling_only,
2656 rwx_memory_allowed,
2657 IsZygote(),
2658 &error_msg));
2659 if (jit_code_cache_.get() == nullptr) {
2660 LOG(WARNING) << "Failed to create JIT Code Cache: " << error_msg;
2661 }
2662 }
2663
CreateJit()2664 void Runtime::CreateJit() {
2665 DCHECK(jit_ == nullptr);
2666 if (jit_code_cache_.get() == nullptr) {
2667 if (!IsSafeMode()) {
2668 LOG(WARNING) << "Missing code cache, cannot create JIT.";
2669 }
2670 return;
2671 }
2672 if (IsSafeMode()) {
2673 LOG(INFO) << "Not creating JIT because of SafeMode.";
2674 jit_code_cache_.reset();
2675 return;
2676 }
2677
2678 jit::Jit* jit = jit::Jit::Create(jit_code_cache_.get(), jit_options_.get());
2679 DoAndMaybeSwitchInterpreter([=](){ jit_.reset(jit); });
2680 if (jit == nullptr) {
2681 LOG(WARNING) << "Failed to allocate JIT";
2682 // Release JIT code cache resources (several MB of memory).
2683 jit_code_cache_.reset();
2684 } else {
2685 jit->CreateThreadPool();
2686 }
2687 }
2688
CanRelocate() const2689 bool Runtime::CanRelocate() const {
2690 return !IsAotCompiler();
2691 }
2692
IsCompilingBootImage() const2693 bool Runtime::IsCompilingBootImage() const {
2694 return IsCompiler() && compiler_callbacks_->IsBootImage();
2695 }
2696
SetResolutionMethod(ArtMethod * method)2697 void Runtime::SetResolutionMethod(ArtMethod* method) {
2698 CHECK(method != nullptr);
2699 CHECK(method->IsRuntimeMethod()) << method;
2700 resolution_method_ = method;
2701 }
2702
SetImtUnimplementedMethod(ArtMethod * method)2703 void Runtime::SetImtUnimplementedMethod(ArtMethod* method) {
2704 CHECK(method != nullptr);
2705 CHECK(method->IsRuntimeMethod());
2706 imt_unimplemented_method_ = method;
2707 }
2708
FixupConflictTables()2709 void Runtime::FixupConflictTables() {
2710 // We can only do this after the class linker is created.
2711 const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize();
2712 if (imt_unimplemented_method_->GetImtConflictTable(pointer_size) == nullptr) {
2713 imt_unimplemented_method_->SetImtConflictTable(
2714 ClassLinker::CreateImtConflictTable(/*count=*/0u, GetLinearAlloc(), pointer_size),
2715 pointer_size);
2716 }
2717 if (imt_conflict_method_->GetImtConflictTable(pointer_size) == nullptr) {
2718 imt_conflict_method_->SetImtConflictTable(
2719 ClassLinker::CreateImtConflictTable(/*count=*/0u, GetLinearAlloc(), pointer_size),
2720 pointer_size);
2721 }
2722 }
2723
DisableVerifier()2724 void Runtime::DisableVerifier() {
2725 verify_ = verifier::VerifyMode::kNone;
2726 }
2727
IsVerificationEnabled() const2728 bool Runtime::IsVerificationEnabled() const {
2729 return verify_ == verifier::VerifyMode::kEnable ||
2730 verify_ == verifier::VerifyMode::kSoftFail;
2731 }
2732
IsVerificationSoftFail() const2733 bool Runtime::IsVerificationSoftFail() const {
2734 return verify_ == verifier::VerifyMode::kSoftFail;
2735 }
2736
IsAsyncDeoptimizeable(uintptr_t code) const2737 bool Runtime::IsAsyncDeoptimizeable(uintptr_t code) const {
2738 if (OatQuickMethodHeader::NterpMethodHeader != nullptr) {
2739 if (OatQuickMethodHeader::NterpMethodHeader->Contains(code)) {
2740 return true;
2741 }
2742 }
2743 // We only support async deopt (ie the compiled code is not explicitly asking for
2744 // deopt, but something else like the debugger) in debuggable JIT code.
2745 // We could look at the oat file where `code` is being defined,
2746 // and check whether it's been compiled debuggable, but we decided to
2747 // only rely on the JIT for debuggable apps.
2748 // The JIT-zygote is not debuggable so we need to be sure to exclude code from the non-private
2749 // region as well.
2750 return IsJavaDebuggable() && GetJit() != nullptr &&
2751 GetJit()->GetCodeCache()->PrivateRegionContainsPc(reinterpret_cast<const void*>(code));
2752 }
2753
CreateLinearAlloc()2754 LinearAlloc* Runtime::CreateLinearAlloc() {
2755 // For 64 bit compilers, it needs to be in low 4GB in the case where we are cross compiling for a
2756 // 32 bit target. In this case, we have 32 bit pointers in the dex cache arrays which can't hold
2757 // when we have 64 bit ArtMethod pointers.
2758 return (IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA))
2759 ? new LinearAlloc(low_4gb_arena_pool_.get())
2760 : new LinearAlloc(arena_pool_.get());
2761 }
2762
GetHashTableMinLoadFactor() const2763 double Runtime::GetHashTableMinLoadFactor() const {
2764 return is_low_memory_mode_ ? kLowMemoryMinLoadFactor : kNormalMinLoadFactor;
2765 }
2766
GetHashTableMaxLoadFactor() const2767 double Runtime::GetHashTableMaxLoadFactor() const {
2768 return is_low_memory_mode_ ? kLowMemoryMaxLoadFactor : kNormalMaxLoadFactor;
2769 }
2770
UpdateProcessState(ProcessState process_state)2771 void Runtime::UpdateProcessState(ProcessState process_state) {
2772 ProcessState old_process_state = process_state_;
2773 process_state_ = process_state;
2774 GetHeap()->UpdateProcessState(old_process_state, process_state);
2775 }
2776
RegisterSensitiveThread() const2777 void Runtime::RegisterSensitiveThread() const {
2778 Thread::SetJitSensitiveThread();
2779 }
2780
2781 // Returns true if JIT compilations are enabled. GetJit() will be not null in this case.
UseJitCompilation() const2782 bool Runtime::UseJitCompilation() const {
2783 return (jit_ != nullptr) && jit_->UseJitCompilation();
2784 }
2785
TakeSnapshot()2786 void Runtime::EnvSnapshot::TakeSnapshot() {
2787 char** env = GetEnviron();
2788 for (size_t i = 0; env[i] != nullptr; ++i) {
2789 name_value_pairs_.emplace_back(new std::string(env[i]));
2790 }
2791 // The strings in name_value_pairs_ retain ownership of the c_str, but we assign pointers
2792 // for quick use by GetSnapshot. This avoids allocation and copying cost at Exec.
2793 c_env_vector_.reset(new char*[name_value_pairs_.size() + 1]);
2794 for (size_t i = 0; env[i] != nullptr; ++i) {
2795 c_env_vector_[i] = const_cast<char*>(name_value_pairs_[i]->c_str());
2796 }
2797 c_env_vector_[name_value_pairs_.size()] = nullptr;
2798 }
2799
GetSnapshot() const2800 char** Runtime::EnvSnapshot::GetSnapshot() const {
2801 return c_env_vector_.get();
2802 }
2803
AddSystemWeakHolder(gc::AbstractSystemWeakHolder * holder)2804 void Runtime::AddSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) {
2805 gc::ScopedGCCriticalSection gcs(Thread::Current(),
2806 gc::kGcCauseAddRemoveSystemWeakHolder,
2807 gc::kCollectorTypeAddRemoveSystemWeakHolder);
2808 // Note: The ScopedGCCriticalSection also ensures that the rest of the function is in
2809 // a critical section.
2810 system_weak_holders_.push_back(holder);
2811 }
2812
RemoveSystemWeakHolder(gc::AbstractSystemWeakHolder * holder)2813 void Runtime::RemoveSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) {
2814 gc::ScopedGCCriticalSection gcs(Thread::Current(),
2815 gc::kGcCauseAddRemoveSystemWeakHolder,
2816 gc::kCollectorTypeAddRemoveSystemWeakHolder);
2817 auto it = std::find(system_weak_holders_.begin(), system_weak_holders_.end(), holder);
2818 if (it != system_weak_holders_.end()) {
2819 system_weak_holders_.erase(it);
2820 }
2821 }
2822
GetRuntimeCallbacks()2823 RuntimeCallbacks* Runtime::GetRuntimeCallbacks() {
2824 return callbacks_.get();
2825 }
2826
2827 // Used to patch boot image method entry point to interpreter bridge.
2828 class UpdateEntryPointsClassVisitor : public ClassVisitor {
2829 public:
UpdateEntryPointsClassVisitor(instrumentation::Instrumentation * instrumentation)2830 explicit UpdateEntryPointsClassVisitor(instrumentation::Instrumentation* instrumentation)
2831 : instrumentation_(instrumentation) {}
2832
operator ()(ObjPtr<mirror::Class> klass)2833 bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES(Locks::mutator_lock_) {
2834 DCHECK(Locks::mutator_lock_->IsExclusiveHeld(Thread::Current()));
2835 auto pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
2836 for (auto& m : klass->GetMethods(pointer_size)) {
2837 const void* code = m.GetEntryPointFromQuickCompiledCode();
2838 if (Runtime::Current()->GetHeap()->IsInBootImageOatFile(code) &&
2839 !m.IsNative() &&
2840 !m.IsProxyMethod()) {
2841 instrumentation_->UpdateMethodsCodeForJavaDebuggable(&m, GetQuickToInterpreterBridge());
2842 }
2843
2844 if (Runtime::Current()->GetJit() != nullptr &&
2845 Runtime::Current()->GetJit()->GetCodeCache()->IsInZygoteExecSpace(code) &&
2846 !m.IsNative()) {
2847 DCHECK(!m.IsProxyMethod());
2848 instrumentation_->UpdateMethodsCodeForJavaDebuggable(&m, GetQuickToInterpreterBridge());
2849 }
2850
2851 if (m.IsPreCompiled()) {
2852 // Precompilation is incompatible with debuggable, so clear the flag
2853 // and update the entrypoint in case it has been compiled.
2854 m.ClearPreCompiled();
2855 instrumentation_->UpdateMethodsCodeForJavaDebuggable(&m, GetQuickToInterpreterBridge());
2856 }
2857 }
2858 return true;
2859 }
2860
2861 private:
2862 instrumentation::Instrumentation* const instrumentation_;
2863 };
2864
SetJavaDebuggable(bool value)2865 void Runtime::SetJavaDebuggable(bool value) {
2866 is_java_debuggable_ = value;
2867 // Do not call DeoptimizeBootImage just yet, the runtime may still be starting up.
2868 }
2869
DeoptimizeBootImage()2870 void Runtime::DeoptimizeBootImage() {
2871 // If we've already started and we are setting this runtime to debuggable,
2872 // we patch entry points of methods in boot image to interpreter bridge, as
2873 // boot image code may be AOT compiled as not debuggable.
2874 if (!GetInstrumentation()->IsForcedInterpretOnly()) {
2875 UpdateEntryPointsClassVisitor visitor(GetInstrumentation());
2876 GetClassLinker()->VisitClasses(&visitor);
2877 jit::Jit* jit = GetJit();
2878 if (jit != nullptr) {
2879 // Code previously compiled may not be compiled debuggable.
2880 jit->GetCodeCache()->TransitionToDebuggable();
2881 }
2882 }
2883 // Also de-quicken all -quick opcodes. We do this for both BCP and non-bcp so if we are swapping
2884 // debuggable during startup by a plugin (eg JVMTI) even non-BCP code has its vdex files deopted.
2885 std::unordered_set<const VdexFile*> vdexs;
2886 GetClassLinker()->VisitKnownDexFiles(Thread::Current(), [&](const art::DexFile* df) {
2887 const OatDexFile* odf = df->GetOatDexFile();
2888 if (odf == nullptr) {
2889 return;
2890 }
2891 const OatFile* of = odf->GetOatFile();
2892 if (of == nullptr || of->IsDebuggable()) {
2893 // no Oat or already debuggable so no -quick.
2894 return;
2895 }
2896 vdexs.insert(of->GetVdexFile());
2897 });
2898 LOG(INFO) << "Unquickening " << vdexs.size() << " vdex files!";
2899 for (const VdexFile* vf : vdexs) {
2900 vf->AllowWriting(true);
2901 vf->UnquickenInPlace(/*decompile_return_instruction=*/true);
2902 vf->AllowWriting(false);
2903 }
2904 }
2905
ScopedThreadPoolUsage()2906 Runtime::ScopedThreadPoolUsage::ScopedThreadPoolUsage()
2907 : thread_pool_(Runtime::Current()->AcquireThreadPool()) {}
2908
~ScopedThreadPoolUsage()2909 Runtime::ScopedThreadPoolUsage::~ScopedThreadPoolUsage() {
2910 Runtime::Current()->ReleaseThreadPool();
2911 }
2912
DeleteThreadPool()2913 bool Runtime::DeleteThreadPool() {
2914 // Make sure workers are started to prevent thread shutdown errors.
2915 WaitForThreadPoolWorkersToStart();
2916 std::unique_ptr<ThreadPool> thread_pool;
2917 {
2918 MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
2919 if (thread_pool_ref_count_ == 0) {
2920 thread_pool = std::move(thread_pool_);
2921 }
2922 }
2923 return thread_pool != nullptr;
2924 }
2925
AcquireThreadPool()2926 ThreadPool* Runtime::AcquireThreadPool() {
2927 MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
2928 ++thread_pool_ref_count_;
2929 return thread_pool_.get();
2930 }
2931
ReleaseThreadPool()2932 void Runtime::ReleaseThreadPool() {
2933 MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
2934 CHECK_GT(thread_pool_ref_count_, 0u);
2935 --thread_pool_ref_count_;
2936 }
2937
WaitForThreadPoolWorkersToStart()2938 void Runtime::WaitForThreadPoolWorkersToStart() {
2939 // Need to make sure workers are created before deleting the pool.
2940 ScopedThreadPoolUsage stpu;
2941 if (stpu.GetThreadPool() != nullptr) {
2942 stpu.GetThreadPool()->WaitForWorkersToBeCreated();
2943 }
2944 }
2945
ResetStartupCompleted()2946 void Runtime::ResetStartupCompleted() {
2947 startup_completed_.store(false, std::memory_order_seq_cst);
2948 }
2949
2950 class Runtime::NotifyStartupCompletedTask : public gc::HeapTask {
2951 public:
NotifyStartupCompletedTask()2952 NotifyStartupCompletedTask() : gc::HeapTask(/*target_run_time=*/ NanoTime()) {}
2953
Run(Thread * self)2954 void Run(Thread* self) override {
2955 VLOG(startup) << "NotifyStartupCompletedTask running";
2956 Runtime* const runtime = Runtime::Current();
2957 {
2958 ScopedTrace trace("Releasing app image spaces metadata");
2959 ScopedObjectAccess soa(Thread::Current());
2960 for (gc::space::ContinuousSpace* space : runtime->GetHeap()->GetContinuousSpaces()) {
2961 if (space->IsImageSpace()) {
2962 gc::space::ImageSpace* image_space = space->AsImageSpace();
2963 if (image_space->GetImageHeader().IsAppImage()) {
2964 image_space->DisablePreResolvedStrings();
2965 }
2966 }
2967 }
2968 // Request empty checkpoints to make sure no threads are accessing the image space metadata
2969 // section when we madvise it. Use GC exclusion to prevent deadlocks that may happen if
2970 // multiple threads are attempting to run empty checkpoints at the same time.
2971 {
2972 // Avoid using ScopedGCCriticalSection since that does not allow thread suspension. This is
2973 // not allowed to prevent allocations, but it's still safe to suspend temporarily for the
2974 // checkpoint.
2975 gc::ScopedInterruptibleGCCriticalSection sigcs(self,
2976 gc::kGcCauseRunEmptyCheckpoint,
2977 gc::kCollectorTypeCriticalSection);
2978 runtime->GetThreadList()->RunEmptyCheckpoint();
2979 }
2980 for (gc::space::ContinuousSpace* space : runtime->GetHeap()->GetContinuousSpaces()) {
2981 if (space->IsImageSpace()) {
2982 gc::space::ImageSpace* image_space = space->AsImageSpace();
2983 if (image_space->GetImageHeader().IsAppImage()) {
2984 image_space->ReleaseMetadata();
2985 }
2986 }
2987 }
2988 }
2989
2990 {
2991 // Delete the thread pool used for app image loading since startup is assumed to be completed.
2992 ScopedTrace trace2("Delete thread pool");
2993 runtime->DeleteThreadPool();
2994 }
2995 }
2996 };
2997
NotifyStartupCompleted()2998 void Runtime::NotifyStartupCompleted() {
2999 bool expected = false;
3000 if (!startup_completed_.compare_exchange_strong(expected, true, std::memory_order_seq_cst)) {
3001 // Right now NotifyStartupCompleted will be called up to twice, once from profiler and up to
3002 // once externally. For this reason there are no asserts.
3003 return;
3004 }
3005
3006 VLOG(startup) << "Adding NotifyStartupCompleted task";
3007 // Use the heap task processor since we want to be exclusive with the GC and we don't want to
3008 // block the caller if the GC is running.
3009 if (!GetHeap()->AddHeapTask(new NotifyStartupCompletedTask)) {
3010 VLOG(startup) << "Failed to add NotifyStartupCompletedTask";
3011 }
3012
3013 // Notify the profiler saver that startup is now completed.
3014 ProfileSaver::NotifyStartupCompleted();
3015 }
3016
GetStartupCompleted() const3017 bool Runtime::GetStartupCompleted() const {
3018 return startup_completed_.load(std::memory_order_seq_cst);
3019 }
3020
SetSignalHookDebuggable(bool value)3021 void Runtime::SetSignalHookDebuggable(bool value) {
3022 SkipAddSignalHandler(value);
3023 }
3024
SetJniIdType(JniIdType t)3025 void Runtime::SetJniIdType(JniIdType t) {
3026 CHECK(CanSetJniIdType()) << "Not allowed to change id type!";
3027 if (t == GetJniIdType()) {
3028 return;
3029 }
3030 jni_ids_indirection_ = t;
3031 JNIEnvExt::ResetFunctionTable();
3032 WellKnownClasses::HandleJniIdTypeChange(Thread::Current()->GetJniEnv());
3033 }
3034
GetOatFilesExecutable() const3035 bool Runtime::GetOatFilesExecutable() const {
3036 return !IsAotCompiler() && !(IsSystemServer() && jit_options_->GetSaveProfilingInfo());
3037 }
3038
ProcessWeakClass(GcRoot<mirror::Class> * root_ptr,IsMarkedVisitor * visitor,mirror::Class * update)3039 void Runtime::ProcessWeakClass(GcRoot<mirror::Class>* root_ptr,
3040 IsMarkedVisitor* visitor,
3041 mirror::Class* update) {
3042 // This does not need a read barrier because this is called by GC.
3043 mirror::Class* cls = root_ptr->Read<kWithoutReadBarrier>();
3044 if (cls != nullptr && cls != GetWeakClassSentinel()) {
3045 DCHECK((cls->IsClass<kDefaultVerifyFlags>()));
3046 // Look at the classloader of the class to know if it has been unloaded.
3047 // This does not need a read barrier because this is called by GC.
3048 ObjPtr<mirror::Object> class_loader =
3049 cls->GetClassLoader<kDefaultVerifyFlags, kWithoutReadBarrier>();
3050 if (class_loader == nullptr || visitor->IsMarked(class_loader.Ptr()) != nullptr) {
3051 // The class loader is live, update the entry if the class has moved.
3052 mirror::Class* new_cls = down_cast<mirror::Class*>(visitor->IsMarked(cls));
3053 // Note that new_object can be null for CMS and newly allocated objects.
3054 if (new_cls != nullptr && new_cls != cls) {
3055 *root_ptr = GcRoot<mirror::Class>(new_cls);
3056 }
3057 } else {
3058 // The class loader is not live, clear the entry.
3059 *root_ptr = GcRoot<mirror::Class>(update);
3060 }
3061 }
3062 }
3063
3064 } // namespace art
3065