1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "method_verifier-inl.h"
18
19 #include <ostream>
20
21 #include "android-base/stringprintf.h"
22
23 #include "art_field-inl.h"
24 #include "art_method-inl.h"
25 #include "base/aborting.h"
26 #include "base/enums.h"
27 #include "base/leb128.h"
28 #include "base/indenter.h"
29 #include "base/logging.h" // For VLOG.
30 #include "base/mutex-inl.h"
31 #include "base/sdk_version.h"
32 #include "base/stl_util.h"
33 #include "base/systrace.h"
34 #include "base/time_utils.h"
35 #include "base/utils.h"
36 #include "class_linker.h"
37 #include "class_root-inl.h"
38 #include "compiler_callbacks.h"
39 #include "dex/class_accessor-inl.h"
40 #include "dex/descriptors_names.h"
41 #include "dex/dex_file-inl.h"
42 #include "dex/dex_file_exception_helpers.h"
43 #include "dex/dex_instruction-inl.h"
44 #include "dex/dex_instruction_utils.h"
45 #include "experimental_flags.h"
46 #include "gc/accounting/card_table-inl.h"
47 #include "handle_scope-inl.h"
48 #include "intern_table.h"
49 #include "mirror/class-inl.h"
50 #include "mirror/class.h"
51 #include "mirror/class_loader.h"
52 #include "mirror/dex_cache-inl.h"
53 #include "mirror/method_handle_impl.h"
54 #include "mirror/method_type.h"
55 #include "mirror/object-inl.h"
56 #include "mirror/object_array-inl.h"
57 #include "mirror/var_handle.h"
58 #include "obj_ptr-inl.h"
59 #include "reg_type-inl.h"
60 #include "register_line-inl.h"
61 #include "runtime.h"
62 #include "scoped_newline.h"
63 #include "scoped_thread_state_change-inl.h"
64 #include "stack.h"
65 #include "vdex_file.h"
66 #include "verifier/method_verifier.h"
67 #include "verifier_compiler_binding.h"
68 #include "verifier_deps.h"
69
70 namespace art {
71 namespace verifier {
72
73 using android::base::StringPrintf;
74
75 static constexpr bool kTimeVerifyMethod = !kIsDebugBuild;
76
PcToRegisterLineTable(ScopedArenaAllocator & allocator)77 PcToRegisterLineTable::PcToRegisterLineTable(ScopedArenaAllocator& allocator)
78 : register_lines_(allocator.Adapter(kArenaAllocVerifier)) {}
79
Init(RegisterTrackingMode mode,InstructionFlags * flags,uint32_t insns_size,uint16_t registers_size,ScopedArenaAllocator & allocator,RegTypeCache * reg_types)80 void PcToRegisterLineTable::Init(RegisterTrackingMode mode,
81 InstructionFlags* flags,
82 uint32_t insns_size,
83 uint16_t registers_size,
84 ScopedArenaAllocator& allocator,
85 RegTypeCache* reg_types) {
86 DCHECK_GT(insns_size, 0U);
87 register_lines_.resize(insns_size);
88 for (uint32_t i = 0; i < insns_size; i++) {
89 bool interesting = false;
90 switch (mode) {
91 case kTrackRegsAll:
92 interesting = flags[i].IsOpcode();
93 break;
94 case kTrackCompilerInterestPoints:
95 interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
96 break;
97 case kTrackRegsBranches:
98 interesting = flags[i].IsBranchTarget();
99 break;
100 }
101 if (interesting) {
102 register_lines_[i].reset(RegisterLine::Create(registers_size, allocator, reg_types));
103 }
104 }
105 }
106
~PcToRegisterLineTable()107 PcToRegisterLineTable::~PcToRegisterLineTable() {}
108
109 namespace impl {
110 namespace {
111
112 enum class CheckAccess {
113 kNo,
114 kOnResolvedClass,
115 kYes,
116 };
117
118 enum class FieldAccessType {
119 kAccGet,
120 kAccPut
121 };
122
123 // Instruction types that are not marked as throwing (because they normally would not), but for
124 // historical reasons may do so. These instructions cannot be marked kThrow as that would introduce
125 // a general flow that is unwanted.
126 //
127 // Note: Not implemented as Instruction::Flags value as that set is full and we'd need to increase
128 // the struct size (making it a non-power-of-two) for a single element.
129 //
130 // Note: This should eventually be removed.
IsCompatThrow(Instruction::Code opcode)131 constexpr bool IsCompatThrow(Instruction::Code opcode) {
132 return opcode == Instruction::Code::RETURN_OBJECT || opcode == Instruction::Code::MOVE_EXCEPTION;
133 }
134
135 template <bool kVerifierDebug>
136 class MethodVerifier final : public ::art::verifier::MethodVerifier {
137 public:
IsInstanceConstructor() const138 bool IsInstanceConstructor() const {
139 return IsConstructor() && !IsStatic();
140 }
141
ResolveCheckedClass(dex::TypeIndex class_idx)142 const RegType& ResolveCheckedClass(dex::TypeIndex class_idx) override
143 REQUIRES_SHARED(Locks::mutator_lock_) {
144 DCHECK(!HasFailures());
145 const RegType& result = ResolveClass<CheckAccess::kYes>(class_idx);
146 DCHECK(!HasFailures());
147 return result;
148 }
149
150 void FindLocksAtDexPc() REQUIRES_SHARED(Locks::mutator_lock_);
151
152 private:
MethodVerifier(Thread * self,ClassLinker * class_linker,ArenaPool * arena_pool,const DexFile * dex_file,const dex::CodeItem * code_item,uint32_t method_idx,bool can_load_classes,bool allow_thread_suspension,bool allow_soft_failures,bool aot_mode,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const dex::ClassDef & class_def,ArtMethod * method,uint32_t access_flags,bool need_precise_constants,bool verify_to_dump,bool fill_register_lines,uint32_t api_level)153 MethodVerifier(Thread* self,
154 ClassLinker* class_linker,
155 ArenaPool* arena_pool,
156 const DexFile* dex_file,
157 const dex::CodeItem* code_item,
158 uint32_t method_idx,
159 bool can_load_classes,
160 bool allow_thread_suspension,
161 bool allow_soft_failures,
162 bool aot_mode,
163 Handle<mirror::DexCache> dex_cache,
164 Handle<mirror::ClassLoader> class_loader,
165 const dex::ClassDef& class_def,
166 ArtMethod* method,
167 uint32_t access_flags,
168 bool need_precise_constants,
169 bool verify_to_dump,
170 bool fill_register_lines,
171 uint32_t api_level) REQUIRES_SHARED(Locks::mutator_lock_)
172 : art::verifier::MethodVerifier(self,
173 class_linker,
174 arena_pool,
175 dex_file,
176 code_item,
177 method_idx,
178 can_load_classes,
179 allow_thread_suspension,
180 allow_soft_failures,
181 aot_mode),
182 method_being_verified_(method),
183 method_access_flags_(access_flags),
184 return_type_(nullptr),
185 dex_cache_(dex_cache),
186 class_loader_(class_loader),
187 class_def_(class_def),
188 declaring_class_(nullptr),
189 interesting_dex_pc_(-1),
190 monitor_enter_dex_pcs_(nullptr),
191 need_precise_constants_(need_precise_constants),
192 verify_to_dump_(verify_to_dump),
193 allow_thread_suspension_(allow_thread_suspension),
194 is_constructor_(false),
195 fill_register_lines_(fill_register_lines),
196 api_level_(api_level == 0 ? std::numeric_limits<uint32_t>::max() : api_level) {
197 }
198
UninstantiableError(const char * descriptor)199 void UninstantiableError(const char* descriptor) {
200 Fail(VerifyError::VERIFY_ERROR_NO_CLASS) << "Could not create precise reference for "
201 << "non-instantiable klass " << descriptor;
202 }
IsInstantiableOrPrimitive(ObjPtr<mirror::Class> klass)203 static bool IsInstantiableOrPrimitive(ObjPtr<mirror::Class> klass)
204 REQUIRES_SHARED(Locks::mutator_lock_) {
205 return klass->IsInstantiable() || klass->IsPrimitive();
206 }
207
208 // Is the method being verified a constructor? See the comment on the field.
IsConstructor() const209 bool IsConstructor() const {
210 return is_constructor_;
211 }
212
213 // Is the method verified static?
IsStatic() const214 bool IsStatic() const {
215 return (method_access_flags_ & kAccStatic) != 0;
216 }
217
218 // Adds the given string to the beginning of the last failure message.
PrependToLastFailMessage(std::string prepend)219 void PrependToLastFailMessage(std::string prepend) {
220 size_t failure_num = failure_messages_.size();
221 DCHECK_NE(failure_num, 0U);
222 std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
223 prepend += last_fail_message->str();
224 failure_messages_[failure_num - 1] = new std::ostringstream(prepend, std::ostringstream::ate);
225 delete last_fail_message;
226 }
227
228 // Adds the given string to the end of the last failure message.
AppendToLastFailMessage(const std::string & append)229 void AppendToLastFailMessage(const std::string& append) {
230 size_t failure_num = failure_messages_.size();
231 DCHECK_NE(failure_num, 0U);
232 std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
233 (*last_fail_message) << append;
234 }
235
236 /*
237 * Compute the width of the instruction at each address in the instruction stream, and store it in
238 * insn_flags_. Addresses that are in the middle of an instruction, or that are part of switch
239 * table data, are not touched (so the caller should probably initialize "insn_flags" to zero).
240 *
241 * The "new_instance_count_" and "monitor_enter_count_" fields in vdata are also set.
242 *
243 * Performs some static checks, notably:
244 * - opcode of first instruction begins at index 0
245 * - only documented instructions may appear
246 * - each instruction follows the last
247 * - last byte of last instruction is at (code_length-1)
248 *
249 * Logs an error and returns "false" on failure.
250 */
251 bool ComputeWidthsAndCountOps();
252
253 /*
254 * Set the "in try" flags for all instructions protected by "try" statements. Also sets the
255 * "branch target" flags for exception handlers.
256 *
257 * Call this after widths have been set in "insn_flags".
258 *
259 * Returns "false" if something in the exception table looks fishy, but we're expecting the
260 * exception table to be valid.
261 */
262 bool ScanTryCatchBlocks() REQUIRES_SHARED(Locks::mutator_lock_);
263
264 /*
265 * Perform static verification on all instructions in a method.
266 *
267 * Walks through instructions in a method calling VerifyInstruction on each.
268 */
269 template <bool kAllowRuntimeOnlyInstructions>
270 bool VerifyInstructions();
271
272 /*
273 * Perform static verification on an instruction.
274 *
275 * As a side effect, this sets the "branch target" flags in InsnFlags.
276 *
277 * "(CF)" items are handled during code-flow analysis.
278 *
279 * v3 4.10.1
280 * - target of each jump and branch instruction must be valid
281 * - targets of switch statements must be valid
282 * - operands referencing constant pool entries must be valid
283 * - (CF) operands of getfield, putfield, getstatic, putstatic must be valid
284 * - (CF) operands of method invocation instructions must be valid
285 * - (CF) only invoke-direct can call a method starting with '<'
286 * - (CF) <clinit> must never be called explicitly
287 * - operands of instanceof, checkcast, new (and variants) must be valid
288 * - new-array[-type] limited to 255 dimensions
289 * - can't use "new" on an array class
290 * - (?) limit dimensions in multi-array creation
291 * - local variable load/store register values must be in valid range
292 *
293 * v3 4.11.1.2
294 * - branches must be within the bounds of the code array
295 * - targets of all control-flow instructions are the start of an instruction
296 * - register accesses fall within range of allocated registers
297 * - (N/A) access to constant pool must be of appropriate type
298 * - code does not end in the middle of an instruction
299 * - execution cannot fall off the end of the code
300 * - (earlier) for each exception handler, the "try" area must begin and
301 * end at the start of an instruction (end can be at the end of the code)
302 * - (earlier) for each exception handler, the handler must start at a valid
303 * instruction
304 */
305 template <bool kAllowRuntimeOnlyInstructions>
306 bool VerifyInstruction(const Instruction* inst, uint32_t code_offset);
307
308 /* Ensure that the register index is valid for this code item. */
CheckRegisterIndex(uint32_t idx)309 bool CheckRegisterIndex(uint32_t idx) {
310 if (UNLIKELY(idx >= code_item_accessor_.RegistersSize())) {
311 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
312 << code_item_accessor_.RegistersSize() << ")";
313 return false;
314 }
315 return true;
316 }
317
318 /* Ensure that the wide register index is valid for this code item. */
CheckWideRegisterIndex(uint32_t idx)319 bool CheckWideRegisterIndex(uint32_t idx) {
320 if (UNLIKELY(idx + 1 >= code_item_accessor_.RegistersSize())) {
321 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
322 << "+1 >= " << code_item_accessor_.RegistersSize() << ")";
323 return false;
324 }
325 return true;
326 }
327
328 // Perform static checks on an instruction referencing a CallSite. All we do here is ensure that
329 // the call site index is in the valid range.
CheckCallSiteIndex(uint32_t idx)330 bool CheckCallSiteIndex(uint32_t idx) {
331 uint32_t limit = dex_file_->NumCallSiteIds();
332 if (UNLIKELY(idx >= limit)) {
333 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad call site index " << idx << " (max "
334 << limit << ")";
335 return false;
336 }
337 return true;
338 }
339
340 // Perform static checks on a field Get or set instruction. All we do here is ensure that the
341 // field index is in the valid range.
CheckFieldIndex(uint32_t idx)342 bool CheckFieldIndex(uint32_t idx) {
343 if (UNLIKELY(idx >= dex_file_->GetHeader().field_ids_size_)) {
344 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
345 << dex_file_->GetHeader().field_ids_size_ << ")";
346 return false;
347 }
348 return true;
349 }
350
351 // Perform static checks on a method invocation instruction. All we do here is ensure that the
352 // method index is in the valid range.
CheckMethodIndex(uint32_t idx)353 bool CheckMethodIndex(uint32_t idx) {
354 if (UNLIKELY(idx >= dex_file_->GetHeader().method_ids_size_)) {
355 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
356 << dex_file_->GetHeader().method_ids_size_ << ")";
357 return false;
358 }
359 return true;
360 }
361
362 // Perform static checks on an instruction referencing a constant method handle. All we do here
363 // is ensure that the method index is in the valid range.
CheckMethodHandleIndex(uint32_t idx)364 bool CheckMethodHandleIndex(uint32_t idx) {
365 uint32_t limit = dex_file_->NumMethodHandles();
366 if (UNLIKELY(idx >= limit)) {
367 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method handle index " << idx << " (max "
368 << limit << ")";
369 return false;
370 }
371 return true;
372 }
373
374 // Perform static checks on a "new-instance" instruction. Specifically, make sure the class
375 // reference isn't for an array class.
376 bool CheckNewInstance(dex::TypeIndex idx);
377
378 // Perform static checks on a prototype indexing instruction. All we do here is ensure that the
379 // prototype index is in the valid range.
CheckPrototypeIndex(uint32_t idx)380 bool CheckPrototypeIndex(uint32_t idx) {
381 if (UNLIKELY(idx >= dex_file_->GetHeader().proto_ids_size_)) {
382 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad prototype index " << idx << " (max "
383 << dex_file_->GetHeader().proto_ids_size_ << ")";
384 return false;
385 }
386 return true;
387 }
388
389 /* Ensure that the string index is in the valid range. */
CheckStringIndex(uint32_t idx)390 bool CheckStringIndex(uint32_t idx) {
391 if (UNLIKELY(idx >= dex_file_->GetHeader().string_ids_size_)) {
392 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
393 << dex_file_->GetHeader().string_ids_size_ << ")";
394 return false;
395 }
396 return true;
397 }
398
399 // Perform static checks on an instruction that takes a class constant. Ensure that the class
400 // index is in the valid range.
CheckTypeIndex(dex::TypeIndex idx)401 bool CheckTypeIndex(dex::TypeIndex idx) {
402 if (UNLIKELY(idx.index_ >= dex_file_->GetHeader().type_ids_size_)) {
403 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx.index_ << " (max "
404 << dex_file_->GetHeader().type_ids_size_ << ")";
405 return false;
406 }
407 return true;
408 }
409
410 // Perform static checks on a "new-array" instruction. Specifically, make sure they aren't
411 // creating an array of arrays that causes the number of dimensions to exceed 255.
412 bool CheckNewArray(dex::TypeIndex idx);
413
414 // Verify an array data table. "cur_offset" is the offset of the fill-array-data instruction.
415 bool CheckArrayData(uint32_t cur_offset);
416
417 // Verify that the target of a branch instruction is valid. We don't expect code to jump directly
418 // into an exception handler, but it's valid to do so as long as the target isn't a
419 // "move-exception" instruction. We verify that in a later stage.
420 // The dex format forbids certain instructions from branching to themselves.
421 // Updates "insn_flags_", setting the "branch target" flag.
422 bool CheckBranchTarget(uint32_t cur_offset);
423
424 // Verify a switch table. "cur_offset" is the offset of the switch instruction.
425 // Updates "insn_flags_", setting the "branch target" flag.
426 bool CheckSwitchTargets(uint32_t cur_offset);
427
428 // Check the register indices used in a "vararg" instruction, such as invoke-virtual or
429 // filled-new-array.
430 // - vA holds word count (0-5), args[] have values.
431 // There are some tests we don't do here, e.g. we don't try to verify that invoking a method that
432 // takes a double is done with consecutive registers. This requires parsing the target method
433 // signature, which we will be doing later on during the code flow analysis.
CheckVarArgRegs(uint32_t vA,uint32_t arg[])434 bool CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
435 uint16_t registers_size = code_item_accessor_.RegistersSize();
436 for (uint32_t idx = 0; idx < vA; idx++) {
437 if (UNLIKELY(arg[idx] >= registers_size)) {
438 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
439 << ") in non-range invoke (>= " << registers_size << ")";
440 return false;
441 }
442 }
443
444 return true;
445 }
446
447 // Check the register indices used in a "vararg/range" instruction, such as invoke-virtual/range
448 // or filled-new-array/range.
449 // - vA holds word count, vC holds index of first reg.
CheckVarArgRangeRegs(uint32_t vA,uint32_t vC)450 bool CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
451 uint16_t registers_size = code_item_accessor_.RegistersSize();
452 // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
453 // integer overflow when adding them here.
454 if (UNLIKELY(vA + vC > registers_size)) {
455 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
456 << " in range invoke (> " << registers_size << ")";
457 return false;
458 }
459 return true;
460 }
461
462 // Checks the method matches the expectations required to be signature polymorphic.
463 bool CheckSignaturePolymorphicMethod(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_);
464
465 // Checks the invoked receiver matches the expectations for signature polymorphic methods.
466 bool CheckSignaturePolymorphicReceiver(const Instruction* inst) REQUIRES_SHARED(Locks::mutator_lock_);
467
468 // Extract the relative offset from a branch instruction.
469 // Returns "false" on failure (e.g. this isn't a branch instruction).
470 bool GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
471 bool* selfOkay);
472
473 /* Perform detailed code-flow analysis on a single method. */
474 bool VerifyCodeFlow() REQUIRES_SHARED(Locks::mutator_lock_);
475
476 // Set the register types for the first instruction in the method based on the method signature.
477 // This has the side-effect of validating the signature.
478 bool SetTypesFromSignature() REQUIRES_SHARED(Locks::mutator_lock_);
479
480 /*
481 * Perform code flow on a method.
482 *
483 * The basic strategy is as outlined in v3 4.11.1.2: set the "changed" bit on the first
484 * instruction, process it (setting additional "changed" bits), and repeat until there are no
485 * more.
486 *
487 * v3 4.11.1.1
488 * - (N/A) operand stack is always the same size
489 * - operand stack [registers] contain the correct types of values
490 * - local variables [registers] contain the correct types of values
491 * - methods are invoked with the appropriate arguments
492 * - fields are assigned using values of appropriate types
493 * - opcodes have the correct type values in operand registers
494 * - there is never an uninitialized class instance in a local variable in code protected by an
495 * exception handler (operand stack is okay, because the operand stack is discarded when an
496 * exception is thrown) [can't know what's a local var w/o the debug info -- should fall out of
497 * register typing]
498 *
499 * v3 4.11.1.2
500 * - execution cannot fall off the end of the code
501 *
502 * (We also do many of the items described in the "static checks" sections, because it's easier to
503 * do them here.)
504 *
505 * We need an array of RegType values, one per register, for every instruction. If the method uses
506 * monitor-enter, we need extra data for every register, and a stack for every "interesting"
507 * instruction. In theory this could become quite large -- up to several megabytes for a monster
508 * function.
509 *
510 * NOTE:
511 * The spec forbids backward branches when there's an uninitialized reference in a register. The
512 * idea is to prevent something like this:
513 * loop:
514 * move r1, r0
515 * new-instance r0, MyClass
516 * ...
517 * if-eq rN, loop // once
518 * initialize r0
519 *
520 * This leaves us with two different instances, both allocated by the same instruction, but only
521 * one is initialized. The scheme outlined in v3 4.11.1.4 wouldn't catch this, so they work around
522 * it by preventing backward branches. We achieve identical results without restricting code
523 * reordering by specifying that you can't execute the new-instance instruction if a register
524 * contains an uninitialized instance created by that same instruction.
525 */
526 template <bool kMonitorDexPCs>
527 bool CodeFlowVerifyMethod() REQUIRES_SHARED(Locks::mutator_lock_);
528
529 /*
530 * Perform verification for a single instruction.
531 *
532 * This requires fully decoding the instruction to determine the effect it has on registers.
533 *
534 * Finds zero or more following instructions and sets the "changed" flag if execution at that
535 * point needs to be (re-)evaluated. Register changes are merged into "reg_types_" at the target
536 * addresses. Does not set or clear any other flags in "insn_flags_".
537 */
538 bool CodeFlowVerifyInstruction(uint32_t* start_guess)
539 REQUIRES_SHARED(Locks::mutator_lock_);
540
541 // Perform verification of a new array instruction
542 void VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range)
543 REQUIRES_SHARED(Locks::mutator_lock_);
544
545 // Helper to perform verification on puts of primitive type.
546 void VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
547 const uint32_t vregA) REQUIRES_SHARED(Locks::mutator_lock_);
548
549 // Perform verification of an aget instruction. The destination register's type will be set to
550 // be that of component type of the array unless the array type is unknown, in which case a
551 // bottom type inferred from the type of instruction is used. is_primitive is false for an
552 // aget-object.
553 void VerifyAGet(const Instruction* inst, const RegType& insn_type,
554 bool is_primitive) REQUIRES_SHARED(Locks::mutator_lock_);
555
556 // Perform verification of an aput instruction.
557 void VerifyAPut(const Instruction* inst, const RegType& insn_type,
558 bool is_primitive) REQUIRES_SHARED(Locks::mutator_lock_);
559
560 // Lookup instance field and fail for resolution violations
561 ArtField* GetInstanceField(const RegType& obj_type, int field_idx)
562 REQUIRES_SHARED(Locks::mutator_lock_);
563
564 // Lookup static field and fail for resolution violations
565 ArtField* GetStaticField(int field_idx) REQUIRES_SHARED(Locks::mutator_lock_);
566
567 // Perform verification of an iget/sget/iput/sput instruction.
568 template <FieldAccessType kAccType>
569 void VerifyISFieldAccess(const Instruction* inst, const RegType& insn_type,
570 bool is_primitive, bool is_static)
571 REQUIRES_SHARED(Locks::mutator_lock_);
572
573 // Resolves a class based on an index and, if C is kYes, performs access checks to ensure
574 // the referrer can access the resolved class.
575 template <CheckAccess C>
576 const RegType& ResolveClass(dex::TypeIndex class_idx)
577 REQUIRES_SHARED(Locks::mutator_lock_);
578
579 /*
580 * For the "move-exception" instruction at "work_insn_idx_", which must be at an exception handler
581 * address, determine the Join of all exceptions that can land here. Fails if no matching
582 * exception handler can be found or if the Join of exception types fails.
583 */
584 const RegType& GetCaughtExceptionType()
585 REQUIRES_SHARED(Locks::mutator_lock_);
586
587 /*
588 * Resolves a method based on an index and performs access checks to ensure
589 * the referrer can access the resolved method.
590 * Does not throw exceptions.
591 */
592 ArtMethod* ResolveMethodAndCheckAccess(uint32_t method_idx, MethodType method_type)
593 REQUIRES_SHARED(Locks::mutator_lock_);
594
595 /*
596 * Verify the arguments to a method. We're executing in "method", making
597 * a call to the method reference in vB.
598 *
599 * If this is a "direct" invoke, we allow calls to <init>. For calls to
600 * <init>, the first argument may be an uninitialized reference. Otherwise,
601 * calls to anything starting with '<' will be rejected, as will any
602 * uninitialized reference arguments.
603 *
604 * For non-static method calls, this will verify that the method call is
605 * appropriate for the "this" argument.
606 *
607 * The method reference is in vBBBB. The "is_range" parameter determines
608 * whether we use 0-4 "args" values or a range of registers defined by
609 * vAA and vCCCC.
610 *
611 * Widening conversions on integers and references are allowed, but
612 * narrowing conversions are not.
613 *
614 * Returns the resolved method on success, null on failure (with *failure
615 * set appropriately).
616 */
617 ArtMethod* VerifyInvocationArgs(const Instruction* inst, MethodType method_type, bool is_range)
618 REQUIRES_SHARED(Locks::mutator_lock_);
619
620 // Similar checks to the above, but on the proto. Will be used when the method cannot be
621 // resolved.
622 void VerifyInvocationArgsUnresolvedMethod(const Instruction* inst, MethodType method_type,
623 bool is_range)
624 REQUIRES_SHARED(Locks::mutator_lock_);
625
626 template <class T>
627 ArtMethod* VerifyInvocationArgsFromIterator(T* it, const Instruction* inst,
628 MethodType method_type, bool is_range,
629 ArtMethod* res_method)
630 REQUIRES_SHARED(Locks::mutator_lock_);
631
632 /*
633 * Verify the arguments present for a call site. Returns "true" if all is well, "false" otherwise.
634 */
635 bool CheckCallSite(uint32_t call_site_idx);
636
637 /*
638 * Verify that the target instruction is not "move-exception". It's important that the only way
639 * to execute a move-exception is as the first instruction of an exception handler.
640 * Returns "true" if all is well, "false" if the target instruction is move-exception.
641 */
CheckNotMoveException(const uint16_t * insns,int insn_idx)642 bool CheckNotMoveException(const uint16_t* insns, int insn_idx) {
643 if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
644 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
645 return false;
646 }
647 return true;
648 }
649
650 /*
651 * Verify that the target instruction is not "move-result". It is important that we cannot
652 * branch to move-result instructions, but we have to make this a distinct check instead of
653 * adding it to CheckNotMoveException, because it is legal to continue into "move-result"
654 * instructions - as long as the previous instruction was an invoke, which is checked elsewhere.
655 */
CheckNotMoveResult(const uint16_t * insns,int insn_idx)656 bool CheckNotMoveResult(const uint16_t* insns, int insn_idx) {
657 if (((insns[insn_idx] & 0xff) >= Instruction::MOVE_RESULT) &&
658 ((insns[insn_idx] & 0xff) <= Instruction::MOVE_RESULT_OBJECT)) {
659 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-result*";
660 return false;
661 }
662 return true;
663 }
664
665 /*
666 * Verify that the target instruction is not "move-result" or "move-exception". This is to
667 * be used when checking branch and switch instructions, but not instructions that can
668 * continue.
669 */
CheckNotMoveExceptionOrMoveResult(const uint16_t * insns,int insn_idx)670 bool CheckNotMoveExceptionOrMoveResult(const uint16_t* insns, int insn_idx) {
671 return (CheckNotMoveException(insns, insn_idx) && CheckNotMoveResult(insns, insn_idx));
672 }
673
674 /*
675 * Control can transfer to "next_insn". Merge the registers from merge_line into the table at
676 * next_insn, and set the changed flag on the target address if any of the registers were changed.
677 * In the case of fall-through, update the merge line on a change as its the working line for the
678 * next instruction.
679 * Returns "false" if an error is encountered.
680 */
681 bool UpdateRegisters(uint32_t next_insn, RegisterLine* merge_line, bool update_merge_line)
682 REQUIRES_SHARED(Locks::mutator_lock_);
683
684 // Return the register type for the method.
685 const RegType& GetMethodReturnType() REQUIRES_SHARED(Locks::mutator_lock_);
686
687 // Get a type representing the declaring class of the method.
GetDeclaringClass()688 const RegType& GetDeclaringClass() REQUIRES_SHARED(Locks::mutator_lock_) {
689 if (declaring_class_ == nullptr) {
690 const dex::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
691 const char* descriptor
692 = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
693 if (method_being_verified_ != nullptr) {
694 ObjPtr<mirror::Class> klass = method_being_verified_->GetDeclaringClass();
695 declaring_class_ = &FromClass(descriptor, klass, klass->CannotBeAssignedFromOtherTypes());
696 } else {
697 declaring_class_ = ®_types_.FromDescriptor(class_loader_.Get(), descriptor, false);
698 }
699 }
700 return *declaring_class_;
701 }
702
CurrentInsnFlags()703 InstructionFlags* CurrentInsnFlags() {
704 return &GetModifiableInstructionFlags(work_insn_idx_);
705 }
706
707 const RegType& DetermineCat1Constant(int32_t value, bool precise)
708 REQUIRES_SHARED(Locks::mutator_lock_);
709
710 // Try to create a register type from the given class. In case a precise type is requested, but
711 // the class is not instantiable, a soft error (of type NO_CLASS) will be enqueued and a
712 // non-precise reference will be returned.
713 // Note: we reuse NO_CLASS as this will throw an exception at runtime, when the failing class is
714 // actually touched.
FromClass(const char * descriptor,ObjPtr<mirror::Class> klass,bool precise)715 const RegType& FromClass(const char* descriptor, ObjPtr<mirror::Class> klass, bool precise)
716 REQUIRES_SHARED(Locks::mutator_lock_) {
717 DCHECK(klass != nullptr);
718 if (precise && !klass->IsInstantiable() && !klass->IsPrimitive()) {
719 Fail(VerifyError::VERIFY_ERROR_NO_CLASS) << "Could not create precise reference for "
720 << "non-instantiable klass " << descriptor;
721 precise = false;
722 }
723 return reg_types_.FromClass(descriptor, klass, precise);
724 }
725
726 ALWAYS_INLINE bool FailOrAbort(bool condition, const char* error_msg, uint32_t work_insn_idx);
727
GetModifiableInstructionFlags(size_t index)728 ALWAYS_INLINE InstructionFlags& GetModifiableInstructionFlags(size_t index) {
729 return insn_flags_[index];
730 }
731
732 // Returns the method index of an invoke instruction.
GetMethodIdxOfInvoke(const Instruction * inst)733 uint16_t GetMethodIdxOfInvoke(const Instruction* inst)
734 REQUIRES_SHARED(Locks::mutator_lock_) {
735 switch (inst->Opcode()) {
736 case Instruction::INVOKE_VIRTUAL_RANGE_QUICK:
737 case Instruction::INVOKE_VIRTUAL_QUICK: {
738 DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_)
739 << dex_file_->PrettyMethod(dex_method_idx_, true) << "@" << work_insn_idx_;
740 DCHECK(method_being_verified_ != nullptr);
741 uint16_t method_idx = method_being_verified_->GetIndexFromQuickening(work_insn_idx_);
742 CHECK_NE(method_idx, DexFile::kDexNoIndex16);
743 return method_idx;
744 }
745 default: {
746 return inst->VRegB();
747 }
748 }
749 }
750 // Returns the field index of a field access instruction.
GetFieldIdxOfFieldAccess(const Instruction * inst,bool is_static)751 uint16_t GetFieldIdxOfFieldAccess(const Instruction* inst, bool is_static)
752 REQUIRES_SHARED(Locks::mutator_lock_) {
753 if (is_static) {
754 return inst->VRegB_21c();
755 } else if (inst->IsQuickened()) {
756 DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_);
757 DCHECK(method_being_verified_ != nullptr);
758 uint16_t field_idx = method_being_verified_->GetIndexFromQuickening(work_insn_idx_);
759 CHECK_NE(field_idx, DexFile::kDexNoIndex16);
760 return field_idx;
761 } else {
762 return inst->VRegC_22c();
763 }
764 }
765
766 // Run verification on the method. Returns true if verification completes and false if the input
767 // has an irrecoverable corruption.
768 bool Verify() override REQUIRES_SHARED(Locks::mutator_lock_);
769
770 // Dump the failures encountered by the verifier.
DumpFailures(std::ostream & os)771 std::ostream& DumpFailures(std::ostream& os) {
772 DCHECK_EQ(failures_.size(), failure_messages_.size());
773 for (const auto* stream : failure_messages_) {
774 os << stream->str() << "\n";
775 }
776 return os;
777 }
778
779 // Dump the state of the verifier, namely each instruction, what flags are set on it, register
780 // information
Dump(std::ostream & os)781 void Dump(std::ostream& os) REQUIRES_SHARED(Locks::mutator_lock_) {
782 VariableIndentationOutputStream vios(&os);
783 Dump(&vios);
784 }
785 void Dump(VariableIndentationOutputStream* vios) REQUIRES_SHARED(Locks::mutator_lock_);
786
787 bool HandleMoveException(const Instruction* inst) REQUIRES_SHARED(Locks::mutator_lock_);
788
789 ArtMethod* method_being_verified_; // Its ArtMethod representation if known.
790 const uint32_t method_access_flags_; // Method's access flags.
791 const RegType* return_type_; // Lazily computed return type of the method.
792 // The dex_cache for the declaring class of the method.
793 Handle<mirror::DexCache> dex_cache_ GUARDED_BY(Locks::mutator_lock_);
794 // The class loader for the declaring class of the method.
795 Handle<mirror::ClassLoader> class_loader_ GUARDED_BY(Locks::mutator_lock_);
796 const dex::ClassDef& class_def_; // The class def of the declaring class of the method.
797 const RegType* declaring_class_; // Lazily computed reg type of the method's declaring class.
798
799 // The dex PC of a FindLocksAtDexPc request, -1 otherwise.
800 uint32_t interesting_dex_pc_;
801 // The container into which FindLocksAtDexPc should write the registers containing held locks,
802 // null if we're not doing FindLocksAtDexPc.
803 std::vector<DexLockInfo>* monitor_enter_dex_pcs_;
804
805
806 // An optimization where instead of generating unique RegTypes for constants we use imprecise
807 // constants that cover a range of constants. This isn't good enough for deoptimization that
808 // avoids loading from registers in the case of a constant as the dex instruction set lost the
809 // notion of whether a value should be in a floating point or general purpose register file.
810 const bool need_precise_constants_;
811
812 // Indicates whether we verify to dump the info. In that case we accept quickened instructions
813 // even though we might detect to be a compiler. Should only be set when running
814 // VerifyMethodAndDump.
815 const bool verify_to_dump_;
816
817 // Whether or not we call AllowThreadSuspension periodically, we want a way to disable this for
818 // thread dumping checkpoints since we may get thread suspension at an inopportune time due to
819 // FindLocksAtDexPC, resulting in deadlocks.
820 const bool allow_thread_suspension_;
821
822 // Whether the method seems to be a constructor. Note that this field exists as we can't trust
823 // the flags in the dex file. Some older code does not mark methods named "<init>" and "<clinit>"
824 // correctly.
825 //
826 // Note: this flag is only valid once Verify() has started.
827 bool is_constructor_;
828
829 // Whether to attempt to fill all register lines for (ex) debugger use.
830 bool fill_register_lines_;
831
832 // API level, for dependent checks. Note: we do not use '0' for unset here, to simplify checks.
833 // Instead, unset level should correspond to max().
834 const uint32_t api_level_;
835
836 friend class ::art::verifier::MethodVerifier;
837
838 DISALLOW_COPY_AND_ASSIGN(MethodVerifier);
839 };
840
841 // Note: returns true on failure.
842 template <bool kVerifierDebug>
FailOrAbort(bool condition,const char * error_msg,uint32_t work_insn_idx)843 inline bool MethodVerifier<kVerifierDebug>::FailOrAbort(bool condition,
844 const char* error_msg,
845 uint32_t work_insn_idx) {
846 if (kIsDebugBuild) {
847 // In a debug build, abort if the error condition is wrong. Only warn if
848 // we are already aborting (as this verification is likely run to print
849 // lock information).
850 if (LIKELY(gAborting == 0)) {
851 DCHECK(condition) << error_msg << work_insn_idx << " "
852 << dex_file_->PrettyMethod(dex_method_idx_);
853 } else {
854 if (!condition) {
855 LOG(ERROR) << error_msg << work_insn_idx;
856 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx;
857 return true;
858 }
859 }
860 } else {
861 // In a non-debug build, just fail the class.
862 if (!condition) {
863 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx;
864 return true;
865 }
866 }
867
868 return false;
869 }
870
IsLargeMethod(const CodeItemDataAccessor & accessor)871 static bool IsLargeMethod(const CodeItemDataAccessor& accessor) {
872 if (!accessor.HasCodeItem()) {
873 return false;
874 }
875
876 uint16_t registers_size = accessor.RegistersSize();
877 uint32_t insns_size = accessor.InsnsSizeInCodeUnits();
878
879 return registers_size * insns_size > 4*1024*1024;
880 }
881
882 template <bool kVerifierDebug>
FindLocksAtDexPc()883 void MethodVerifier<kVerifierDebug>::FindLocksAtDexPc() {
884 CHECK(monitor_enter_dex_pcs_ != nullptr);
885 CHECK(code_item_accessor_.HasCodeItem()); // This only makes sense for methods with code.
886
887 // Quick check whether there are any monitor_enter instructions before verifying.
888 for (const DexInstructionPcPair& inst : code_item_accessor_) {
889 if (inst->Opcode() == Instruction::MONITOR_ENTER) {
890 // Strictly speaking, we ought to be able to get away with doing a subset of the full method
891 // verification. In practice, the phase we want relies on data structures set up by all the
892 // earlier passes, so we just run the full method verification and bail out early when we've
893 // got what we wanted.
894 Verify();
895 return;
896 }
897 }
898 }
899
900 template <bool kVerifierDebug>
Verify()901 bool MethodVerifier<kVerifierDebug>::Verify() {
902 // Some older code doesn't correctly mark constructors as such. Test for this case by looking at
903 // the name.
904 const dex::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
905 const char* method_name = dex_file_->StringDataByIdx(method_id.name_idx_);
906 bool instance_constructor_by_name = strcmp("<init>", method_name) == 0;
907 bool static_constructor_by_name = strcmp("<clinit>", method_name) == 0;
908 bool constructor_by_name = instance_constructor_by_name || static_constructor_by_name;
909 // Check that only constructors are tagged, and check for bad code that doesn't tag constructors.
910 if ((method_access_flags_ & kAccConstructor) != 0) {
911 if (!constructor_by_name) {
912 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
913 << "method is marked as constructor, but not named accordingly";
914 return false;
915 }
916 is_constructor_ = true;
917 } else if (constructor_by_name) {
918 LOG(WARNING) << "Method " << dex_file_->PrettyMethod(dex_method_idx_)
919 << " not marked as constructor.";
920 is_constructor_ = true;
921 }
922 // If it's a constructor, check whether IsStatic() matches the name.
923 // This should have been rejected by the dex file verifier. Only do in debug build.
924 if (kIsDebugBuild) {
925 if (IsConstructor()) {
926 if (IsStatic() ^ static_constructor_by_name) {
927 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
928 << "constructor name doesn't match static flag";
929 return false;
930 }
931 }
932 }
933
934 // Methods may only have one of public/protected/private.
935 // This should have been rejected by the dex file verifier. Only do in debug build.
936 if (kIsDebugBuild) {
937 size_t access_mod_count =
938 (((method_access_flags_ & kAccPublic) == 0) ? 0 : 1) +
939 (((method_access_flags_ & kAccProtected) == 0) ? 0 : 1) +
940 (((method_access_flags_ & kAccPrivate) == 0) ? 0 : 1);
941 if (access_mod_count > 1) {
942 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "method has more than one of public/protected/private";
943 return false;
944 }
945 }
946
947 // If there aren't any instructions, make sure that's expected, then exit successfully.
948 if (!code_item_accessor_.HasCodeItem()) {
949 // Only native or abstract methods may not have code.
950 if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
951 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
952 return false;
953 }
954
955 // This should have been rejected by the dex file verifier. Only do in debug build.
956 // Note: the above will also be rejected in the dex file verifier, starting in dex version 37.
957 if (kIsDebugBuild) {
958 if ((method_access_flags_ & kAccAbstract) != 0) {
959 // Abstract methods are not allowed to have the following flags.
960 static constexpr uint32_t kForbidden =
961 kAccPrivate |
962 kAccStatic |
963 kAccFinal |
964 kAccNative |
965 kAccStrict |
966 kAccSynchronized;
967 if ((method_access_flags_ & kForbidden) != 0) {
968 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
969 << "method can't be abstract and private/static/final/native/strict/synchronized";
970 return false;
971 }
972 }
973 if ((class_def_.GetJavaAccessFlags() & kAccInterface) != 0) {
974 // Interface methods must be public and abstract (if default methods are disabled).
975 uint32_t kRequired = kAccPublic;
976 if ((method_access_flags_ & kRequired) != kRequired) {
977 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface methods must be public";
978 return false;
979 }
980 // In addition to the above, interface methods must not be protected.
981 static constexpr uint32_t kForbidden = kAccProtected;
982 if ((method_access_flags_ & kForbidden) != 0) {
983 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface methods can't be protected";
984 return false;
985 }
986 }
987 // We also don't allow constructors to be abstract or native.
988 if (IsConstructor()) {
989 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "constructors can't be abstract or native";
990 return false;
991 }
992 }
993 return true;
994 }
995
996 // This should have been rejected by the dex file verifier. Only do in debug build.
997 if (kIsDebugBuild) {
998 // When there's code, the method must not be native or abstract.
999 if ((method_access_flags_ & (kAccNative | kAccAbstract)) != 0) {
1000 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "non-zero-length code in abstract or native method";
1001 return false;
1002 }
1003
1004 if ((class_def_.GetJavaAccessFlags() & kAccInterface) != 0) {
1005 // Interfaces may always have static initializers for their fields. If we are running with
1006 // default methods enabled we also allow other public, static, non-final methods to have code.
1007 // Otherwise that is the only type of method allowed.
1008 if (!(IsConstructor() && IsStatic())) {
1009 if (IsInstanceConstructor()) {
1010 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interfaces may not have non-static constructor";
1011 return false;
1012 } else if (method_access_flags_ & kAccFinal) {
1013 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interfaces may not have final methods";
1014 return false;
1015 } else {
1016 uint32_t access_flag_options = kAccPublic;
1017 if (dex_file_->SupportsDefaultMethods()) {
1018 access_flag_options |= kAccPrivate;
1019 }
1020 if (!(method_access_flags_ & access_flag_options)) {
1021 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1022 << "interfaces may not have protected or package-private members";
1023 return false;
1024 }
1025 }
1026 }
1027 }
1028
1029 // Instance constructors must not be synchronized.
1030 if (IsInstanceConstructor()) {
1031 static constexpr uint32_t kForbidden = kAccSynchronized;
1032 if ((method_access_flags_ & kForbidden) != 0) {
1033 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "constructors can't be synchronized";
1034 return false;
1035 }
1036 }
1037 }
1038
1039 // Consistency-check of the register counts.
1040 // ins + locals = registers, so make sure that ins <= registers.
1041 if (code_item_accessor_.InsSize() > code_item_accessor_.RegistersSize()) {
1042 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins="
1043 << code_item_accessor_.InsSize()
1044 << " regs=" << code_item_accessor_.RegistersSize();
1045 return false;
1046 }
1047
1048 // Allocate and initialize an array to hold instruction data.
1049 insn_flags_.reset(allocator_.AllocArray<InstructionFlags>(
1050 code_item_accessor_.InsnsSizeInCodeUnits()));
1051 DCHECK(insn_flags_ != nullptr);
1052 std::uninitialized_fill_n(insn_flags_.get(),
1053 code_item_accessor_.InsnsSizeInCodeUnits(),
1054 InstructionFlags());
1055 // Run through the instructions and see if the width checks out.
1056 bool result = ComputeWidthsAndCountOps();
1057 bool allow_runtime_only_instructions = !IsAotMode() || verify_to_dump_;
1058 // Flag instructions guarded by a "try" block and check exception handlers.
1059 result = result && ScanTryCatchBlocks();
1060 // Perform static instruction verification.
1061 result = result && (allow_runtime_only_instructions
1062 ? VerifyInstructions<true>()
1063 : VerifyInstructions<false>());
1064 // Perform code-flow analysis and return.
1065 result = result && VerifyCodeFlow();
1066
1067 return result;
1068 }
1069
1070 template <bool kVerifierDebug>
ComputeWidthsAndCountOps()1071 bool MethodVerifier<kVerifierDebug>::ComputeWidthsAndCountOps() {
1072 // We can't assume the instruction is well formed, handle the case where calculating the size
1073 // goes past the end of the code item.
1074 SafeDexInstructionIterator it(code_item_accessor_.begin(), code_item_accessor_.end());
1075 for ( ; !it.IsErrorState() && it < code_item_accessor_.end(); ++it) {
1076 // In case the instruction goes past the end of the code item, make sure to not process it.
1077 SafeDexInstructionIterator next = it;
1078 ++next;
1079 if (next.IsErrorState()) {
1080 break;
1081 }
1082 Instruction::Code opcode = it->Opcode();
1083 switch (opcode) {
1084 case Instruction::APUT_OBJECT:
1085 case Instruction::CHECK_CAST:
1086 has_check_casts_ = true;
1087 break;
1088 default:
1089 break;
1090 }
1091 GetModifiableInstructionFlags(it.DexPc()).SetIsOpcode();
1092 }
1093
1094 if (it != code_item_accessor_.end()) {
1095 const size_t insns_size = code_item_accessor_.InsnsSizeInCodeUnits();
1096 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
1097 << it.DexPc() << " vs. " << insns_size << ")";
1098 return false;
1099 }
1100 DCHECK(GetInstructionFlags(0).IsOpcode());
1101
1102 return true;
1103 }
1104
1105 template <bool kVerifierDebug>
ScanTryCatchBlocks()1106 bool MethodVerifier<kVerifierDebug>::ScanTryCatchBlocks() {
1107 const uint32_t tries_size = code_item_accessor_.TriesSize();
1108 if (tries_size == 0) {
1109 return true;
1110 }
1111 const uint32_t insns_size = code_item_accessor_.InsnsSizeInCodeUnits();
1112 for (const dex::TryItem& try_item : code_item_accessor_.TryItems()) {
1113 const uint32_t start = try_item.start_addr_;
1114 const uint32_t end = start + try_item.insn_count_;
1115 if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
1116 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
1117 << " endAddr=" << end << " (size=" << insns_size << ")";
1118 return false;
1119 }
1120 if (!GetInstructionFlags(start).IsOpcode()) {
1121 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1122 << "'try' block starts inside an instruction (" << start << ")";
1123 return false;
1124 }
1125 DexInstructionIterator end_it(code_item_accessor_.Insns(), end);
1126 for (DexInstructionIterator it(code_item_accessor_.Insns(), start); it < end_it; ++it) {
1127 GetModifiableInstructionFlags(it.DexPc()).SetInTry();
1128 }
1129 }
1130 // Iterate over each of the handlers to verify target addresses.
1131 const uint8_t* handlers_ptr = code_item_accessor_.GetCatchHandlerData();
1132 const uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
1133 ClassLinker* linker = GetClassLinker();
1134 for (uint32_t idx = 0; idx < handlers_size; idx++) {
1135 CatchHandlerIterator iterator(handlers_ptr);
1136 for (; iterator.HasNext(); iterator.Next()) {
1137 uint32_t dex_pc = iterator.GetHandlerAddress();
1138 if (!GetInstructionFlags(dex_pc).IsOpcode()) {
1139 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1140 << "exception handler starts at bad address (" << dex_pc << ")";
1141 return false;
1142 }
1143 if (!CheckNotMoveResult(code_item_accessor_.Insns(), dex_pc)) {
1144 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1145 << "exception handler begins with move-result* (" << dex_pc << ")";
1146 return false;
1147 }
1148 GetModifiableInstructionFlags(dex_pc).SetBranchTarget();
1149 // Ensure exception types are resolved so that they don't need resolution to be delivered,
1150 // unresolved exception types will be ignored by exception delivery
1151 if (iterator.GetHandlerTypeIndex().IsValid()) {
1152 ObjPtr<mirror::Class> exception_type =
1153 linker->ResolveType(iterator.GetHandlerTypeIndex(), dex_cache_, class_loader_);
1154 if (exception_type == nullptr) {
1155 DCHECK(self_->IsExceptionPending());
1156 self_->ClearException();
1157 }
1158 }
1159 }
1160 handlers_ptr = iterator.EndDataPointer();
1161 }
1162 return true;
1163 }
1164
1165 template <bool kVerifierDebug>
1166 template <bool kAllowRuntimeOnlyInstructions>
VerifyInstructions()1167 bool MethodVerifier<kVerifierDebug>::VerifyInstructions() {
1168 // Flag the start of the method as a branch target.
1169 GetModifiableInstructionFlags(0).SetBranchTarget();
1170 for (const DexInstructionPcPair& inst : code_item_accessor_) {
1171 const uint32_t dex_pc = inst.DexPc();
1172 if (!VerifyInstruction<kAllowRuntimeOnlyInstructions>(&inst.Inst(), dex_pc)) {
1173 DCHECK_NE(failures_.size(), 0U);
1174 return false;
1175 }
1176 // Flag some interesting instructions.
1177 if (inst->IsReturn()) {
1178 GetModifiableInstructionFlags(dex_pc).SetReturn();
1179 } else if (inst->Opcode() == Instruction::CHECK_CAST) {
1180 // The dex-to-dex compiler wants type information to elide check-casts.
1181 GetModifiableInstructionFlags(dex_pc).SetCompileTimeInfoPoint();
1182 }
1183 }
1184 return true;
1185 }
1186
1187 template <bool kVerifierDebug>
1188 template <bool kAllowRuntimeOnlyInstructions>
VerifyInstruction(const Instruction * inst,uint32_t code_offset)1189 bool MethodVerifier<kVerifierDebug>::VerifyInstruction(const Instruction* inst,
1190 uint32_t code_offset) {
1191 if (Instruction::kHaveExperimentalInstructions && UNLIKELY(inst->IsExperimental())) {
1192 // Experimental instructions don't yet have verifier support implementation.
1193 // While it is possible to use them by themselves, when we try to use stable instructions
1194 // with a virtual register that was created by an experimental instruction,
1195 // the data flow analysis will fail.
1196 Fail(VERIFY_ERROR_FORCE_INTERPRETER)
1197 << "experimental instruction is not supported by verifier; skipping verification";
1198 flags_.have_pending_experimental_failure_ = true;
1199 return false;
1200 }
1201
1202 bool result = true;
1203 switch (inst->GetVerifyTypeArgumentA()) {
1204 case Instruction::kVerifyRegA:
1205 result = result && CheckRegisterIndex(inst->VRegA());
1206 break;
1207 case Instruction::kVerifyRegAWide:
1208 result = result && CheckWideRegisterIndex(inst->VRegA());
1209 break;
1210 }
1211 switch (inst->GetVerifyTypeArgumentB()) {
1212 case Instruction::kVerifyRegB:
1213 result = result && CheckRegisterIndex(inst->VRegB());
1214 break;
1215 case Instruction::kVerifyRegBField:
1216 result = result && CheckFieldIndex(inst->VRegB());
1217 break;
1218 case Instruction::kVerifyRegBMethod:
1219 result = result && CheckMethodIndex(inst->VRegB());
1220 break;
1221 case Instruction::kVerifyRegBNewInstance:
1222 result = result && CheckNewInstance(dex::TypeIndex(inst->VRegB()));
1223 break;
1224 case Instruction::kVerifyRegBString:
1225 result = result && CheckStringIndex(inst->VRegB());
1226 break;
1227 case Instruction::kVerifyRegBType:
1228 result = result && CheckTypeIndex(dex::TypeIndex(inst->VRegB()));
1229 break;
1230 case Instruction::kVerifyRegBWide:
1231 result = result && CheckWideRegisterIndex(inst->VRegB());
1232 break;
1233 case Instruction::kVerifyRegBCallSite:
1234 result = result && CheckCallSiteIndex(inst->VRegB());
1235 break;
1236 case Instruction::kVerifyRegBMethodHandle:
1237 result = result && CheckMethodHandleIndex(inst->VRegB());
1238 break;
1239 case Instruction::kVerifyRegBPrototype:
1240 result = result && CheckPrototypeIndex(inst->VRegB());
1241 break;
1242 }
1243 switch (inst->GetVerifyTypeArgumentC()) {
1244 case Instruction::kVerifyRegC:
1245 result = result && CheckRegisterIndex(inst->VRegC());
1246 break;
1247 case Instruction::kVerifyRegCField:
1248 result = result && CheckFieldIndex(inst->VRegC());
1249 break;
1250 case Instruction::kVerifyRegCNewArray:
1251 result = result && CheckNewArray(dex::TypeIndex(inst->VRegC()));
1252 break;
1253 case Instruction::kVerifyRegCType:
1254 result = result && CheckTypeIndex(dex::TypeIndex(inst->VRegC()));
1255 break;
1256 case Instruction::kVerifyRegCWide:
1257 result = result && CheckWideRegisterIndex(inst->VRegC());
1258 break;
1259 }
1260 switch (inst->GetVerifyTypeArgumentH()) {
1261 case Instruction::kVerifyRegHPrototype:
1262 result = result && CheckPrototypeIndex(inst->VRegH());
1263 break;
1264 }
1265 switch (inst->GetVerifyExtraFlags()) {
1266 case Instruction::kVerifyArrayData:
1267 result = result && CheckArrayData(code_offset);
1268 break;
1269 case Instruction::kVerifyBranchTarget:
1270 result = result && CheckBranchTarget(code_offset);
1271 break;
1272 case Instruction::kVerifySwitchTargets:
1273 result = result && CheckSwitchTargets(code_offset);
1274 break;
1275 case Instruction::kVerifyVarArgNonZero:
1276 // Fall-through.
1277 case Instruction::kVerifyVarArg: {
1278 // Instructions that can actually return a negative value shouldn't have this flag.
1279 uint32_t v_a = dchecked_integral_cast<uint32_t>(inst->VRegA());
1280 if ((inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgNonZero && v_a == 0) ||
1281 v_a > Instruction::kMaxVarArgRegs) {
1282 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << v_a << ") in "
1283 "non-range invoke";
1284 return false;
1285 }
1286
1287 uint32_t args[Instruction::kMaxVarArgRegs];
1288 inst->GetVarArgs(args);
1289 result = result && CheckVarArgRegs(v_a, args);
1290 break;
1291 }
1292 case Instruction::kVerifyVarArgRangeNonZero:
1293 // Fall-through.
1294 case Instruction::kVerifyVarArgRange:
1295 if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgRangeNonZero &&
1296 inst->VRegA() <= 0) {
1297 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
1298 "range invoke";
1299 return false;
1300 }
1301 result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
1302 break;
1303 case Instruction::kVerifyError:
1304 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
1305 result = false;
1306 break;
1307 }
1308 if (!kAllowRuntimeOnlyInstructions && inst->GetVerifyIsRuntimeOnly()) {
1309 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name();
1310 result = false;
1311 }
1312 return result;
1313 }
1314
1315 template <bool kVerifierDebug>
CheckNewInstance(dex::TypeIndex idx)1316 inline bool MethodVerifier<kVerifierDebug>::CheckNewInstance(dex::TypeIndex idx) {
1317 if (UNLIKELY(idx.index_ >= dex_file_->GetHeader().type_ids_size_)) {
1318 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx.index_ << " (max "
1319 << dex_file_->GetHeader().type_ids_size_ << ")";
1320 return false;
1321 }
1322 // We don't need the actual class, just a pointer to the class name.
1323 const char* descriptor = dex_file_->StringByTypeIdx(idx);
1324 if (UNLIKELY(descriptor[0] != 'L')) {
1325 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
1326 return false;
1327 } else if (UNLIKELY(strcmp(descriptor, "Ljava/lang/Class;") == 0)) {
1328 // An unlikely new instance on Class is not allowed. Fall back to interpreter to ensure an
1329 // exception is thrown when this statement is executed (compiled code would not do that).
1330 Fail(VERIFY_ERROR_INSTANTIATION);
1331 }
1332 return true;
1333 }
1334
1335 template <bool kVerifierDebug>
CheckNewArray(dex::TypeIndex idx)1336 bool MethodVerifier<kVerifierDebug>::CheckNewArray(dex::TypeIndex idx) {
1337 if (UNLIKELY(idx.index_ >= dex_file_->GetHeader().type_ids_size_)) {
1338 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx.index_ << " (max "
1339 << dex_file_->GetHeader().type_ids_size_ << ")";
1340 return false;
1341 }
1342 int bracket_count = 0;
1343 const char* descriptor = dex_file_->StringByTypeIdx(idx);
1344 const char* cp = descriptor;
1345 while (*cp++ == '[') {
1346 bracket_count++;
1347 }
1348 if (UNLIKELY(bracket_count == 0)) {
1349 /* The given class must be an array type. */
1350 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1351 << "can't new-array class '" << descriptor << "' (not an array)";
1352 return false;
1353 } else if (UNLIKELY(bracket_count > 255)) {
1354 /* It is illegal to create an array of more than 255 dimensions. */
1355 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1356 << "can't new-array class '" << descriptor << "' (exceeds limit)";
1357 return false;
1358 }
1359 return true;
1360 }
1361
1362 template <bool kVerifierDebug>
CheckArrayData(uint32_t cur_offset)1363 bool MethodVerifier<kVerifierDebug>::CheckArrayData(uint32_t cur_offset) {
1364 const uint32_t insn_count = code_item_accessor_.InsnsSizeInCodeUnits();
1365 const uint16_t* insns = code_item_accessor_.Insns() + cur_offset;
1366 const uint16_t* array_data;
1367 int32_t array_data_offset;
1368
1369 DCHECK_LT(cur_offset, insn_count);
1370 /* make sure the start of the array data table is in range */
1371 array_data_offset = insns[1] | (static_cast<int32_t>(insns[2]) << 16);
1372 if (UNLIKELY(static_cast<int32_t>(cur_offset) + array_data_offset < 0 ||
1373 cur_offset + array_data_offset + 2 >= insn_count)) {
1374 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
1375 << ", data offset " << array_data_offset
1376 << ", count " << insn_count;
1377 return false;
1378 }
1379 /* offset to array data table is a relative branch-style offset */
1380 array_data = insns + array_data_offset;
1381 // Make sure the table is at an even dex pc, that is, 32-bit aligned.
1382 if (UNLIKELY(!IsAligned<4>(array_data))) {
1383 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
1384 << ", data offset " << array_data_offset;
1385 return false;
1386 }
1387 // Make sure the array-data is marked as an opcode. This ensures that it was reached when
1388 // traversing the code item linearly. It is an approximation for a by-spec padding value.
1389 if (UNLIKELY(!GetInstructionFlags(cur_offset + array_data_offset).IsOpcode())) {
1390 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array data table at " << cur_offset
1391 << ", data offset " << array_data_offset
1392 << " not correctly visited, probably bad padding.";
1393 return false;
1394 }
1395
1396 uint32_t value_width = array_data[1];
1397 uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
1398 uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
1399 /* make sure the end of the switch is in range */
1400 if (UNLIKELY(cur_offset + array_data_offset + table_size > insn_count)) {
1401 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
1402 << ", data offset " << array_data_offset << ", end "
1403 << cur_offset + array_data_offset + table_size
1404 << ", count " << insn_count;
1405 return false;
1406 }
1407 return true;
1408 }
1409
1410 template <bool kVerifierDebug>
CheckBranchTarget(uint32_t cur_offset)1411 bool MethodVerifier<kVerifierDebug>::CheckBranchTarget(uint32_t cur_offset) {
1412 int32_t offset;
1413 bool isConditional, selfOkay;
1414 if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
1415 return false;
1416 }
1417 if (UNLIKELY(!selfOkay && offset == 0)) {
1418 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
1419 << reinterpret_cast<void*>(cur_offset);
1420 return false;
1421 }
1422 // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
1423 // to have identical "wrap-around" behavior, but it's unwise to depend on that.
1424 if (UNLIKELY(((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset))) {
1425 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
1426 << reinterpret_cast<void*>(cur_offset) << " +" << offset;
1427 return false;
1428 }
1429 int32_t abs_offset = cur_offset + offset;
1430 if (UNLIKELY(abs_offset < 0 ||
1431 (uint32_t) abs_offset >= code_item_accessor_.InsnsSizeInCodeUnits() ||
1432 !GetInstructionFlags(abs_offset).IsOpcode())) {
1433 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
1434 << reinterpret_cast<void*>(abs_offset) << ") at "
1435 << reinterpret_cast<void*>(cur_offset);
1436 return false;
1437 }
1438 GetModifiableInstructionFlags(abs_offset).SetBranchTarget();
1439 return true;
1440 }
1441
1442 template <bool kVerifierDebug>
GetBranchOffset(uint32_t cur_offset,int32_t * pOffset,bool * pConditional,bool * selfOkay)1443 bool MethodVerifier<kVerifierDebug>::GetBranchOffset(uint32_t cur_offset,
1444 int32_t* pOffset,
1445 bool* pConditional,
1446 bool* selfOkay) {
1447 const uint16_t* insns = code_item_accessor_.Insns() + cur_offset;
1448 *pConditional = false;
1449 *selfOkay = false;
1450 switch (*insns & 0xff) {
1451 case Instruction::GOTO:
1452 *pOffset = ((int16_t) *insns) >> 8;
1453 break;
1454 case Instruction::GOTO_32:
1455 *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
1456 *selfOkay = true;
1457 break;
1458 case Instruction::GOTO_16:
1459 *pOffset = (int16_t) insns[1];
1460 break;
1461 case Instruction::IF_EQ:
1462 case Instruction::IF_NE:
1463 case Instruction::IF_LT:
1464 case Instruction::IF_GE:
1465 case Instruction::IF_GT:
1466 case Instruction::IF_LE:
1467 case Instruction::IF_EQZ:
1468 case Instruction::IF_NEZ:
1469 case Instruction::IF_LTZ:
1470 case Instruction::IF_GEZ:
1471 case Instruction::IF_GTZ:
1472 case Instruction::IF_LEZ:
1473 *pOffset = (int16_t) insns[1];
1474 *pConditional = true;
1475 break;
1476 default:
1477 return false;
1478 }
1479 return true;
1480 }
1481
1482 template <bool kVerifierDebug>
CheckSwitchTargets(uint32_t cur_offset)1483 bool MethodVerifier<kVerifierDebug>::CheckSwitchTargets(uint32_t cur_offset) {
1484 const uint32_t insn_count = code_item_accessor_.InsnsSizeInCodeUnits();
1485 DCHECK_LT(cur_offset, insn_count);
1486 const uint16_t* insns = code_item_accessor_.Insns() + cur_offset;
1487 /* make sure the start of the switch is in range */
1488 int32_t switch_offset = insns[1] | (static_cast<int32_t>(insns[2]) << 16);
1489 if (UNLIKELY(static_cast<int32_t>(cur_offset) + switch_offset < 0 ||
1490 cur_offset + switch_offset + 2 > insn_count)) {
1491 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
1492 << ", switch offset " << switch_offset
1493 << ", count " << insn_count;
1494 return false;
1495 }
1496 /* offset to switch table is a relative branch-style offset */
1497 const uint16_t* switch_insns = insns + switch_offset;
1498 // Make sure the table is at an even dex pc, that is, 32-bit aligned.
1499 if (UNLIKELY(!IsAligned<4>(switch_insns))) {
1500 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
1501 << ", switch offset " << switch_offset;
1502 return false;
1503 }
1504 // Make sure the switch data is marked as an opcode. This ensures that it was reached when
1505 // traversing the code item linearly. It is an approximation for a by-spec padding value.
1506 if (UNLIKELY(!GetInstructionFlags(cur_offset + switch_offset).IsOpcode())) {
1507 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "switch table at " << cur_offset
1508 << ", switch offset " << switch_offset
1509 << " not correctly visited, probably bad padding.";
1510 return false;
1511 }
1512
1513 bool is_packed_switch = (*insns & 0xff) == Instruction::PACKED_SWITCH;
1514
1515 uint32_t switch_count = switch_insns[1];
1516 int32_t targets_offset;
1517 uint16_t expected_signature;
1518 if (is_packed_switch) {
1519 /* 0=sig, 1=count, 2/3=firstKey */
1520 targets_offset = 4;
1521 expected_signature = Instruction::kPackedSwitchSignature;
1522 } else {
1523 /* 0=sig, 1=count, 2..count*2 = keys */
1524 targets_offset = 2 + 2 * switch_count;
1525 expected_signature = Instruction::kSparseSwitchSignature;
1526 }
1527 uint32_t table_size = targets_offset + switch_count * 2;
1528 if (UNLIKELY(switch_insns[0] != expected_signature)) {
1529 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1530 << StringPrintf("wrong signature for switch table (%x, wanted %x)",
1531 switch_insns[0], expected_signature);
1532 return false;
1533 }
1534 /* make sure the end of the switch is in range */
1535 if (UNLIKELY(cur_offset + switch_offset + table_size > (uint32_t) insn_count)) {
1536 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
1537 << ", switch offset " << switch_offset
1538 << ", end " << (cur_offset + switch_offset + table_size)
1539 << ", count " << insn_count;
1540 return false;
1541 }
1542
1543 constexpr int32_t keys_offset = 2;
1544 if (switch_count > 1) {
1545 if (is_packed_switch) {
1546 /* for a packed switch, verify that keys do not overflow int32 */
1547 int32_t first_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
1548 int32_t max_first_key =
1549 std::numeric_limits<int32_t>::max() - (static_cast<int32_t>(switch_count) - 1);
1550 if (UNLIKELY(first_key > max_first_key)) {
1551 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: first_key=" << first_key
1552 << ", switch_count=" << switch_count;
1553 return false;
1554 }
1555 } else {
1556 /* for a sparse switch, verify the keys are in ascending order */
1557 int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
1558 for (uint32_t targ = 1; targ < switch_count; targ++) {
1559 int32_t key =
1560 static_cast<int32_t>(switch_insns[keys_offset + targ * 2]) |
1561 static_cast<int32_t>(switch_insns[keys_offset + targ * 2 + 1] << 16);
1562 if (UNLIKELY(key <= last_key)) {
1563 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid sparse switch: last key=" << last_key
1564 << ", this=" << key;
1565 return false;
1566 }
1567 last_key = key;
1568 }
1569 }
1570 }
1571 /* verify each switch target */
1572 for (uint32_t targ = 0; targ < switch_count; targ++) {
1573 int32_t offset = static_cast<int32_t>(switch_insns[targets_offset + targ * 2]) |
1574 static_cast<int32_t>(switch_insns[targets_offset + targ * 2 + 1] << 16);
1575 int32_t abs_offset = cur_offset + offset;
1576 if (UNLIKELY(abs_offset < 0 ||
1577 abs_offset >= static_cast<int32_t>(insn_count) ||
1578 !GetInstructionFlags(abs_offset).IsOpcode())) {
1579 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
1580 << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
1581 << reinterpret_cast<void*>(cur_offset)
1582 << "[" << targ << "]";
1583 return false;
1584 }
1585 GetModifiableInstructionFlags(abs_offset).SetBranchTarget();
1586 }
1587 return true;
1588 }
1589
1590 template <bool kVerifierDebug>
VerifyCodeFlow()1591 bool MethodVerifier<kVerifierDebug>::VerifyCodeFlow() {
1592 const uint16_t registers_size = code_item_accessor_.RegistersSize();
1593
1594 /* Create and initialize table holding register status */
1595 RegisterTrackingMode base_mode = IsAotMode()
1596 ? kTrackCompilerInterestPoints
1597 : kTrackRegsBranches;
1598 reg_table_.Init(fill_register_lines_ ? kTrackRegsAll : base_mode,
1599 insn_flags_.get(),
1600 code_item_accessor_.InsnsSizeInCodeUnits(),
1601 registers_size,
1602 allocator_,
1603 GetRegTypeCache());
1604
1605 work_line_.reset(RegisterLine::Create(registers_size, allocator_, GetRegTypeCache()));
1606 saved_line_.reset(RegisterLine::Create(registers_size, allocator_, GetRegTypeCache()));
1607
1608 /* Initialize register types of method arguments. */
1609 if (!SetTypesFromSignature()) {
1610 DCHECK_NE(failures_.size(), 0U);
1611 std::string prepend("Bad signature in ");
1612 prepend += dex_file_->PrettyMethod(dex_method_idx_);
1613 PrependToLastFailMessage(prepend);
1614 return false;
1615 }
1616 // We may have a runtime failure here, clear.
1617 flags_.have_pending_runtime_throw_failure_ = false;
1618
1619 /* Perform code flow verification. */
1620 bool res = LIKELY(monitor_enter_dex_pcs_ == nullptr)
1621 ? CodeFlowVerifyMethod</*kMonitorDexPCs=*/ false>()
1622 : CodeFlowVerifyMethod</*kMonitorDexPCs=*/ true>();
1623 if (UNLIKELY(!res)) {
1624 DCHECK_NE(failures_.size(), 0U);
1625 return false;
1626 }
1627 return true;
1628 }
1629
1630 template <bool kVerifierDebug>
Dump(VariableIndentationOutputStream * vios)1631 void MethodVerifier<kVerifierDebug>::Dump(VariableIndentationOutputStream* vios) {
1632 if (!code_item_accessor_.HasCodeItem()) {
1633 vios->Stream() << "Native method\n";
1634 return;
1635 }
1636 {
1637 vios->Stream() << "Register Types:\n";
1638 ScopedIndentation indent1(vios);
1639 reg_types_.Dump(vios->Stream());
1640 }
1641 vios->Stream() << "Dumping instructions and register lines:\n";
1642 ScopedIndentation indent1(vios);
1643
1644 for (const DexInstructionPcPair& inst : code_item_accessor_) {
1645 const size_t dex_pc = inst.DexPc();
1646
1647 // Might be asked to dump before the table is initialized.
1648 if (reg_table_.IsInitialized()) {
1649 RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1650 if (reg_line != nullptr) {
1651 vios->Stream() << reg_line->Dump(this) << "\n";
1652 }
1653 }
1654
1655 vios->Stream()
1656 << StringPrintf("0x%04zx", dex_pc) << ": " << GetInstructionFlags(dex_pc).ToString() << " ";
1657 const bool kDumpHexOfInstruction = false;
1658 if (kDumpHexOfInstruction) {
1659 vios->Stream() << inst->DumpHex(5) << " ";
1660 }
1661 vios->Stream() << inst->DumpString(dex_file_) << "\n";
1662 }
1663 }
1664
IsPrimitiveDescriptor(char descriptor)1665 static bool IsPrimitiveDescriptor(char descriptor) {
1666 switch (descriptor) {
1667 case 'I':
1668 case 'C':
1669 case 'S':
1670 case 'B':
1671 case 'Z':
1672 case 'F':
1673 case 'D':
1674 case 'J':
1675 return true;
1676 default:
1677 return false;
1678 }
1679 }
1680
1681 template <bool kVerifierDebug>
SetTypesFromSignature()1682 bool MethodVerifier<kVerifierDebug>::SetTypesFromSignature() {
1683 RegisterLine* reg_line = reg_table_.GetLine(0);
1684
1685 // Should have been verified earlier.
1686 DCHECK_GE(code_item_accessor_.RegistersSize(), code_item_accessor_.InsSize());
1687
1688 uint32_t arg_start = code_item_accessor_.RegistersSize() - code_item_accessor_.InsSize();
1689 size_t expected_args = code_item_accessor_.InsSize(); /* long/double count as two */
1690
1691 // Include the "this" pointer.
1692 size_t cur_arg = 0;
1693 if (!IsStatic()) {
1694 if (expected_args == 0) {
1695 // Expect at least a receiver.
1696 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected 0 args, but method is not static";
1697 return false;
1698 }
1699
1700 // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1701 // argument as uninitialized. This restricts field access until the superclass constructor is
1702 // called.
1703 const RegType& declaring_class = GetDeclaringClass();
1704 if (IsConstructor()) {
1705 if (declaring_class.IsJavaLangObject()) {
1706 // "this" is implicitly initialized.
1707 reg_line->SetThisInitialized();
1708 reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, declaring_class);
1709 } else {
1710 reg_line->SetRegisterType<LockOp::kClear>(
1711 this,
1712 arg_start + cur_arg,
1713 reg_types_.UninitializedThisArgument(declaring_class));
1714 }
1715 } else {
1716 reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, declaring_class);
1717 }
1718 cur_arg++;
1719 }
1720
1721 const dex::ProtoId& proto_id =
1722 dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1723 DexFileParameterIterator iterator(*dex_file_, proto_id);
1724
1725 for (; iterator.HasNext(); iterator.Next()) {
1726 const char* descriptor = iterator.GetDescriptor();
1727 if (descriptor == nullptr) {
1728 LOG(FATAL) << "Null descriptor";
1729 }
1730 if (cur_arg >= expected_args) {
1731 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1732 << " args, found more (" << descriptor << ")";
1733 return false;
1734 }
1735 switch (descriptor[0]) {
1736 case 'L':
1737 case '[':
1738 // We assume that reference arguments are initialized. The only way it could be otherwise
1739 // (assuming the caller was verified) is if the current method is <init>, but in that case
1740 // it's effectively considered initialized the instant we reach here (in the sense that we
1741 // can return without doing anything or call virtual methods).
1742 {
1743 // Note: don't check access. No error would be thrown for declaring or passing an
1744 // inaccessible class. Only actual accesses to fields or methods will.
1745 const RegType& reg_type = ResolveClass<CheckAccess::kNo>(iterator.GetTypeIdx());
1746 if (!reg_type.IsNonZeroReferenceTypes()) {
1747 DCHECK(HasFailures());
1748 return false;
1749 }
1750 reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_type);
1751 }
1752 break;
1753 case 'Z':
1754 reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Boolean());
1755 break;
1756 case 'C':
1757 reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Char());
1758 break;
1759 case 'B':
1760 reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Byte());
1761 break;
1762 case 'I':
1763 reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Integer());
1764 break;
1765 case 'S':
1766 reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Short());
1767 break;
1768 case 'F':
1769 reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Float());
1770 break;
1771 case 'J':
1772 case 'D': {
1773 if (cur_arg + 1 >= expected_args) {
1774 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1775 << " args, found more (" << descriptor << ")";
1776 return false;
1777 }
1778
1779 const RegType* lo_half;
1780 const RegType* hi_half;
1781 if (descriptor[0] == 'J') {
1782 lo_half = ®_types_.LongLo();
1783 hi_half = ®_types_.LongHi();
1784 } else {
1785 lo_half = ®_types_.DoubleLo();
1786 hi_half = ®_types_.DoubleHi();
1787 }
1788 reg_line->SetRegisterTypeWide(this, arg_start + cur_arg, *lo_half, *hi_half);
1789 cur_arg++;
1790 break;
1791 }
1792 default:
1793 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1794 << descriptor << "'";
1795 return false;
1796 }
1797 cur_arg++;
1798 }
1799 if (cur_arg != expected_args) {
1800 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1801 << " arguments, found " << cur_arg;
1802 return false;
1803 }
1804 const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1805 // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1806 // format. Only major difference from the method argument format is that 'V' is supported.
1807 bool result;
1808 if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1809 result = descriptor[1] == '\0';
1810 } else if (descriptor[0] == '[') { // single/multi-dimensional array of object/primitive
1811 size_t i = 0;
1812 do {
1813 i++;
1814 } while (descriptor[i] == '['); // process leading [
1815 if (descriptor[i] == 'L') { // object array
1816 do {
1817 i++; // find closing ;
1818 } while (descriptor[i] != ';' && descriptor[i] != '\0');
1819 result = descriptor[i] == ';';
1820 } else { // primitive array
1821 result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1822 }
1823 } else if (descriptor[0] == 'L') {
1824 // could be more thorough here, but shouldn't be required
1825 size_t i = 0;
1826 do {
1827 i++;
1828 } while (descriptor[i] != ';' && descriptor[i] != '\0');
1829 result = descriptor[i] == ';';
1830 } else {
1831 result = false;
1832 }
1833 if (!result) {
1834 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1835 << descriptor << "'";
1836 }
1837 return result;
1838 }
1839
1840 COLD_ATTR
HandleMonitorDexPcsWorkLine(std::vector<::art::verifier::MethodVerifier::DexLockInfo> * monitor_enter_dex_pcs,RegisterLine * work_line)1841 void HandleMonitorDexPcsWorkLine(
1842 std::vector<::art::verifier::MethodVerifier::DexLockInfo>* monitor_enter_dex_pcs,
1843 RegisterLine* work_line) {
1844 monitor_enter_dex_pcs->clear(); // The new work line is more accurate than the previous one.
1845
1846 std::map<uint32_t, ::art::verifier::MethodVerifier::DexLockInfo> depth_to_lock_info;
1847 auto collector = [&](uint32_t dex_reg, uint32_t depth) {
1848 auto insert_pair = depth_to_lock_info.emplace(
1849 depth, ::art::verifier::MethodVerifier::DexLockInfo(depth));
1850 auto it = insert_pair.first;
1851 auto set_insert_pair = it->second.dex_registers.insert(dex_reg);
1852 DCHECK(set_insert_pair.second);
1853 };
1854 work_line->IterateRegToLockDepths(collector);
1855 for (auto& pair : depth_to_lock_info) {
1856 monitor_enter_dex_pcs->push_back(pair.second);
1857 // Map depth to dex PC.
1858 monitor_enter_dex_pcs->back().dex_pc = work_line->GetMonitorEnterDexPc(pair.second.dex_pc);
1859 }
1860 }
1861
1862 template <bool kVerifierDebug>
1863 template <bool kMonitorDexPCs>
CodeFlowVerifyMethod()1864 bool MethodVerifier<kVerifierDebug>::CodeFlowVerifyMethod() {
1865 const uint16_t* insns = code_item_accessor_.Insns();
1866 const uint32_t insns_size = code_item_accessor_.InsnsSizeInCodeUnits();
1867
1868 /* Begin by marking the first instruction as "changed". */
1869 GetModifiableInstructionFlags(0).SetChanged();
1870 uint32_t start_guess = 0;
1871
1872 /* Continue until no instructions are marked "changed". */
1873 while (true) {
1874 if (allow_thread_suspension_) {
1875 self_->AllowThreadSuspension();
1876 }
1877 // Find the first marked one. Use "start_guess" as a way to find one quickly.
1878 uint32_t insn_idx = start_guess;
1879 for (; insn_idx < insns_size; insn_idx++) {
1880 if (GetInstructionFlags(insn_idx).IsChanged())
1881 break;
1882 }
1883 if (insn_idx == insns_size) {
1884 if (start_guess != 0) {
1885 /* try again, starting from the top */
1886 start_guess = 0;
1887 continue;
1888 } else {
1889 /* all flags are clear */
1890 break;
1891 }
1892 }
1893 // We carry the working set of registers from instruction to instruction. If this address can
1894 // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1895 // "changed" flags, we need to load the set of registers from the table.
1896 // Because we always prefer to continue on to the next instruction, we should never have a
1897 // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1898 // target.
1899 work_insn_idx_ = insn_idx;
1900 if (GetInstructionFlags(insn_idx).IsBranchTarget()) {
1901 work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1902 } else if (kIsDebugBuild) {
1903 /*
1904 * Consistency check: retrieve the stored register line (assuming
1905 * a full table) and make sure it actually matches.
1906 */
1907 RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1908 if (register_line != nullptr) {
1909 if (work_line_->CompareLine(register_line) != 0) {
1910 Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
1911 LOG(FATAL_WITHOUT_ABORT) << info_messages_.str();
1912 LOG(FATAL) << "work_line diverged in " << dex_file_->PrettyMethod(dex_method_idx_)
1913 << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1914 << " work_line=" << work_line_->Dump(this) << "\n"
1915 << " expected=" << register_line->Dump(this);
1916 }
1917 }
1918 }
1919
1920 // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1921 // We want the state _before_ the instruction, for the case where the dex pc we're
1922 // interested in is itself a monitor-enter instruction (which is a likely place
1923 // for a thread to be suspended).
1924 if (kMonitorDexPCs && UNLIKELY(work_insn_idx_ == interesting_dex_pc_)) {
1925 HandleMonitorDexPcsWorkLine(monitor_enter_dex_pcs_, work_line_.get());
1926 }
1927
1928 if (!CodeFlowVerifyInstruction(&start_guess)) {
1929 std::string prepend(dex_file_->PrettyMethod(dex_method_idx_));
1930 prepend += " failed to verify: ";
1931 PrependToLastFailMessage(prepend);
1932 return false;
1933 }
1934 /* Clear "changed" and mark as visited. */
1935 GetModifiableInstructionFlags(insn_idx).SetVisited();
1936 GetModifiableInstructionFlags(insn_idx).ClearChanged();
1937 }
1938
1939 if (kVerifierDebug) {
1940 /*
1941 * Scan for dead code. There's nothing "evil" about dead code
1942 * (besides the wasted space), but it indicates a flaw somewhere
1943 * down the line, possibly in the verifier.
1944 *
1945 * If we've substituted "always throw" instructions into the stream,
1946 * we are almost certainly going to have some dead code.
1947 */
1948 int dead_start = -1;
1949
1950 for (const DexInstructionPcPair& inst : code_item_accessor_) {
1951 const uint32_t insn_idx = inst.DexPc();
1952 /*
1953 * Switch-statement data doesn't get "visited" by scanner. It
1954 * may or may not be preceded by a padding NOP (for alignment).
1955 */
1956 if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1957 insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1958 insns[insn_idx] == Instruction::kArrayDataSignature ||
1959 (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1960 (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1961 insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1962 insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1963 GetModifiableInstructionFlags(insn_idx).SetVisited();
1964 }
1965
1966 if (!GetInstructionFlags(insn_idx).IsVisited()) {
1967 if (dead_start < 0) {
1968 dead_start = insn_idx;
1969 }
1970 } else if (dead_start >= 0) {
1971 LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1972 << "-" << reinterpret_cast<void*>(insn_idx - 1);
1973 dead_start = -1;
1974 }
1975 }
1976 if (dead_start >= 0) {
1977 LogVerifyInfo()
1978 << "dead code " << reinterpret_cast<void*>(dead_start)
1979 << "-" << reinterpret_cast<void*>(code_item_accessor_.InsnsSizeInCodeUnits() - 1);
1980 }
1981 // To dump the state of the verify after a method, do something like:
1982 // if (dex_file_->PrettyMethod(dex_method_idx_) ==
1983 // "boolean java.lang.String.equals(java.lang.Object)") {
1984 // LOG(INFO) << info_messages_.str();
1985 // }
1986 }
1987 return true;
1988 }
1989
1990 // Returns the index of the first final instance field of the given class, or kDexNoIndex if there
1991 // is no such field.
GetFirstFinalInstanceFieldIndex(const DexFile & dex_file,dex::TypeIndex type_idx)1992 static uint32_t GetFirstFinalInstanceFieldIndex(const DexFile& dex_file, dex::TypeIndex type_idx) {
1993 const dex::ClassDef* class_def = dex_file.FindClassDef(type_idx);
1994 DCHECK(class_def != nullptr);
1995 ClassAccessor accessor(dex_file, *class_def);
1996 for (const ClassAccessor::Field& field : accessor.GetInstanceFields()) {
1997 if (field.IsFinal()) {
1998 return field.GetIndex();
1999 }
2000 }
2001 return dex::kDexNoIndex;
2002 }
2003
2004 // Setup a register line for the given return instruction.
2005 template <bool kVerifierDebug>
AdjustReturnLine(MethodVerifier<kVerifierDebug> * verifier,const Instruction * ret_inst,RegisterLine * line)2006 static void AdjustReturnLine(MethodVerifier<kVerifierDebug>* verifier,
2007 const Instruction* ret_inst,
2008 RegisterLine* line) {
2009 Instruction::Code opcode = ret_inst->Opcode();
2010
2011 switch (opcode) {
2012 case Instruction::RETURN_VOID:
2013 case Instruction::RETURN_VOID_NO_BARRIER:
2014 if (verifier->IsInstanceConstructor()) {
2015 // Before we mark all regs as conflicts, check that we don't have an uninitialized this.
2016 line->CheckConstructorReturn(verifier);
2017 }
2018 line->MarkAllRegistersAsConflicts(verifier);
2019 break;
2020
2021 case Instruction::RETURN:
2022 case Instruction::RETURN_OBJECT:
2023 line->MarkAllRegistersAsConflictsExcept(verifier, ret_inst->VRegA_11x());
2024 break;
2025
2026 case Instruction::RETURN_WIDE:
2027 line->MarkAllRegistersAsConflictsExceptWide(verifier, ret_inst->VRegA_11x());
2028 break;
2029
2030 default:
2031 LOG(FATAL) << "Unknown return opcode " << opcode;
2032 UNREACHABLE();
2033 }
2034 }
2035
2036 template <bool kVerifierDebug>
CodeFlowVerifyInstruction(uint32_t * start_guess)2037 bool MethodVerifier<kVerifierDebug>::CodeFlowVerifyInstruction(uint32_t* start_guess) {
2038 /*
2039 * Once we finish decoding the instruction, we need to figure out where
2040 * we can go from here. There are three possible ways to transfer
2041 * control to another statement:
2042 *
2043 * (1) Continue to the next instruction. Applies to all but
2044 * unconditional branches, method returns, and exception throws.
2045 * (2) Branch to one or more possible locations. Applies to branches
2046 * and switch statements.
2047 * (3) Exception handlers. Applies to any instruction that can
2048 * throw an exception that is handled by an encompassing "try"
2049 * block.
2050 *
2051 * We can also return, in which case there is no successor instruction
2052 * from this point.
2053 *
2054 * The behavior can be determined from the opcode flags.
2055 */
2056 const uint16_t* insns = code_item_accessor_.Insns() + work_insn_idx_;
2057 const Instruction* inst = Instruction::At(insns);
2058 int opcode_flags = Instruction::FlagsOf(inst->Opcode());
2059
2060 int32_t branch_target = 0;
2061 bool just_set_result = false;
2062 if (kVerifierDebug) {
2063 // Generate processing back trace to debug verifier
2064 LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << std::endl
2065 << work_line_->Dump(this);
2066 }
2067
2068 /*
2069 * Make a copy of the previous register state. If the instruction
2070 * can throw an exception, we will copy/merge this into the "catch"
2071 * address rather than work_line, because we don't want the result
2072 * from the "successful" code path (e.g. a check-cast that "improves"
2073 * a type) to be visible to the exception handler.
2074 */
2075 if (((opcode_flags & Instruction::kThrow) != 0 || IsCompatThrow(inst->Opcode())) &&
2076 CurrentInsnFlags()->IsInTry()) {
2077 saved_line_->CopyFromLine(work_line_.get());
2078 } else if (kIsDebugBuild) {
2079 saved_line_->FillWithGarbage();
2080 }
2081 // Per-instruction flag, should not be set here.
2082 DCHECK(!flags_.have_pending_runtime_throw_failure_);
2083 bool exc_handler_unreachable = false;
2084
2085
2086 // We need to ensure the work line is consistent while performing validation. When we spot a
2087 // peephole pattern we compute a new line for either the fallthrough instruction or the
2088 // branch target.
2089 RegisterLineArenaUniquePtr branch_line;
2090 RegisterLineArenaUniquePtr fallthrough_line;
2091
2092 switch (inst->Opcode()) {
2093 case Instruction::NOP:
2094 /*
2095 * A "pure" NOP has no effect on anything. Data tables start with
2096 * a signature that looks like a NOP; if we see one of these in
2097 * the course of executing code then we have a problem.
2098 */
2099 if (inst->VRegA_10x() != 0) {
2100 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
2101 }
2102 break;
2103
2104 case Instruction::MOVE:
2105 work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
2106 break;
2107 case Instruction::MOVE_FROM16:
2108 work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
2109 break;
2110 case Instruction::MOVE_16:
2111 work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
2112 break;
2113 case Instruction::MOVE_WIDE:
2114 work_line_->CopyRegister2(this, inst->VRegA_12x(), inst->VRegB_12x());
2115 break;
2116 case Instruction::MOVE_WIDE_FROM16:
2117 work_line_->CopyRegister2(this, inst->VRegA_22x(), inst->VRegB_22x());
2118 break;
2119 case Instruction::MOVE_WIDE_16:
2120 work_line_->CopyRegister2(this, inst->VRegA_32x(), inst->VRegB_32x());
2121 break;
2122 case Instruction::MOVE_OBJECT:
2123 work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
2124 break;
2125 case Instruction::MOVE_OBJECT_FROM16:
2126 work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
2127 break;
2128 case Instruction::MOVE_OBJECT_16:
2129 work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
2130 break;
2131
2132 /*
2133 * The move-result instructions copy data out of a "pseudo-register"
2134 * with the results from the last method invocation. In practice we
2135 * might want to hold the result in an actual CPU register, so the
2136 * Dalvik spec requires that these only appear immediately after an
2137 * invoke or filled-new-array.
2138 *
2139 * These calls invalidate the "result" register. (This is now
2140 * redundant with the reset done below, but it can make the debug info
2141 * easier to read in some cases.)
2142 */
2143 case Instruction::MOVE_RESULT:
2144 work_line_->CopyResultRegister1(this, inst->VRegA_11x(), false);
2145 break;
2146 case Instruction::MOVE_RESULT_WIDE:
2147 work_line_->CopyResultRegister2(this, inst->VRegA_11x());
2148 break;
2149 case Instruction::MOVE_RESULT_OBJECT:
2150 work_line_->CopyResultRegister1(this, inst->VRegA_11x(), true);
2151 break;
2152
2153 case Instruction::MOVE_EXCEPTION:
2154 if (!HandleMoveException(inst)) {
2155 exc_handler_unreachable = true;
2156 }
2157 break;
2158
2159 case Instruction::RETURN_VOID:
2160 if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
2161 if (!GetMethodReturnType().IsConflict()) {
2162 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
2163 }
2164 }
2165 break;
2166 case Instruction::RETURN:
2167 if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
2168 /* check the method signature */
2169 const RegType& return_type = GetMethodReturnType();
2170 if (!return_type.IsCategory1Types()) {
2171 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
2172 << return_type;
2173 } else {
2174 // Compilers may generate synthetic functions that write byte values into boolean fields.
2175 // Also, it may use integer values for boolean, byte, short, and character return types.
2176 const uint32_t vregA = inst->VRegA_11x();
2177 const RegType& src_type = work_line_->GetRegisterType(this, vregA);
2178 bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
2179 ((return_type.IsBoolean() || return_type.IsByte() ||
2180 return_type.IsShort() || return_type.IsChar()) &&
2181 src_type.IsInteger()));
2182 /* check the register contents */
2183 bool success =
2184 work_line_->VerifyRegisterType(this, vregA, use_src ? src_type : return_type);
2185 if (!success) {
2186 AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
2187 }
2188 }
2189 }
2190 break;
2191 case Instruction::RETURN_WIDE:
2192 if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
2193 /* check the method signature */
2194 const RegType& return_type = GetMethodReturnType();
2195 if (!return_type.IsCategory2Types()) {
2196 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
2197 } else {
2198 /* check the register contents */
2199 const uint32_t vregA = inst->VRegA_11x();
2200 bool success = work_line_->VerifyRegisterType(this, vregA, return_type);
2201 if (!success) {
2202 AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
2203 }
2204 }
2205 }
2206 break;
2207 case Instruction::RETURN_OBJECT:
2208 if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
2209 const RegType& return_type = GetMethodReturnType();
2210 if (!return_type.IsReferenceTypes()) {
2211 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
2212 } else {
2213 /* return_type is the *expected* return type, not register value */
2214 DCHECK(!return_type.IsZeroOrNull());
2215 DCHECK(!return_type.IsUninitializedReference());
2216 const uint32_t vregA = inst->VRegA_11x();
2217 const RegType& reg_type = work_line_->GetRegisterType(this, vregA);
2218 // Disallow returning undefined, conflict & uninitialized values and verify that the
2219 // reference in vAA is an instance of the "return_type."
2220 if (reg_type.IsUndefined()) {
2221 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning undefined register";
2222 } else if (reg_type.IsConflict()) {
2223 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning register with conflict";
2224 } else if (reg_type.IsUninitializedTypes()) {
2225 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning uninitialized object '"
2226 << reg_type << "'";
2227 } else if (!reg_type.IsReferenceTypes()) {
2228 // We really do expect a reference here.
2229 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object returns a non-reference type "
2230 << reg_type;
2231 } else if (!return_type.IsAssignableFrom(reg_type, this)) {
2232 if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
2233 Fail(api_level_ > 29u ? VERIFY_ERROR_BAD_CLASS_SOFT : VERIFY_ERROR_NO_CLASS)
2234 << " can't resolve returned type '" << return_type << "' or '" << reg_type << "'";
2235 } else {
2236 bool soft_error = false;
2237 // Check whether arrays are involved. They will show a valid class status, even
2238 // if their components are erroneous.
2239 if (reg_type.IsArrayTypes() && return_type.IsArrayTypes()) {
2240 return_type.CanAssignArray(reg_type, reg_types_, class_loader_, this, &soft_error);
2241 if (soft_error) {
2242 Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "array with erroneous component type: "
2243 << reg_type << " vs " << return_type;
2244 }
2245 }
2246
2247 if (!soft_error) {
2248 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
2249 << "', but expected from declaration '" << return_type << "'";
2250 }
2251 }
2252 }
2253 }
2254 }
2255 break;
2256
2257 /* could be boolean, int, float, or a null reference */
2258 case Instruction::CONST_4: {
2259 int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
2260 work_line_->SetRegisterType<LockOp::kClear>(
2261 this, inst->VRegA_11n(), DetermineCat1Constant(val, need_precise_constants_));
2262 break;
2263 }
2264 case Instruction::CONST_16: {
2265 int16_t val = static_cast<int16_t>(inst->VRegB_21s());
2266 work_line_->SetRegisterType<LockOp::kClear>(
2267 this, inst->VRegA_21s(), DetermineCat1Constant(val, need_precise_constants_));
2268 break;
2269 }
2270 case Instruction::CONST: {
2271 int32_t val = inst->VRegB_31i();
2272 work_line_->SetRegisterType<LockOp::kClear>(
2273 this, inst->VRegA_31i(), DetermineCat1Constant(val, need_precise_constants_));
2274 break;
2275 }
2276 case Instruction::CONST_HIGH16: {
2277 int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
2278 work_line_->SetRegisterType<LockOp::kClear>(
2279 this, inst->VRegA_21h(), DetermineCat1Constant(val, need_precise_constants_));
2280 break;
2281 }
2282 /* could be long or double; resolved upon use */
2283 case Instruction::CONST_WIDE_16: {
2284 int64_t val = static_cast<int16_t>(inst->VRegB_21s());
2285 const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
2286 const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
2287 work_line_->SetRegisterTypeWide(this, inst->VRegA_21s(), lo, hi);
2288 break;
2289 }
2290 case Instruction::CONST_WIDE_32: {
2291 int64_t val = static_cast<int32_t>(inst->VRegB_31i());
2292 const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
2293 const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
2294 work_line_->SetRegisterTypeWide(this, inst->VRegA_31i(), lo, hi);
2295 break;
2296 }
2297 case Instruction::CONST_WIDE: {
2298 int64_t val = inst->VRegB_51l();
2299 const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
2300 const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
2301 work_line_->SetRegisterTypeWide(this, inst->VRegA_51l(), lo, hi);
2302 break;
2303 }
2304 case Instruction::CONST_WIDE_HIGH16: {
2305 int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
2306 const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
2307 const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
2308 work_line_->SetRegisterTypeWide(this, inst->VRegA_21h(), lo, hi);
2309 break;
2310 }
2311 case Instruction::CONST_STRING:
2312 work_line_->SetRegisterType<LockOp::kClear>(
2313 this, inst->VRegA_21c(), reg_types_.JavaLangString());
2314 break;
2315 case Instruction::CONST_STRING_JUMBO:
2316 work_line_->SetRegisterType<LockOp::kClear>(
2317 this, inst->VRegA_31c(), reg_types_.JavaLangString());
2318 break;
2319 case Instruction::CONST_CLASS: {
2320 // Get type from instruction if unresolved then we need an access check
2321 // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
2322 const RegType& res_type = ResolveClass<CheckAccess::kYes>(dex::TypeIndex(inst->VRegB_21c()));
2323 // Register holds class, ie its type is class, on error it will hold Conflict.
2324 work_line_->SetRegisterType<LockOp::kClear>(
2325 this, inst->VRegA_21c(), res_type.IsConflict() ? res_type
2326 : reg_types_.JavaLangClass());
2327 break;
2328 }
2329 case Instruction::CONST_METHOD_HANDLE:
2330 work_line_->SetRegisterType<LockOp::kClear>(
2331 this, inst->VRegA_21c(), reg_types_.JavaLangInvokeMethodHandle());
2332 break;
2333 case Instruction::CONST_METHOD_TYPE:
2334 work_line_->SetRegisterType<LockOp::kClear>(
2335 this, inst->VRegA_21c(), reg_types_.JavaLangInvokeMethodType());
2336 break;
2337 case Instruction::MONITOR_ENTER:
2338 work_line_->PushMonitor(this, inst->VRegA_11x(), work_insn_idx_);
2339 // Check whether the previous instruction is a move-object with vAA as a source, creating
2340 // untracked lock aliasing.
2341 if (0 != work_insn_idx_ && !GetInstructionFlags(work_insn_idx_).IsBranchTarget()) {
2342 uint32_t prev_idx = work_insn_idx_ - 1;
2343 while (0 != prev_idx && !GetInstructionFlags(prev_idx).IsOpcode()) {
2344 prev_idx--;
2345 }
2346 const Instruction& prev_inst = code_item_accessor_.InstructionAt(prev_idx);
2347 switch (prev_inst.Opcode()) {
2348 case Instruction::MOVE_OBJECT:
2349 case Instruction::MOVE_OBJECT_16:
2350 case Instruction::MOVE_OBJECT_FROM16:
2351 if (prev_inst.VRegB() == inst->VRegA_11x()) {
2352 // Redo the copy. This won't change the register types, but update the lock status
2353 // for the aliased register.
2354 work_line_->CopyRegister1(this,
2355 prev_inst.VRegA(),
2356 prev_inst.VRegB(),
2357 kTypeCategoryRef);
2358 }
2359 break;
2360
2361 // Catch a case of register aliasing when two registers are linked to the same
2362 // java.lang.Class object via two consequent const-class instructions immediately
2363 // preceding monitor-enter called on one of those registers.
2364 case Instruction::CONST_CLASS: {
2365 // Get the second previous instruction.
2366 if (prev_idx == 0 || GetInstructionFlags(prev_idx).IsBranchTarget()) {
2367 break;
2368 }
2369 prev_idx--;
2370 while (0 != prev_idx && !GetInstructionFlags(prev_idx).IsOpcode()) {
2371 prev_idx--;
2372 }
2373 const Instruction& prev2_inst = code_item_accessor_.InstructionAt(prev_idx);
2374
2375 // Match the pattern "const-class; const-class; monitor-enter;"
2376 if (prev2_inst.Opcode() != Instruction::CONST_CLASS) {
2377 break;
2378 }
2379
2380 // Ensure both const-classes are called for the same type_idx.
2381 if (prev_inst.VRegB_21c() != prev2_inst.VRegB_21c()) {
2382 break;
2383 }
2384
2385 // Update the lock status for the aliased register.
2386 if (prev_inst.VRegA() == inst->VRegA_11x()) {
2387 work_line_->CopyRegister1(this,
2388 prev2_inst.VRegA(),
2389 inst->VRegA_11x(),
2390 kTypeCategoryRef);
2391 } else if (prev2_inst.VRegA() == inst->VRegA_11x()) {
2392 work_line_->CopyRegister1(this,
2393 prev_inst.VRegA(),
2394 inst->VRegA_11x(),
2395 kTypeCategoryRef);
2396 }
2397 break;
2398 }
2399
2400 default: // Other instruction types ignored.
2401 break;
2402 }
2403 }
2404 break;
2405 case Instruction::MONITOR_EXIT:
2406 /*
2407 * monitor-exit instructions are odd. They can throw exceptions,
2408 * but when they do they act as if they succeeded and the PC is
2409 * pointing to the following instruction. (This behavior goes back
2410 * to the need to handle asynchronous exceptions, a now-deprecated
2411 * feature that Dalvik doesn't support.)
2412 *
2413 * In practice we don't need to worry about this. The only
2414 * exceptions that can be thrown from monitor-exit are for a
2415 * null reference and -exit without a matching -enter. If the
2416 * structured locking checks are working, the former would have
2417 * failed on the -enter instruction, and the latter is impossible.
2418 *
2419 * This is fortunate, because issue 3221411 prevents us from
2420 * chasing the "can throw" path when monitor verification is
2421 * enabled. If we can fully verify the locking we can ignore
2422 * some catch blocks (which will show up as "dead" code when
2423 * we skip them here); if we can't, then the code path could be
2424 * "live" so we still need to check it.
2425 */
2426 opcode_flags &= ~Instruction::kThrow;
2427 work_line_->PopMonitor(this, inst->VRegA_11x());
2428 break;
2429 case Instruction::CHECK_CAST:
2430 case Instruction::INSTANCE_OF: {
2431 /*
2432 * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
2433 * could be a "upcast" -- not expected, so we don't try to address it.)
2434 *
2435 * If it fails, an exception is thrown, which we deal with later by ignoring the update to
2436 * dec_insn.vA when branching to a handler.
2437 */
2438 const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
2439 const dex::TypeIndex type_idx((is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c());
2440 const RegType& res_type = ResolveClass<CheckAccess::kYes>(type_idx);
2441 if (res_type.IsConflict()) {
2442 // If this is a primitive type, fail HARD.
2443 ObjPtr<mirror::Class> klass = GetClassLinker()->LookupResolvedType(
2444 type_idx, dex_cache_.Get(), class_loader_.Get());
2445 if (klass != nullptr && klass->IsPrimitive()) {
2446 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "using primitive type "
2447 << dex_file_->StringByTypeIdx(type_idx) << " in instanceof in "
2448 << GetDeclaringClass();
2449 break;
2450 }
2451
2452 DCHECK_NE(failures_.size(), 0U);
2453 if (!is_checkcast) {
2454 work_line_->SetRegisterType<LockOp::kClear>(this,
2455 inst->VRegA_22c(),
2456 reg_types_.Boolean());
2457 }
2458 break; // bad class
2459 }
2460 // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
2461 uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
2462 const RegType& orig_type = work_line_->GetRegisterType(this, orig_type_reg);
2463 if (!res_type.IsNonZeroReferenceTypes()) {
2464 if (is_checkcast) {
2465 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
2466 } else {
2467 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
2468 }
2469 } else if (!orig_type.IsReferenceTypes()) {
2470 if (is_checkcast) {
2471 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
2472 } else {
2473 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
2474 }
2475 } else if (orig_type.IsUninitializedTypes()) {
2476 if (is_checkcast) {
2477 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on uninitialized reference in v"
2478 << orig_type_reg;
2479 } else {
2480 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on uninitialized reference in v"
2481 << orig_type_reg;
2482 }
2483 } else {
2484 if (is_checkcast) {
2485 work_line_->SetRegisterType<LockOp::kKeep>(this, inst->VRegA_21c(), res_type);
2486 } else {
2487 work_line_->SetRegisterType<LockOp::kClear>(this,
2488 inst->VRegA_22c(),
2489 reg_types_.Boolean());
2490 }
2491 }
2492 break;
2493 }
2494 case Instruction::ARRAY_LENGTH: {
2495 const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegB_12x());
2496 if (res_type.IsReferenceTypes()) {
2497 if (!res_type.IsArrayTypes() && !res_type.IsZeroOrNull()) {
2498 // ie not an array or null
2499 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
2500 } else {
2501 work_line_->SetRegisterType<LockOp::kClear>(this,
2502 inst->VRegA_12x(),
2503 reg_types_.Integer());
2504 }
2505 } else {
2506 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
2507 }
2508 break;
2509 }
2510 case Instruction::NEW_INSTANCE: {
2511 const RegType& res_type = ResolveClass<CheckAccess::kYes>(dex::TypeIndex(inst->VRegB_21c()));
2512 if (res_type.IsConflict()) {
2513 DCHECK_NE(failures_.size(), 0U);
2514 break; // bad class
2515 }
2516 // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
2517 // can't create an instance of an interface or abstract class */
2518 if (!res_type.IsInstantiableTypes()) {
2519 Fail(VERIFY_ERROR_INSTANTIATION)
2520 << "new-instance on primitive, interface or abstract class" << res_type;
2521 // Soft failure so carry on to set register type.
2522 }
2523 const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
2524 // Any registers holding previous allocations from this address that have not yet been
2525 // initialized must be marked invalid.
2526 work_line_->MarkUninitRefsAsInvalid(this, uninit_type);
2527 // add the new uninitialized reference to the register state
2528 work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_21c(), uninit_type);
2529 break;
2530 }
2531 case Instruction::NEW_ARRAY:
2532 VerifyNewArray(inst, false, false);
2533 break;
2534 case Instruction::FILLED_NEW_ARRAY:
2535 VerifyNewArray(inst, true, false);
2536 just_set_result = true; // Filled new array sets result register
2537 break;
2538 case Instruction::FILLED_NEW_ARRAY_RANGE:
2539 VerifyNewArray(inst, true, true);
2540 just_set_result = true; // Filled new array range sets result register
2541 break;
2542 case Instruction::CMPL_FLOAT:
2543 case Instruction::CMPG_FLOAT:
2544 if (!work_line_->VerifyRegisterType(this, inst->VRegB_23x(), reg_types_.Float())) {
2545 break;
2546 }
2547 if (!work_line_->VerifyRegisterType(this, inst->VRegC_23x(), reg_types_.Float())) {
2548 break;
2549 }
2550 work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), reg_types_.Integer());
2551 break;
2552 case Instruction::CMPL_DOUBLE:
2553 case Instruction::CMPG_DOUBLE:
2554 if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.DoubleLo(),
2555 reg_types_.DoubleHi())) {
2556 break;
2557 }
2558 if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.DoubleLo(),
2559 reg_types_.DoubleHi())) {
2560 break;
2561 }
2562 work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), reg_types_.Integer());
2563 break;
2564 case Instruction::CMP_LONG:
2565 if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.LongLo(),
2566 reg_types_.LongHi())) {
2567 break;
2568 }
2569 if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.LongLo(),
2570 reg_types_.LongHi())) {
2571 break;
2572 }
2573 work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), reg_types_.Integer());
2574 break;
2575 case Instruction::THROW: {
2576 const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegA_11x());
2577 if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type, this)) {
2578 if (res_type.IsUninitializedTypes()) {
2579 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "thrown exception not initialized";
2580 } else if (!res_type.IsReferenceTypes()) {
2581 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "thrown value of non-reference type " << res_type;
2582 } else {
2583 Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
2584 << "thrown class " << res_type << " not instanceof Throwable";
2585 }
2586 }
2587 break;
2588 }
2589 case Instruction::GOTO:
2590 case Instruction::GOTO_16:
2591 case Instruction::GOTO_32:
2592 /* no effect on or use of registers */
2593 break;
2594
2595 case Instruction::PACKED_SWITCH:
2596 case Instruction::SPARSE_SWITCH:
2597 /* verify that vAA is an integer, or can be converted to one */
2598 work_line_->VerifyRegisterType(this, inst->VRegA_31t(), reg_types_.Integer());
2599 break;
2600
2601 case Instruction::FILL_ARRAY_DATA: {
2602 /* Similar to the verification done for APUT */
2603 const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegA_31t());
2604 /* array_type can be null if the reg type is Zero */
2605 if (!array_type.IsZeroOrNull()) {
2606 if (!array_type.IsArrayTypes()) {
2607 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
2608 << array_type;
2609 } else if (array_type.IsUnresolvedTypes()) {
2610 // If it's an unresolved array type, it must be non-primitive.
2611 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data for array of type "
2612 << array_type;
2613 } else {
2614 const RegType& component_type = reg_types_.GetComponentType(array_type,
2615 class_loader_.Get());
2616 DCHECK(!component_type.IsConflict());
2617 if (component_type.IsNonZeroReferenceTypes()) {
2618 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
2619 << component_type;
2620 } else {
2621 // Now verify if the element width in the table matches the element width declared in
2622 // the array
2623 const uint16_t* array_data =
2624 insns + (insns[1] | (static_cast<int32_t>(insns[2]) << 16));
2625 if (array_data[0] != Instruction::kArrayDataSignature) {
2626 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
2627 } else {
2628 size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
2629 // Since we don't compress the data in Dex, expect to see equal width of data stored
2630 // in the table and expected from the array class.
2631 if (array_data[1] != elem_width) {
2632 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
2633 << " vs " << elem_width << ")";
2634 }
2635 }
2636 }
2637 }
2638 }
2639 break;
2640 }
2641 case Instruction::IF_EQ:
2642 case Instruction::IF_NE: {
2643 const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
2644 const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
2645 bool mismatch = false;
2646 if (reg_type1.IsZeroOrNull()) { // zero then integral or reference expected
2647 mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
2648 } else if (reg_type1.IsReferenceTypes()) { // both references?
2649 mismatch = !reg_type2.IsReferenceTypes();
2650 } else { // both integral?
2651 mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
2652 }
2653 if (mismatch) {
2654 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
2655 << reg_type2 << ") must both be references or integral";
2656 }
2657 break;
2658 }
2659 case Instruction::IF_LT:
2660 case Instruction::IF_GE:
2661 case Instruction::IF_GT:
2662 case Instruction::IF_LE: {
2663 const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
2664 const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
2665 if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
2666 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
2667 << reg_type2 << ") must be integral";
2668 }
2669 break;
2670 }
2671 case Instruction::IF_EQZ:
2672 case Instruction::IF_NEZ: {
2673 const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2674 if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
2675 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2676 << " unexpected as arg to if-eqz/if-nez";
2677 }
2678
2679 // Find previous instruction - its existence is a precondition to peephole optimization.
2680 if (UNLIKELY(0 == work_insn_idx_)) {
2681 break;
2682 }
2683 uint32_t instance_of_idx = work_insn_idx_ - 1;
2684 while (0 != instance_of_idx && !GetInstructionFlags(instance_of_idx).IsOpcode()) {
2685 instance_of_idx--;
2686 }
2687 // Dex index 0 must be an opcode.
2688 DCHECK(GetInstructionFlags(instance_of_idx).IsOpcode());
2689
2690 const Instruction& instance_of_inst = code_item_accessor_.InstructionAt(instance_of_idx);
2691
2692 /* Check for peep-hole pattern of:
2693 * ...;
2694 * instance-of vX, vY, T;
2695 * ifXXX vX, label ;
2696 * ...;
2697 * label:
2698 * ...;
2699 * and sharpen the type of vY to be type T.
2700 * Note, this pattern can't be if:
2701 * - if there are other branches to this branch,
2702 * - when vX == vY.
2703 */
2704 if (!CurrentInsnFlags()->IsBranchTarget() &&
2705 (Instruction::INSTANCE_OF == instance_of_inst.Opcode()) &&
2706 (inst->VRegA_21t() == instance_of_inst.VRegA_22c()) &&
2707 (instance_of_inst.VRegA_22c() != instance_of_inst.VRegB_22c())) {
2708 // Check the type of the instance-of is different than that of registers type, as if they
2709 // are the same there is no work to be done here. Check that the conversion is not to or
2710 // from an unresolved type as type information is imprecise. If the instance-of is to an
2711 // interface then ignore the type information as interfaces can only be treated as Objects
2712 // and we don't want to disallow field and other operations on the object. If the value
2713 // being instance-of checked against is known null (zero) then allow the optimization as
2714 // we didn't have type information. If the merge of the instance-of type with the original
2715 // type is assignable to the original then allow optimization. This check is performed to
2716 // ensure that subsequent merges don't lose type information - such as becoming an
2717 // interface from a class that would lose information relevant to field checks.
2718 //
2719 // Note: do not do an access check. This may mark this with a runtime throw that actually
2720 // happens at the instanceof, not the branch (and branches aren't flagged to throw).
2721 const RegType& orig_type = work_line_->GetRegisterType(this, instance_of_inst.VRegB_22c());
2722 const RegType& cast_type = ResolveClass<CheckAccess::kNo>(
2723 dex::TypeIndex(instance_of_inst.VRegC_22c()));
2724
2725 if (!orig_type.Equals(cast_type) &&
2726 !cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
2727 cast_type.HasClass() && // Could be conflict type, make sure it has a class.
2728 !cast_type.GetClass()->IsInterface() &&
2729 (orig_type.IsZeroOrNull() ||
2730 orig_type.IsStrictlyAssignableFrom(
2731 cast_type.Merge(orig_type, ®_types_, this), this))) {
2732 RegisterLine* update_line = RegisterLine::Create(code_item_accessor_.RegistersSize(),
2733 allocator_,
2734 GetRegTypeCache());
2735 if (inst->Opcode() == Instruction::IF_EQZ) {
2736 fallthrough_line.reset(update_line);
2737 } else {
2738 branch_line.reset(update_line);
2739 }
2740 update_line->CopyFromLine(work_line_.get());
2741 update_line->SetRegisterType<LockOp::kKeep>(this,
2742 instance_of_inst.VRegB_22c(),
2743 cast_type);
2744 if (!GetInstructionFlags(instance_of_idx).IsBranchTarget() && 0 != instance_of_idx) {
2745 // See if instance-of was preceded by a move-object operation, common due to the small
2746 // register encoding space of instance-of, and propagate type information to the source
2747 // of the move-object.
2748 // Note: this is only valid if the move source was not clobbered.
2749 uint32_t move_idx = instance_of_idx - 1;
2750 while (0 != move_idx && !GetInstructionFlags(move_idx).IsOpcode()) {
2751 move_idx--;
2752 }
2753 DCHECK(GetInstructionFlags(move_idx).IsOpcode());
2754 auto maybe_update_fn = [&instance_of_inst, update_line, this, &cast_type](
2755 uint16_t move_src,
2756 uint16_t move_trg)
2757 REQUIRES_SHARED(Locks::mutator_lock_) {
2758 if (move_trg == instance_of_inst.VRegB_22c() &&
2759 move_src != instance_of_inst.VRegA_22c()) {
2760 update_line->SetRegisterType<LockOp::kKeep>(this, move_src, cast_type);
2761 }
2762 };
2763 const Instruction& move_inst = code_item_accessor_.InstructionAt(move_idx);
2764 switch (move_inst.Opcode()) {
2765 case Instruction::MOVE_OBJECT:
2766 maybe_update_fn(move_inst.VRegB_12x(), move_inst.VRegA_12x());
2767 break;
2768 case Instruction::MOVE_OBJECT_FROM16:
2769 maybe_update_fn(move_inst.VRegB_22x(), move_inst.VRegA_22x());
2770 break;
2771 case Instruction::MOVE_OBJECT_16:
2772 maybe_update_fn(move_inst.VRegB_32x(), move_inst.VRegA_32x());
2773 break;
2774 default:
2775 break;
2776 }
2777 }
2778 }
2779 }
2780
2781 break;
2782 }
2783 case Instruction::IF_LTZ:
2784 case Instruction::IF_GEZ:
2785 case Instruction::IF_GTZ:
2786 case Instruction::IF_LEZ: {
2787 const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2788 if (!reg_type.IsIntegralTypes()) {
2789 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2790 << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
2791 }
2792 break;
2793 }
2794 case Instruction::AGET_BOOLEAN:
2795 VerifyAGet(inst, reg_types_.Boolean(), true);
2796 break;
2797 case Instruction::AGET_BYTE:
2798 VerifyAGet(inst, reg_types_.Byte(), true);
2799 break;
2800 case Instruction::AGET_CHAR:
2801 VerifyAGet(inst, reg_types_.Char(), true);
2802 break;
2803 case Instruction::AGET_SHORT:
2804 VerifyAGet(inst, reg_types_.Short(), true);
2805 break;
2806 case Instruction::AGET:
2807 VerifyAGet(inst, reg_types_.Integer(), true);
2808 break;
2809 case Instruction::AGET_WIDE:
2810 VerifyAGet(inst, reg_types_.LongLo(), true);
2811 break;
2812 case Instruction::AGET_OBJECT:
2813 VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2814 break;
2815
2816 case Instruction::APUT_BOOLEAN:
2817 VerifyAPut(inst, reg_types_.Boolean(), true);
2818 break;
2819 case Instruction::APUT_BYTE:
2820 VerifyAPut(inst, reg_types_.Byte(), true);
2821 break;
2822 case Instruction::APUT_CHAR:
2823 VerifyAPut(inst, reg_types_.Char(), true);
2824 break;
2825 case Instruction::APUT_SHORT:
2826 VerifyAPut(inst, reg_types_.Short(), true);
2827 break;
2828 case Instruction::APUT:
2829 VerifyAPut(inst, reg_types_.Integer(), true);
2830 break;
2831 case Instruction::APUT_WIDE:
2832 VerifyAPut(inst, reg_types_.LongLo(), true);
2833 break;
2834 case Instruction::APUT_OBJECT:
2835 VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2836 break;
2837
2838 case Instruction::IGET_BOOLEAN:
2839 case Instruction::IGET_BOOLEAN_QUICK:
2840 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, false);
2841 break;
2842 case Instruction::IGET_BYTE:
2843 case Instruction::IGET_BYTE_QUICK:
2844 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, false);
2845 break;
2846 case Instruction::IGET_CHAR:
2847 case Instruction::IGET_CHAR_QUICK:
2848 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, false);
2849 break;
2850 case Instruction::IGET_SHORT:
2851 case Instruction::IGET_SHORT_QUICK:
2852 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, false);
2853 break;
2854 case Instruction::IGET:
2855 case Instruction::IGET_QUICK:
2856 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, false);
2857 break;
2858 case Instruction::IGET_WIDE:
2859 case Instruction::IGET_WIDE_QUICK:
2860 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, false);
2861 break;
2862 case Instruction::IGET_OBJECT:
2863 case Instruction::IGET_OBJECT_QUICK:
2864 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2865 false);
2866 break;
2867
2868 case Instruction::IPUT_BOOLEAN:
2869 case Instruction::IPUT_BOOLEAN_QUICK:
2870 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, false);
2871 break;
2872 case Instruction::IPUT_BYTE:
2873 case Instruction::IPUT_BYTE_QUICK:
2874 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, false);
2875 break;
2876 case Instruction::IPUT_CHAR:
2877 case Instruction::IPUT_CHAR_QUICK:
2878 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, false);
2879 break;
2880 case Instruction::IPUT_SHORT:
2881 case Instruction::IPUT_SHORT_QUICK:
2882 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, false);
2883 break;
2884 case Instruction::IPUT:
2885 case Instruction::IPUT_QUICK:
2886 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, false);
2887 break;
2888 case Instruction::IPUT_WIDE:
2889 case Instruction::IPUT_WIDE_QUICK:
2890 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, false);
2891 break;
2892 case Instruction::IPUT_OBJECT:
2893 case Instruction::IPUT_OBJECT_QUICK:
2894 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2895 false);
2896 break;
2897
2898 case Instruction::SGET_BOOLEAN:
2899 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, true);
2900 break;
2901 case Instruction::SGET_BYTE:
2902 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, true);
2903 break;
2904 case Instruction::SGET_CHAR:
2905 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, true);
2906 break;
2907 case Instruction::SGET_SHORT:
2908 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, true);
2909 break;
2910 case Instruction::SGET:
2911 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, true);
2912 break;
2913 case Instruction::SGET_WIDE:
2914 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, true);
2915 break;
2916 case Instruction::SGET_OBJECT:
2917 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2918 true);
2919 break;
2920
2921 case Instruction::SPUT_BOOLEAN:
2922 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, true);
2923 break;
2924 case Instruction::SPUT_BYTE:
2925 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, true);
2926 break;
2927 case Instruction::SPUT_CHAR:
2928 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, true);
2929 break;
2930 case Instruction::SPUT_SHORT:
2931 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, true);
2932 break;
2933 case Instruction::SPUT:
2934 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, true);
2935 break;
2936 case Instruction::SPUT_WIDE:
2937 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, true);
2938 break;
2939 case Instruction::SPUT_OBJECT:
2940 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2941 true);
2942 break;
2943
2944 case Instruction::INVOKE_VIRTUAL:
2945 case Instruction::INVOKE_VIRTUAL_RANGE:
2946 case Instruction::INVOKE_SUPER:
2947 case Instruction::INVOKE_SUPER_RANGE:
2948 case Instruction::INVOKE_VIRTUAL_QUICK:
2949 case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2950 bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2951 inst->Opcode() == Instruction::INVOKE_SUPER_RANGE ||
2952 inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2953 bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER ||
2954 inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2955 MethodType type = is_super ? METHOD_SUPER : METHOD_VIRTUAL;
2956 ArtMethod* called_method = VerifyInvocationArgs(inst, type, is_range);
2957 const RegType* return_type = nullptr;
2958 if (called_method != nullptr) {
2959 ObjPtr<mirror::Class> return_type_class = can_load_classes_
2960 ? called_method->ResolveReturnType()
2961 : called_method->LookupResolvedReturnType();
2962 if (return_type_class != nullptr) {
2963 return_type = &FromClass(called_method->GetReturnTypeDescriptor(),
2964 return_type_class,
2965 return_type_class->CannotBeAssignedFromOtherTypes());
2966 } else {
2967 DCHECK(!can_load_classes_ || self_->IsExceptionPending());
2968 self_->ClearException();
2969 }
2970 }
2971 if (return_type == nullptr) {
2972 uint32_t method_idx = GetMethodIdxOfInvoke(inst);
2973 const dex::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2974 dex::TypeIndex return_type_idx =
2975 dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2976 const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2977 return_type = ®_types_.FromDescriptor(class_loader_.Get(), descriptor, false);
2978 }
2979 if (!return_type->IsLowHalf()) {
2980 work_line_->SetResultRegisterType(this, *return_type);
2981 } else {
2982 work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(®_types_));
2983 }
2984 just_set_result = true;
2985 break;
2986 }
2987 case Instruction::INVOKE_DIRECT:
2988 case Instruction::INVOKE_DIRECT_RANGE: {
2989 bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2990 ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT, is_range);
2991 const char* return_type_descriptor;
2992 bool is_constructor;
2993 const RegType* return_type = nullptr;
2994 if (called_method == nullptr) {
2995 uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2996 const dex::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2997 is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
2998 dex::TypeIndex return_type_idx =
2999 dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
3000 return_type_descriptor = dex_file_->StringByTypeIdx(return_type_idx);
3001 } else {
3002 is_constructor = called_method->IsConstructor();
3003 return_type_descriptor = called_method->GetReturnTypeDescriptor();
3004 ObjPtr<mirror::Class> return_type_class = can_load_classes_
3005 ? called_method->ResolveReturnType()
3006 : called_method->LookupResolvedReturnType();
3007 if (return_type_class != nullptr) {
3008 return_type = &FromClass(return_type_descriptor,
3009 return_type_class,
3010 return_type_class->CannotBeAssignedFromOtherTypes());
3011 } else {
3012 DCHECK(!can_load_classes_ || self_->IsExceptionPending());
3013 self_->ClearException();
3014 }
3015 }
3016 if (is_constructor) {
3017 /*
3018 * Some additional checks when calling a constructor. We know from the invocation arg check
3019 * that the "this" argument is an instance of called_method->klass. Now we further restrict
3020 * that to require that called_method->klass is the same as this->klass or this->super,
3021 * allowing the latter only if the "this" argument is the same as the "this" argument to
3022 * this method (which implies that we're in a constructor ourselves).
3023 */
3024 const RegType& this_type = work_line_->GetInvocationThis(this, inst);
3025 if (this_type.IsConflict()) // failure.
3026 break;
3027
3028 /* no null refs allowed (?) */
3029 if (this_type.IsZeroOrNull()) {
3030 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
3031 break;
3032 }
3033
3034 /* must be in same class or in superclass */
3035 // const RegType& this_super_klass = this_type.GetSuperClass(®_types_);
3036 // TODO: re-enable constructor type verification
3037 // if (this_super_klass.IsConflict()) {
3038 // Unknown super class, fail so we re-check at runtime.
3039 // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
3040 // break;
3041 // }
3042
3043 /* arg must be an uninitialized reference */
3044 if (!this_type.IsUninitializedTypes()) {
3045 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
3046 << this_type;
3047 break;
3048 }
3049
3050 /*
3051 * Replace the uninitialized reference with an initialized one. We need to do this for all
3052 * registers that have the same object instance in them, not just the "this" register.
3053 */
3054 work_line_->MarkRefsAsInitialized(this, this_type);
3055 }
3056 if (return_type == nullptr) {
3057 return_type = ®_types_.FromDescriptor(class_loader_.Get(),
3058 return_type_descriptor,
3059 false);
3060 }
3061 if (!return_type->IsLowHalf()) {
3062 work_line_->SetResultRegisterType(this, *return_type);
3063 } else {
3064 work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(®_types_));
3065 }
3066 just_set_result = true;
3067 break;
3068 }
3069 case Instruction::INVOKE_STATIC:
3070 case Instruction::INVOKE_STATIC_RANGE: {
3071 bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
3072 ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_STATIC, is_range);
3073 const char* descriptor;
3074 if (called_method == nullptr) {
3075 uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3076 const dex::MethodId& method_id = dex_file_->GetMethodId(method_idx);
3077 dex::TypeIndex return_type_idx =
3078 dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
3079 descriptor = dex_file_->StringByTypeIdx(return_type_idx);
3080 } else {
3081 descriptor = called_method->GetReturnTypeDescriptor();
3082 }
3083 const RegType& return_type = reg_types_.FromDescriptor(class_loader_.Get(),
3084 descriptor,
3085 false);
3086 if (!return_type.IsLowHalf()) {
3087 work_line_->SetResultRegisterType(this, return_type);
3088 } else {
3089 work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(®_types_));
3090 }
3091 just_set_result = true;
3092 }
3093 break;
3094 case Instruction::INVOKE_INTERFACE:
3095 case Instruction::INVOKE_INTERFACE_RANGE: {
3096 bool is_range = (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
3097 ArtMethod* abs_method = VerifyInvocationArgs(inst, METHOD_INTERFACE, is_range);
3098 if (abs_method != nullptr) {
3099 ObjPtr<mirror::Class> called_interface = abs_method->GetDeclaringClass();
3100 if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
3101 Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
3102 << abs_method->PrettyMethod() << "'";
3103 break;
3104 }
3105 }
3106 /* Get the type of the "this" arg, which should either be a sub-interface of called
3107 * interface or Object (see comments in RegType::JoinClass).
3108 */
3109 const RegType& this_type = work_line_->GetInvocationThis(this, inst);
3110 if (this_type.IsZeroOrNull()) {
3111 /* null pointer always passes (and always fails at runtime) */
3112 } else {
3113 if (this_type.IsUninitializedTypes()) {
3114 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
3115 << this_type;
3116 break;
3117 }
3118 // In the past we have tried to assert that "called_interface" is assignable
3119 // from "this_type.GetClass()", however, as we do an imprecise Join
3120 // (RegType::JoinClass) we don't have full information on what interfaces are
3121 // implemented by "this_type". For example, two classes may implement the same
3122 // interfaces and have a common parent that doesn't implement the interface. The
3123 // join will set "this_type" to the parent class and a test that this implements
3124 // the interface will incorrectly fail.
3125 }
3126 /*
3127 * We don't have an object instance, so we can't find the concrete method. However, all of
3128 * the type information is in the abstract method, so we're good.
3129 */
3130 const char* descriptor;
3131 if (abs_method == nullptr) {
3132 uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3133 const dex::MethodId& method_id = dex_file_->GetMethodId(method_idx);
3134 dex::TypeIndex return_type_idx =
3135 dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
3136 descriptor = dex_file_->StringByTypeIdx(return_type_idx);
3137 } else {
3138 descriptor = abs_method->GetReturnTypeDescriptor();
3139 }
3140 const RegType& return_type = reg_types_.FromDescriptor(class_loader_.Get(),
3141 descriptor,
3142 false);
3143 if (!return_type.IsLowHalf()) {
3144 work_line_->SetResultRegisterType(this, return_type);
3145 } else {
3146 work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(®_types_));
3147 }
3148 just_set_result = true;
3149 break;
3150 }
3151 case Instruction::INVOKE_POLYMORPHIC:
3152 case Instruction::INVOKE_POLYMORPHIC_RANGE: {
3153 bool is_range = (inst->Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
3154 ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_POLYMORPHIC, is_range);
3155 if (called_method == nullptr) {
3156 // Convert potential soft failures in VerifyInvocationArgs() to hard errors.
3157 if (failure_messages_.size() > 0) {
3158 std::string message = failure_messages_.back()->str();
3159 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << message;
3160 } else {
3161 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-polymorphic verification failure.";
3162 }
3163 break;
3164 }
3165 if (!CheckSignaturePolymorphicMethod(called_method) ||
3166 !CheckSignaturePolymorphicReceiver(inst)) {
3167 DCHECK(HasFailures());
3168 break;
3169 }
3170 const uint16_t vRegH = (is_range) ? inst->VRegH_4rcc() : inst->VRegH_45cc();
3171 const dex::ProtoIndex proto_idx(vRegH);
3172 const char* return_descriptor =
3173 dex_file_->GetReturnTypeDescriptor(dex_file_->GetProtoId(proto_idx));
3174 const RegType& return_type =
3175 reg_types_.FromDescriptor(class_loader_.Get(), return_descriptor, false);
3176 if (!return_type.IsLowHalf()) {
3177 work_line_->SetResultRegisterType(this, return_type);
3178 } else {
3179 work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(®_types_));
3180 }
3181 just_set_result = true;
3182 break;
3183 }
3184 case Instruction::INVOKE_CUSTOM:
3185 case Instruction::INVOKE_CUSTOM_RANGE: {
3186 // Verify registers based on method_type in the call site.
3187 bool is_range = (inst->Opcode() == Instruction::INVOKE_CUSTOM_RANGE);
3188
3189 // Step 1. Check the call site that produces the method handle for invocation
3190 const uint32_t call_site_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3191 if (!CheckCallSite(call_site_idx)) {
3192 DCHECK(HasFailures());
3193 break;
3194 }
3195
3196 // Step 2. Check the register arguments correspond to the expected arguments for the
3197 // method handle produced by step 1. The dex file verifier has checked ranges for
3198 // the first three arguments and CheckCallSite has checked the method handle type.
3199 const dex::ProtoIndex proto_idx = dex_file_->GetProtoIndexForCallSite(call_site_idx);
3200 const dex::ProtoId& proto_id = dex_file_->GetProtoId(proto_idx);
3201 DexFileParameterIterator param_it(*dex_file_, proto_id);
3202 // Treat method as static as it has yet to be determined.
3203 VerifyInvocationArgsFromIterator(¶m_it, inst, METHOD_STATIC, is_range, nullptr);
3204 const char* return_descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
3205
3206 // Step 3. Propagate return type information
3207 const RegType& return_type =
3208 reg_types_.FromDescriptor(class_loader_.Get(), return_descriptor, false);
3209 if (!return_type.IsLowHalf()) {
3210 work_line_->SetResultRegisterType(this, return_type);
3211 } else {
3212 work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(®_types_));
3213 }
3214 just_set_result = true;
3215 break;
3216 }
3217 case Instruction::NEG_INT:
3218 case Instruction::NOT_INT:
3219 work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer());
3220 break;
3221 case Instruction::NEG_LONG:
3222 case Instruction::NOT_LONG:
3223 work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3224 reg_types_.LongLo(), reg_types_.LongHi());
3225 break;
3226 case Instruction::NEG_FLOAT:
3227 work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Float());
3228 break;
3229 case Instruction::NEG_DOUBLE:
3230 work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3231 reg_types_.DoubleLo(), reg_types_.DoubleHi());
3232 break;
3233 case Instruction::INT_TO_LONG:
3234 work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3235 reg_types_.Integer());
3236 break;
3237 case Instruction::INT_TO_FLOAT:
3238 work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Integer());
3239 break;
3240 case Instruction::INT_TO_DOUBLE:
3241 work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3242 reg_types_.Integer());
3243 break;
3244 case Instruction::LONG_TO_INT:
3245 work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
3246 reg_types_.LongLo(), reg_types_.LongHi());
3247 break;
3248 case Instruction::LONG_TO_FLOAT:
3249 work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
3250 reg_types_.LongLo(), reg_types_.LongHi());
3251 break;
3252 case Instruction::LONG_TO_DOUBLE:
3253 work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3254 reg_types_.LongLo(), reg_types_.LongHi());
3255 break;
3256 case Instruction::FLOAT_TO_INT:
3257 work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Float());
3258 break;
3259 case Instruction::FLOAT_TO_LONG:
3260 work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3261 reg_types_.Float());
3262 break;
3263 case Instruction::FLOAT_TO_DOUBLE:
3264 work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3265 reg_types_.Float());
3266 break;
3267 case Instruction::DOUBLE_TO_INT:
3268 work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
3269 reg_types_.DoubleLo(), reg_types_.DoubleHi());
3270 break;
3271 case Instruction::DOUBLE_TO_LONG:
3272 work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3273 reg_types_.DoubleLo(), reg_types_.DoubleHi());
3274 break;
3275 case Instruction::DOUBLE_TO_FLOAT:
3276 work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
3277 reg_types_.DoubleLo(), reg_types_.DoubleHi());
3278 break;
3279 case Instruction::INT_TO_BYTE:
3280 work_line_->CheckUnaryOp(this, inst, reg_types_.Byte(), reg_types_.Integer());
3281 break;
3282 case Instruction::INT_TO_CHAR:
3283 work_line_->CheckUnaryOp(this, inst, reg_types_.Char(), reg_types_.Integer());
3284 break;
3285 case Instruction::INT_TO_SHORT:
3286 work_line_->CheckUnaryOp(this, inst, reg_types_.Short(), reg_types_.Integer());
3287 break;
3288
3289 case Instruction::ADD_INT:
3290 case Instruction::SUB_INT:
3291 case Instruction::MUL_INT:
3292 case Instruction::REM_INT:
3293 case Instruction::DIV_INT:
3294 case Instruction::SHL_INT:
3295 case Instruction::SHR_INT:
3296 case Instruction::USHR_INT:
3297 work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3298 reg_types_.Integer(), false);
3299 break;
3300 case Instruction::AND_INT:
3301 case Instruction::OR_INT:
3302 case Instruction::XOR_INT:
3303 work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3304 reg_types_.Integer(), true);
3305 break;
3306 case Instruction::ADD_LONG:
3307 case Instruction::SUB_LONG:
3308 case Instruction::MUL_LONG:
3309 case Instruction::DIV_LONG:
3310 case Instruction::REM_LONG:
3311 case Instruction::AND_LONG:
3312 case Instruction::OR_LONG:
3313 case Instruction::XOR_LONG:
3314 work_line_->CheckBinaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3315 reg_types_.LongLo(), reg_types_.LongHi(),
3316 reg_types_.LongLo(), reg_types_.LongHi());
3317 break;
3318 case Instruction::SHL_LONG:
3319 case Instruction::SHR_LONG:
3320 case Instruction::USHR_LONG:
3321 /* shift distance is Int, making these different from other binary operations */
3322 work_line_->CheckBinaryOpWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3323 reg_types_.Integer());
3324 break;
3325 case Instruction::ADD_FLOAT:
3326 case Instruction::SUB_FLOAT:
3327 case Instruction::MUL_FLOAT:
3328 case Instruction::DIV_FLOAT:
3329 case Instruction::REM_FLOAT:
3330 work_line_->CheckBinaryOp(this, inst, reg_types_.Float(), reg_types_.Float(),
3331 reg_types_.Float(), false);
3332 break;
3333 case Instruction::ADD_DOUBLE:
3334 case Instruction::SUB_DOUBLE:
3335 case Instruction::MUL_DOUBLE:
3336 case Instruction::DIV_DOUBLE:
3337 case Instruction::REM_DOUBLE:
3338 work_line_->CheckBinaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3339 reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3340 reg_types_.DoubleLo(), reg_types_.DoubleHi());
3341 break;
3342 case Instruction::ADD_INT_2ADDR:
3343 case Instruction::SUB_INT_2ADDR:
3344 case Instruction::MUL_INT_2ADDR:
3345 case Instruction::REM_INT_2ADDR:
3346 case Instruction::SHL_INT_2ADDR:
3347 case Instruction::SHR_INT_2ADDR:
3348 case Instruction::USHR_INT_2ADDR:
3349 work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3350 reg_types_.Integer(), false);
3351 break;
3352 case Instruction::AND_INT_2ADDR:
3353 case Instruction::OR_INT_2ADDR:
3354 case Instruction::XOR_INT_2ADDR:
3355 work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3356 reg_types_.Integer(), true);
3357 break;
3358 case Instruction::DIV_INT_2ADDR:
3359 work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3360 reg_types_.Integer(), false);
3361 break;
3362 case Instruction::ADD_LONG_2ADDR:
3363 case Instruction::SUB_LONG_2ADDR:
3364 case Instruction::MUL_LONG_2ADDR:
3365 case Instruction::DIV_LONG_2ADDR:
3366 case Instruction::REM_LONG_2ADDR:
3367 case Instruction::AND_LONG_2ADDR:
3368 case Instruction::OR_LONG_2ADDR:
3369 case Instruction::XOR_LONG_2ADDR:
3370 work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3371 reg_types_.LongLo(), reg_types_.LongHi(),
3372 reg_types_.LongLo(), reg_types_.LongHi());
3373 break;
3374 case Instruction::SHL_LONG_2ADDR:
3375 case Instruction::SHR_LONG_2ADDR:
3376 case Instruction::USHR_LONG_2ADDR:
3377 work_line_->CheckBinaryOp2addrWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3378 reg_types_.Integer());
3379 break;
3380 case Instruction::ADD_FLOAT_2ADDR:
3381 case Instruction::SUB_FLOAT_2ADDR:
3382 case Instruction::MUL_FLOAT_2ADDR:
3383 case Instruction::DIV_FLOAT_2ADDR:
3384 case Instruction::REM_FLOAT_2ADDR:
3385 work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Float(), reg_types_.Float(),
3386 reg_types_.Float(), false);
3387 break;
3388 case Instruction::ADD_DOUBLE_2ADDR:
3389 case Instruction::SUB_DOUBLE_2ADDR:
3390 case Instruction::MUL_DOUBLE_2ADDR:
3391 case Instruction::DIV_DOUBLE_2ADDR:
3392 case Instruction::REM_DOUBLE_2ADDR:
3393 work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3394 reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3395 reg_types_.DoubleLo(), reg_types_.DoubleHi());
3396 break;
3397 case Instruction::ADD_INT_LIT16:
3398 case Instruction::RSUB_INT_LIT16:
3399 case Instruction::MUL_INT_LIT16:
3400 case Instruction::DIV_INT_LIT16:
3401 case Instruction::REM_INT_LIT16:
3402 work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
3403 true);
3404 break;
3405 case Instruction::AND_INT_LIT16:
3406 case Instruction::OR_INT_LIT16:
3407 case Instruction::XOR_INT_LIT16:
3408 work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
3409 true);
3410 break;
3411 case Instruction::ADD_INT_LIT8:
3412 case Instruction::RSUB_INT_LIT8:
3413 case Instruction::MUL_INT_LIT8:
3414 case Instruction::DIV_INT_LIT8:
3415 case Instruction::REM_INT_LIT8:
3416 case Instruction::SHL_INT_LIT8:
3417 case Instruction::SHR_INT_LIT8:
3418 case Instruction::USHR_INT_LIT8:
3419 work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
3420 false);
3421 break;
3422 case Instruction::AND_INT_LIT8:
3423 case Instruction::OR_INT_LIT8:
3424 case Instruction::XOR_INT_LIT8:
3425 work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
3426 false);
3427 break;
3428
3429 // Special instructions.
3430 case Instruction::RETURN_VOID_NO_BARRIER:
3431 if (IsConstructor() && !IsStatic()) {
3432 const RegType& declaring_class = GetDeclaringClass();
3433 if (declaring_class.IsUnresolvedReference()) {
3434 // We must iterate over the fields, even if we cannot use mirror classes to do so. Do it
3435 // manually over the underlying dex file.
3436 uint32_t first_index = GetFirstFinalInstanceFieldIndex(*dex_file_,
3437 dex_file_->GetMethodId(dex_method_idx_).class_idx_);
3438 if (first_index != dex::kDexNoIndex) {
3439 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-no-barrier not expected for field "
3440 << first_index;
3441 }
3442 break;
3443 }
3444 ObjPtr<mirror::Class> klass = declaring_class.GetClass();
3445 for (uint32_t i = 0, num_fields = klass->NumInstanceFields(); i < num_fields; ++i) {
3446 if (klass->GetInstanceField(i)->IsFinal()) {
3447 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-no-barrier not expected for "
3448 << klass->GetInstanceField(i)->PrettyField();
3449 break;
3450 }
3451 }
3452 }
3453 // Handle this like a RETURN_VOID now. Code is duplicated to separate standard from
3454 // quickened opcodes (otherwise this could be a fall-through).
3455 if (!IsConstructor()) {
3456 if (!GetMethodReturnType().IsConflict()) {
3457 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
3458 }
3459 }
3460 break;
3461
3462 /* These should never appear during verification. */
3463 case Instruction::UNUSED_3E ... Instruction::UNUSED_43:
3464 case Instruction::UNUSED_F3 ... Instruction::UNUSED_F9:
3465 case Instruction::UNUSED_79:
3466 case Instruction::UNUSED_7A:
3467 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
3468 break;
3469
3470 /*
3471 * DO NOT add a "default" clause here. Without it the compiler will
3472 * complain if an instruction is missing (which is desirable).
3473 */
3474 } // end - switch (dec_insn.opcode)
3475
3476 if (flags_.have_pending_hard_failure_) {
3477 if (IsAotMode()) {
3478 /* When AOT compiling, check that the last failure is a hard failure */
3479 if (failures_[failures_.size() - 1] != VERIFY_ERROR_BAD_CLASS_HARD) {
3480 LOG(ERROR) << "Pending failures:";
3481 for (auto& error : failures_) {
3482 LOG(ERROR) << error;
3483 }
3484 for (auto& error_msg : failure_messages_) {
3485 LOG(ERROR) << error_msg->str();
3486 }
3487 LOG(FATAL) << "Pending hard failure, but last failure not hard.";
3488 }
3489 }
3490 /* immediate failure, reject class */
3491 info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
3492 return false;
3493 } else if (flags_.have_pending_runtime_throw_failure_) {
3494 LogVerifyInfo() << "Elevating opcode flags from " << opcode_flags << " to Throw";
3495 /* checking interpreter will throw, mark following code as unreachable */
3496 opcode_flags = Instruction::kThrow;
3497 // Note: the flag must be reset as it is only global to decouple Fail and is semantically per
3498 // instruction. However, RETURN checking may throw LOCKING errors, so we clear at the
3499 // very end.
3500 }
3501 /*
3502 * If we didn't just set the result register, clear it out. This ensures that you can only use
3503 * "move-result" immediately after the result is set. (We could check this statically, but it's
3504 * not expensive and it makes our debugging output cleaner.)
3505 */
3506 if (!just_set_result) {
3507 work_line_->SetResultTypeToUnknown(GetRegTypeCache());
3508 }
3509
3510 /*
3511 * Handle "branch". Tag the branch target.
3512 *
3513 * NOTE: instructions like Instruction::EQZ provide information about the
3514 * state of the register when the branch is taken or not taken. For example,
3515 * somebody could get a reference field, check it for zero, and if the
3516 * branch is taken immediately store that register in a boolean field
3517 * since the value is known to be zero. We do not currently account for
3518 * that, and will reject the code.
3519 *
3520 * TODO: avoid re-fetching the branch target
3521 */
3522 if ((opcode_flags & Instruction::kBranch) != 0) {
3523 bool isConditional, selfOkay;
3524 if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
3525 /* should never happen after static verification */
3526 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
3527 return false;
3528 }
3529 DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
3530 if (!CheckNotMoveExceptionOrMoveResult(code_item_accessor_.Insns(),
3531 work_insn_idx_ + branch_target)) {
3532 return false;
3533 }
3534 /* update branch target, set "changed" if appropriate */
3535 if (nullptr != branch_line) {
3536 if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get(), false)) {
3537 return false;
3538 }
3539 } else {
3540 if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get(), false)) {
3541 return false;
3542 }
3543 }
3544 }
3545
3546 /*
3547 * Handle "switch". Tag all possible branch targets.
3548 *
3549 * We've already verified that the table is structurally sound, so we
3550 * just need to walk through and tag the targets.
3551 */
3552 if ((opcode_flags & Instruction::kSwitch) != 0) {
3553 int offset_to_switch = insns[1] | (static_cast<int32_t>(insns[2]) << 16);
3554 const uint16_t* switch_insns = insns + offset_to_switch;
3555 int switch_count = switch_insns[1];
3556 int offset_to_targets, targ;
3557
3558 if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
3559 /* 0 = sig, 1 = count, 2/3 = first key */
3560 offset_to_targets = 4;
3561 } else {
3562 /* 0 = sig, 1 = count, 2..count * 2 = keys */
3563 DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
3564 offset_to_targets = 2 + 2 * switch_count;
3565 }
3566
3567 /* verify each switch target */
3568 for (targ = 0; targ < switch_count; targ++) {
3569 int offset;
3570 uint32_t abs_offset;
3571
3572 /* offsets are 32-bit, and only partly endian-swapped */
3573 offset = switch_insns[offset_to_targets + targ * 2] |
3574 (static_cast<int32_t>(switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
3575 abs_offset = work_insn_idx_ + offset;
3576 DCHECK_LT(abs_offset, code_item_accessor_.InsnsSizeInCodeUnits());
3577 if (!CheckNotMoveExceptionOrMoveResult(code_item_accessor_.Insns(), abs_offset)) {
3578 return false;
3579 }
3580 if (!UpdateRegisters(abs_offset, work_line_.get(), false)) {
3581 return false;
3582 }
3583 }
3584 }
3585
3586 /*
3587 * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
3588 * "try" block when they throw, control transfers out of the method.)
3589 */
3590 if ((opcode_flags & Instruction::kThrow) != 0 && GetInstructionFlags(work_insn_idx_).IsInTry()) {
3591 bool has_catch_all_handler = false;
3592 const dex::TryItem* try_item = code_item_accessor_.FindTryItem(work_insn_idx_);
3593 CHECK(try_item != nullptr);
3594 CatchHandlerIterator iterator(code_item_accessor_, *try_item);
3595
3596 // Need the linker to try and resolve the handled class to check if it's Throwable.
3597 ClassLinker* linker = GetClassLinker();
3598
3599 for (; iterator.HasNext(); iterator.Next()) {
3600 dex::TypeIndex handler_type_idx = iterator.GetHandlerTypeIndex();
3601 if (!handler_type_idx.IsValid()) {
3602 has_catch_all_handler = true;
3603 } else {
3604 // It is also a catch-all if it is java.lang.Throwable.
3605 ObjPtr<mirror::Class> klass =
3606 linker->ResolveType(handler_type_idx, dex_cache_, class_loader_);
3607 if (klass != nullptr) {
3608 if (klass == GetClassRoot<mirror::Throwable>()) {
3609 has_catch_all_handler = true;
3610 }
3611 } else {
3612 // Clear exception.
3613 DCHECK(self_->IsExceptionPending());
3614 self_->ClearException();
3615 }
3616 }
3617 /*
3618 * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
3619 * "work_regs", because at runtime the exception will be thrown before the instruction
3620 * modifies any registers.
3621 */
3622 if (kVerifierDebug) {
3623 LogVerifyInfo() << "Updating exception handler 0x"
3624 << std::hex << iterator.GetHandlerAddress();
3625 }
3626 if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get(), false)) {
3627 return false;
3628 }
3629 }
3630
3631 /*
3632 * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
3633 * instruction. This does apply to monitor-exit because of async exception handling.
3634 */
3635 if (work_line_->MonitorStackDepth() > 0 && !has_catch_all_handler) {
3636 /*
3637 * The state in work_line reflects the post-execution state. If the current instruction is a
3638 * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
3639 * it will do so before grabbing the lock).
3640 */
3641 if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
3642 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
3643 << "expected to be within a catch-all for an instruction where a monitor is held";
3644 return false;
3645 }
3646 }
3647 }
3648
3649 /* Handle "continue". Tag the next consecutive instruction.
3650 * Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
3651 * because it changes work_line_ when performing peephole optimization
3652 * and this change should not be used in those cases.
3653 */
3654 if ((opcode_flags & Instruction::kContinue) != 0 && !exc_handler_unreachable) {
3655 DCHECK_EQ(&code_item_accessor_.InstructionAt(work_insn_idx_), inst);
3656 uint32_t next_insn_idx = work_insn_idx_ + inst->SizeInCodeUnits();
3657 if (next_insn_idx >= code_item_accessor_.InsnsSizeInCodeUnits()) {
3658 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
3659 return false;
3660 }
3661 // The only way to get to a move-exception instruction is to get thrown there. Make sure the
3662 // next instruction isn't one.
3663 if (!CheckNotMoveException(code_item_accessor_.Insns(), next_insn_idx)) {
3664 return false;
3665 }
3666 if (nullptr != fallthrough_line) {
3667 // Make workline consistent with fallthrough computed from peephole optimization.
3668 work_line_->CopyFromLine(fallthrough_line.get());
3669 }
3670 if (GetInstructionFlags(next_insn_idx).IsReturn()) {
3671 // For returns we only care about the operand to the return, all other registers are dead.
3672 const Instruction* ret_inst = &code_item_accessor_.InstructionAt(next_insn_idx);
3673 AdjustReturnLine(this, ret_inst, work_line_.get());
3674 }
3675 RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
3676 if (next_line != nullptr) {
3677 // Merge registers into what we have for the next instruction, and set the "changed" flag if
3678 // needed. If the merge changes the state of the registers then the work line will be
3679 // updated.
3680 if (!UpdateRegisters(next_insn_idx, work_line_.get(), true)) {
3681 return false;
3682 }
3683 } else {
3684 /*
3685 * We're not recording register data for the next instruction, so we don't know what the
3686 * prior state was. We have to assume that something has changed and re-evaluate it.
3687 */
3688 GetModifiableInstructionFlags(next_insn_idx).SetChanged();
3689 }
3690 }
3691
3692 /* If we're returning from the method, make sure monitor stack is empty. */
3693 if ((opcode_flags & Instruction::kReturn) != 0) {
3694 work_line_->VerifyMonitorStackEmpty(this);
3695 }
3696
3697 /*
3698 * Update start_guess. Advance to the next instruction of that's
3699 * possible, otherwise use the branch target if one was found. If
3700 * neither of those exists we're in a return or throw; leave start_guess
3701 * alone and let the caller sort it out.
3702 */
3703 if ((opcode_flags & Instruction::kContinue) != 0) {
3704 DCHECK_EQ(&code_item_accessor_.InstructionAt(work_insn_idx_), inst);
3705 *start_guess = work_insn_idx_ + inst->SizeInCodeUnits();
3706 } else if ((opcode_flags & Instruction::kBranch) != 0) {
3707 /* we're still okay if branch_target is zero */
3708 *start_guess = work_insn_idx_ + branch_target;
3709 }
3710
3711 DCHECK_LT(*start_guess, code_item_accessor_.InsnsSizeInCodeUnits());
3712 DCHECK(GetInstructionFlags(*start_guess).IsOpcode());
3713
3714 if (flags_.have_pending_runtime_throw_failure_) {
3715 flags_.have_any_pending_runtime_throw_failure_ = true;
3716 // Reset the pending_runtime_throw flag now.
3717 flags_.have_pending_runtime_throw_failure_ = false;
3718 }
3719
3720 return true;
3721 } // NOLINT(readability/fn_size)
3722
3723 template <bool kVerifierDebug>
3724 template <CheckAccess C>
ResolveClass(dex::TypeIndex class_idx)3725 const RegType& MethodVerifier<kVerifierDebug>::ResolveClass(dex::TypeIndex class_idx) {
3726 ClassLinker* linker = GetClassLinker();
3727 ObjPtr<mirror::Class> klass = can_load_classes_
3728 ? linker->ResolveType(class_idx, dex_cache_, class_loader_)
3729 : linker->LookupResolvedType(class_idx, dex_cache_.Get(), class_loader_.Get());
3730 if (can_load_classes_ && klass == nullptr) {
3731 DCHECK(self_->IsExceptionPending());
3732 self_->ClearException();
3733 }
3734 const RegType* result = nullptr;
3735 if (klass != nullptr) {
3736 bool precise = klass->CannotBeAssignedFromOtherTypes();
3737 if (precise && !IsInstantiableOrPrimitive(klass)) {
3738 const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3739 UninstantiableError(descriptor);
3740 precise = false;
3741 }
3742 result = reg_types_.FindClass(klass, precise);
3743 if (result == nullptr) {
3744 const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3745 result = reg_types_.InsertClass(descriptor, klass, precise);
3746 }
3747 } else {
3748 const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3749 result = ®_types_.FromDescriptor(class_loader_.Get(), descriptor, false);
3750 }
3751 DCHECK(result != nullptr);
3752 if (result->IsConflict()) {
3753 const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3754 Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
3755 << "' in " << GetDeclaringClass();
3756 return *result;
3757 }
3758
3759 // Record result of class resolution attempt.
3760 VerifierDeps::MaybeRecordClassResolution(*dex_file_, class_idx, klass);
3761
3762 // If requested, check if access is allowed. Unresolved types are included in this check, as the
3763 // interpreter only tests whether access is allowed when a class is not pre-verified and runs in
3764 // the access-checks interpreter. If result is primitive, skip the access check.
3765 //
3766 // Note: we do this for unresolved classes to trigger re-verification at runtime.
3767 if (C != CheckAccess::kNo &&
3768 result->IsNonZeroReferenceTypes() &&
3769 ((C == CheckAccess::kYes && IsSdkVersionSetAndAtLeast(api_level_, SdkVersion::kP))
3770 || !result->IsUnresolvedTypes())) {
3771 const RegType& referrer = GetDeclaringClass();
3772 if ((IsSdkVersionSetAndAtLeast(api_level_, SdkVersion::kP) || !referrer.IsUnresolvedTypes()) &&
3773 !referrer.CanAccess(*result)) {
3774 Fail(VERIFY_ERROR_ACCESS_CLASS) << "(possibly) illegal class access: '"
3775 << referrer << "' -> '" << *result << "'";
3776 }
3777 }
3778 return *result;
3779 }
3780
3781 template <bool kVerifierDebug>
HandleMoveException(const Instruction * inst)3782 bool MethodVerifier<kVerifierDebug>::HandleMoveException(const Instruction* inst) {
3783 // We do not allow MOVE_EXCEPTION as the first instruction in a method. This is a simple case
3784 // where one entrypoint to the catch block is not actually an exception path.
3785 if (work_insn_idx_ == 0) {
3786 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "move-exception at pc 0x0";
3787 return true;
3788 }
3789 /*
3790 * This statement can only appear as the first instruction in an exception handler. We verify
3791 * that as part of extracting the exception type from the catch block list.
3792 */
3793 auto caught_exc_type_fn = [&]() REQUIRES_SHARED(Locks::mutator_lock_) ->
3794 std::pair<bool, const RegType*> {
3795 const RegType* common_super = nullptr;
3796 if (code_item_accessor_.TriesSize() != 0) {
3797 const uint8_t* handlers_ptr = code_item_accessor_.GetCatchHandlerData();
3798 uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
3799 const RegType* unresolved = nullptr;
3800 for (uint32_t i = 0; i < handlers_size; i++) {
3801 CatchHandlerIterator iterator(handlers_ptr);
3802 for (; iterator.HasNext(); iterator.Next()) {
3803 if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
3804 if (!iterator.GetHandlerTypeIndex().IsValid()) {
3805 common_super = ®_types_.JavaLangThrowable(false);
3806 } else {
3807 // Do access checks only on resolved exception classes.
3808 const RegType& exception =
3809 ResolveClass<CheckAccess::kOnResolvedClass>(iterator.GetHandlerTypeIndex());
3810 if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception, this)) {
3811 DCHECK(!exception.IsUninitializedTypes()); // Comes from dex, shouldn't be uninit.
3812 if (exception.IsUnresolvedTypes()) {
3813 if (unresolved == nullptr) {
3814 unresolved = &exception;
3815 } else {
3816 unresolved = &unresolved->SafeMerge(exception, ®_types_, this);
3817 }
3818 } else {
3819 Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class "
3820 << exception;
3821 return std::make_pair(true, ®_types_.Conflict());
3822 }
3823 } else if (common_super == nullptr) {
3824 common_super = &exception;
3825 } else if (common_super->Equals(exception)) {
3826 // odd case, but nothing to do
3827 } else {
3828 common_super = &common_super->Merge(exception, ®_types_, this);
3829 if (FailOrAbort(reg_types_.JavaLangThrowable(false).IsAssignableFrom(
3830 *common_super, this),
3831 "java.lang.Throwable is not assignable-from common_super at ",
3832 work_insn_idx_)) {
3833 break;
3834 }
3835 }
3836 }
3837 }
3838 }
3839 handlers_ptr = iterator.EndDataPointer();
3840 }
3841 if (unresolved != nullptr) {
3842 if (!IsAotMode() && common_super == nullptr) {
3843 // This is an unreachable handler.
3844
3845 // We need to post a failure. The compiler currently does not handle unreachable
3846 // code correctly.
3847 Fail(VERIFY_ERROR_SKIP_COMPILER, /*pending_exc=*/ false)
3848 << "Unresolved catch handler, fail for compiler";
3849
3850 return std::make_pair(false, unresolved);
3851 }
3852 // Soft-fail, but do not handle this with a synthetic throw.
3853 Fail(VERIFY_ERROR_NO_CLASS, /*pending_exc=*/ false) << "Unresolved catch handler";
3854 if (common_super != nullptr) {
3855 unresolved = &unresolved->Merge(*common_super, ®_types_, this);
3856 }
3857 return std::make_pair(true, unresolved);
3858 }
3859 }
3860 if (common_super == nullptr) {
3861 /* no catch blocks, or no catches with classes we can find */
3862 Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
3863 return std::make_pair(true, ®_types_.Conflict());
3864 }
3865 return std::make_pair(true, common_super);
3866 };
3867 auto result = caught_exc_type_fn();
3868 work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_11x(), *result.second);
3869 return result.first;
3870 }
3871
3872 template <bool kVerifierDebug>
ResolveMethodAndCheckAccess(uint32_t dex_method_idx,MethodType method_type)3873 ArtMethod* MethodVerifier<kVerifierDebug>::ResolveMethodAndCheckAccess(
3874 uint32_t dex_method_idx, MethodType method_type) {
3875 const dex::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
3876 const RegType& klass_type = ResolveClass<CheckAccess::kYes>(method_id.class_idx_);
3877 if (klass_type.IsConflict()) {
3878 std::string append(" in attempt to access method ");
3879 append += dex_file_->GetMethodName(method_id);
3880 AppendToLastFailMessage(append);
3881 return nullptr;
3882 }
3883 if (klass_type.IsUnresolvedTypes()) {
3884 return nullptr; // Can't resolve Class so no more to do here
3885 }
3886 ObjPtr<mirror::Class> klass = klass_type.GetClass();
3887 const RegType& referrer = GetDeclaringClass();
3888 ClassLinker* class_linker = GetClassLinker();
3889 PointerSize pointer_size = class_linker->GetImagePointerSize();
3890
3891 ArtMethod* res_method = dex_cache_->GetResolvedMethod(dex_method_idx, pointer_size);
3892 if (res_method == nullptr) {
3893 res_method = class_linker->FindResolvedMethod(
3894 klass, dex_cache_.Get(), class_loader_.Get(), dex_method_idx);
3895 }
3896
3897 // Record result of method resolution attempt. The klass resolution has recorded whether
3898 // the class is an interface or not and therefore the type of the lookup performed above.
3899 // TODO: Maybe we should not record dependency if the invoke type does not match the lookup type.
3900 VerifierDeps::MaybeRecordMethodResolution(*dex_file_, dex_method_idx, res_method);
3901
3902 bool must_fail = false;
3903 // This is traditional and helps with screwy bytecode. It will tell you that, yes, a method
3904 // exists, but that it's called incorrectly. This significantly helps debugging, as locally it's
3905 // hard to see the differences.
3906 // If we don't have res_method here we must fail. Just use this bool to make sure of that with a
3907 // DCHECK.
3908 if (res_method == nullptr) {
3909 must_fail = true;
3910 // Try to find the method also with the other type for better error reporting below
3911 // but do not store such bogus lookup result in the DexCache or VerifierDeps.
3912 res_method = class_linker->FindIncompatibleMethod(
3913 klass, dex_cache_.Get(), class_loader_.Get(), dex_method_idx);
3914 }
3915
3916 if (res_method == nullptr) {
3917 Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
3918 << klass->PrettyDescriptor() << "."
3919 << dex_file_->GetMethodName(method_id) << " "
3920 << dex_file_->GetMethodSignature(method_id);
3921 return nullptr;
3922 }
3923
3924 // Make sure calls to constructors are "direct". There are additional restrictions but we don't
3925 // enforce them here.
3926 if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
3927 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
3928 << res_method->PrettyMethod();
3929 return nullptr;
3930 }
3931 // Disallow any calls to class initializers.
3932 if (res_method->IsClassInitializer()) {
3933 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
3934 << res_method->PrettyMethod();
3935 return nullptr;
3936 }
3937
3938 // Check that interface methods are static or match interface classes.
3939 // We only allow statics if we don't have default methods enabled.
3940 //
3941 // Note: this check must be after the initializer check, as those are required to fail a class,
3942 // while this check implies an IncompatibleClassChangeError.
3943 if (klass->IsInterface()) {
3944 // methods called on interfaces should be invoke-interface, invoke-super, invoke-direct (if
3945 // default methods are supported for the dex file), or invoke-static.
3946 if (method_type != METHOD_INTERFACE &&
3947 method_type != METHOD_STATIC &&
3948 (!dex_file_->SupportsDefaultMethods() ||
3949 method_type != METHOD_DIRECT) &&
3950 method_type != METHOD_SUPER) {
3951 Fail(VERIFY_ERROR_CLASS_CHANGE)
3952 << "non-interface method " << dex_file_->PrettyMethod(dex_method_idx)
3953 << " is in an interface class " << klass->PrettyClass();
3954 return nullptr;
3955 }
3956 } else {
3957 if (method_type == METHOD_INTERFACE) {
3958 Fail(VERIFY_ERROR_CLASS_CHANGE)
3959 << "interface method " << dex_file_->PrettyMethod(dex_method_idx)
3960 << " is in a non-interface class " << klass->PrettyClass();
3961 return nullptr;
3962 }
3963 }
3964
3965 // Check specifically for non-public object methods being provided for interface dispatch. This
3966 // can occur if we failed to find a method with FindInterfaceMethod but later find one with
3967 // FindClassMethod for error message use.
3968 if (method_type == METHOD_INTERFACE &&
3969 res_method->GetDeclaringClass()->IsObjectClass() &&
3970 !res_method->IsPublic()) {
3971 Fail(VERIFY_ERROR_NO_METHOD) << "invoke-interface " << klass->PrettyDescriptor() << "."
3972 << dex_file_->GetMethodName(method_id) << " "
3973 << dex_file_->GetMethodSignature(method_id) << " resolved to "
3974 << "non-public object method " << res_method->PrettyMethod() << " "
3975 << "but non-public Object methods are excluded from interface "
3976 << "method resolution.";
3977 return nullptr;
3978 }
3979 // Check if access is allowed.
3980 if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
3981 Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call "
3982 << res_method->PrettyMethod()
3983 << " from " << referrer << ")";
3984 return res_method;
3985 }
3986 // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
3987 if (res_method->IsPrivate() && (method_type == METHOD_VIRTUAL || method_type == METHOD_SUPER)) {
3988 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
3989 << res_method->PrettyMethod();
3990 return nullptr;
3991 }
3992 // See if the method type implied by the invoke instruction matches the access flags for the
3993 // target method. The flags for METHOD_POLYMORPHIC are based on there being precisely two
3994 // signature polymorphic methods supported by the run-time which are native methods with variable
3995 // arguments.
3996 if ((method_type == METHOD_DIRECT && (!res_method->IsDirect() || res_method->IsStatic())) ||
3997 (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
3998 ((method_type == METHOD_SUPER ||
3999 method_type == METHOD_VIRTUAL ||
4000 method_type == METHOD_INTERFACE) && res_method->IsDirect()) ||
4001 ((method_type == METHOD_POLYMORPHIC) &&
4002 (!res_method->IsNative() || !res_method->IsVarargs()))) {
4003 Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
4004 "type of " << res_method->PrettyMethod();
4005 return nullptr;
4006 }
4007 // Make sure we weren't expecting to fail.
4008 DCHECK(!must_fail) << "invoke type (" << method_type << ")"
4009 << klass->PrettyDescriptor() << "."
4010 << dex_file_->GetMethodName(method_id) << " "
4011 << dex_file_->GetMethodSignature(method_id) << " unexpectedly resolved to "
4012 << res_method->PrettyMethod() << " without error. Initially this method was "
4013 << "not found so we were expecting to fail for some reason.";
4014 return res_method;
4015 }
4016
4017 template <bool kVerifierDebug>
4018 template <class T>
VerifyInvocationArgsFromIterator(T * it,const Instruction * inst,MethodType method_type,bool is_range,ArtMethod * res_method)4019 ArtMethod* MethodVerifier<kVerifierDebug>::VerifyInvocationArgsFromIterator(
4020 T* it, const Instruction* inst, MethodType method_type, bool is_range, ArtMethod* res_method) {
4021 DCHECK_EQ(!is_range, inst->HasVarArgs());
4022
4023 // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
4024 // match the call to the signature. Also, we might be calling through an abstract method
4025 // definition (which doesn't have register count values).
4026 const size_t expected_args = inst->VRegA();
4027 /* caught by static verifier */
4028 DCHECK(is_range || expected_args <= 5);
4029
4030 if (expected_args > code_item_accessor_.OutsSize()) {
4031 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
4032 << ") exceeds outsSize ("
4033 << code_item_accessor_.OutsSize() << ")";
4034 return nullptr;
4035 }
4036
4037 /*
4038 * Check the "this" argument, which must be an instance of the class that declared the method.
4039 * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
4040 * rigorous check here (which is okay since we have to do it at runtime).
4041 */
4042 if (method_type != METHOD_STATIC) {
4043 const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst);
4044 if (actual_arg_type.IsConflict()) { // GetInvocationThis failed.
4045 CHECK(flags_.have_pending_hard_failure_);
4046 return nullptr;
4047 }
4048 bool is_init = false;
4049 if (actual_arg_type.IsUninitializedTypes()) {
4050 if (res_method) {
4051 if (!res_method->IsConstructor()) {
4052 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
4053 return nullptr;
4054 }
4055 } else {
4056 // Check whether the name of the called method is "<init>"
4057 const uint32_t method_idx = GetMethodIdxOfInvoke(inst);
4058 if (strcmp(dex_file_->GetMethodName(dex_file_->GetMethodId(method_idx)), "<init>") != 0) {
4059 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
4060 return nullptr;
4061 }
4062 }
4063 is_init = true;
4064 }
4065 const RegType& adjusted_type = is_init
4066 ? GetRegTypeCache()->FromUninitialized(actual_arg_type)
4067 : actual_arg_type;
4068 if (method_type != METHOD_INTERFACE && !adjusted_type.IsZeroOrNull()) {
4069 const RegType* res_method_class;
4070 // Miranda methods have the declaring interface as their declaring class, not the abstract
4071 // class. It would be wrong to use this for the type check (interface type checks are
4072 // postponed to runtime).
4073 if (res_method != nullptr && !res_method->IsMiranda()) {
4074 ObjPtr<mirror::Class> klass = res_method->GetDeclaringClass();
4075 std::string temp;
4076 res_method_class = &FromClass(klass->GetDescriptor(&temp), klass,
4077 klass->CannotBeAssignedFromOtherTypes());
4078 } else {
4079 const uint32_t method_idx = GetMethodIdxOfInvoke(inst);
4080 const dex::TypeIndex class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
4081 res_method_class = ®_types_.FromDescriptor(
4082 class_loader_.Get(),
4083 dex_file_->StringByTypeIdx(class_idx),
4084 false);
4085 }
4086 if (!res_method_class->IsAssignableFrom(adjusted_type, this)) {
4087 Fail(adjusted_type.IsUnresolvedTypes()
4088 ? VERIFY_ERROR_NO_CLASS
4089 : VERIFY_ERROR_BAD_CLASS_SOFT)
4090 << "'this' argument '" << actual_arg_type << "' not instance of '"
4091 << *res_method_class << "'";
4092 // Continue on soft failures. We need to find possible hard failures to avoid problems in
4093 // the compiler.
4094 if (flags_.have_pending_hard_failure_) {
4095 return nullptr;
4096 }
4097 }
4098 }
4099 }
4100
4101 uint32_t arg[5];
4102 if (!is_range) {
4103 inst->GetVarArgs(arg);
4104 }
4105 uint32_t sig_registers = (method_type == METHOD_STATIC) ? 0 : 1;
4106 for ( ; it->HasNext(); it->Next()) {
4107 if (sig_registers >= expected_args) {
4108 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() <<
4109 " argument registers, method signature has " << sig_registers + 1 << " or more";
4110 return nullptr;
4111 }
4112
4113 const char* param_descriptor = it->GetDescriptor();
4114
4115 if (param_descriptor == nullptr) {
4116 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation because of missing signature "
4117 "component";
4118 return nullptr;
4119 }
4120
4121 const RegType& reg_type = reg_types_.FromDescriptor(class_loader_.Get(),
4122 param_descriptor,
4123 false);
4124 uint32_t get_reg = is_range ? inst->VRegC() + static_cast<uint32_t>(sig_registers) :
4125 arg[sig_registers];
4126 if (reg_type.IsIntegralTypes()) {
4127 const RegType& src_type = work_line_->GetRegisterType(this, get_reg);
4128 if (!src_type.IsIntegralTypes()) {
4129 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
4130 << " but expected " << reg_type;
4131 return nullptr;
4132 }
4133 } else {
4134 if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
4135 // Continue on soft failures. We need to find possible hard failures to avoid problems in
4136 // the compiler.
4137 if (flags_.have_pending_hard_failure_) {
4138 return nullptr;
4139 }
4140 } else if (reg_type.IsLongOrDoubleTypes()) {
4141 // Check that registers are consecutive (for non-range invokes). Invokes are the only
4142 // instructions not specifying register pairs by the first component, but require them
4143 // nonetheless. Only check when there's an actual register in the parameters. If there's
4144 // none, this will fail below.
4145 if (!is_range && sig_registers + 1 < expected_args) {
4146 uint32_t second_reg = arg[sig_registers + 1];
4147 if (second_reg != get_reg + 1) {
4148 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, long or double parameter "
4149 "at index " << sig_registers << " is not a pair: " << get_reg << " + "
4150 << second_reg << ".";
4151 return nullptr;
4152 }
4153 }
4154 }
4155 }
4156 sig_registers += reg_type.IsLongOrDoubleTypes() ? 2 : 1;
4157 }
4158 if (expected_args != sig_registers) {
4159 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << expected_args <<
4160 " argument registers, method signature has " << sig_registers;
4161 return nullptr;
4162 }
4163 return res_method;
4164 }
4165
4166 template <bool kVerifierDebug>
VerifyInvocationArgsUnresolvedMethod(const Instruction * inst,MethodType method_type,bool is_range)4167 void MethodVerifier<kVerifierDebug>::VerifyInvocationArgsUnresolvedMethod(const Instruction* inst,
4168 MethodType method_type,
4169 bool is_range) {
4170 // As the method may not have been resolved, make this static check against what we expect.
4171 // The main reason for this code block is to fail hard when we find an illegal use, e.g.,
4172 // wrong number of arguments or wrong primitive types, even if the method could not be resolved.
4173 const uint32_t method_idx = GetMethodIdxOfInvoke(inst);
4174 DexFileParameterIterator it(*dex_file_,
4175 dex_file_->GetProtoId(dex_file_->GetMethodId(method_idx).proto_idx_));
4176 VerifyInvocationArgsFromIterator(&it, inst, method_type, is_range, nullptr);
4177 }
4178
4179 template <bool kVerifierDebug>
CheckCallSite(uint32_t call_site_idx)4180 bool MethodVerifier<kVerifierDebug>::CheckCallSite(uint32_t call_site_idx) {
4181 if (call_site_idx >= dex_file_->NumCallSiteIds()) {
4182 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Bad call site id #" << call_site_idx
4183 << " >= " << dex_file_->NumCallSiteIds();
4184 return false;
4185 }
4186
4187 CallSiteArrayValueIterator it(*dex_file_, dex_file_->GetCallSiteId(call_site_idx));
4188 // Check essential arguments are provided. The dex file verifier has verified indices of the
4189 // main values (method handle, name, method_type).
4190 static const size_t kRequiredArguments = 3;
4191 if (it.Size() < kRequiredArguments) {
4192 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site #" << call_site_idx
4193 << " has too few arguments: "
4194 << it.Size() << " < " << kRequiredArguments;
4195 return false;
4196 }
4197
4198 std::pair<const EncodedArrayValueIterator::ValueType, size_t> type_and_max[kRequiredArguments] =
4199 { { EncodedArrayValueIterator::ValueType::kMethodHandle, dex_file_->NumMethodHandles() },
4200 { EncodedArrayValueIterator::ValueType::kString, dex_file_->NumStringIds() },
4201 { EncodedArrayValueIterator::ValueType::kMethodType, dex_file_->NumProtoIds() }
4202 };
4203 uint32_t index[kRequiredArguments];
4204
4205 // Check arguments have expected types and are within permitted ranges.
4206 for (size_t i = 0; i < kRequiredArguments; ++i) {
4207 if (it.GetValueType() != type_and_max[i].first) {
4208 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site id #" << call_site_idx
4209 << " argument " << i << " has wrong type "
4210 << it.GetValueType() << "!=" << type_and_max[i].first;
4211 return false;
4212 }
4213 index[i] = static_cast<uint32_t>(it.GetJavaValue().i);
4214 if (index[i] >= type_and_max[i].second) {
4215 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site id #" << call_site_idx
4216 << " argument " << i << " bad index "
4217 << index[i] << " >= " << type_and_max[i].second;
4218 return false;
4219 }
4220 it.Next();
4221 }
4222
4223 // Check method handle kind is valid.
4224 const dex::MethodHandleItem& mh = dex_file_->GetMethodHandle(index[0]);
4225 if (mh.method_handle_type_ != static_cast<uint16_t>(DexFile::MethodHandleType::kInvokeStatic)) {
4226 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site #" << call_site_idx
4227 << " argument 0 method handle type is not InvokeStatic: "
4228 << mh.method_handle_type_;
4229 return false;
4230 }
4231 return true;
4232 }
4233
4234 class MethodParamListDescriptorIterator {
4235 public:
MethodParamListDescriptorIterator(ArtMethod * res_method)4236 explicit MethodParamListDescriptorIterator(ArtMethod* res_method) :
4237 res_method_(res_method), pos_(0), params_(res_method->GetParameterTypeList()),
4238 params_size_(params_ == nullptr ? 0 : params_->Size()) {
4239 }
4240
HasNext()4241 bool HasNext() {
4242 return pos_ < params_size_;
4243 }
4244
Next()4245 void Next() {
4246 ++pos_;
4247 }
4248
GetDescriptor()4249 const char* GetDescriptor() REQUIRES_SHARED(Locks::mutator_lock_) {
4250 return res_method_->GetTypeDescriptorFromTypeIdx(params_->GetTypeItem(pos_).type_idx_);
4251 }
4252
4253 private:
4254 ArtMethod* res_method_;
4255 size_t pos_;
4256 const dex::TypeList* params_;
4257 const size_t params_size_;
4258 };
4259
4260 template <bool kVerifierDebug>
VerifyInvocationArgs(const Instruction * inst,MethodType method_type,bool is_range)4261 ArtMethod* MethodVerifier<kVerifierDebug>::VerifyInvocationArgs(
4262 const Instruction* inst, MethodType method_type, bool is_range) {
4263 // Resolve the method. This could be an abstract or concrete method depending on what sort of call
4264 // we're making.
4265 const uint32_t method_idx = GetMethodIdxOfInvoke(inst);
4266 ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
4267 if (res_method == nullptr) { // error or class is unresolved
4268 // Check what we can statically.
4269 if (!flags_.have_pending_hard_failure_) {
4270 VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
4271 }
4272 return nullptr;
4273 }
4274
4275 // If we're using invoke-super(method), make sure that the executing method's class' superclass
4276 // has a vtable entry for the target method. Or the target is on a interface.
4277 if (method_type == METHOD_SUPER) {
4278 dex::TypeIndex class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
4279 const RegType& reference_type = reg_types_.FromDescriptor(
4280 class_loader_.Get(),
4281 dex_file_->StringByTypeIdx(class_idx),
4282 false);
4283 if (reference_type.IsUnresolvedTypes()) {
4284 Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "Unable to find referenced class from invoke-super";
4285 return nullptr;
4286 }
4287 if (reference_type.GetClass()->IsInterface()) {
4288 if (!GetDeclaringClass().HasClass()) {
4289 Fail(VERIFY_ERROR_NO_CLASS) << "Unable to resolve the full class of 'this' used in an"
4290 << "interface invoke-super";
4291 return nullptr;
4292 } else if (!reference_type.IsStrictlyAssignableFrom(GetDeclaringClass(), this)) {
4293 Fail(VERIFY_ERROR_CLASS_CHANGE)
4294 << "invoke-super in " << mirror::Class::PrettyClass(GetDeclaringClass().GetClass())
4295 << " in method "
4296 << dex_file_->PrettyMethod(dex_method_idx_) << " to method "
4297 << dex_file_->PrettyMethod(method_idx) << " references "
4298 << "non-super-interface type " << mirror::Class::PrettyClass(reference_type.GetClass());
4299 return nullptr;
4300 }
4301 } else {
4302 const RegType& super = GetDeclaringClass().GetSuperClass(®_types_);
4303 if (super.IsUnresolvedTypes()) {
4304 Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
4305 << dex_file_->PrettyMethod(dex_method_idx_)
4306 << " to super " << res_method->PrettyMethod();
4307 return nullptr;
4308 }
4309 if (!reference_type.IsStrictlyAssignableFrom(GetDeclaringClass(), this) ||
4310 (res_method->GetMethodIndex() >= super.GetClass()->GetVTableLength())) {
4311 Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
4312 << dex_file_->PrettyMethod(dex_method_idx_)
4313 << " to super " << super
4314 << "." << res_method->GetName()
4315 << res_method->GetSignature();
4316 return nullptr;
4317 }
4318 }
4319 }
4320
4321 if (UNLIKELY(method_type == METHOD_POLYMORPHIC)) {
4322 // Process the signature of the calling site that is invoking the method handle.
4323 dex::ProtoIndex proto_idx(inst->VRegH());
4324 DexFileParameterIterator it(*dex_file_, dex_file_->GetProtoId(proto_idx));
4325 return VerifyInvocationArgsFromIterator(&it, inst, method_type, is_range, res_method);
4326 } else {
4327 // Process the target method's signature.
4328 MethodParamListDescriptorIterator it(res_method);
4329 return VerifyInvocationArgsFromIterator(&it, inst, method_type, is_range, res_method);
4330 }
4331 }
4332
4333 template <bool kVerifierDebug>
CheckSignaturePolymorphicMethod(ArtMethod * method)4334 bool MethodVerifier<kVerifierDebug>::CheckSignaturePolymorphicMethod(ArtMethod* method) {
4335 ObjPtr<mirror::Class> klass = method->GetDeclaringClass();
4336 const char* method_name = method->GetName();
4337
4338 const char* expected_return_descriptor;
4339 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots = GetClassLinker()->GetClassRoots();
4340 if (klass == GetClassRoot<mirror::MethodHandle>(class_roots)) {
4341 expected_return_descriptor = mirror::MethodHandle::GetReturnTypeDescriptor(method_name);
4342 } else if (klass == GetClassRoot<mirror::VarHandle>(class_roots)) {
4343 expected_return_descriptor = mirror::VarHandle::GetReturnTypeDescriptor(method_name);
4344 } else {
4345 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4346 << "Signature polymorphic method in unsuppported class: " << klass->PrettyDescriptor();
4347 return false;
4348 }
4349
4350 if (expected_return_descriptor == nullptr) {
4351 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4352 << "Signature polymorphic method name invalid: " << method_name;
4353 return false;
4354 }
4355
4356 const dex::TypeList* types = method->GetParameterTypeList();
4357 if (types->Size() != 1) {
4358 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4359 << "Signature polymorphic method has too many arguments " << types->Size() << " != 1";
4360 return false;
4361 }
4362
4363 const dex::TypeIndex argument_type_index = types->GetTypeItem(0).type_idx_;
4364 const char* argument_descriptor = method->GetTypeDescriptorFromTypeIdx(argument_type_index);
4365 if (strcmp(argument_descriptor, "[Ljava/lang/Object;") != 0) {
4366 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4367 << "Signature polymorphic method has unexpected argument type: " << argument_descriptor;
4368 return false;
4369 }
4370
4371 const char* return_descriptor = method->GetReturnTypeDescriptor();
4372 if (strcmp(return_descriptor, expected_return_descriptor) != 0) {
4373 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4374 << "Signature polymorphic method has unexpected return type: " << return_descriptor
4375 << " != " << expected_return_descriptor;
4376 return false;
4377 }
4378
4379 return true;
4380 }
4381
4382 template <bool kVerifierDebug>
CheckSignaturePolymorphicReceiver(const Instruction * inst)4383 bool MethodVerifier<kVerifierDebug>::CheckSignaturePolymorphicReceiver(const Instruction* inst) {
4384 const RegType& this_type = work_line_->GetInvocationThis(this, inst);
4385 if (this_type.IsZeroOrNull()) {
4386 /* null pointer always passes (and always fails at run time) */
4387 return true;
4388 } else if (!this_type.IsNonZeroReferenceTypes()) {
4389 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4390 << "invoke-polymorphic receiver is not a reference: "
4391 << this_type;
4392 return false;
4393 } else if (this_type.IsUninitializedReference()) {
4394 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4395 << "invoke-polymorphic receiver is uninitialized: "
4396 << this_type;
4397 return false;
4398 } else if (!this_type.HasClass()) {
4399 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4400 << "invoke-polymorphic receiver has no class: "
4401 << this_type;
4402 return false;
4403 } else {
4404 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots = GetClassLinker()->GetClassRoots();
4405 if (!this_type.GetClass()->IsSubClass(GetClassRoot<mirror::MethodHandle>(class_roots)) &&
4406 !this_type.GetClass()->IsSubClass(GetClassRoot<mirror::VarHandle>(class_roots))) {
4407 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4408 << "invoke-polymorphic receiver is not a subclass of MethodHandle or VarHandle: "
4409 << this_type;
4410 return false;
4411 }
4412 }
4413 return true;
4414 }
4415
4416 template <bool kVerifierDebug>
VerifyNewArray(const Instruction * inst,bool is_filled,bool is_range)4417 void MethodVerifier<kVerifierDebug>::VerifyNewArray(const Instruction* inst,
4418 bool is_filled,
4419 bool is_range) {
4420 dex::TypeIndex type_idx;
4421 if (!is_filled) {
4422 DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
4423 type_idx = dex::TypeIndex(inst->VRegC_22c());
4424 } else if (!is_range) {
4425 DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
4426 type_idx = dex::TypeIndex(inst->VRegB_35c());
4427 } else {
4428 DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
4429 type_idx = dex::TypeIndex(inst->VRegB_3rc());
4430 }
4431 const RegType& res_type = ResolveClass<CheckAccess::kYes>(type_idx);
4432 if (res_type.IsConflict()) { // bad class
4433 DCHECK_NE(failures_.size(), 0U);
4434 } else {
4435 // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
4436 if (!res_type.IsArrayTypes()) {
4437 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
4438 } else if (!is_filled) {
4439 /* make sure "size" register is valid type */
4440 work_line_->VerifyRegisterType(this, inst->VRegB_22c(), reg_types_.Integer());
4441 /* set register type to array class */
4442 const RegType& precise_type = reg_types_.FromUninitialized(res_type);
4443 work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_22c(), precise_type);
4444 } else {
4445 DCHECK(!res_type.IsUnresolvedMergedReference());
4446 // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
4447 // the list and fail. It's legal, if silly, for arg_count to be zero.
4448 const RegType& expected_type = reg_types_.GetComponentType(res_type, class_loader_.Get());
4449 uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
4450 uint32_t arg[5];
4451 if (!is_range) {
4452 inst->GetVarArgs(arg);
4453 }
4454 for (size_t ui = 0; ui < arg_count; ui++) {
4455 uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
4456 if (!work_line_->VerifyRegisterType(this, get_reg, expected_type)) {
4457 work_line_->SetResultRegisterType(this, reg_types_.Conflict());
4458 return;
4459 }
4460 }
4461 // filled-array result goes into "result" register
4462 const RegType& precise_type = reg_types_.FromUninitialized(res_type);
4463 work_line_->SetResultRegisterType(this, precise_type);
4464 }
4465 }
4466 }
4467
4468 template <bool kVerifierDebug>
VerifyAGet(const Instruction * inst,const RegType & insn_type,bool is_primitive)4469 void MethodVerifier<kVerifierDebug>::VerifyAGet(const Instruction* inst,
4470 const RegType& insn_type,
4471 bool is_primitive) {
4472 const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
4473 if (!index_type.IsArrayIndexTypes()) {
4474 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
4475 } else {
4476 const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
4477 if (array_type.IsZeroOrNull()) {
4478 // Null array class; this code path will fail at runtime. Infer a merge-able type from the
4479 // instruction type.
4480 if (!is_primitive) {
4481 work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), reg_types_.Null());
4482 } else if (insn_type.IsInteger()) {
4483 // Pick a non-zero constant (to distinguish with null) that can fit in any primitive.
4484 // We cannot use 'insn_type' as it could be a float array or an int array.
4485 work_line_->SetRegisterType<LockOp::kClear>(
4486 this, inst->VRegA_23x(), DetermineCat1Constant(1, need_precise_constants_));
4487 } else if (insn_type.IsCategory1Types()) {
4488 // Category 1
4489 // The 'insn_type' is exactly the type we need.
4490 work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), insn_type);
4491 } else {
4492 // Category 2
4493 work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(),
4494 reg_types_.FromCat2ConstLo(0, false),
4495 reg_types_.FromCat2ConstHi(0, false));
4496 }
4497 } else if (!array_type.IsArrayTypes()) {
4498 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
4499 } else if (array_type.IsUnresolvedMergedReference()) {
4500 // Unresolved array types must be reference array types.
4501 if (is_primitive) {
4502 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
4503 << " source for category 1 aget";
4504 } else {
4505 Fail(VERIFY_ERROR_NO_CLASS) << "cannot verify aget for " << array_type
4506 << " because of missing class";
4507 // Approximate with java.lang.Object[].
4508 work_line_->SetRegisterType<LockOp::kClear>(this,
4509 inst->VRegA_23x(),
4510 reg_types_.JavaLangObject(false));
4511 }
4512 } else {
4513 /* verify the class */
4514 const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_.Get());
4515 if (!component_type.IsReferenceTypes() && !is_primitive) {
4516 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
4517 << " source for aget-object";
4518 } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
4519 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
4520 << " source for category 1 aget";
4521 } else if (is_primitive && !insn_type.Equals(component_type) &&
4522 !((insn_type.IsInteger() && component_type.IsFloat()) ||
4523 (insn_type.IsLong() && component_type.IsDouble()))) {
4524 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
4525 << " incompatible with aget of type " << insn_type;
4526 } else {
4527 // Use knowledge of the field type which is stronger than the type inferred from the
4528 // instruction, which can't differentiate object types and ints from floats, longs from
4529 // doubles.
4530 if (!component_type.IsLowHalf()) {
4531 work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), component_type);
4532 } else {
4533 work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(), component_type,
4534 component_type.HighHalf(®_types_));
4535 }
4536 }
4537 }
4538 }
4539 }
4540
4541 template <bool kVerifierDebug>
VerifyPrimitivePut(const RegType & target_type,const RegType & insn_type,const uint32_t vregA)4542 void MethodVerifier<kVerifierDebug>::VerifyPrimitivePut(const RegType& target_type,
4543 const RegType& insn_type,
4544 const uint32_t vregA) {
4545 // Primitive assignability rules are weaker than regular assignability rules.
4546 bool instruction_compatible;
4547 bool value_compatible;
4548 const RegType& value_type = work_line_->GetRegisterType(this, vregA);
4549 if (target_type.IsIntegralTypes()) {
4550 instruction_compatible = target_type.Equals(insn_type);
4551 value_compatible = value_type.IsIntegralTypes();
4552 } else if (target_type.IsFloat()) {
4553 instruction_compatible = insn_type.IsInteger(); // no put-float, so expect put-int
4554 value_compatible = value_type.IsFloatTypes();
4555 } else if (target_type.IsLong()) {
4556 instruction_compatible = insn_type.IsLong();
4557 // Additional register check: this is not checked statically (as part of VerifyInstructions),
4558 // as target_type depends on the resolved type of the field.
4559 if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
4560 const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
4561 value_compatible = value_type.IsLongTypes() && value_type.CheckWidePair(value_type_hi);
4562 } else {
4563 value_compatible = false;
4564 }
4565 } else if (target_type.IsDouble()) {
4566 instruction_compatible = insn_type.IsLong(); // no put-double, so expect put-long
4567 // Additional register check: this is not checked statically (as part of VerifyInstructions),
4568 // as target_type depends on the resolved type of the field.
4569 if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
4570 const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
4571 value_compatible = value_type.IsDoubleTypes() && value_type.CheckWidePair(value_type_hi);
4572 } else {
4573 value_compatible = false;
4574 }
4575 } else {
4576 instruction_compatible = false; // reference with primitive store
4577 value_compatible = false; // unused
4578 }
4579 if (!instruction_compatible) {
4580 // This is a global failure rather than a class change failure as the instructions and
4581 // the descriptors for the type should have been consistent within the same file at
4582 // compile time.
4583 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
4584 << "' but expected type '" << target_type << "'";
4585 return;
4586 }
4587 if (!value_compatible) {
4588 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
4589 << " of type " << value_type << " but expected " << target_type << " for put";
4590 return;
4591 }
4592 }
4593
4594 template <bool kVerifierDebug>
VerifyAPut(const Instruction * inst,const RegType & insn_type,bool is_primitive)4595 void MethodVerifier<kVerifierDebug>::VerifyAPut(const Instruction* inst,
4596 const RegType& insn_type,
4597 bool is_primitive) {
4598 const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
4599 if (!index_type.IsArrayIndexTypes()) {
4600 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
4601 } else {
4602 const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
4603 if (array_type.IsZeroOrNull()) {
4604 // Null array type; this code path will fail at runtime.
4605 // Still check that the given value matches the instruction's type.
4606 // Note: this is, as usual, complicated by the fact the the instruction isn't fully typed
4607 // and fits multiple register types.
4608 const RegType* modified_reg_type = &insn_type;
4609 if ((modified_reg_type == ®_types_.Integer()) ||
4610 (modified_reg_type == ®_types_.LongLo())) {
4611 // May be integer or float | long or double. Overwrite insn_type accordingly.
4612 const RegType& value_type = work_line_->GetRegisterType(this, inst->VRegA_23x());
4613 if (modified_reg_type == ®_types_.Integer()) {
4614 if (&value_type == ®_types_.Float()) {
4615 modified_reg_type = &value_type;
4616 }
4617 } else {
4618 if (&value_type == ®_types_.DoubleLo()) {
4619 modified_reg_type = &value_type;
4620 }
4621 }
4622 }
4623 work_line_->VerifyRegisterType(this, inst->VRegA_23x(), *modified_reg_type);
4624 } else if (!array_type.IsArrayTypes()) {
4625 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
4626 } else if (array_type.IsUnresolvedMergedReference()) {
4627 // Unresolved array types must be reference array types.
4628 if (is_primitive) {
4629 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
4630 << "' but unresolved type '" << array_type << "'";
4631 } else {
4632 Fail(VERIFY_ERROR_NO_CLASS) << "cannot verify aput for " << array_type
4633 << " because of missing class";
4634 }
4635 } else {
4636 const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_.Get());
4637 const uint32_t vregA = inst->VRegA_23x();
4638 if (is_primitive) {
4639 VerifyPrimitivePut(component_type, insn_type, vregA);
4640 } else {
4641 if (!component_type.IsReferenceTypes()) {
4642 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
4643 << " source for aput-object";
4644 } else {
4645 // The instruction agrees with the type of array, confirm the value to be stored does too
4646 // Note: we use the instruction type (rather than the component type) for aput-object as
4647 // incompatible classes will be caught at runtime as an array store exception
4648 work_line_->VerifyRegisterType(this, vregA, insn_type);
4649 }
4650 }
4651 }
4652 }
4653 }
4654
4655 template <bool kVerifierDebug>
GetStaticField(int field_idx)4656 ArtField* MethodVerifier<kVerifierDebug>::GetStaticField(int field_idx) {
4657 const dex::FieldId& field_id = dex_file_->GetFieldId(field_idx);
4658 // Check access to class
4659 const RegType& klass_type = ResolveClass<CheckAccess::kYes>(field_id.class_idx_);
4660 if (klass_type.IsConflict()) { // bad class
4661 AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
4662 field_idx, dex_file_->GetFieldName(field_id),
4663 dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
4664 return nullptr;
4665 }
4666 if (klass_type.IsUnresolvedTypes()) {
4667 // Accessibility checks depend on resolved fields.
4668 DCHECK(klass_type.Equals(GetDeclaringClass()) ||
4669 !failures_.empty() ||
4670 IsSdkVersionSetAndLessThan(api_level_, SdkVersion::kP));
4671
4672 return nullptr; // Can't resolve Class so no more to do here, will do checking at runtime.
4673 }
4674 ClassLinker* class_linker = GetClassLinker();
4675 ArtField* field = class_linker->ResolveFieldJLS(field_idx, dex_cache_, class_loader_);
4676
4677 // Record result of the field resolution attempt.
4678 VerifierDeps::MaybeRecordFieldResolution(*dex_file_, field_idx, field);
4679
4680 if (field == nullptr) {
4681 VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
4682 << dex_file_->GetFieldName(field_id) << ") in "
4683 << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
4684 DCHECK(self_->IsExceptionPending());
4685 self_->ClearException();
4686 return nullptr;
4687 } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
4688 field->GetAccessFlags())) {
4689 Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << field->PrettyField()
4690 << " from " << GetDeclaringClass();
4691 return nullptr;
4692 } else if (!field->IsStatic()) {
4693 Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << field->PrettyField() << " to be static";
4694 return nullptr;
4695 }
4696 return field;
4697 }
4698
4699 template <bool kVerifierDebug>
GetInstanceField(const RegType & obj_type,int field_idx)4700 ArtField* MethodVerifier<kVerifierDebug>::GetInstanceField(const RegType& obj_type, int field_idx) {
4701 if (!obj_type.IsZeroOrNull() && !obj_type.IsReferenceTypes()) {
4702 // Trying to read a field from something that isn't a reference.
4703 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance field access on object that has "
4704 << "non-reference type " << obj_type;
4705 return nullptr;
4706 }
4707 const dex::FieldId& field_id = dex_file_->GetFieldId(field_idx);
4708 // Check access to class.
4709 const RegType& klass_type = ResolveClass<CheckAccess::kYes>(field_id.class_idx_);
4710 if (klass_type.IsConflict()) {
4711 AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
4712 field_idx, dex_file_->GetFieldName(field_id),
4713 dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
4714 return nullptr;
4715 }
4716 if (klass_type.IsUnresolvedTypes()) {
4717 // Accessibility checks depend on resolved fields.
4718 DCHECK(klass_type.Equals(GetDeclaringClass()) ||
4719 !failures_.empty() ||
4720 IsSdkVersionSetAndLessThan(api_level_, SdkVersion::kP));
4721
4722 return nullptr; // Can't resolve Class so no more to do here
4723 }
4724 ClassLinker* class_linker = GetClassLinker();
4725 ArtField* field = class_linker->ResolveFieldJLS(field_idx, dex_cache_, class_loader_);
4726
4727 // Record result of the field resolution attempt.
4728 VerifierDeps::MaybeRecordFieldResolution(*dex_file_, field_idx, field);
4729
4730 if (field == nullptr) {
4731 VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
4732 << dex_file_->GetFieldName(field_id) << ") in "
4733 << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
4734 DCHECK(self_->IsExceptionPending());
4735 self_->ClearException();
4736 return nullptr;
4737 } else if (obj_type.IsZeroOrNull()) {
4738 // Cannot infer and check type, however, access will cause null pointer exception.
4739 // Fall through into a few last soft failure checks below.
4740 } else {
4741 std::string temp;
4742 ObjPtr<mirror::Class> klass = field->GetDeclaringClass();
4743 const RegType& field_klass =
4744 FromClass(klass->GetDescriptor(&temp), klass, klass->CannotBeAssignedFromOtherTypes());
4745 if (obj_type.IsUninitializedTypes()) {
4746 // Field accesses through uninitialized references are only allowable for constructors where
4747 // the field is declared in this class.
4748 // Note: this IsConstructor check is technically redundant, as UninitializedThis should only
4749 // appear in constructors.
4750 if (!obj_type.IsUninitializedThisReference() ||
4751 !IsConstructor() ||
4752 !field_klass.Equals(GetDeclaringClass())) {
4753 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << field->PrettyField()
4754 << " of a not fully initialized object within the context"
4755 << " of " << dex_file_->PrettyMethod(dex_method_idx_);
4756 return nullptr;
4757 }
4758 } else if (!field_klass.IsAssignableFrom(obj_type, this)) {
4759 // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
4760 // of C1. For resolution to occur the declared class of the field must be compatible with
4761 // obj_type, we've discovered this wasn't so, so report the field didn't exist.
4762 VerifyError type;
4763 bool is_aot = IsAotMode();
4764 if (is_aot && (field_klass.IsUnresolvedTypes() || obj_type.IsUnresolvedTypes())) {
4765 // Compiler & unresolved types involved, retry at runtime.
4766 type = VerifyError::VERIFY_ERROR_NO_CLASS;
4767 } else {
4768 // Classes known (resolved; and thus assignability check is precise), or we are at runtime
4769 // and still missing classes. This is a hard failure.
4770 type = VerifyError::VERIFY_ERROR_BAD_CLASS_HARD;
4771 }
4772 Fail(type) << "cannot access instance field " << field->PrettyField()
4773 << " from object of type " << obj_type;
4774 return nullptr;
4775 }
4776 }
4777
4778 // Few last soft failure checks.
4779 if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
4780 field->GetAccessFlags())) {
4781 Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << field->PrettyField()
4782 << " from " << GetDeclaringClass();
4783 return nullptr;
4784 } else if (field->IsStatic()) {
4785 Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << field->PrettyField()
4786 << " to not be static";
4787 return nullptr;
4788 }
4789
4790 return field;
4791 }
4792
4793 template <bool kVerifierDebug>
4794 template <FieldAccessType kAccType>
VerifyISFieldAccess(const Instruction * inst,const RegType & insn_type,bool is_primitive,bool is_static)4795 void MethodVerifier<kVerifierDebug>::VerifyISFieldAccess(const Instruction* inst,
4796 const RegType& insn_type,
4797 bool is_primitive,
4798 bool is_static) {
4799 uint32_t field_idx = GetFieldIdxOfFieldAccess(inst, is_static);
4800 ArtField* field;
4801 if (is_static) {
4802 field = GetStaticField(field_idx);
4803 } else {
4804 const RegType& object_type = work_line_->GetRegisterType(this, inst->VRegB_22c());
4805
4806 // One is not allowed to access fields on uninitialized references, except to write to
4807 // fields in the constructor (before calling another constructor).
4808 // GetInstanceField does an assignability check which will fail for uninitialized types.
4809 // We thus modify the type if the uninitialized reference is a "this" reference (this also
4810 // checks at the same time that we're verifying a constructor).
4811 bool should_adjust = (kAccType == FieldAccessType::kAccPut) &&
4812 object_type.IsUninitializedThisReference();
4813 const RegType& adjusted_type = should_adjust
4814 ? GetRegTypeCache()->FromUninitialized(object_type)
4815 : object_type;
4816 field = GetInstanceField(adjusted_type, field_idx);
4817 if (UNLIKELY(flags_.have_pending_hard_failure_)) {
4818 return;
4819 }
4820 if (should_adjust) {
4821 if (field == nullptr) {
4822 Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "Might be accessing a superclass instance field prior "
4823 << "to the superclass being initialized in "
4824 << dex_file_->PrettyMethod(dex_method_idx_);
4825 } else if (field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
4826 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access superclass instance field "
4827 << field->PrettyField() << " of a not fully initialized "
4828 << "object within the context of "
4829 << dex_file_->PrettyMethod(dex_method_idx_);
4830 return;
4831 }
4832 }
4833 }
4834 const RegType* field_type = nullptr;
4835 if (field != nullptr) {
4836 if (kAccType == FieldAccessType::kAccPut) {
4837 if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
4838 Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << field->PrettyField()
4839 << " from other class " << GetDeclaringClass();
4840 // Keep hunting for possible hard fails.
4841 }
4842 }
4843
4844 ObjPtr<mirror::Class> field_type_class =
4845 can_load_classes_ ? field->ResolveType() : field->LookupResolvedType();
4846 if (field_type_class != nullptr) {
4847 field_type = &FromClass(field->GetTypeDescriptor(),
4848 field_type_class,
4849 field_type_class->CannotBeAssignedFromOtherTypes());
4850 } else {
4851 DCHECK(!can_load_classes_ || self_->IsExceptionPending());
4852 self_->ClearException();
4853 }
4854 } else if (IsSdkVersionSetAndAtLeast(api_level_, SdkVersion::kP)) {
4855 // If we don't have the field (it seems we failed resolution) and this is a PUT, we need to
4856 // redo verification at runtime as the field may be final, unless the field id shows it's in
4857 // the same class.
4858 //
4859 // For simplicity, it is OK to not distinguish compile-time vs runtime, and post this an
4860 // ACCESS_FIELD failure at runtime. This has the same effect as NO_FIELD - punting the class
4861 // to the access-checks interpreter.
4862 //
4863 // Note: see b/34966607. This and above may be changed in the future.
4864 if (kAccType == FieldAccessType::kAccPut) {
4865 const dex::FieldId& field_id = dex_file_->GetFieldId(field_idx);
4866 const char* field_class_descriptor = dex_file_->GetFieldDeclaringClassDescriptor(field_id);
4867 const RegType* field_class_type = ®_types_.FromDescriptor(class_loader_.Get(),
4868 field_class_descriptor,
4869 false);
4870 if (!field_class_type->Equals(GetDeclaringClass())) {
4871 Fail(VERIFY_ERROR_ACCESS_FIELD) << "could not check field put for final field modify of "
4872 << field_class_descriptor
4873 << "."
4874 << dex_file_->GetFieldName(field_id)
4875 << " from other class "
4876 << GetDeclaringClass();
4877 }
4878 }
4879 }
4880 if (field_type == nullptr) {
4881 const dex::FieldId& field_id = dex_file_->GetFieldId(field_idx);
4882 const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
4883 field_type = ®_types_.FromDescriptor(class_loader_.Get(), descriptor, false);
4884 }
4885 DCHECK(field_type != nullptr);
4886 const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
4887 static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
4888 "Unexpected third access type");
4889 if (kAccType == FieldAccessType::kAccPut) {
4890 // sput or iput.
4891 if (is_primitive) {
4892 VerifyPrimitivePut(*field_type, insn_type, vregA);
4893 } else {
4894 if (!insn_type.IsAssignableFrom(*field_type, this)) {
4895 // If the field type is not a reference, this is a global failure rather than
4896 // a class change failure as the instructions and the descriptors for the type
4897 // should have been consistent within the same file at compile time.
4898 VerifyError error = field_type->IsReferenceTypes() ? VERIFY_ERROR_BAD_CLASS_SOFT
4899 : VERIFY_ERROR_BAD_CLASS_HARD;
4900 Fail(error) << "expected field " << ArtField::PrettyField(field)
4901 << " to be compatible with type '" << insn_type
4902 << "' but found type '" << *field_type
4903 << "' in put-object";
4904 return;
4905 }
4906 work_line_->VerifyRegisterType(this, vregA, *field_type);
4907 }
4908 } else if (kAccType == FieldAccessType::kAccGet) {
4909 // sget or iget.
4910 if (is_primitive) {
4911 if (field_type->Equals(insn_type) ||
4912 (field_type->IsFloat() && insn_type.IsInteger()) ||
4913 (field_type->IsDouble() && insn_type.IsLong())) {
4914 // expected that read is of the correct primitive type or that int reads are reading
4915 // floats or long reads are reading doubles
4916 } else {
4917 // This is a global failure rather than a class change failure as the instructions and
4918 // the descriptors for the type should have been consistent within the same file at
4919 // compile time
4920 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << ArtField::PrettyField(field)
4921 << " to be of type '" << insn_type
4922 << "' but found type '" << *field_type << "' in get";
4923 return;
4924 }
4925 } else {
4926 if (!insn_type.IsAssignableFrom(*field_type, this)) {
4927 // If the field type is not a reference, this is a global failure rather than
4928 // a class change failure as the instructions and the descriptors for the type
4929 // should have been consistent within the same file at compile time.
4930 VerifyError error = field_type->IsReferenceTypes() ? VERIFY_ERROR_BAD_CLASS_SOFT
4931 : VERIFY_ERROR_BAD_CLASS_HARD;
4932 Fail(error) << "expected field " << ArtField::PrettyField(field)
4933 << " to be compatible with type '" << insn_type
4934 << "' but found type '" << *field_type
4935 << "' in get-object";
4936 if (error != VERIFY_ERROR_BAD_CLASS_HARD) {
4937 work_line_->SetRegisterType<LockOp::kClear>(this, vregA, reg_types_.Conflict());
4938 }
4939 return;
4940 }
4941 }
4942 if (!field_type->IsLowHalf()) {
4943 work_line_->SetRegisterType<LockOp::kClear>(this, vregA, *field_type);
4944 } else {
4945 work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(®_types_));
4946 }
4947 } else {
4948 LOG(FATAL) << "Unexpected case.";
4949 }
4950 }
4951
4952 template <bool kVerifierDebug>
UpdateRegisters(uint32_t next_insn,RegisterLine * merge_line,bool update_merge_line)4953 bool MethodVerifier<kVerifierDebug>::UpdateRegisters(uint32_t next_insn,
4954 RegisterLine* merge_line,
4955 bool update_merge_line) {
4956 bool changed = true;
4957 RegisterLine* target_line = reg_table_.GetLine(next_insn);
4958 if (!GetInstructionFlags(next_insn).IsVisitedOrChanged()) {
4959 /*
4960 * We haven't processed this instruction before, and we haven't touched the registers here, so
4961 * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
4962 * only way a register can transition out of "unknown", so this is not just an optimization.)
4963 */
4964 target_line->CopyFromLine(merge_line);
4965 if (GetInstructionFlags(next_insn).IsReturn()) {
4966 // Verify that the monitor stack is empty on return.
4967 merge_line->VerifyMonitorStackEmpty(this);
4968
4969 // For returns we only care about the operand to the return, all other registers are dead.
4970 // Initialize them as conflicts so they don't add to GC and deoptimization information.
4971 const Instruction* ret_inst = &code_item_accessor_.InstructionAt(next_insn);
4972 AdjustReturnLine(this, ret_inst, target_line);
4973 // Directly bail if a hard failure was found.
4974 if (flags_.have_pending_hard_failure_) {
4975 return false;
4976 }
4977 }
4978 } else {
4979 RegisterLineArenaUniquePtr copy;
4980 if (kVerifierDebug) {
4981 copy.reset(RegisterLine::Create(target_line->NumRegs(), allocator_, GetRegTypeCache()));
4982 copy->CopyFromLine(target_line);
4983 }
4984 changed = target_line->MergeRegisters(this, merge_line);
4985 if (flags_.have_pending_hard_failure_) {
4986 return false;
4987 }
4988 if (kVerifierDebug && changed) {
4989 LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
4990 << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
4991 << copy->Dump(this) << " MERGE\n"
4992 << merge_line->Dump(this) << " ==\n"
4993 << target_line->Dump(this);
4994 }
4995 if (update_merge_line && changed) {
4996 merge_line->CopyFromLine(target_line);
4997 }
4998 }
4999 if (changed) {
5000 GetModifiableInstructionFlags(next_insn).SetChanged();
5001 }
5002 return true;
5003 }
5004
5005 template <bool kVerifierDebug>
GetMethodReturnType()5006 const RegType& MethodVerifier<kVerifierDebug>::GetMethodReturnType() {
5007 if (return_type_ == nullptr) {
5008 if (method_being_verified_ != nullptr) {
5009 ObjPtr<mirror::Class> return_type_class = can_load_classes_
5010 ? method_being_verified_->ResolveReturnType()
5011 : method_being_verified_->LookupResolvedReturnType();
5012 if (return_type_class != nullptr) {
5013 return_type_ = &FromClass(method_being_verified_->GetReturnTypeDescriptor(),
5014 return_type_class,
5015 return_type_class->CannotBeAssignedFromOtherTypes());
5016 } else {
5017 DCHECK(!can_load_classes_ || self_->IsExceptionPending());
5018 self_->ClearException();
5019 }
5020 }
5021 if (return_type_ == nullptr) {
5022 const dex::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
5023 const dex::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
5024 dex::TypeIndex return_type_idx = proto_id.return_type_idx_;
5025 const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
5026 return_type_ = ®_types_.FromDescriptor(class_loader_.Get(), descriptor, false);
5027 }
5028 }
5029 return *return_type_;
5030 }
5031
5032 template <bool kVerifierDebug>
DetermineCat1Constant(int32_t value,bool precise)5033 const RegType& MethodVerifier<kVerifierDebug>::DetermineCat1Constant(int32_t value, bool precise) {
5034 if (precise) {
5035 // Precise constant type.
5036 return reg_types_.FromCat1Const(value, true);
5037 } else {
5038 // Imprecise constant type.
5039 if (value < -32768) {
5040 return reg_types_.IntConstant();
5041 } else if (value < -128) {
5042 return reg_types_.ShortConstant();
5043 } else if (value < 0) {
5044 return reg_types_.ByteConstant();
5045 } else if (value == 0) {
5046 return reg_types_.Zero();
5047 } else if (value == 1) {
5048 return reg_types_.One();
5049 } else if (value < 128) {
5050 return reg_types_.PosByteConstant();
5051 } else if (value < 32768) {
5052 return reg_types_.PosShortConstant();
5053 } else if (value < 65536) {
5054 return reg_types_.CharConstant();
5055 } else {
5056 return reg_types_.IntConstant();
5057 }
5058 }
5059 }
5060
5061 } // namespace
5062 } // namespace impl
5063
MethodVerifier(Thread * self,ClassLinker * class_linker,ArenaPool * arena_pool,const DexFile * dex_file,const dex::CodeItem * code_item,uint32_t dex_method_idx,bool can_load_classes,bool allow_thread_suspension,bool allow_soft_failures,bool aot_mode)5064 MethodVerifier::MethodVerifier(Thread* self,
5065 ClassLinker* class_linker,
5066 ArenaPool* arena_pool,
5067 const DexFile* dex_file,
5068 const dex::CodeItem* code_item,
5069 uint32_t dex_method_idx,
5070 bool can_load_classes,
5071 bool allow_thread_suspension,
5072 bool allow_soft_failures,
5073 bool aot_mode)
5074 : self_(self),
5075 arena_stack_(arena_pool),
5076 allocator_(&arena_stack_),
5077 reg_types_(class_linker, can_load_classes, allocator_, allow_thread_suspension),
5078 reg_table_(allocator_),
5079 work_insn_idx_(dex::kDexNoIndex),
5080 dex_method_idx_(dex_method_idx),
5081 dex_file_(dex_file),
5082 code_item_accessor_(*dex_file, code_item),
5083 // TODO: make it designated initialization when we compile as C++20.
5084 flags_({false, false, false, false, aot_mode}),
5085 encountered_failure_types_(0),
5086 can_load_classes_(can_load_classes),
5087 allow_soft_failures_(allow_soft_failures),
5088 has_check_casts_(false),
5089 class_linker_(class_linker),
5090 link_(nullptr) {
5091 self->PushVerifier(this);
5092 }
5093
~MethodVerifier()5094 MethodVerifier::~MethodVerifier() {
5095 Thread::Current()->PopVerifier(this);
5096 STLDeleteElements(&failure_messages_);
5097 }
5098
VerifyMethod(Thread * self,ClassLinker * class_linker,ArenaPool * arena_pool,uint32_t method_idx,const DexFile * dex_file,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const dex::ClassDef & class_def,const dex::CodeItem * code_item,ArtMethod * method,uint32_t method_access_flags,CompilerCallbacks * callbacks,VerifierCallback * verifier_callback,bool allow_soft_failures,HardFailLogMode log_level,bool need_precise_constants,uint32_t api_level,bool aot_mode,std::string * hard_failure_msg)5099 MethodVerifier::FailureData MethodVerifier::VerifyMethod(Thread* self,
5100 ClassLinker* class_linker,
5101 ArenaPool* arena_pool,
5102 uint32_t method_idx,
5103 const DexFile* dex_file,
5104 Handle<mirror::DexCache> dex_cache,
5105 Handle<mirror::ClassLoader> class_loader,
5106 const dex::ClassDef& class_def,
5107 const dex::CodeItem* code_item,
5108 ArtMethod* method,
5109 uint32_t method_access_flags,
5110 CompilerCallbacks* callbacks,
5111 VerifierCallback* verifier_callback,
5112 bool allow_soft_failures,
5113 HardFailLogMode log_level,
5114 bool need_precise_constants,
5115 uint32_t api_level,
5116 bool aot_mode,
5117 std::string* hard_failure_msg) {
5118 if (VLOG_IS_ON(verifier_debug)) {
5119 return VerifyMethod<true>(self,
5120 class_linker,
5121 arena_pool,
5122 method_idx,
5123 dex_file,
5124 dex_cache,
5125 class_loader,
5126 class_def,
5127 code_item,
5128 method,
5129 method_access_flags,
5130 callbacks,
5131 verifier_callback,
5132 allow_soft_failures,
5133 log_level,
5134 need_precise_constants,
5135 api_level,
5136 aot_mode,
5137 hard_failure_msg);
5138 } else {
5139 return VerifyMethod<false>(self,
5140 class_linker,
5141 arena_pool,
5142 method_idx,
5143 dex_file,
5144 dex_cache,
5145 class_loader,
5146 class_def,
5147 code_item,
5148 method,
5149 method_access_flags,
5150 callbacks,
5151 verifier_callback,
5152 allow_soft_failures,
5153 log_level,
5154 need_precise_constants,
5155 api_level,
5156 aot_mode,
5157 hard_failure_msg);
5158 }
5159 }
5160
5161 // Return whether the runtime knows how to execute a method without needing to
5162 // re-verify it at runtime (and therefore save on first use of the class). We
5163 // currently only support it for access checks, where the runtime will mark the
5164 // methods as needing access checks and have the interpreter execute with them.
5165 // The AOT/JIT compiled code is not affected.
CanRuntimeHandleVerificationFailure(uint32_t encountered_failure_types)5166 static inline bool CanRuntimeHandleVerificationFailure(uint32_t encountered_failure_types) {
5167 constexpr uint32_t unresolved_mask =
5168 verifier::VerifyError::VERIFY_ERROR_ACCESS_CLASS |
5169 verifier::VerifyError::VERIFY_ERROR_ACCESS_FIELD |
5170 verifier::VerifyError::VERIFY_ERROR_ACCESS_METHOD;
5171 return (encountered_failure_types & (~unresolved_mask)) == 0;
5172 }
5173
5174 template <bool kVerifierDebug>
VerifyMethod(Thread * self,ClassLinker * class_linker,ArenaPool * arena_pool,uint32_t method_idx,const DexFile * dex_file,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const dex::ClassDef & class_def,const dex::CodeItem * code_item,ArtMethod * method,uint32_t method_access_flags,CompilerCallbacks * callbacks,VerifierCallback * verifier_callback,bool allow_soft_failures,HardFailLogMode log_level,bool need_precise_constants,uint32_t api_level,bool aot_mode,std::string * hard_failure_msg)5175 MethodVerifier::FailureData MethodVerifier::VerifyMethod(Thread* self,
5176 ClassLinker* class_linker,
5177 ArenaPool* arena_pool,
5178 uint32_t method_idx,
5179 const DexFile* dex_file,
5180 Handle<mirror::DexCache> dex_cache,
5181 Handle<mirror::ClassLoader> class_loader,
5182 const dex::ClassDef& class_def,
5183 const dex::CodeItem* code_item,
5184 ArtMethod* method,
5185 uint32_t method_access_flags,
5186 CompilerCallbacks* callbacks,
5187 VerifierCallback* verifier_callback,
5188 bool allow_soft_failures,
5189 HardFailLogMode log_level,
5190 bool need_precise_constants,
5191 uint32_t api_level,
5192 bool aot_mode,
5193 std::string* hard_failure_msg) {
5194 MethodVerifier::FailureData result;
5195 uint64_t start_ns = kTimeVerifyMethod ? NanoTime() : 0;
5196
5197 impl::MethodVerifier<kVerifierDebug> verifier(self,
5198 class_linker,
5199 arena_pool,
5200 dex_file,
5201 code_item,
5202 method_idx,
5203 /* can_load_classes= */ true,
5204 /* allow_thread_suspension= */ true,
5205 allow_soft_failures,
5206 aot_mode,
5207 dex_cache,
5208 class_loader,
5209 class_def,
5210 method,
5211 method_access_flags,
5212 need_precise_constants,
5213 /* verify to dump */ false,
5214 /* fill_register_lines= */ false,
5215 api_level);
5216 if (verifier.Verify()) {
5217 // Verification completed, however failures may be pending that didn't cause the verification
5218 // to hard fail.
5219 CHECK(!verifier.flags_.have_pending_hard_failure_);
5220
5221 if (code_item != nullptr && callbacks != nullptr) {
5222 // Let the interested party know that the method was verified.
5223 callbacks->MethodVerified(&verifier);
5224 }
5225
5226 bool set_dont_compile = false;
5227 if (verifier.failures_.size() != 0) {
5228 if (VLOG_IS_ON(verifier)) {
5229 verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
5230 << dex_file->PrettyMethod(method_idx) << "\n");
5231 }
5232 if (kVerifierDebug) {
5233 LOG(INFO) << verifier.info_messages_.str();
5234 verifier.Dump(LOG_STREAM(INFO));
5235 }
5236 if (CanRuntimeHandleVerificationFailure(verifier.encountered_failure_types_)) {
5237 result.kind = FailureKind::kAccessChecksFailure;
5238 } else {
5239 result.kind = FailureKind::kSoftFailure;
5240 }
5241 if (method != nullptr &&
5242 !CanCompilerHandleVerificationFailure(verifier.encountered_failure_types_)) {
5243 set_dont_compile = true;
5244 }
5245 }
5246 if (method != nullptr) {
5247 if (verifier.HasInstructionThatWillThrow()) {
5248 set_dont_compile = true;
5249 if (aot_mode && (callbacks != nullptr) && !callbacks->IsBootImage()) {
5250 // When compiling apps, make HasInstructionThatWillThrow a soft error to trigger
5251 // re-verification at runtime.
5252 // The dead code after the throw is not verified and might be invalid. This may cause
5253 // the JIT compiler to crash since it assumes that all the code is valid.
5254 //
5255 // There's a strong assumption that the entire boot image is verified and all its dex
5256 // code is valid (even the dead and unverified one). As such this is done only for apps.
5257 // (CompilerDriver DCHECKs in VerifyClassVisitor that methods from boot image are
5258 // fully verified).
5259 result.kind = FailureKind::kSoftFailure;
5260 }
5261 }
5262 bool must_count_locks = false;
5263 if ((verifier.encountered_failure_types_ & VerifyError::VERIFY_ERROR_LOCKING) != 0) {
5264 must_count_locks = true;
5265 }
5266 verifier_callback->SetDontCompile(method, set_dont_compile);
5267 verifier_callback->SetMustCountLocks(method, must_count_locks);
5268 }
5269 } else {
5270 // Bad method data.
5271 CHECK_NE(verifier.failures_.size(), 0U);
5272
5273 if (UNLIKELY(verifier.flags_.have_pending_experimental_failure_)) {
5274 // Failed due to being forced into interpreter. This is ok because
5275 // we just want to skip verification.
5276 result.kind = FailureKind::kSoftFailure;
5277 } else {
5278 CHECK(verifier.flags_.have_pending_hard_failure_);
5279 if (VLOG_IS_ON(verifier)) {
5280 log_level = std::max(HardFailLogMode::kLogVerbose, log_level);
5281 }
5282 if (log_level >= HardFailLogMode::kLogVerbose) {
5283 LogSeverity severity;
5284 switch (log_level) {
5285 case HardFailLogMode::kLogVerbose:
5286 severity = LogSeverity::VERBOSE;
5287 break;
5288 case HardFailLogMode::kLogWarning:
5289 severity = LogSeverity::WARNING;
5290 break;
5291 case HardFailLogMode::kLogInternalFatal:
5292 severity = LogSeverity::FATAL_WITHOUT_ABORT;
5293 break;
5294 default:
5295 LOG(FATAL) << "Unsupported log-level " << static_cast<uint32_t>(log_level);
5296 UNREACHABLE();
5297 }
5298 verifier.DumpFailures(LOG_STREAM(severity) << "Verification error in "
5299 << dex_file->PrettyMethod(method_idx)
5300 << "\n");
5301 }
5302 if (hard_failure_msg != nullptr) {
5303 CHECK(!verifier.failure_messages_.empty());
5304 *hard_failure_msg =
5305 verifier.failure_messages_[verifier.failure_messages_.size() - 1]->str();
5306 }
5307 result.kind = FailureKind::kHardFailure;
5308
5309 if (callbacks != nullptr) {
5310 // Let the interested party know that we failed the class.
5311 ClassReference ref(dex_file, dex_file->GetIndexForClassDef(class_def));
5312 callbacks->ClassRejected(ref);
5313 }
5314 }
5315 if (kVerifierDebug || VLOG_IS_ON(verifier)) {
5316 LOG(ERROR) << verifier.info_messages_.str();
5317 verifier.Dump(LOG_STREAM(ERROR));
5318 }
5319 // Under verifier-debug, dump the complete log into the error message.
5320 if (kVerifierDebug && hard_failure_msg != nullptr) {
5321 hard_failure_msg->append("\n");
5322 hard_failure_msg->append(verifier.info_messages_.str());
5323 hard_failure_msg->append("\n");
5324 std::ostringstream oss;
5325 verifier.Dump(oss);
5326 hard_failure_msg->append(oss.str());
5327 }
5328 }
5329 if (kTimeVerifyMethod) {
5330 uint64_t duration_ns = NanoTime() - start_ns;
5331 if (duration_ns > MsToNs(Runtime::Current()->GetVerifierLoggingThresholdMs())) {
5332 double bytecodes_per_second =
5333 verifier.code_item_accessor_.InsnsSizeInCodeUnits() / (duration_ns * 1e-9);
5334 LOG(WARNING) << "Verification of " << dex_file->PrettyMethod(method_idx)
5335 << " took " << PrettyDuration(duration_ns)
5336 << (impl::IsLargeMethod(verifier.CodeItem()) ? " (large method)" : "")
5337 << " (" << StringPrintf("%.2f", bytecodes_per_second) << " bytecodes/s)"
5338 << " (" << verifier.allocator_.ApproximatePeakBytes()
5339 << "B approximate peak alloc)";
5340 }
5341 }
5342 result.types = verifier.encountered_failure_types_;
5343 return result;
5344 }
5345
CalculateVerificationInfo(Thread * self,ArtMethod * method,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader)5346 MethodVerifier* MethodVerifier::CalculateVerificationInfo(
5347 Thread* self,
5348 ArtMethod* method,
5349 Handle<mirror::DexCache> dex_cache,
5350 Handle<mirror::ClassLoader> class_loader) {
5351 std::unique_ptr<impl::MethodVerifier<false>> verifier(
5352 new impl::MethodVerifier<false>(self,
5353 Runtime::Current()->GetClassLinker(),
5354 Runtime::Current()->GetArenaPool(),
5355 method->GetDexFile(),
5356 method->GetCodeItem(),
5357 method->GetDexMethodIndex(),
5358 /* can_load_classes= */ false,
5359 /* allow_thread_suspension= */ false,
5360 /* allow_soft_failures= */ true,
5361 Runtime::Current()->IsAotCompiler(),
5362 dex_cache,
5363 class_loader,
5364 *method->GetDeclaringClass()->GetClassDef(),
5365 method,
5366 method->GetAccessFlags(),
5367 /* need_precise_constants= */ true,
5368 /* verify_to_dump= */ false,
5369 /* fill_register_lines= */ true,
5370 // Just use the verifier at the current skd-version.
5371 // This might affect what soft-verifier errors are reported.
5372 // Callers can then filter out relevant errors if needed.
5373 Runtime::Current()->GetTargetSdkVersion()));
5374 verifier->Verify();
5375 if (VLOG_IS_ON(verifier)) {
5376 verifier->DumpFailures(VLOG_STREAM(verifier));
5377 VLOG(verifier) << verifier->info_messages_.str();
5378 verifier->Dump(VLOG_STREAM(verifier));
5379 }
5380 if (verifier->flags_.have_pending_hard_failure_) {
5381 return nullptr;
5382 } else {
5383 return verifier.release();
5384 }
5385 }
5386
VerifyMethodAndDump(Thread * self,VariableIndentationOutputStream * vios,uint32_t dex_method_idx,const DexFile * dex_file,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const dex::ClassDef & class_def,const dex::CodeItem * code_item,ArtMethod * method,uint32_t method_access_flags,uint32_t api_level)5387 MethodVerifier* MethodVerifier::VerifyMethodAndDump(Thread* self,
5388 VariableIndentationOutputStream* vios,
5389 uint32_t dex_method_idx,
5390 const DexFile* dex_file,
5391 Handle<mirror::DexCache> dex_cache,
5392 Handle<mirror::ClassLoader> class_loader,
5393 const dex::ClassDef& class_def,
5394 const dex::CodeItem* code_item,
5395 ArtMethod* method,
5396 uint32_t method_access_flags,
5397 uint32_t api_level) {
5398 impl::MethodVerifier<false>* verifier = new impl::MethodVerifier<false>(
5399 self,
5400 Runtime::Current()->GetClassLinker(),
5401 Runtime::Current()->GetArenaPool(),
5402 dex_file,
5403 code_item,
5404 dex_method_idx,
5405 /* can_load_classes= */ true,
5406 /* allow_thread_suspension= */ true,
5407 /* allow_soft_failures= */ true,
5408 Runtime::Current()->IsAotCompiler(),
5409 dex_cache,
5410 class_loader,
5411 class_def,
5412 method,
5413 method_access_flags,
5414 /* need_precise_constants= */ true,
5415 /* verify_to_dump= */ true,
5416 /* fill_register_lines= */ false,
5417 api_level);
5418 verifier->Verify();
5419 verifier->DumpFailures(vios->Stream());
5420 vios->Stream() << verifier->info_messages_.str();
5421 // Only dump and return if no hard failures. Otherwise the verifier may be not fully initialized
5422 // and querying any info is dangerous/can abort.
5423 if (verifier->flags_.have_pending_hard_failure_) {
5424 delete verifier;
5425 return nullptr;
5426 } else {
5427 verifier->Dump(vios);
5428 return verifier;
5429 }
5430 }
5431
FindLocksAtDexPc(ArtMethod * m,uint32_t dex_pc,std::vector<MethodVerifier::DexLockInfo> * monitor_enter_dex_pcs,uint32_t api_level)5432 void MethodVerifier::FindLocksAtDexPc(
5433 ArtMethod* m,
5434 uint32_t dex_pc,
5435 std::vector<MethodVerifier::DexLockInfo>* monitor_enter_dex_pcs,
5436 uint32_t api_level) {
5437 StackHandleScope<2> hs(Thread::Current());
5438 Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
5439 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
5440 impl::MethodVerifier<false> verifier(hs.Self(),
5441 Runtime::Current()->GetClassLinker(),
5442 Runtime::Current()->GetArenaPool(),
5443 m->GetDexFile(),
5444 m->GetCodeItem(),
5445 m->GetDexMethodIndex(),
5446 /* can_load_classes= */ false,
5447 /* allow_thread_suspension= */ false,
5448 /* allow_soft_failures= */ true,
5449 Runtime::Current()->IsAotCompiler(),
5450 dex_cache,
5451 class_loader,
5452 m->GetClassDef(),
5453 m,
5454 m->GetAccessFlags(),
5455 /* need_precise_constants= */ false,
5456 /* verify_to_dump= */ false,
5457 /* fill_register_lines= */ false,
5458 api_level);
5459 verifier.interesting_dex_pc_ = dex_pc;
5460 verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs;
5461 verifier.FindLocksAtDexPc();
5462 }
5463
CreateVerifier(Thread * self,const DexFile * dex_file,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const dex::ClassDef & class_def,const dex::CodeItem * code_item,uint32_t method_idx,ArtMethod * method,uint32_t access_flags,bool can_load_classes,bool allow_soft_failures,bool need_precise_constants,bool verify_to_dump,bool allow_thread_suspension,uint32_t api_level)5464 MethodVerifier* MethodVerifier::CreateVerifier(Thread* self,
5465 const DexFile* dex_file,
5466 Handle<mirror::DexCache> dex_cache,
5467 Handle<mirror::ClassLoader> class_loader,
5468 const dex::ClassDef& class_def,
5469 const dex::CodeItem* code_item,
5470 uint32_t method_idx,
5471 ArtMethod* method,
5472 uint32_t access_flags,
5473 bool can_load_classes,
5474 bool allow_soft_failures,
5475 bool need_precise_constants,
5476 bool verify_to_dump,
5477 bool allow_thread_suspension,
5478 uint32_t api_level) {
5479 return new impl::MethodVerifier<false>(self,
5480 Runtime::Current()->GetClassLinker(),
5481 Runtime::Current()->GetArenaPool(),
5482 dex_file,
5483 code_item,
5484 method_idx,
5485 can_load_classes,
5486 allow_thread_suspension,
5487 allow_soft_failures,
5488 Runtime::Current()->IsAotCompiler(),
5489 dex_cache,
5490 class_loader,
5491 class_def,
5492 method,
5493 access_flags,
5494 need_precise_constants,
5495 verify_to_dump,
5496 /* fill_register_lines= */ false,
5497 api_level);
5498 }
5499
Init(ClassLinker * class_linker)5500 void MethodVerifier::Init(ClassLinker* class_linker) {
5501 art::verifier::RegTypeCache::Init(class_linker);
5502 }
5503
Shutdown()5504 void MethodVerifier::Shutdown() {
5505 verifier::RegTypeCache::ShutDown();
5506 }
5507
VisitStaticRoots(RootVisitor * visitor)5508 void MethodVerifier::VisitStaticRoots(RootVisitor* visitor) {
5509 RegTypeCache::VisitStaticRoots(visitor);
5510 }
5511
VisitRoots(RootVisitor * visitor,const RootInfo & root_info)5512 void MethodVerifier::VisitRoots(RootVisitor* visitor, const RootInfo& root_info) {
5513 reg_types_.VisitRoots(visitor, root_info);
5514 }
5515
Fail(VerifyError error,bool pending_exc)5516 std::ostream& MethodVerifier::Fail(VerifyError error, bool pending_exc) {
5517 // Mark the error type as encountered.
5518 encountered_failure_types_ |= static_cast<uint32_t>(error);
5519
5520 if (pending_exc) {
5521 switch (error) {
5522 case VERIFY_ERROR_NO_CLASS:
5523 case VERIFY_ERROR_NO_FIELD:
5524 case VERIFY_ERROR_NO_METHOD:
5525 case VERIFY_ERROR_ACCESS_CLASS:
5526 case VERIFY_ERROR_ACCESS_FIELD:
5527 case VERIFY_ERROR_ACCESS_METHOD:
5528 case VERIFY_ERROR_INSTANTIATION:
5529 case VERIFY_ERROR_CLASS_CHANGE:
5530 case VERIFY_ERROR_FORCE_INTERPRETER:
5531 case VERIFY_ERROR_LOCKING:
5532 if (IsAotMode() || !can_load_classes_) {
5533 if (error != VERIFY_ERROR_ACCESS_CLASS &&
5534 error != VERIFY_ERROR_ACCESS_FIELD &&
5535 error != VERIFY_ERROR_ACCESS_METHOD) {
5536 // If we're optimistically running verification at compile time, turn NO_xxx,
5537 // class change and instantiation errors into soft verification errors so that we
5538 // re-verify at runtime. We may fail to find or to agree on access because of not yet
5539 // available class loaders, or class loaders that will differ at runtime. In these
5540 // cases, we don't want to affect the soundness of the code being compiled. Instead, the
5541 // generated code runs "slow paths" that dynamically perform the verification and cause
5542 // the behavior to be that akin to an interpreter.
5543 error = VERIFY_ERROR_BAD_CLASS_SOFT;
5544 }
5545 } else {
5546 // If we fail again at runtime, mark that this instruction would throw and force this
5547 // method to be executed using the interpreter with checks.
5548 flags_.have_pending_runtime_throw_failure_ = true;
5549 }
5550 // How to handle runtime failures for instructions that are not flagged kThrow.
5551 //
5552 // The verifier may fail before we touch any instruction, for the signature of a method. So
5553 // add a check.
5554 if (work_insn_idx_ < dex::kDexNoIndex) {
5555 const Instruction& inst = code_item_accessor_.InstructionAt(work_insn_idx_);
5556 Instruction::Code opcode = inst.Opcode();
5557 if ((Instruction::FlagsOf(opcode) & Instruction::kThrow) == 0 &&
5558 !impl::IsCompatThrow(opcode) &&
5559 GetInstructionFlags(work_insn_idx_).IsInTry()) {
5560 if (Runtime::Current()->IsVerifierMissingKThrowFatal()) {
5561 LOG(FATAL) << "Unexpected throw: " << std::hex << work_insn_idx_ << " " << opcode;
5562 UNREACHABLE();
5563 }
5564 // We need to save the work_line if the instruction wasn't throwing before. Otherwise
5565 // we'll try to merge garbage.
5566 // Note: this assumes that Fail is called before we do any work_line modifications.
5567 saved_line_->CopyFromLine(work_line_.get());
5568 }
5569 }
5570 break;
5571
5572 // Indication that verification should be retried at runtime.
5573 case VERIFY_ERROR_BAD_CLASS_SOFT:
5574 if (!allow_soft_failures_) {
5575 flags_.have_pending_hard_failure_ = true;
5576 }
5577 break;
5578
5579 // Hard verification failures at compile time will still fail at runtime, so the class is
5580 // marked as rejected to prevent it from being compiled.
5581 case VERIFY_ERROR_BAD_CLASS_HARD: {
5582 flags_.have_pending_hard_failure_ = true;
5583 break;
5584 }
5585
5586 case VERIFY_ERROR_SKIP_COMPILER:
5587 // Nothing to do, just remember the failure type.
5588 break;
5589 }
5590 } else if (kIsDebugBuild) {
5591 CHECK_NE(error, VERIFY_ERROR_BAD_CLASS_SOFT);
5592 CHECK_NE(error, VERIFY_ERROR_BAD_CLASS_HARD);
5593 }
5594
5595 failures_.push_back(error);
5596 std::string location(StringPrintf("%s: [0x%X] ", dex_file_->PrettyMethod(dex_method_idx_).c_str(),
5597 work_insn_idx_));
5598 std::ostringstream* failure_message = new std::ostringstream(location, std::ostringstream::ate);
5599 failure_messages_.push_back(failure_message);
5600 return *failure_message;
5601 }
5602
LogVerifyInfo()5603 ScopedNewLine MethodVerifier::LogVerifyInfo() {
5604 ScopedNewLine ret{info_messages_};
5605 ret << "VFY: " << dex_file_->PrettyMethod(dex_method_idx_)
5606 << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : ";
5607 return ret;
5608 }
5609
FailureKindMax(FailureKind fk1,FailureKind fk2)5610 static FailureKind FailureKindMax(FailureKind fk1, FailureKind fk2) {
5611 static_assert(FailureKind::kNoFailure < FailureKind::kSoftFailure
5612 && FailureKind::kSoftFailure < FailureKind::kHardFailure,
5613 "Unexpected FailureKind order");
5614 return std::max(fk1, fk2);
5615 }
5616
Merge(const MethodVerifier::FailureData & fd)5617 void MethodVerifier::FailureData::Merge(const MethodVerifier::FailureData& fd) {
5618 kind = FailureKindMax(kind, fd.kind);
5619 types |= fd.types;
5620 }
5621
5622 } // namespace verifier
5623 } // namespace art
5624