1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "reg_type-inl.h"
18 
19 #include "android-base/stringprintf.h"
20 
21 #include "base/arena_bit_vector.h"
22 #include "base/bit_vector-inl.h"
23 #include "base/casts.h"
24 #include "class_linker-inl.h"
25 #include "dex/descriptors_names.h"
26 #include "dex/dex_file-inl.h"
27 #include "method_verifier.h"
28 #include "mirror/class-inl.h"
29 #include "mirror/class.h"
30 #include "mirror/object-inl.h"
31 #include "mirror/object_array-inl.h"
32 #include "reg_type_cache-inl.h"
33 #include "scoped_thread_state_change-inl.h"
34 
35 #include <limits>
36 #include <sstream>
37 
38 namespace art {
39 namespace verifier {
40 
41 using android::base::StringPrintf;
42 
43 const UndefinedType* UndefinedType::instance_ = nullptr;
44 const ConflictType* ConflictType::instance_ = nullptr;
45 const BooleanType* BooleanType::instance_ = nullptr;
46 const ByteType* ByteType::instance_ = nullptr;
47 const ShortType* ShortType::instance_ = nullptr;
48 const CharType* CharType::instance_ = nullptr;
49 const FloatType* FloatType::instance_ = nullptr;
50 const LongLoType* LongLoType::instance_ = nullptr;
51 const LongHiType* LongHiType::instance_ = nullptr;
52 const DoubleLoType* DoubleLoType::instance_ = nullptr;
53 const DoubleHiType* DoubleHiType::instance_ = nullptr;
54 const IntegerType* IntegerType::instance_ = nullptr;
55 const NullType* NullType::instance_ = nullptr;
56 
PrimitiveType(ObjPtr<mirror::Class> klass,const std::string_view & descriptor,uint16_t cache_id)57 PrimitiveType::PrimitiveType(ObjPtr<mirror::Class> klass,
58                              const std::string_view& descriptor,
59                              uint16_t cache_id)
60     : RegType(klass, descriptor, cache_id) {
61   CHECK(klass != nullptr);
62   CHECK(!descriptor.empty());
63 }
64 
Cat1Type(ObjPtr<mirror::Class> klass,const std::string_view & descriptor,uint16_t cache_id)65 Cat1Type::Cat1Type(ObjPtr<mirror::Class> klass,
66                    const std::string_view& descriptor,
67                    uint16_t cache_id)
68     : PrimitiveType(klass, descriptor, cache_id) {
69 }
70 
Cat2Type(ObjPtr<mirror::Class> klass,const std::string_view & descriptor,uint16_t cache_id)71 Cat2Type::Cat2Type(ObjPtr<mirror::Class> klass,
72                    const std::string_view& descriptor,
73                    uint16_t cache_id)
74     : PrimitiveType(klass, descriptor, cache_id) {
75 }
76 
Dump() const77 std::string PreciseConstType::Dump() const {
78   std::stringstream result;
79   uint32_t val = ConstantValue();
80   if (val == 0) {
81     CHECK(IsPreciseConstant());
82     result << "Zero/null";
83   } else {
84     result << "Precise ";
85     if (IsConstantShort()) {
86       result << StringPrintf("Constant: %d", val);
87     } else {
88       result << StringPrintf("Constant: 0x%x", val);
89     }
90   }
91   return result.str();
92 }
93 
Dump() const94 std::string BooleanType::Dump() const {
95   return "Boolean";
96 }
97 
Dump() const98 std::string ConflictType::Dump() const {
99     return "Conflict";
100 }
101 
Dump() const102 std::string ByteType::Dump() const {
103   return "Byte";
104 }
105 
Dump() const106 std::string ShortType::Dump() const {
107   return "Short";
108 }
109 
Dump() const110 std::string CharType::Dump() const {
111   return "Char";
112 }
113 
Dump() const114 std::string FloatType::Dump() const {
115   return "Float";
116 }
117 
Dump() const118 std::string LongLoType::Dump() const {
119   return "Long (Low Half)";
120 }
121 
Dump() const122 std::string LongHiType::Dump() const {
123   return "Long (High Half)";
124 }
125 
Dump() const126 std::string DoubleLoType::Dump() const {
127   return "Double (Low Half)";
128 }
129 
Dump() const130 std::string DoubleHiType::Dump() const {
131   return "Double (High Half)";
132 }
133 
Dump() const134 std::string IntegerType::Dump() const {
135   return "Integer";
136 }
137 
CreateInstance(ObjPtr<mirror::Class> klass,const std::string_view & descriptor,uint16_t cache_id)138 const DoubleHiType* DoubleHiType::CreateInstance(ObjPtr<mirror::Class> klass,
139                                                  const std::string_view& descriptor,
140                                                  uint16_t cache_id) {
141   CHECK(instance_ == nullptr);
142   instance_ = new DoubleHiType(klass, descriptor, cache_id);
143   return instance_;
144 }
145 
Destroy()146 void DoubleHiType::Destroy() {
147   if (instance_ != nullptr) {
148     delete instance_;
149     instance_ = nullptr;
150   }
151 }
152 
CreateInstance(ObjPtr<mirror::Class> klass,const std::string_view & descriptor,uint16_t cache_id)153 const DoubleLoType* DoubleLoType::CreateInstance(ObjPtr<mirror::Class> klass,
154                                                  const std::string_view& descriptor,
155                                                  uint16_t cache_id) {
156   CHECK(instance_ == nullptr);
157   instance_ = new DoubleLoType(klass, descriptor, cache_id);
158   return instance_;
159 }
160 
Destroy()161 void DoubleLoType::Destroy() {
162   if (instance_ != nullptr) {
163     delete instance_;
164     instance_ = nullptr;
165   }
166 }
167 
CreateInstance(ObjPtr<mirror::Class> klass,const std::string_view & descriptor,uint16_t cache_id)168 const LongLoType* LongLoType::CreateInstance(ObjPtr<mirror::Class> klass,
169                                              const std::string_view& descriptor,
170                                              uint16_t cache_id) {
171   CHECK(instance_ == nullptr);
172   instance_ = new LongLoType(klass, descriptor, cache_id);
173   return instance_;
174 }
175 
CreateInstance(ObjPtr<mirror::Class> klass,const std::string_view & descriptor,uint16_t cache_id)176 const LongHiType* LongHiType::CreateInstance(ObjPtr<mirror::Class> klass,
177                                              const std::string_view& descriptor,
178                                              uint16_t cache_id) {
179   CHECK(instance_ == nullptr);
180   instance_ = new LongHiType(klass, descriptor, cache_id);
181   return instance_;
182 }
183 
Destroy()184 void LongHiType::Destroy() {
185   if (instance_ != nullptr) {
186     delete instance_;
187     instance_ = nullptr;
188   }
189 }
190 
Destroy()191 void LongLoType::Destroy() {
192   if (instance_ != nullptr) {
193     delete instance_;
194     instance_ = nullptr;
195   }
196 }
197 
CreateInstance(ObjPtr<mirror::Class> klass,const std::string_view & descriptor,uint16_t cache_id)198 const FloatType* FloatType::CreateInstance(ObjPtr<mirror::Class> klass,
199                                            const std::string_view& descriptor,
200                                            uint16_t cache_id) {
201   CHECK(instance_ == nullptr);
202   instance_ = new FloatType(klass, descriptor, cache_id);
203   return instance_;
204 }
205 
Destroy()206 void FloatType::Destroy() {
207   if (instance_ != nullptr) {
208     delete instance_;
209     instance_ = nullptr;
210   }
211 }
212 
CreateInstance(ObjPtr<mirror::Class> klass,const std::string_view & descriptor,uint16_t cache_id)213 const CharType* CharType::CreateInstance(ObjPtr<mirror::Class> klass,
214                                          const std::string_view& descriptor,
215                                          uint16_t cache_id) {
216   CHECK(instance_ == nullptr);
217   instance_ = new CharType(klass, descriptor, cache_id);
218   return instance_;
219 }
220 
Destroy()221 void CharType::Destroy() {
222   if (instance_ != nullptr) {
223     delete instance_;
224     instance_ = nullptr;
225   }
226 }
227 
CreateInstance(ObjPtr<mirror::Class> klass,const std::string_view & descriptor,uint16_t cache_id)228 const ShortType* ShortType::CreateInstance(ObjPtr<mirror::Class> klass,
229                                            const std::string_view& descriptor,
230                                            uint16_t cache_id) {
231   CHECK(instance_ == nullptr);
232   instance_ = new ShortType(klass, descriptor, cache_id);
233   return instance_;
234 }
235 
Destroy()236 void ShortType::Destroy() {
237   if (instance_ != nullptr) {
238     delete instance_;
239     instance_ = nullptr;
240   }
241 }
242 
CreateInstance(ObjPtr<mirror::Class> klass,const std::string_view & descriptor,uint16_t cache_id)243 const ByteType* ByteType::CreateInstance(ObjPtr<mirror::Class> klass,
244                                          const std::string_view& descriptor,
245                                          uint16_t cache_id) {
246   CHECK(instance_ == nullptr);
247   instance_ = new ByteType(klass, descriptor, cache_id);
248   return instance_;
249 }
250 
Destroy()251 void ByteType::Destroy() {
252   if (instance_ != nullptr) {
253     delete instance_;
254     instance_ = nullptr;
255   }
256 }
257 
CreateInstance(ObjPtr<mirror::Class> klass,const std::string_view & descriptor,uint16_t cache_id)258 const IntegerType* IntegerType::CreateInstance(ObjPtr<mirror::Class> klass,
259                                                const std::string_view& descriptor,
260                                                uint16_t cache_id) {
261   CHECK(instance_ == nullptr);
262   instance_ = new IntegerType(klass, descriptor, cache_id);
263   return instance_;
264 }
265 
Destroy()266 void IntegerType::Destroy() {
267   if (instance_ != nullptr) {
268     delete instance_;
269     instance_ = nullptr;
270   }
271 }
272 
CreateInstance(ObjPtr<mirror::Class> klass,const std::string_view & descriptor,uint16_t cache_id)273 const ConflictType* ConflictType::CreateInstance(ObjPtr<mirror::Class> klass,
274                                                  const std::string_view& descriptor,
275                                                  uint16_t cache_id) {
276   CHECK(instance_ == nullptr);
277   instance_ = new ConflictType(klass, descriptor, cache_id);
278   return instance_;
279 }
280 
Destroy()281 void ConflictType::Destroy() {
282   if (instance_ != nullptr) {
283     delete instance_;
284     instance_ = nullptr;
285   }
286 }
287 
CreateInstance(ObjPtr<mirror::Class> klass,const std::string_view & descriptor,uint16_t cache_id)288 const BooleanType* BooleanType::CreateInstance(ObjPtr<mirror::Class> klass,
289                                                const std::string_view& descriptor,
290                                                uint16_t cache_id) {
291   CHECK(BooleanType::instance_ == nullptr);
292   instance_ = new BooleanType(klass, descriptor, cache_id);
293   return BooleanType::instance_;
294 }
295 
Destroy()296 void BooleanType::Destroy() {
297   if (BooleanType::instance_ != nullptr) {
298     delete instance_;
299     instance_ = nullptr;
300   }
301 }
302 
Dump() const303 std::string UndefinedType::Dump() const REQUIRES_SHARED(Locks::mutator_lock_) {
304   return "Undefined";
305 }
306 
CreateInstance(ObjPtr<mirror::Class> klass,const std::string_view & descriptor,uint16_t cache_id)307 const UndefinedType* UndefinedType::CreateInstance(ObjPtr<mirror::Class> klass,
308                                                    const std::string_view& descriptor,
309                                                    uint16_t cache_id) {
310   CHECK(instance_ == nullptr);
311   instance_ = new UndefinedType(klass, descriptor, cache_id);
312   return instance_;
313 }
314 
Destroy()315 void UndefinedType::Destroy() {
316   if (instance_ != nullptr) {
317     delete instance_;
318     instance_ = nullptr;
319   }
320 }
321 
PreciseReferenceType(ObjPtr<mirror::Class> klass,const std::string_view & descriptor,uint16_t cache_id)322 PreciseReferenceType::PreciseReferenceType(ObjPtr<mirror::Class> klass,
323                                            const std::string_view& descriptor,
324                                            uint16_t cache_id)
325     : RegType(klass, descriptor, cache_id) {
326   // Note: no check for IsInstantiable() here. We may produce this in case an InstantiationError
327   //       would be thrown at runtime, but we need to continue verification and *not* create a
328   //       hard failure or abort.
329   CheckConstructorInvariants(this);
330 }
331 
Dump() const332 std::string UnresolvedMergedType::Dump() const {
333   std::stringstream result;
334   result << "UnresolvedMergedReferences(" << GetResolvedPart().Dump() << " | ";
335   const BitVector& types = GetUnresolvedTypes();
336 
337   bool first = true;
338   for (uint32_t idx : types.Indexes()) {
339     if (!first) {
340       result << ", ";
341     } else {
342       first = false;
343     }
344     result << reg_type_cache_->GetFromId(idx).Dump();
345   }
346   result << ")";
347   return result.str();
348 }
349 
Dump() const350 std::string UnresolvedSuperClass::Dump() const {
351   std::stringstream result;
352   uint16_t super_type_id = GetUnresolvedSuperClassChildId();
353   result << "UnresolvedSuperClass(" << reg_type_cache_->GetFromId(super_type_id).Dump() << ")";
354   return result.str();
355 }
356 
Dump() const357 std::string UnresolvedReferenceType::Dump() const {
358   std::stringstream result;
359   result << "Unresolved Reference: " << PrettyDescriptor(std::string(GetDescriptor()).c_str());
360   return result.str();
361 }
362 
Dump() const363 std::string UnresolvedUninitializedRefType::Dump() const {
364   std::stringstream result;
365   result << "Unresolved And Uninitialized Reference: "
366       << PrettyDescriptor(std::string(GetDescriptor()).c_str())
367       << " Allocation PC: " << GetAllocationPc();
368   return result.str();
369 }
370 
Dump() const371 std::string UnresolvedUninitializedThisRefType::Dump() const {
372   std::stringstream result;
373   result << "Unresolved And Uninitialized This Reference: "
374       << PrettyDescriptor(std::string(GetDescriptor()).c_str());
375   return result.str();
376 }
377 
Dump() const378 std::string ReferenceType::Dump() const {
379   std::stringstream result;
380   result << "Reference: " << mirror::Class::PrettyDescriptor(GetClass());
381   return result.str();
382 }
383 
Dump() const384 std::string PreciseReferenceType::Dump() const {
385   std::stringstream result;
386   result << "Precise Reference: " << mirror::Class::PrettyDescriptor(GetClass());
387   return result.str();
388 }
389 
Dump() const390 std::string UninitializedReferenceType::Dump() const {
391   std::stringstream result;
392   result << "Uninitialized Reference: " << mirror::Class::PrettyDescriptor(GetClass());
393   result << " Allocation PC: " << GetAllocationPc();
394   return result.str();
395 }
396 
Dump() const397 std::string UninitializedThisReferenceType::Dump() const {
398   std::stringstream result;
399   result << "Uninitialized This Reference: " << mirror::Class::PrettyDescriptor(GetClass());
400   result << "Allocation PC: " << GetAllocationPc();
401   return result.str();
402 }
403 
Dump() const404 std::string ImpreciseConstType::Dump() const {
405   std::stringstream result;
406   uint32_t val = ConstantValue();
407   if (val == 0) {
408     result << "Zero/null";
409   } else {
410     result << "Imprecise ";
411     if (IsConstantShort()) {
412       result << StringPrintf("Constant: %d", val);
413     } else {
414       result << StringPrintf("Constant: 0x%x", val);
415     }
416   }
417   return result.str();
418 }
Dump() const419 std::string PreciseConstLoType::Dump() const {
420   std::stringstream result;
421 
422   int32_t val = ConstantValueLo();
423   result << "Precise ";
424   if (val >= std::numeric_limits<jshort>::min() &&
425       val <= std::numeric_limits<jshort>::max()) {
426     result << StringPrintf("Low-half Constant: %d", val);
427   } else {
428     result << StringPrintf("Low-half Constant: 0x%x", val);
429   }
430   return result.str();
431 }
432 
Dump() const433 std::string ImpreciseConstLoType::Dump() const {
434   std::stringstream result;
435 
436   int32_t val = ConstantValueLo();
437   result << "Imprecise ";
438   if (val >= std::numeric_limits<jshort>::min() &&
439       val <= std::numeric_limits<jshort>::max()) {
440     result << StringPrintf("Low-half Constant: %d", val);
441   } else {
442     result << StringPrintf("Low-half Constant: 0x%x", val);
443   }
444   return result.str();
445 }
446 
Dump() const447 std::string PreciseConstHiType::Dump() const {
448   std::stringstream result;
449   int32_t val = ConstantValueHi();
450   result << "Precise ";
451   if (val >= std::numeric_limits<jshort>::min() &&
452       val <= std::numeric_limits<jshort>::max()) {
453     result << StringPrintf("High-half Constant: %d", val);
454   } else {
455     result << StringPrintf("High-half Constant: 0x%x", val);
456   }
457   return result.str();
458 }
459 
Dump() const460 std::string ImpreciseConstHiType::Dump() const {
461   std::stringstream result;
462   int32_t val = ConstantValueHi();
463   result << "Imprecise ";
464   if (val >= std::numeric_limits<jshort>::min() &&
465       val <= std::numeric_limits<jshort>::max()) {
466     result << StringPrintf("High-half Constant: %d", val);
467   } else {
468     result << StringPrintf("High-half Constant: 0x%x", val);
469   }
470   return result.str();
471 }
472 
HighHalf(RegTypeCache * cache) const473 const RegType& RegType::HighHalf(RegTypeCache* cache) const {
474   DCHECK(IsLowHalf());
475   if (IsLongLo()) {
476     return cache->LongHi();
477   } else if (IsDoubleLo()) {
478     return cache->DoubleHi();
479   } else {
480     DCHECK(IsImpreciseConstantLo());
481     const ConstantType* const_val = down_cast<const ConstantType*>(this);
482     return cache->FromCat2ConstHi(const_val->ConstantValue(), false);
483   }
484 }
485 
GetPrimitiveType() const486 Primitive::Type RegType::GetPrimitiveType() const {
487   if (IsNonZeroReferenceTypes()) {
488     return Primitive::kPrimNot;
489   } else if (IsBooleanTypes()) {
490     return Primitive::kPrimBoolean;
491   } else if (IsByteTypes()) {
492     return Primitive::kPrimByte;
493   } else if (IsShortTypes()) {
494     return Primitive::kPrimShort;
495   } else if (IsCharTypes()) {
496     return Primitive::kPrimChar;
497   } else if (IsFloat()) {
498     return Primitive::kPrimFloat;
499   } else if (IsIntegralTypes()) {
500     return Primitive::kPrimInt;
501   } else if (IsDoubleLo()) {
502     return Primitive::kPrimDouble;
503   } else {
504     DCHECK(IsLongTypes());
505     return Primitive::kPrimLong;
506   }
507 }
508 
IsUninitializedTypes() const509 bool UninitializedType::IsUninitializedTypes() const {
510   return true;
511 }
512 
IsNonZeroReferenceTypes() const513 bool UninitializedType::IsNonZeroReferenceTypes() const {
514   return true;
515 }
516 
IsNonZeroReferenceTypes() const517 bool UnresolvedType::IsNonZeroReferenceTypes() const {
518   return true;
519 }
520 
GetSuperClass(RegTypeCache * cache) const521 const RegType& RegType::GetSuperClass(RegTypeCache* cache) const {
522   if (!IsUnresolvedTypes()) {
523     ObjPtr<mirror::Class> super_klass = GetClass()->GetSuperClass();
524     if (super_klass != nullptr) {
525       // A super class of a precise type isn't precise as a precise type indicates the register
526       // holds exactly that type.
527       std::string temp;
528       return cache->FromClass(super_klass->GetDescriptor(&temp), super_klass, false);
529     } else {
530       return cache->Zero();
531     }
532   } else {
533     if (!IsUnresolvedMergedReference() && !IsUnresolvedSuperClass() &&
534         GetDescriptor()[0] == '[') {
535       // Super class of all arrays is Object.
536       return cache->JavaLangObject(true);
537     } else {
538       return cache->FromUnresolvedSuperClass(*this);
539     }
540   }
541 }
542 
IsJavaLangObject() const543 bool RegType::IsJavaLangObject() const REQUIRES_SHARED(Locks::mutator_lock_) {
544   return IsReference() && GetClass()->IsObjectClass();
545 }
546 
IsObjectArrayTypes() const547 bool RegType::IsObjectArrayTypes() const REQUIRES_SHARED(Locks::mutator_lock_) {
548   if (IsUnresolvedTypes()) {
549     DCHECK(!IsUnresolvedMergedReference());
550 
551     if (IsUnresolvedSuperClass()) {
552       // Cannot be an array, as the superclass of arrays is java.lang.Object (which cannot be
553       // unresolved).
554       return false;
555     }
556 
557     // Primitive arrays will always resolve.
558     DCHECK(descriptor_[1] == 'L' || descriptor_[1] == '[');
559     return descriptor_[0] == '[';
560   } else if (HasClass()) {
561     ObjPtr<mirror::Class> type = GetClass();
562     return type->IsArrayClass() && !type->GetComponentType()->IsPrimitive();
563   } else {
564     return false;
565   }
566 }
567 
IsArrayTypes() const568 bool RegType::IsArrayTypes() const REQUIRES_SHARED(Locks::mutator_lock_) {
569   if (IsUnresolvedTypes()) {
570     DCHECK(!IsUnresolvedMergedReference());
571 
572     if (IsUnresolvedSuperClass()) {
573       // Cannot be an array, as the superclass of arrays is java.lang.Object (which cannot be
574       // unresolved).
575       return false;
576     }
577     return descriptor_[0] == '[';
578   } else if (HasClass()) {
579     return GetClass()->IsArrayClass();
580   } else {
581     return false;
582   }
583 }
584 
IsJavaLangObjectArray() const585 bool RegType::IsJavaLangObjectArray() const {
586   if (HasClass()) {
587     ObjPtr<mirror::Class> type = GetClass();
588     return type->IsArrayClass() && type->GetComponentType()->IsObjectClass();
589   }
590   return false;
591 }
592 
IsInstantiableTypes() const593 bool RegType::IsInstantiableTypes() const {
594   return IsUnresolvedTypes() || (IsNonZeroReferenceTypes() && GetClass()->IsInstantiable());
595 }
596 
SelectNonConstant(const RegType & a,const RegType & b)597 static const RegType& SelectNonConstant(const RegType& a, const RegType& b) {
598   return a.IsConstantTypes() ? b : a;
599 }
600 
SelectNonConstant2(const RegType & a,const RegType & b)601 static const RegType& SelectNonConstant2(const RegType& a, const RegType& b) {
602   return a.IsConstantTypes() ? (b.IsZero() ? a : b) : a;
603 }
604 
605 
606 namespace {
607 
608 ObjPtr<mirror::Class> ArrayClassJoin(ObjPtr<mirror::Class> s,
609                                      ObjPtr<mirror::Class> t,
610                                      ClassLinker* class_linker)
611     REQUIRES_SHARED(Locks::mutator_lock_);
612 
613 ObjPtr<mirror::Class> InterfaceClassJoin(ObjPtr<mirror::Class> s, ObjPtr<mirror::Class> t)
614     REQUIRES_SHARED(Locks::mutator_lock_);
615 
616 /*
617  * A basic Join operation on classes. For a pair of types S and T the Join, written S v T = J, is
618  * S <: J, T <: J and for-all U such that S <: U, T <: U then J <: U. That is J is the parent of
619  * S and T such that there isn't a parent of both S and T that isn't also the parent of J (ie J
620  * is the deepest (lowest upper bound) parent of S and T).
621  *
622  * This operation applies for regular classes and arrays, however, for interface types there
623  * needn't be a partial ordering on the types. We could solve the problem of a lack of a partial
624  * order by introducing sets of types, however, the only operation permissible on an interface is
625  * invoke-interface. In the tradition of Java verifiers [1] we defer the verification of interface
626  * types until an invoke-interface call on the interface typed reference at runtime and allow
627  * the perversion of Object being assignable to an interface type (note, however, that we don't
628  * allow assignment of Object or Interface to any concrete class and are therefore type safe).
629  *
630  * Note: This may return null in case of internal errors, e.g., OOME when a new class would have
631  *       to be created but there is no heap space. The exception will stay pending, and it is
632  *       the job of the caller to handle it.
633  *
634  * [1] Java bytecode verification: algorithms and formalizations, Xavier Leroy
635  */
ClassJoin(ObjPtr<mirror::Class> s,ObjPtr<mirror::Class> t,ClassLinker * class_linker)636 ObjPtr<mirror::Class> ClassJoin(ObjPtr<mirror::Class> s,
637                                 ObjPtr<mirror::Class> t,
638                                 ClassLinker* class_linker)
639     REQUIRES_SHARED(Locks::mutator_lock_) {
640   DCHECK(!s->IsPrimitive()) << s->PrettyClass();
641   DCHECK(!t->IsPrimitive()) << t->PrettyClass();
642   if (s == t) {
643     return s;
644   } else if (s->IsAssignableFrom(t)) {
645     return s;
646   } else if (t->IsAssignableFrom(s)) {
647     return t;
648   } else if (s->IsArrayClass() && t->IsArrayClass()) {
649     return ArrayClassJoin(s, t, class_linker);
650   } else if (s->IsInterface() || t->IsInterface()) {
651     return InterfaceClassJoin(s, t);
652   } else {
653     size_t s_depth = s->Depth();
654     size_t t_depth = t->Depth();
655     // Get s and t to the same depth in the hierarchy
656     if (s_depth > t_depth) {
657       while (s_depth > t_depth) {
658         s = s->GetSuperClass();
659         s_depth--;
660       }
661     } else {
662       while (t_depth > s_depth) {
663         t = t->GetSuperClass();
664         t_depth--;
665       }
666     }
667     // Go up the hierarchy until we get to the common parent
668     while (s != t) {
669       s = s->GetSuperClass();
670       t = t->GetSuperClass();
671     }
672     return s;
673   }
674 }
675 
ArrayClassJoin(ObjPtr<mirror::Class> s,ObjPtr<mirror::Class> t,ClassLinker * class_linker)676 ObjPtr<mirror::Class> ArrayClassJoin(ObjPtr<mirror::Class> s,
677                                      ObjPtr<mirror::Class> t,
678                                      ClassLinker* class_linker) {
679   ObjPtr<mirror::Class> s_ct = s->GetComponentType();
680   ObjPtr<mirror::Class> t_ct = t->GetComponentType();
681   if (s_ct->IsPrimitive() || t_ct->IsPrimitive()) {
682     // Given the types aren't the same, if either array is of primitive types then the only
683     // common parent is java.lang.Object
684     ObjPtr<mirror::Class> result = s->GetSuperClass();  // short-cut to java.lang.Object
685     DCHECK(result->IsObjectClass());
686     return result;
687   }
688   Thread* self = Thread::Current();
689   ObjPtr<mirror::Class> common_elem = ClassJoin(s_ct, t_ct, class_linker);
690   if (UNLIKELY(common_elem == nullptr)) {
691     self->AssertPendingException();
692     return nullptr;
693   }
694   // Note: The following lookup invalidates existing ObjPtr<>s.
695   ObjPtr<mirror::Class> array_class = class_linker->FindArrayClass(self, common_elem);
696   if (UNLIKELY(array_class == nullptr)) {
697     self->AssertPendingException();
698     return nullptr;
699   }
700   return array_class;
701 }
702 
InterfaceClassJoin(ObjPtr<mirror::Class> s,ObjPtr<mirror::Class> t)703 ObjPtr<mirror::Class> InterfaceClassJoin(ObjPtr<mirror::Class> s, ObjPtr<mirror::Class> t) {
704   // This is expensive, as we do not have good data structures to do this even halfway
705   // efficiently.
706   //
707   // We're not following JVMS for interface verification (not everything is assignable to an
708   // interface, we trade this for IMT dispatch). We also don't have set types to make up for
709   // it. So we choose one arbitrary common ancestor interface by walking the interface tables
710   // backwards.
711   //
712   // For comparison, runtimes following the JVMS will punt all interface type checking to
713   // runtime.
714   ObjPtr<mirror::IfTable> s_if = s->GetIfTable();
715   int32_t s_if_count = s->GetIfTableCount();
716   ObjPtr<mirror::IfTable> t_if = t->GetIfTable();
717   int32_t t_if_count = t->GetIfTableCount();
718 
719   // Note: we'll be using index == count to stand for the argument itself.
720   for (int32_t s_it = s_if_count; s_it >= 0; --s_it) {
721     ObjPtr<mirror::Class> s_cl = s_it == s_if_count ? s : s_if->GetInterface(s_it);
722     if (!s_cl->IsInterface()) {
723       continue;
724     }
725 
726     for (int32_t t_it = t_if_count; t_it >= 0; --t_it) {
727       ObjPtr<mirror::Class> t_cl = t_it == t_if_count ? t : t_if->GetInterface(t_it);
728       if (!t_cl->IsInterface()) {
729         continue;
730       }
731 
732       if (s_cl == t_cl) {
733         // Found something arbitrary in common.
734         return s_cl;
735       }
736     }
737   }
738 
739   // Return java.lang.Object.
740   ObjPtr<mirror::Class> obj_class = s->IsInterface() ? s->GetSuperClass() : t->GetSuperClass();
741   DCHECK(obj_class->IsObjectClass());
742   return obj_class;
743 }
744 
745 }  // namespace
746 
Merge(const RegType & incoming_type,RegTypeCache * reg_types,MethodVerifier * verifier) const747 const RegType& RegType::Merge(const RegType& incoming_type,
748                               RegTypeCache* reg_types,
749                               MethodVerifier* verifier) const {
750   DCHECK(!Equals(incoming_type));  // Trivial equality handled by caller
751   // Perform pointer equality tests for undefined and conflict to avoid virtual method dispatch.
752   const UndefinedType& undefined = reg_types->Undefined();
753   const ConflictType& conflict = reg_types->Conflict();
754   DCHECK_EQ(this == &undefined, IsUndefined());
755   DCHECK_EQ(&incoming_type == &undefined, incoming_type.IsUndefined());
756   DCHECK_EQ(this == &conflict, IsConflict());
757   DCHECK_EQ(&incoming_type == &conflict, incoming_type.IsConflict());
758   if (this == &undefined || &incoming_type == &undefined) {
759     // There is a difference between undefined and conflict. Conflicts may be copied around, but
760     // not used. Undefined registers must not be copied. So any merge with undefined should return
761     // undefined.
762     return undefined;
763   } else if (this == &conflict || &incoming_type == &conflict) {
764     return conflict;  // (Conflict MERGE *) or (* MERGE Conflict) => Conflict
765   } else if (IsConstant() && incoming_type.IsConstant()) {
766     const ConstantType& type1 = *down_cast<const ConstantType*>(this);
767     const ConstantType& type2 = *down_cast<const ConstantType*>(&incoming_type);
768     int32_t val1 = type1.ConstantValue();
769     int32_t val2 = type2.ConstantValue();
770     if (val1 >= 0 && val2 >= 0) {
771       // +ve1 MERGE +ve2 => MAX(+ve1, +ve2)
772       if (val1 >= val2) {
773         if (!type1.IsPreciseConstant()) {
774           return *this;
775         } else {
776           return reg_types->FromCat1Const(val1, false);
777         }
778       } else {
779         if (!type2.IsPreciseConstant()) {
780           return type2;
781         } else {
782           return reg_types->FromCat1Const(val2, false);
783         }
784       }
785     } else if (val1 < 0 && val2 < 0) {
786       // -ve1 MERGE -ve2 => MIN(-ve1, -ve2)
787       if (val1 <= val2) {
788         if (!type1.IsPreciseConstant()) {
789           return *this;
790         } else {
791           return reg_types->FromCat1Const(val1, false);
792         }
793       } else {
794         if (!type2.IsPreciseConstant()) {
795           return type2;
796         } else {
797           return reg_types->FromCat1Const(val2, false);
798         }
799       }
800     } else {
801       // Values are +ve and -ve, choose smallest signed type in which they both fit
802       if (type1.IsConstantByte()) {
803         if (type2.IsConstantByte()) {
804           return reg_types->ByteConstant();
805         } else if (type2.IsConstantShort()) {
806           return reg_types->ShortConstant();
807         } else {
808           return reg_types->IntConstant();
809         }
810       } else if (type1.IsConstantShort()) {
811         if (type2.IsConstantShort()) {
812           return reg_types->ShortConstant();
813         } else {
814           return reg_types->IntConstant();
815         }
816       } else {
817         return reg_types->IntConstant();
818       }
819     }
820   } else if (IsConstantLo() && incoming_type.IsConstantLo()) {
821     const ConstantType& type1 = *down_cast<const ConstantType*>(this);
822     const ConstantType& type2 = *down_cast<const ConstantType*>(&incoming_type);
823     int32_t val1 = type1.ConstantValueLo();
824     int32_t val2 = type2.ConstantValueLo();
825     return reg_types->FromCat2ConstLo(val1 | val2, false);
826   } else if (IsConstantHi() && incoming_type.IsConstantHi()) {
827     const ConstantType& type1 = *down_cast<const ConstantType*>(this);
828     const ConstantType& type2 = *down_cast<const ConstantType*>(&incoming_type);
829     int32_t val1 = type1.ConstantValueHi();
830     int32_t val2 = type2.ConstantValueHi();
831     return reg_types->FromCat2ConstHi(val1 | val2, false);
832   } else if (IsIntegralTypes() && incoming_type.IsIntegralTypes()) {
833     if (IsBooleanTypes() && incoming_type.IsBooleanTypes()) {
834       return reg_types->Boolean();  // boolean MERGE boolean => boolean
835     }
836     if (IsByteTypes() && incoming_type.IsByteTypes()) {
837       return reg_types->Byte();  // byte MERGE byte => byte
838     }
839     if (IsShortTypes() && incoming_type.IsShortTypes()) {
840       return reg_types->Short();  // short MERGE short => short
841     }
842     if (IsCharTypes() && incoming_type.IsCharTypes()) {
843       return reg_types->Char();  // char MERGE char => char
844     }
845     return reg_types->Integer();  // int MERGE * => int
846   } else if ((IsFloatTypes() && incoming_type.IsFloatTypes()) ||
847              (IsLongTypes() && incoming_type.IsLongTypes()) ||
848              (IsLongHighTypes() && incoming_type.IsLongHighTypes()) ||
849              (IsDoubleTypes() && incoming_type.IsDoubleTypes()) ||
850              (IsDoubleHighTypes() && incoming_type.IsDoubleHighTypes())) {
851     // check constant case was handled prior to entry
852     DCHECK(!IsConstant() || !incoming_type.IsConstant());
853     // float/long/double MERGE float/long/double_constant => float/long/double
854     return SelectNonConstant(*this, incoming_type);
855   } else if (IsReferenceTypes() && incoming_type.IsReferenceTypes()) {
856     if (IsUninitializedTypes() || incoming_type.IsUninitializedTypes()) {
857       // Something that is uninitialized hasn't had its constructor called. Unitialized types are
858       // special. They may only ever be merged with themselves (must be taken care of by the
859       // caller of Merge(), see the DCHECK on entry). So mark any other merge as conflicting here.
860       return conflict;
861     } else if (IsZeroOrNull() || incoming_type.IsZeroOrNull()) {
862       return SelectNonConstant2(*this, incoming_type);  // 0 MERGE ref => ref
863     } else if (IsJavaLangObject() || incoming_type.IsJavaLangObject()) {
864       return reg_types->JavaLangObject(false);  // Object MERGE ref => Object
865     } else if (IsUnresolvedTypes() || incoming_type.IsUnresolvedTypes()) {
866       // We know how to merge an unresolved type with itself, 0 or Object. In this case we
867       // have two sub-classes and don't know how to merge. Create a new string-based unresolved
868       // type that reflects our lack of knowledge and that allows the rest of the unresolved
869       // mechanics to continue.
870       return reg_types->FromUnresolvedMerge(*this, incoming_type, verifier);
871     } else {  // Two reference types, compute Join
872       // Do not cache the classes as ClassJoin() can suspend and invalidate ObjPtr<>s.
873       DCHECK(GetClass() != nullptr && !GetClass()->IsPrimitive());
874       DCHECK(incoming_type.GetClass() != nullptr && !incoming_type.GetClass()->IsPrimitive());
875       ObjPtr<mirror::Class> join_class = ClassJoin(GetClass(),
876                                                    incoming_type.GetClass(),
877                                                    reg_types->GetClassLinker());
878       if (UNLIKELY(join_class == nullptr)) {
879         // Internal error joining the classes (e.g., OOME). Report an unresolved reference type.
880         // We cannot report an unresolved merge type, as that will attempt to merge the resolved
881         // components, leaving us in an infinite loop.
882         // We do not want to report the originating exception, as that would require a fast path
883         // out all the way to VerifyClass. Instead attempt to continue on without a detailed type.
884         Thread* self = Thread::Current();
885         self->AssertPendingException();
886         self->ClearException();
887 
888         // When compiling on the host, we rather want to abort to ensure determinism for preopting.
889         // (In that case, it is likely a misconfiguration of dex2oat.)
890         if (!kIsTargetBuild && (verifier != nullptr && verifier->IsAotMode())) {
891           LOG(FATAL) << "Could not create class join of "
892                      << GetClass()->PrettyClass()
893                      << " & "
894                      << incoming_type.GetClass()->PrettyClass();
895           UNREACHABLE();
896         }
897 
898         return reg_types->MakeUnresolvedReference();
899       }
900 
901       // Record the dependency that both `GetClass()` and `incoming_type.GetClass()`
902       // are assignable to `join_class`. The `verifier` is null during unit tests.
903       if (verifier != nullptr) {
904         VerifierDeps::MaybeRecordAssignability(verifier->GetDexFile(),
905                                                join_class,
906                                                GetClass(),
907                                                /* is_strict= */ true,
908                                                /* is_assignable= */ true);
909         VerifierDeps::MaybeRecordAssignability(verifier->GetDexFile(),
910                                                join_class,
911                                                incoming_type.GetClass(),
912                                                /* is_strict= */ true,
913                                                /* is_assignable= */ true);
914       }
915       if (GetClass() == join_class && !IsPreciseReference()) {
916         return *this;
917       } else if (incoming_type.GetClass() == join_class && !incoming_type.IsPreciseReference()) {
918         return incoming_type;
919       } else {
920         std::string temp;
921         const char* descriptor = join_class->GetDescriptor(&temp);
922         return reg_types->FromClass(descriptor, join_class, /* precise= */ false);
923       }
924     }
925   } else {
926     return conflict;  // Unexpected types => Conflict
927   }
928 }
929 
CheckInvariants() const930 void RegType::CheckInvariants() const {
931   if (IsConstant() || IsConstantLo() || IsConstantHi()) {
932     CHECK(descriptor_.empty()) << *this;
933     CHECK(klass_.IsNull()) << *this;
934   }
935   if (!klass_.IsNull()) {
936     CHECK(!descriptor_.empty()) << *this;
937     std::string temp;
938     CHECK_EQ(descriptor_, klass_.Read()->GetDescriptor(&temp)) << *this;
939   }
940 }
941 
VisitRoots(RootVisitor * visitor,const RootInfo & root_info) const942 void RegType::VisitRoots(RootVisitor* visitor, const RootInfo& root_info) const {
943   klass_.VisitRootIfNonNull(visitor, root_info);
944 }
945 
CheckInvariants() const946 void UninitializedThisReferenceType::CheckInvariants() const {
947   CHECK_EQ(GetAllocationPc(), 0U) << *this;
948 }
949 
CheckInvariants() const950 void UnresolvedUninitializedThisRefType::CheckInvariants() const {
951   CHECK_EQ(GetAllocationPc(), 0U) << *this;
952   CHECK(!descriptor_.empty()) << *this;
953   CHECK(klass_.IsNull()) << *this;
954 }
955 
CheckInvariants() const956 void UnresolvedUninitializedRefType::CheckInvariants() const {
957   CHECK(!descriptor_.empty()) << *this;
958   CHECK(klass_.IsNull()) << *this;
959 }
960 
UnresolvedMergedType(const RegType & resolved,const BitVector & unresolved,const RegTypeCache * reg_type_cache,uint16_t cache_id)961 UnresolvedMergedType::UnresolvedMergedType(const RegType& resolved,
962                                            const BitVector& unresolved,
963                                            const RegTypeCache* reg_type_cache,
964                                            uint16_t cache_id)
965     : UnresolvedType("", cache_id),
966       reg_type_cache_(reg_type_cache),
967       resolved_part_(resolved),
968       unresolved_types_(unresolved, false, unresolved.GetAllocator()) {
969   CheckConstructorInvariants(this);
970 }
CheckInvariants() const971 void UnresolvedMergedType::CheckInvariants() const {
972   CHECK(reg_type_cache_ != nullptr);
973 
974   // Unresolved merged types: merged types should be defined.
975   CHECK(descriptor_.empty()) << *this;
976   CHECK(klass_.IsNull()) << *this;
977 
978   CHECK(!resolved_part_.IsConflict());
979   CHECK(resolved_part_.IsReferenceTypes());
980   CHECK(!resolved_part_.IsUnresolvedTypes());
981 
982   CHECK(resolved_part_.IsZero() ||
983         !(resolved_part_.IsArrayTypes() && !resolved_part_.IsObjectArrayTypes()));
984 
985   CHECK_GT(unresolved_types_.NumSetBits(), 0U);
986   bool unresolved_is_array =
987       reg_type_cache_->GetFromId(unresolved_types_.GetHighestBitSet()).IsArrayTypes();
988   for (uint32_t idx : unresolved_types_.Indexes()) {
989     const RegType& t = reg_type_cache_->GetFromId(idx);
990     CHECK_EQ(unresolved_is_array, t.IsArrayTypes());
991   }
992 
993   if (!resolved_part_.IsZero()) {
994     CHECK_EQ(resolved_part_.IsArrayTypes(), unresolved_is_array);
995   }
996 }
997 
IsArrayTypes() const998 bool UnresolvedMergedType::IsArrayTypes() const {
999   // For a merge to be an array, both the resolved and the unresolved part need to be object
1000   // arrays.
1001   // (Note: we encode a missing resolved part [which doesn't need to be an array] as zero.)
1002 
1003   if (!resolved_part_.IsZero() && !resolved_part_.IsArrayTypes()) {
1004     return false;
1005   }
1006 
1007   // It is enough to check just one of the merged types. Otherwise the merge should have been
1008   // collapsed (checked in CheckInvariants on construction).
1009   uint32_t idx = unresolved_types_.GetHighestBitSet();
1010   const RegType& unresolved = reg_type_cache_->GetFromId(idx);
1011   return unresolved.IsArrayTypes();
1012 }
IsObjectArrayTypes() const1013 bool UnresolvedMergedType::IsObjectArrayTypes() const {
1014   // Same as IsArrayTypes, as primitive arrays are always resolved.
1015   return IsArrayTypes();
1016 }
1017 
CheckInvariants() const1018 void UnresolvedReferenceType::CheckInvariants() const {
1019   CHECK(!descriptor_.empty()) << *this;
1020   CHECK(klass_.IsNull()) << *this;
1021 }
1022 
CheckInvariants() const1023 void UnresolvedSuperClass::CheckInvariants() const {
1024   // Unresolved merged types: merged types should be defined.
1025   CHECK(descriptor_.empty()) << *this;
1026   CHECK(klass_.IsNull()) << *this;
1027   CHECK_NE(unresolved_child_id_, 0U) << *this;
1028 }
1029 
operator <<(std::ostream & os,const RegType & rhs)1030 std::ostream& operator<<(std::ostream& os, const RegType& rhs) {
1031   os << rhs.Dump();
1032   return os;
1033 }
1034 
CanAssignArray(const RegType & src,RegTypeCache & reg_types,Handle<mirror::ClassLoader> class_loader,MethodVerifier * verifier,bool * soft_error) const1035 bool RegType::CanAssignArray(const RegType& src,
1036                              RegTypeCache& reg_types,
1037                              Handle<mirror::ClassLoader> class_loader,
1038                              MethodVerifier* verifier,
1039                              bool* soft_error) const {
1040   if (!IsArrayTypes() || !src.IsArrayTypes()) {
1041     *soft_error = false;
1042     return false;
1043   }
1044 
1045   if (IsUnresolvedMergedReference() || src.IsUnresolvedMergedReference()) {
1046     // An unresolved array type means that it's an array of some reference type. Reference arrays
1047     // can never be assigned to primitive-type arrays, and vice versa. So it is a soft error if
1048     // both arrays are reference arrays, otherwise a hard error.
1049     *soft_error = IsObjectArrayTypes() && src.IsObjectArrayTypes();
1050     return false;
1051   }
1052 
1053   const RegType& cmp1 = reg_types.GetComponentType(*this, class_loader.Get());
1054   const RegType& cmp2 = reg_types.GetComponentType(src, class_loader.Get());
1055 
1056   if (cmp1.IsAssignableFrom(cmp2, verifier)) {
1057     return true;
1058   }
1059   if (cmp1.IsUnresolvedTypes()) {
1060     if (cmp2.IsIntegralTypes() || cmp2.IsFloatTypes() || cmp2.IsArrayTypes()) {
1061       *soft_error = false;
1062       return false;
1063     }
1064     *soft_error = true;
1065     return false;
1066   }
1067   if (cmp2.IsUnresolvedTypes()) {
1068     if (cmp1.IsIntegralTypes() || cmp1.IsFloatTypes() || cmp1.IsArrayTypes()) {
1069       *soft_error = false;
1070       return false;
1071     }
1072     *soft_error = true;
1073     return false;
1074   }
1075   if (!cmp1.IsArrayTypes() || !cmp2.IsArrayTypes()) {
1076     *soft_error = false;
1077     return false;
1078   }
1079   return cmp1.CanAssignArray(cmp2, reg_types, class_loader, verifier, soft_error);
1080 }
1081 
CreateInstance(ObjPtr<mirror::Class> klass,const std::string_view & descriptor,uint16_t cache_id)1082 const NullType* NullType::CreateInstance(ObjPtr<mirror::Class> klass,
1083                                          const std::string_view& descriptor,
1084                                          uint16_t cache_id) {
1085   CHECK(instance_ == nullptr);
1086   instance_ = new NullType(klass, descriptor, cache_id);
1087   return instance_;
1088 }
1089 
Destroy()1090 void NullType::Destroy() {
1091   if (NullType::instance_ != nullptr) {
1092     delete instance_;
1093     instance_ = nullptr;
1094   }
1095 }
1096 
1097 
1098 }  // namespace verifier
1099 }  // namespace art
1100