1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "Interpolator.h"
18 
19 #include <algorithm>
20 
21 #include <log/log.h>
22 
23 #include "utils/MathUtils.h"
24 
25 namespace android {
26 namespace uirenderer {
27 
createDefaultInterpolator()28 Interpolator* Interpolator::createDefaultInterpolator() {
29     return new AccelerateDecelerateInterpolator();
30 }
31 
interpolate(float input)32 float AccelerateDecelerateInterpolator::interpolate(float input) {
33     return (float)(cosf((input + 1) * M_PI) / 2.0f) + 0.5f;
34 }
35 
interpolate(float input)36 float AccelerateInterpolator::interpolate(float input) {
37     if (mFactor == 1.0f) {
38         return input * input;
39     } else {
40         return pow(input, mDoubleFactor);
41     }
42 }
43 
interpolate(float t)44 float AnticipateInterpolator::interpolate(float t) {
45     return t * t * ((mTension + 1) * t - mTension);
46 }
47 
a(float t,float s)48 static float a(float t, float s) {
49     return t * t * ((s + 1) * t - s);
50 }
51 
o(float t,float s)52 static float o(float t, float s) {
53     return t * t * ((s + 1) * t + s);
54 }
55 
interpolate(float t)56 float AnticipateOvershootInterpolator::interpolate(float t) {
57     if (t < 0.5f)
58         return 0.5f * a(t * 2.0f, mTension);
59     else
60         return 0.5f * (o(t * 2.0f - 2.0f, mTension) + 2.0f);
61 }
62 
bounce(float t)63 static float bounce(float t) {
64     return t * t * 8.0f;
65 }
66 
interpolate(float t)67 float BounceInterpolator::interpolate(float t) {
68     t *= 1.1226f;
69     if (t < 0.3535f)
70         return bounce(t);
71     else if (t < 0.7408f)
72         return bounce(t - 0.54719f) + 0.7f;
73     else if (t < 0.9644f)
74         return bounce(t - 0.8526f) + 0.9f;
75     else
76         return bounce(t - 1.0435f) + 0.95f;
77 }
78 
interpolate(float input)79 float CycleInterpolator::interpolate(float input) {
80     return sinf(2 * mCycles * M_PI * input);
81 }
82 
interpolate(float input)83 float DecelerateInterpolator::interpolate(float input) {
84     float result;
85     if (mFactor == 1.0f) {
86         result = 1.0f - (1.0f - input) * (1.0f - input);
87     } else {
88         result = 1.0f - pow((1.0f - input), 2 * mFactor);
89     }
90     return result;
91 }
92 
interpolate(float t)93 float OvershootInterpolator::interpolate(float t) {
94     t -= 1.0f;
95     return t * t * ((mTension + 1) * t + mTension) + 1.0f;
96 }
97 
interpolate(float t)98 float PathInterpolator::interpolate(float t) {
99     if (t <= 0) {
100         return 0;
101     } else if (t >= 1) {
102         return 1;
103     }
104     // Do a binary search for the correct x to interpolate between.
105     size_t startIndex = 0;
106     size_t endIndex = mX.size() - 1;
107 
108     while (endIndex > startIndex + 1) {
109         int midIndex = (startIndex + endIndex) / 2;
110         if (t < mX[midIndex]) {
111             endIndex = midIndex;
112         } else {
113             startIndex = midIndex;
114         }
115     }
116 
117     float xRange = mX[endIndex] - mX[startIndex];
118     if (xRange == 0) {
119         return mY[startIndex];
120     }
121 
122     float tInRange = t - mX[startIndex];
123     float fraction = tInRange / xRange;
124 
125     float startY = mY[startIndex];
126     float endY = mY[endIndex];
127     return startY + (fraction * (endY - startY));
128 }
129 
LUTInterpolator(float * values,size_t size)130 LUTInterpolator::LUTInterpolator(float* values, size_t size) : mValues(values), mSize(size) {}
131 
~LUTInterpolator()132 LUTInterpolator::~LUTInterpolator() {}
133 
interpolate(float input)134 float LUTInterpolator::interpolate(float input) {
135     // lut position should only be at the end of the table when input is 1f.
136     float lutpos = input * (mSize - 1);
137     if (lutpos >= (mSize - 1)) {
138         return mValues[mSize - 1];
139     }
140 
141     float ipart, weight;
142     weight = modff(lutpos, &ipart);
143 
144     int i1 = (int)ipart;
145     int i2 = std::min(i1 + 1, (int)mSize - 1);
146 
147     LOG_ALWAYS_FATAL_IF(
148             i1 < 0 || i2 < 0,
149             "negatives in interpolation!"
150             " i1=%d, i2=%d, input=%f, lutpos=%f, size=%zu, values=%p, ipart=%f, weight=%f",
151             i1, i2, input, lutpos, mSize, mValues.get(), ipart, weight);
152 
153     float v1 = mValues[i1];
154     float v2 = mValues[i2];
155 
156     return MathUtils::lerp(v1, v2, weight);
157 }
158 
159 } /* namespace uirenderer */
160 } /* namespace android */
161