1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "Png.h"
18
19 #include <png.h>
20 #include <zlib.h>
21
22 #include <iostream>
23 #include <sstream>
24 #include <string>
25 #include <vector>
26
27 #include "androidfw/ResourceTypes.h"
28
29 #include "Source.h"
30 #include "trace/TraceBuffer.h"
31 #include "util/BigBuffer.h"
32 #include "util/Util.h"
33
34 namespace aapt {
35
36 constexpr bool kDebug = false;
37
38 struct PngInfo {
~PngInfoaapt::PngInfo39 ~PngInfo() {
40 for (png_bytep row : rows) {
41 if (row != nullptr) {
42 delete[] row;
43 }
44 }
45
46 delete[] xDivs;
47 delete[] yDivs;
48 }
49
serialize9Patchaapt::PngInfo50 void* serialize9Patch() {
51 void* serialized = android::Res_png_9patch::serialize(info9Patch, xDivs,
52 yDivs, colors.data());
53 reinterpret_cast<android::Res_png_9patch*>(serialized)->deviceToFile();
54 return serialized;
55 }
56
57 uint32_t width = 0;
58 uint32_t height = 0;
59 std::vector<png_bytep> rows;
60
61 bool is9Patch = false;
62 android::Res_png_9patch info9Patch;
63 int32_t* xDivs = nullptr;
64 int32_t* yDivs = nullptr;
65 std::vector<uint32_t> colors;
66
67 // Layout padding.
68 bool haveLayoutBounds = false;
69 int32_t layoutBoundsLeft;
70 int32_t layoutBoundsTop;
71 int32_t layoutBoundsRight;
72 int32_t layoutBoundsBottom;
73
74 // Round rect outline description.
75 int32_t outlineInsetsLeft;
76 int32_t outlineInsetsTop;
77 int32_t outlineInsetsRight;
78 int32_t outlineInsetsBottom;
79 float outlineRadius;
80 uint8_t outlineAlpha;
81 };
82
readDataFromStream(png_structp readPtr,png_bytep data,png_size_t length)83 static void readDataFromStream(png_structp readPtr, png_bytep data,
84 png_size_t length) {
85 std::istream* input =
86 reinterpret_cast<std::istream*>(png_get_io_ptr(readPtr));
87 if (!input->read(reinterpret_cast<char*>(data), length)) {
88 png_error(readPtr, strerror(errno));
89 }
90 }
91
writeDataToStream(png_structp writePtr,png_bytep data,png_size_t length)92 static void writeDataToStream(png_structp writePtr, png_bytep data,
93 png_size_t length) {
94 BigBuffer* outBuffer = reinterpret_cast<BigBuffer*>(png_get_io_ptr(writePtr));
95 png_bytep buf = outBuffer->NextBlock<png_byte>(length);
96 memcpy(buf, data, length);
97 }
98
flushDataToStream(png_structp)99 static void flushDataToStream(png_structp /*writePtr*/) {}
100
logWarning(png_structp readPtr,png_const_charp warningMessage)101 static void logWarning(png_structp readPtr, png_const_charp warningMessage) {
102 IDiagnostics* diag =
103 reinterpret_cast<IDiagnostics*>(png_get_error_ptr(readPtr));
104 diag->Warn(DiagMessage() << warningMessage);
105 }
106
readPng(IDiagnostics * diag,png_structp readPtr,png_infop infoPtr,PngInfo * outInfo)107 static bool readPng(IDiagnostics* diag, png_structp readPtr, png_infop infoPtr,
108 PngInfo* outInfo) {
109 if (setjmp(png_jmpbuf(readPtr))) {
110 diag->Error(DiagMessage() << "failed reading png");
111 return false;
112 }
113
114 png_set_sig_bytes(readPtr, kPngSignatureSize);
115 png_read_info(readPtr, infoPtr);
116
117 int colorType, bitDepth, interlaceType, compressionType;
118 png_get_IHDR(readPtr, infoPtr, &outInfo->width, &outInfo->height, &bitDepth,
119 &colorType, &interlaceType, &compressionType, nullptr);
120
121 if (colorType == PNG_COLOR_TYPE_PALETTE) {
122 png_set_palette_to_rgb(readPtr);
123 }
124
125 if (colorType == PNG_COLOR_TYPE_GRAY && bitDepth < 8) {
126 png_set_expand_gray_1_2_4_to_8(readPtr);
127 }
128
129 if (png_get_valid(readPtr, infoPtr, PNG_INFO_tRNS)) {
130 png_set_tRNS_to_alpha(readPtr);
131 }
132
133 if (bitDepth == 16) {
134 png_set_strip_16(readPtr);
135 }
136
137 if (!(colorType & PNG_COLOR_MASK_ALPHA)) {
138 png_set_add_alpha(readPtr, 0xFF, PNG_FILLER_AFTER);
139 }
140
141 if (colorType == PNG_COLOR_TYPE_GRAY ||
142 colorType == PNG_COLOR_TYPE_GRAY_ALPHA) {
143 png_set_gray_to_rgb(readPtr);
144 }
145
146 png_set_interlace_handling(readPtr);
147 png_read_update_info(readPtr, infoPtr);
148
149 const uint32_t rowBytes = png_get_rowbytes(readPtr, infoPtr);
150 outInfo->rows.resize(outInfo->height);
151 for (size_t i = 0; i < outInfo->height; i++) {
152 outInfo->rows[i] = new png_byte[rowBytes];
153 }
154
155 png_read_image(readPtr, outInfo->rows.data());
156 png_read_end(readPtr, infoPtr);
157 return true;
158 }
159
checkNinePatchSerialization(android::Res_png_9patch * inPatch,void * data)160 static void checkNinePatchSerialization(android::Res_png_9patch* inPatch,
161 void* data) {
162 size_t patchSize = inPatch->serializedSize();
163 void* newData = malloc(patchSize);
164 memcpy(newData, data, patchSize);
165 android::Res_png_9patch* outPatch = inPatch->deserialize(newData);
166 outPatch->fileToDevice();
167 // deserialization is done in place, so outPatch == newData
168 assert(outPatch == newData);
169 assert(outPatch->numXDivs == inPatch->numXDivs);
170 assert(outPatch->numYDivs == inPatch->numYDivs);
171 assert(outPatch->paddingLeft == inPatch->paddingLeft);
172 assert(outPatch->paddingRight == inPatch->paddingRight);
173 assert(outPatch->paddingTop == inPatch->paddingTop);
174 assert(outPatch->paddingBottom == inPatch->paddingBottom);
175 /* for (int i = 0; i < outPatch->numXDivs; i++) {
176 assert(outPatch->getXDivs()[i] == inPatch->getXDivs()[i]);
177 }
178 for (int i = 0; i < outPatch->numYDivs; i++) {
179 assert(outPatch->getYDivs()[i] == inPatch->getYDivs()[i]);
180 }
181 for (int i = 0; i < outPatch->numColors; i++) {
182 assert(outPatch->getColors()[i] == inPatch->getColors()[i]);
183 }*/
184 free(newData);
185 }
186
187 /*static void dump_image(int w, int h, const png_byte* const* rows, int
188 color_type) {
189 int i, j, rr, gg, bb, aa;
190
191 int bpp;
192 if (color_type == PNG_COLOR_TYPE_PALETTE || color_type ==
193 PNG_COLOR_TYPE_GRAY) {
194 bpp = 1;
195 } else if (color_type == PNG_COLOR_TYPE_GRAY_ALPHA) {
196 bpp = 2;
197 } else if (color_type == PNG_COLOR_TYPE_RGB || color_type ==
198 PNG_COLOR_TYPE_RGB_ALPHA) {
199 // We use a padding byte even when there is no alpha
200 bpp = 4;
201 } else {
202 printf("Unknown color type %d.\n", color_type);
203 }
204
205 for (j = 0; j < h; j++) {
206 const png_byte* row = rows[j];
207 for (i = 0; i < w; i++) {
208 rr = row[0];
209 gg = row[1];
210 bb = row[2];
211 aa = row[3];
212 row += bpp;
213
214 if (i == 0) {
215 printf("Row %d:", j);
216 }
217 switch (bpp) {
218 case 1:
219 printf(" (%d)", rr);
220 break;
221 case 2:
222 printf(" (%d %d", rr, gg);
223 break;
224 case 3:
225 printf(" (%d %d %d)", rr, gg, bb);
226 break;
227 case 4:
228 printf(" (%d %d %d %d)", rr, gg, bb, aa);
229 break;
230 }
231 if (i == (w - 1)) {
232 printf("\n");
233 }
234 }
235 }
236 }*/
237
238 #ifdef MAX
239 #undef MAX
240 #endif
241 #ifdef ABS
242 #undef ABS
243 #endif
244
245 #define MAX(a, b) ((a) > (b) ? (a) : (b))
246 #define ABS(a) ((a) < 0 ? -(a) : (a))
247
analyze_image(IDiagnostics * diag,const PngInfo & imageInfo,int grayscaleTolerance,png_colorp rgbPalette,png_bytep alphaPalette,int * paletteEntries,bool * hasTransparency,int * colorType,png_bytepp outRows)248 static void analyze_image(IDiagnostics* diag, const PngInfo& imageInfo,
249 int grayscaleTolerance, png_colorp rgbPalette,
250 png_bytep alphaPalette, int* paletteEntries,
251 bool* hasTransparency, int* colorType,
252 png_bytepp outRows) {
253 int w = imageInfo.width;
254 int h = imageInfo.height;
255 int i, j, rr, gg, bb, aa, idx;
256 uint32_t colors[256], col;
257 int num_colors = 0;
258 int maxGrayDeviation = 0;
259
260 bool isOpaque = true;
261 bool isPalette = true;
262 bool isGrayscale = true;
263
264 // Scan the entire image and determine if:
265 // 1. Every pixel has R == G == B (grayscale)
266 // 2. Every pixel has A == 255 (opaque)
267 // 3. There are no more than 256 distinct RGBA colors
268
269 if (kDebug) {
270 printf("Initial image data:\n");
271 // dump_image(w, h, imageInfo.rows.data(), PNG_COLOR_TYPE_RGB_ALPHA);
272 }
273
274 for (j = 0; j < h; j++) {
275 const png_byte* row = imageInfo.rows[j];
276 png_bytep out = outRows[j];
277 for (i = 0; i < w; i++) {
278 rr = *row++;
279 gg = *row++;
280 bb = *row++;
281 aa = *row++;
282
283 int odev = maxGrayDeviation;
284 maxGrayDeviation = MAX(ABS(rr - gg), maxGrayDeviation);
285 maxGrayDeviation = MAX(ABS(gg - bb), maxGrayDeviation);
286 maxGrayDeviation = MAX(ABS(bb - rr), maxGrayDeviation);
287 if (maxGrayDeviation > odev) {
288 if (kDebug) {
289 printf("New max dev. = %d at pixel (%d, %d) = (%d %d %d %d)\n",
290 maxGrayDeviation, i, j, rr, gg, bb, aa);
291 }
292 }
293
294 // Check if image is really grayscale
295 if (isGrayscale) {
296 if (rr != gg || rr != bb) {
297 if (kDebug) {
298 printf("Found a non-gray pixel at %d, %d = (%d %d %d %d)\n", i, j,
299 rr, gg, bb, aa);
300 }
301 isGrayscale = false;
302 }
303 }
304
305 // Check if image is really opaque
306 if (isOpaque) {
307 if (aa != 0xff) {
308 if (kDebug) {
309 printf("Found a non-opaque pixel at %d, %d = (%d %d %d %d)\n", i, j,
310 rr, gg, bb, aa);
311 }
312 isOpaque = false;
313 }
314 }
315
316 // Check if image is really <= 256 colors
317 if (isPalette) {
318 col = (uint32_t)((rr << 24) | (gg << 16) | (bb << 8) | aa);
319 bool match = false;
320 for (idx = 0; idx < num_colors; idx++) {
321 if (colors[idx] == col) {
322 match = true;
323 break;
324 }
325 }
326
327 // Write the palette index for the pixel to outRows optimistically
328 // We might overwrite it later if we decide to encode as gray or
329 // gray + alpha
330 *out++ = idx;
331 if (!match) {
332 if (num_colors == 256) {
333 if (kDebug) {
334 printf("Found 257th color at %d, %d\n", i, j);
335 }
336 isPalette = false;
337 } else {
338 colors[num_colors++] = col;
339 }
340 }
341 }
342 }
343 }
344
345 *paletteEntries = 0;
346 *hasTransparency = !isOpaque;
347 int bpp = isOpaque ? 3 : 4;
348 int paletteSize = w * h + bpp * num_colors;
349
350 if (kDebug) {
351 printf("isGrayscale = %s\n", isGrayscale ? "true" : "false");
352 printf("isOpaque = %s\n", isOpaque ? "true" : "false");
353 printf("isPalette = %s\n", isPalette ? "true" : "false");
354 printf("Size w/ palette = %d, gray+alpha = %d, rgb(a) = %d\n", paletteSize,
355 2 * w * h, bpp * w * h);
356 printf("Max gray deviation = %d, tolerance = %d\n", maxGrayDeviation,
357 grayscaleTolerance);
358 }
359
360 // Choose the best color type for the image.
361 // 1. Opaque gray - use COLOR_TYPE_GRAY at 1 byte/pixel
362 // 2. Gray + alpha - use COLOR_TYPE_PALETTE if the number of distinct
363 // combinations
364 // is sufficiently small, otherwise use COLOR_TYPE_GRAY_ALPHA
365 // 3. RGB(A) - use COLOR_TYPE_PALETTE if the number of distinct colors is
366 // sufficiently
367 // small, otherwise use COLOR_TYPE_RGB{_ALPHA}
368 if (isGrayscale) {
369 if (isOpaque) {
370 *colorType = PNG_COLOR_TYPE_GRAY; // 1 byte/pixel
371 } else {
372 // Use a simple heuristic to determine whether using a palette will
373 // save space versus using gray + alpha for each pixel.
374 // This doesn't take into account chunk overhead, filtering, LZ
375 // compression, etc.
376 if (isPalette && (paletteSize < 2 * w * h)) {
377 *colorType = PNG_COLOR_TYPE_PALETTE; // 1 byte/pixel + 4 bytes/color
378 } else {
379 *colorType = PNG_COLOR_TYPE_GRAY_ALPHA; // 2 bytes per pixel
380 }
381 }
382 } else if (isPalette && (paletteSize < bpp * w * h)) {
383 *colorType = PNG_COLOR_TYPE_PALETTE;
384 } else {
385 if (maxGrayDeviation <= grayscaleTolerance) {
386 diag->Note(DiagMessage() << "forcing image to gray (max deviation = "
387 << maxGrayDeviation << ")");
388 *colorType = isOpaque ? PNG_COLOR_TYPE_GRAY : PNG_COLOR_TYPE_GRAY_ALPHA;
389 } else {
390 *colorType = isOpaque ? PNG_COLOR_TYPE_RGB : PNG_COLOR_TYPE_RGB_ALPHA;
391 }
392 }
393
394 // Perform postprocessing of the image or palette data based on the final
395 // color type chosen
396
397 if (*colorType == PNG_COLOR_TYPE_PALETTE) {
398 // Create separate RGB and Alpha palettes and set the number of colors
399 *paletteEntries = num_colors;
400
401 // Create the RGB and alpha palettes
402 for (int idx = 0; idx < num_colors; idx++) {
403 col = colors[idx];
404 rgbPalette[idx].red = (png_byte)((col >> 24) & 0xff);
405 rgbPalette[idx].green = (png_byte)((col >> 16) & 0xff);
406 rgbPalette[idx].blue = (png_byte)((col >> 8) & 0xff);
407 alphaPalette[idx] = (png_byte)(col & 0xff);
408 }
409 } else if (*colorType == PNG_COLOR_TYPE_GRAY ||
410 *colorType == PNG_COLOR_TYPE_GRAY_ALPHA) {
411 // If the image is gray or gray + alpha, compact the pixels into outRows
412 for (j = 0; j < h; j++) {
413 const png_byte* row = imageInfo.rows[j];
414 png_bytep out = outRows[j];
415 for (i = 0; i < w; i++) {
416 rr = *row++;
417 gg = *row++;
418 bb = *row++;
419 aa = *row++;
420
421 if (isGrayscale) {
422 *out++ = rr;
423 } else {
424 *out++ = (png_byte)(rr * 0.2126f + gg * 0.7152f + bb * 0.0722f);
425 }
426 if (!isOpaque) {
427 *out++ = aa;
428 }
429 }
430 }
431 }
432 }
433
writePng(IDiagnostics * diag,png_structp writePtr,png_infop infoPtr,PngInfo * info,int grayScaleTolerance)434 static bool writePng(IDiagnostics* diag, png_structp writePtr,
435 png_infop infoPtr, PngInfo* info, int grayScaleTolerance) {
436 if (setjmp(png_jmpbuf(writePtr))) {
437 diag->Error(DiagMessage() << "failed to write png");
438 return false;
439 }
440
441 uint32_t width, height;
442 int colorType, bitDepth, interlaceType, compressionType;
443
444 png_unknown_chunk unknowns[3];
445 unknowns[0].data = nullptr;
446 unknowns[1].data = nullptr;
447 unknowns[2].data = nullptr;
448
449 png_bytepp outRows =
450 (png_bytepp)malloc((int)info->height * sizeof(png_bytep));
451 if (outRows == (png_bytepp)0) {
452 printf("Can't allocate output buffer!\n");
453 exit(1);
454 }
455 for (uint32_t i = 0; i < info->height; i++) {
456 outRows[i] = (png_bytep)malloc(2 * (int)info->width);
457 if (outRows[i] == (png_bytep)0) {
458 printf("Can't allocate output buffer!\n");
459 exit(1);
460 }
461 }
462
463 png_set_compression_level(writePtr, Z_BEST_COMPRESSION);
464
465 if (kDebug) {
466 diag->Note(DiagMessage() << "writing image: w = " << info->width
467 << ", h = " << info->height);
468 }
469
470 png_color rgbPalette[256];
471 png_byte alphaPalette[256];
472 bool hasTransparency;
473 int paletteEntries;
474
475 analyze_image(diag, *info, grayScaleTolerance, rgbPalette, alphaPalette,
476 &paletteEntries, &hasTransparency, &colorType, outRows);
477
478 // If the image is a 9-patch, we need to preserve it as a ARGB file to make
479 // sure the pixels will not be pre-dithered/clamped until we decide they are
480 if (info->is9Patch &&
481 (colorType == PNG_COLOR_TYPE_RGB || colorType == PNG_COLOR_TYPE_GRAY ||
482 colorType == PNG_COLOR_TYPE_PALETTE)) {
483 colorType = PNG_COLOR_TYPE_RGB_ALPHA;
484 }
485
486 if (kDebug) {
487 switch (colorType) {
488 case PNG_COLOR_TYPE_PALETTE:
489 diag->Note(DiagMessage() << "has " << paletteEntries << " colors"
490 << (hasTransparency ? " (with alpha)" : "")
491 << ", using PNG_COLOR_TYPE_PALLETTE");
492 break;
493 case PNG_COLOR_TYPE_GRAY:
494 diag->Note(DiagMessage()
495 << "is opaque gray, using PNG_COLOR_TYPE_GRAY");
496 break;
497 case PNG_COLOR_TYPE_GRAY_ALPHA:
498 diag->Note(DiagMessage()
499 << "is gray + alpha, using PNG_COLOR_TYPE_GRAY_ALPHA");
500 break;
501 case PNG_COLOR_TYPE_RGB:
502 diag->Note(DiagMessage() << "is opaque RGB, using PNG_COLOR_TYPE_RGB");
503 break;
504 case PNG_COLOR_TYPE_RGB_ALPHA:
505 diag->Note(DiagMessage()
506 << "is RGB + alpha, using PNG_COLOR_TYPE_RGB_ALPHA");
507 break;
508 }
509 }
510
511 png_set_IHDR(writePtr, infoPtr, info->width, info->height, 8, colorType,
512 PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT,
513 PNG_FILTER_TYPE_DEFAULT);
514
515 if (colorType == PNG_COLOR_TYPE_PALETTE) {
516 png_set_PLTE(writePtr, infoPtr, rgbPalette, paletteEntries);
517 if (hasTransparency) {
518 png_set_tRNS(writePtr, infoPtr, alphaPalette, paletteEntries,
519 (png_color_16p)0);
520 }
521 png_set_filter(writePtr, 0, PNG_NO_FILTERS);
522 } else {
523 png_set_filter(writePtr, 0, PNG_ALL_FILTERS);
524 }
525
526 if (info->is9Patch) {
527 int chunkCount = 2 + (info->haveLayoutBounds ? 1 : 0);
528 int pIndex = info->haveLayoutBounds ? 2 : 1;
529 int bIndex = 1;
530 int oIndex = 0;
531
532 // Chunks ordered thusly because older platforms depend on the base 9 patch
533 // data being last
534 png_bytep chunkNames = info->haveLayoutBounds
535 ? (png_bytep) "npOl\0npLb\0npTc\0"
536 : (png_bytep) "npOl\0npTc";
537
538 // base 9 patch data
539 if (kDebug) {
540 diag->Note(DiagMessage() << "adding 9-patch info..");
541 }
542 memcpy((char*)unknowns[pIndex].name, "npTc", 5);
543 unknowns[pIndex].data = (png_byte*)info->serialize9Patch();
544 unknowns[pIndex].size = info->info9Patch.serializedSize();
545 // TODO: remove the check below when everything works
546 checkNinePatchSerialization(&info->info9Patch, unknowns[pIndex].data);
547
548 // automatically generated 9 patch outline data
549 int chunkSize = sizeof(png_uint_32) * 6;
550 memcpy((char*)unknowns[oIndex].name, "npOl", 5);
551 unknowns[oIndex].data = (png_byte*)calloc(chunkSize, 1);
552 png_byte outputData[chunkSize];
553 memcpy(&outputData, &info->outlineInsetsLeft, 4 * sizeof(png_uint_32));
554 ((float*)outputData)[4] = info->outlineRadius;
555 ((png_uint_32*)outputData)[5] = info->outlineAlpha;
556 memcpy(unknowns[oIndex].data, &outputData, chunkSize);
557 unknowns[oIndex].size = chunkSize;
558
559 // optional optical inset / layout bounds data
560 if (info->haveLayoutBounds) {
561 int chunkSize = sizeof(png_uint_32) * 4;
562 memcpy((char*)unknowns[bIndex].name, "npLb", 5);
563 unknowns[bIndex].data = (png_byte*)calloc(chunkSize, 1);
564 memcpy(unknowns[bIndex].data, &info->layoutBoundsLeft, chunkSize);
565 unknowns[bIndex].size = chunkSize;
566 }
567
568 for (int i = 0; i < chunkCount; i++) {
569 unknowns[i].location = PNG_HAVE_PLTE;
570 }
571 png_set_keep_unknown_chunks(writePtr, PNG_HANDLE_CHUNK_ALWAYS, chunkNames,
572 chunkCount);
573 png_set_unknown_chunks(writePtr, infoPtr, unknowns, chunkCount);
574
575 #if PNG_LIBPNG_VER < 10600
576 // Deal with unknown chunk location bug in 1.5.x and earlier.
577 png_set_unknown_chunk_location(writePtr, infoPtr, 0, PNG_HAVE_PLTE);
578 if (info->haveLayoutBounds) {
579 png_set_unknown_chunk_location(writePtr, infoPtr, 1, PNG_HAVE_PLTE);
580 }
581 #endif
582 }
583
584 png_write_info(writePtr, infoPtr);
585
586 png_bytepp rows;
587 if (colorType == PNG_COLOR_TYPE_RGB ||
588 colorType == PNG_COLOR_TYPE_RGB_ALPHA) {
589 if (colorType == PNG_COLOR_TYPE_RGB) {
590 png_set_filler(writePtr, 0, PNG_FILLER_AFTER);
591 }
592 rows = info->rows.data();
593 } else {
594 rows = outRows;
595 }
596 png_write_image(writePtr, rows);
597
598 if (kDebug) {
599 printf("Final image data:\n");
600 // dump_image(info->width, info->height, rows, colorType);
601 }
602
603 png_write_end(writePtr, infoPtr);
604
605 for (uint32_t i = 0; i < info->height; i++) {
606 free(outRows[i]);
607 }
608 free(outRows);
609 free(unknowns[0].data);
610 free(unknowns[1].data);
611 free(unknowns[2].data);
612
613 png_get_IHDR(writePtr, infoPtr, &width, &height, &bitDepth, &colorType,
614 &interlaceType, &compressionType, nullptr);
615
616 if (kDebug) {
617 diag->Note(DiagMessage() << "image written: w = " << width
618 << ", h = " << height << ", d = " << bitDepth
619 << ", colors = " << colorType
620 << ", inter = " << interlaceType
621 << ", comp = " << compressionType);
622 }
623 return true;
624 }
625
626 constexpr uint32_t kColorWhite = 0xffffffffu;
627 constexpr uint32_t kColorTick = 0xff000000u;
628 constexpr uint32_t kColorLayoutBoundsTick = 0xff0000ffu;
629
630 enum class TickType { kNone, kTick, kLayoutBounds, kBoth };
631
tickType(png_bytep p,bool transparent,const char ** outError)632 static TickType tickType(png_bytep p, bool transparent, const char** outError) {
633 png_uint_32 color = p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
634
635 if (transparent) {
636 if (p[3] == 0) {
637 return TickType::kNone;
638 }
639 if (color == kColorLayoutBoundsTick) {
640 return TickType::kLayoutBounds;
641 }
642 if (color == kColorTick) {
643 return TickType::kTick;
644 }
645
646 // Error cases
647 if (p[3] != 0xff) {
648 *outError =
649 "Frame pixels must be either solid or transparent "
650 "(not intermediate alphas)";
651 return TickType::kNone;
652 }
653
654 if (p[0] != 0 || p[1] != 0 || p[2] != 0) {
655 *outError = "Ticks in transparent frame must be black or red";
656 }
657 return TickType::kTick;
658 }
659
660 if (p[3] != 0xFF) {
661 *outError = "White frame must be a solid color (no alpha)";
662 }
663 if (color == kColorWhite) {
664 return TickType::kNone;
665 }
666 if (color == kColorTick) {
667 return TickType::kTick;
668 }
669 if (color == kColorLayoutBoundsTick) {
670 return TickType::kLayoutBounds;
671 }
672
673 if (p[0] != 0 || p[1] != 0 || p[2] != 0) {
674 *outError = "Ticks in white frame must be black or red";
675 return TickType::kNone;
676 }
677 return TickType::kTick;
678 }
679
680 enum class TickState { kStart, kInside1, kOutside1 };
681
getHorizontalTicks(png_bytep row,int width,bool transparent,bool required,int32_t * outLeft,int32_t * outRight,const char ** outError,uint8_t * outDivs,bool multipleAllowed)682 static bool getHorizontalTicks(png_bytep row, int width, bool transparent,
683 bool required, int32_t* outLeft,
684 int32_t* outRight, const char** outError,
685 uint8_t* outDivs, bool multipleAllowed) {
686 *outLeft = *outRight = -1;
687 TickState state = TickState::kStart;
688 bool found = false;
689
690 for (int i = 1; i < width - 1; i++) {
691 if (tickType(row + i * 4, transparent, outError) == TickType::kTick) {
692 if (state == TickState::kStart ||
693 (state == TickState::kOutside1 && multipleAllowed)) {
694 *outLeft = i - 1;
695 *outRight = width - 2;
696 found = true;
697 if (outDivs != NULL) {
698 *outDivs += 2;
699 }
700 state = TickState::kInside1;
701 } else if (state == TickState::kOutside1) {
702 *outError = "Can't have more than one marked region along edge";
703 *outLeft = i;
704 return false;
705 }
706 } else if (!*outError) {
707 if (state == TickState::kInside1) {
708 // We're done with this div. Move on to the next.
709 *outRight = i - 1;
710 outRight += 2;
711 outLeft += 2;
712 state = TickState::kOutside1;
713 }
714 } else {
715 *outLeft = i;
716 return false;
717 }
718 }
719
720 if (required && !found) {
721 *outError = "No marked region found along edge";
722 *outLeft = -1;
723 return false;
724 }
725 return true;
726 }
727
getVerticalTicks(png_bytepp rows,int offset,int height,bool transparent,bool required,int32_t * outTop,int32_t * outBottom,const char ** outError,uint8_t * outDivs,bool multipleAllowed)728 static bool getVerticalTicks(png_bytepp rows, int offset, int height,
729 bool transparent, bool required, int32_t* outTop,
730 int32_t* outBottom, const char** outError,
731 uint8_t* outDivs, bool multipleAllowed) {
732 *outTop = *outBottom = -1;
733 TickState state = TickState::kStart;
734 bool found = false;
735
736 for (int i = 1; i < height - 1; i++) {
737 if (tickType(rows[i] + offset, transparent, outError) == TickType::kTick) {
738 if (state == TickState::kStart ||
739 (state == TickState::kOutside1 && multipleAllowed)) {
740 *outTop = i - 1;
741 *outBottom = height - 2;
742 found = true;
743 if (outDivs != NULL) {
744 *outDivs += 2;
745 }
746 state = TickState::kInside1;
747 } else if (state == TickState::kOutside1) {
748 *outError = "Can't have more than one marked region along edge";
749 *outTop = i;
750 return false;
751 }
752 } else if (!*outError) {
753 if (state == TickState::kInside1) {
754 // We're done with this div. Move on to the next.
755 *outBottom = i - 1;
756 outTop += 2;
757 outBottom += 2;
758 state = TickState::kOutside1;
759 }
760 } else {
761 *outTop = i;
762 return false;
763 }
764 }
765
766 if (required && !found) {
767 *outError = "No marked region found along edge";
768 *outTop = -1;
769 return false;
770 }
771 return true;
772 }
773
getHorizontalLayoutBoundsTicks(png_bytep row,int width,bool transparent,bool,int32_t * outLeft,int32_t * outRight,const char ** outError)774 static bool getHorizontalLayoutBoundsTicks(png_bytep row, int width,
775 bool transparent,
776 bool /* required */,
777 int32_t* outLeft, int32_t* outRight,
778 const char** outError) {
779 *outLeft = *outRight = 0;
780
781 // Look for left tick
782 if (tickType(row + 4, transparent, outError) == TickType::kLayoutBounds) {
783 // Starting with a layout padding tick
784 int i = 1;
785 while (i < width - 1) {
786 (*outLeft)++;
787 i++;
788 if (tickType(row + i * 4, transparent, outError) !=
789 TickType::kLayoutBounds) {
790 break;
791 }
792 }
793 }
794
795 // Look for right tick
796 if (tickType(row + (width - 2) * 4, transparent, outError) ==
797 TickType::kLayoutBounds) {
798 // Ending with a layout padding tick
799 int i = width - 2;
800 while (i > 1) {
801 (*outRight)++;
802 i--;
803 if (tickType(row + i * 4, transparent, outError) !=
804 TickType::kLayoutBounds) {
805 break;
806 }
807 }
808 }
809 return true;
810 }
811
getVerticalLayoutBoundsTicks(png_bytepp rows,int offset,int height,bool transparent,bool,int32_t * outTop,int32_t * outBottom,const char ** outError)812 static bool getVerticalLayoutBoundsTicks(png_bytepp rows, int offset,
813 int height, bool transparent,
814 bool /* required */, int32_t* outTop,
815 int32_t* outBottom,
816 const char** outError) {
817 *outTop = *outBottom = 0;
818
819 // Look for top tick
820 if (tickType(rows[1] + offset, transparent, outError) ==
821 TickType::kLayoutBounds) {
822 // Starting with a layout padding tick
823 int i = 1;
824 while (i < height - 1) {
825 (*outTop)++;
826 i++;
827 if (tickType(rows[i] + offset, transparent, outError) !=
828 TickType::kLayoutBounds) {
829 break;
830 }
831 }
832 }
833
834 // Look for bottom tick
835 if (tickType(rows[height - 2] + offset, transparent, outError) ==
836 TickType::kLayoutBounds) {
837 // Ending with a layout padding tick
838 int i = height - 2;
839 while (i > 1) {
840 (*outBottom)++;
841 i--;
842 if (tickType(rows[i] + offset, transparent, outError) !=
843 TickType::kLayoutBounds) {
844 break;
845 }
846 }
847 }
848 return true;
849 }
850
findMaxOpacity(png_bytepp rows,int startX,int startY,int endX,int endY,int dX,int dY,int * outInset)851 static void findMaxOpacity(png_bytepp rows, int startX, int startY, int endX,
852 int endY, int dX, int dY, int* outInset) {
853 uint8_t maxOpacity = 0;
854 int inset = 0;
855 *outInset = 0;
856 for (int x = startX, y = startY; x != endX && y != endY;
857 x += dX, y += dY, inset++) {
858 png_byte* color = rows[y] + x * 4;
859 uint8_t opacity = color[3];
860 if (opacity > maxOpacity) {
861 maxOpacity = opacity;
862 *outInset = inset;
863 }
864 if (opacity == 0xff) return;
865 }
866 }
867
maxAlphaOverRow(png_bytep row,int startX,int endX)868 static uint8_t maxAlphaOverRow(png_bytep row, int startX, int endX) {
869 uint8_t maxAlpha = 0;
870 for (int x = startX; x < endX; x++) {
871 uint8_t alpha = (row + x * 4)[3];
872 if (alpha > maxAlpha) maxAlpha = alpha;
873 }
874 return maxAlpha;
875 }
876
maxAlphaOverCol(png_bytepp rows,int offsetX,int startY,int endY)877 static uint8_t maxAlphaOverCol(png_bytepp rows, int offsetX, int startY,
878 int endY) {
879 uint8_t maxAlpha = 0;
880 for (int y = startY; y < endY; y++) {
881 uint8_t alpha = (rows[y] + offsetX * 4)[3];
882 if (alpha > maxAlpha) maxAlpha = alpha;
883 }
884 return maxAlpha;
885 }
886
getOutline(PngInfo * image)887 static void getOutline(PngInfo* image) {
888 int midX = image->width / 2;
889 int midY = image->height / 2;
890 int endX = image->width - 2;
891 int endY = image->height - 2;
892
893 // find left and right extent of nine patch content on center row
894 if (image->width > 4) {
895 findMaxOpacity(image->rows.data(), 1, midY, midX, -1, 1, 0,
896 &image->outlineInsetsLeft);
897 findMaxOpacity(image->rows.data(), endX, midY, midX, -1, -1, 0,
898 &image->outlineInsetsRight);
899 } else {
900 image->outlineInsetsLeft = 0;
901 image->outlineInsetsRight = 0;
902 }
903
904 // find top and bottom extent of nine patch content on center column
905 if (image->height > 4) {
906 findMaxOpacity(image->rows.data(), midX, 1, -1, midY, 0, 1,
907 &image->outlineInsetsTop);
908 findMaxOpacity(image->rows.data(), midX, endY, -1, midY, 0, -1,
909 &image->outlineInsetsBottom);
910 } else {
911 image->outlineInsetsTop = 0;
912 image->outlineInsetsBottom = 0;
913 }
914
915 int innerStartX = 1 + image->outlineInsetsLeft;
916 int innerStartY = 1 + image->outlineInsetsTop;
917 int innerEndX = endX - image->outlineInsetsRight;
918 int innerEndY = endY - image->outlineInsetsBottom;
919 int innerMidX = (innerEndX + innerStartX) / 2;
920 int innerMidY = (innerEndY + innerStartY) / 2;
921
922 // assuming the image is a round rect, compute the radius by marching
923 // diagonally from the top left corner towards the center
924 image->outlineAlpha = std::max(
925 maxAlphaOverRow(image->rows[innerMidY], innerStartX, innerEndX),
926 maxAlphaOverCol(image->rows.data(), innerMidX, innerStartY, innerStartY));
927
928 int diagonalInset = 0;
929 findMaxOpacity(image->rows.data(), innerStartX, innerStartY, innerMidX,
930 innerMidY, 1, 1, &diagonalInset);
931
932 /* Determine source radius based upon inset:
933 * sqrt(r^2 + r^2) = sqrt(i^2 + i^2) + r
934 * sqrt(2) * r = sqrt(2) * i + r
935 * (sqrt(2) - 1) * r = sqrt(2) * i
936 * r = sqrt(2) / (sqrt(2) - 1) * i
937 */
938 image->outlineRadius = 3.4142f * diagonalInset;
939
940 if (kDebug) {
941 printf("outline insets %d %d %d %d, rad %f, alpha %x\n",
942 image->outlineInsetsLeft, image->outlineInsetsTop,
943 image->outlineInsetsRight, image->outlineInsetsBottom,
944 image->outlineRadius, image->outlineAlpha);
945 }
946 }
947
getColor(png_bytepp rows,int left,int top,int right,int bottom)948 static uint32_t getColor(png_bytepp rows, int left, int top, int right,
949 int bottom) {
950 png_bytep color = rows[top] + left * 4;
951
952 if (left > right || top > bottom) {
953 return android::Res_png_9patch::TRANSPARENT_COLOR;
954 }
955
956 while (top <= bottom) {
957 for (int i = left; i <= right; i++) {
958 png_bytep p = rows[top] + i * 4;
959 if (color[3] == 0) {
960 if (p[3] != 0) {
961 return android::Res_png_9patch::NO_COLOR;
962 }
963 } else if (p[0] != color[0] || p[1] != color[1] || p[2] != color[2] ||
964 p[3] != color[3]) {
965 return android::Res_png_9patch::NO_COLOR;
966 }
967 }
968 top++;
969 }
970
971 if (color[3] == 0) {
972 return android::Res_png_9patch::TRANSPARENT_COLOR;
973 }
974 return (color[3] << 24) | (color[0] << 16) | (color[1] << 8) | color[2];
975 }
976
do9Patch(PngInfo * image,std::string * outError)977 static bool do9Patch(PngInfo* image, std::string* outError) {
978 image->is9Patch = true;
979
980 int W = image->width;
981 int H = image->height;
982 int i, j;
983
984 const int maxSizeXDivs = W * sizeof(int32_t);
985 const int maxSizeYDivs = H * sizeof(int32_t);
986 int32_t* xDivs = image->xDivs = new int32_t[W];
987 int32_t* yDivs = image->yDivs = new int32_t[H];
988 uint8_t numXDivs = 0;
989 uint8_t numYDivs = 0;
990
991 int8_t numColors;
992 int numRows;
993 int numCols;
994 int top;
995 int left;
996 int right;
997 int bottom;
998 memset(xDivs, -1, maxSizeXDivs);
999 memset(yDivs, -1, maxSizeYDivs);
1000 image->info9Patch.paddingLeft = image->info9Patch.paddingRight = -1;
1001 image->info9Patch.paddingTop = image->info9Patch.paddingBottom = -1;
1002 image->layoutBoundsLeft = image->layoutBoundsRight = 0;
1003 image->layoutBoundsTop = image->layoutBoundsBottom = 0;
1004
1005 png_bytep p = image->rows[0];
1006 bool transparent = p[3] == 0;
1007 bool hasColor = false;
1008
1009 const char* errorMsg = nullptr;
1010 int errorPixel = -1;
1011 const char* errorEdge = nullptr;
1012
1013 int colorIndex = 0;
1014 std::vector<png_bytep> newRows;
1015
1016 // Validate size...
1017 if (W < 3 || H < 3) {
1018 errorMsg = "Image must be at least 3x3 (1x1 without frame) pixels";
1019 goto getout;
1020 }
1021
1022 // Validate frame...
1023 if (!transparent &&
1024 (p[0] != 0xFF || p[1] != 0xFF || p[2] != 0xFF || p[3] != 0xFF)) {
1025 errorMsg = "Must have one-pixel frame that is either transparent or white";
1026 goto getout;
1027 }
1028
1029 // Find left and right of sizing areas...
1030 if (!getHorizontalTicks(p, W, transparent, true, &xDivs[0], &xDivs[1],
1031 &errorMsg, &numXDivs, true)) {
1032 errorPixel = xDivs[0];
1033 errorEdge = "top";
1034 goto getout;
1035 }
1036
1037 // Find top and bottom of sizing areas...
1038 if (!getVerticalTicks(image->rows.data(), 0, H, transparent, true, &yDivs[0],
1039 &yDivs[1], &errorMsg, &numYDivs, true)) {
1040 errorPixel = yDivs[0];
1041 errorEdge = "left";
1042 goto getout;
1043 }
1044
1045 // Copy patch size data into image...
1046 image->info9Patch.numXDivs = numXDivs;
1047 image->info9Patch.numYDivs = numYDivs;
1048
1049 // Find left and right of padding area...
1050 if (!getHorizontalTicks(image->rows[H - 1], W, transparent, false,
1051 &image->info9Patch.paddingLeft,
1052 &image->info9Patch.paddingRight, &errorMsg, nullptr,
1053 false)) {
1054 errorPixel = image->info9Patch.paddingLeft;
1055 errorEdge = "bottom";
1056 goto getout;
1057 }
1058
1059 // Find top and bottom of padding area...
1060 if (!getVerticalTicks(image->rows.data(), (W - 1) * 4, H, transparent, false,
1061 &image->info9Patch.paddingTop,
1062 &image->info9Patch.paddingBottom, &errorMsg, nullptr,
1063 false)) {
1064 errorPixel = image->info9Patch.paddingTop;
1065 errorEdge = "right";
1066 goto getout;
1067 }
1068
1069 // Find left and right of layout padding...
1070 getHorizontalLayoutBoundsTicks(image->rows[H - 1], W, transparent, false,
1071 &image->layoutBoundsLeft,
1072 &image->layoutBoundsRight, &errorMsg);
1073
1074 getVerticalLayoutBoundsTicks(image->rows.data(), (W - 1) * 4, H, transparent,
1075 false, &image->layoutBoundsTop,
1076 &image->layoutBoundsBottom, &errorMsg);
1077
1078 image->haveLayoutBounds =
1079 image->layoutBoundsLeft != 0 || image->layoutBoundsRight != 0 ||
1080 image->layoutBoundsTop != 0 || image->layoutBoundsBottom != 0;
1081
1082 if (image->haveLayoutBounds) {
1083 if (kDebug) {
1084 printf("layoutBounds=%d %d %d %d\n", image->layoutBoundsLeft,
1085 image->layoutBoundsTop, image->layoutBoundsRight,
1086 image->layoutBoundsBottom);
1087 }
1088 }
1089
1090 // use opacity of pixels to estimate the round rect outline
1091 getOutline(image);
1092
1093 // If padding is not yet specified, take values from size.
1094 if (image->info9Patch.paddingLeft < 0) {
1095 image->info9Patch.paddingLeft = xDivs[0];
1096 image->info9Patch.paddingRight = W - 2 - xDivs[1];
1097 } else {
1098 // Adjust value to be correct!
1099 image->info9Patch.paddingRight = W - 2 - image->info9Patch.paddingRight;
1100 }
1101 if (image->info9Patch.paddingTop < 0) {
1102 image->info9Patch.paddingTop = yDivs[0];
1103 image->info9Patch.paddingBottom = H - 2 - yDivs[1];
1104 } else {
1105 // Adjust value to be correct!
1106 image->info9Patch.paddingBottom = H - 2 - image->info9Patch.paddingBottom;
1107 }
1108
1109 /* if (kDebug) {
1110 printf("Size ticks for %s: x0=%d, x1=%d, y0=%d, y1=%d\n", imageName,
1111 xDivs[0], xDivs[1],
1112 yDivs[0], yDivs[1]);
1113 printf("padding ticks for %s: l=%d, r=%d, t=%d, b=%d\n", imageName,
1114 image->info9Patch.paddingLeft, image->info9Patch.paddingRight,
1115 image->info9Patch.paddingTop,
1116 image->info9Patch.paddingBottom);
1117 }*/
1118
1119 // Remove frame from image.
1120 newRows.resize(H - 2);
1121 for (i = 0; i < H - 2; i++) {
1122 newRows[i] = image->rows[i + 1];
1123 memmove(newRows[i], newRows[i] + 4, (W - 2) * 4);
1124 }
1125 image->rows.swap(newRows);
1126
1127 image->width -= 2;
1128 W = image->width;
1129 image->height -= 2;
1130 H = image->height;
1131
1132 // Figure out the number of rows and columns in the N-patch
1133 numCols = numXDivs + 1;
1134 if (xDivs[0] == 0) { // Column 1 is strechable
1135 numCols--;
1136 }
1137 if (xDivs[numXDivs - 1] == W) {
1138 numCols--;
1139 }
1140 numRows = numYDivs + 1;
1141 if (yDivs[0] == 0) { // Row 1 is strechable
1142 numRows--;
1143 }
1144 if (yDivs[numYDivs - 1] == H) {
1145 numRows--;
1146 }
1147
1148 // Make sure the amount of rows and columns will fit in the number of
1149 // colors we can use in the 9-patch format.
1150 if (numRows * numCols > 0x7F) {
1151 errorMsg = "Too many rows and columns in 9-patch perimeter";
1152 goto getout;
1153 }
1154
1155 numColors = numRows * numCols;
1156 image->info9Patch.numColors = numColors;
1157 image->colors.resize(numColors);
1158
1159 // Fill in color information for each patch.
1160
1161 uint32_t c;
1162 top = 0;
1163
1164 // The first row always starts with the top being at y=0 and the bottom
1165 // being either yDivs[1] (if yDivs[0]=0) of yDivs[0]. In the former case
1166 // the first row is stretchable along the Y axis, otherwise it is fixed.
1167 // The last row always ends with the bottom being bitmap.height and the top
1168 // being either yDivs[numYDivs-2] (if yDivs[numYDivs-1]=bitmap.height) or
1169 // yDivs[numYDivs-1]. In the former case the last row is stretchable along
1170 // the Y axis, otherwise it is fixed.
1171 //
1172 // The first and last columns are similarly treated with respect to the X
1173 // axis.
1174 //
1175 // The above is to help explain some of the special casing that goes on the
1176 // code below.
1177
1178 // The initial yDiv and whether the first row is considered stretchable or
1179 // not depends on whether yDiv[0] was zero or not.
1180 for (j = (yDivs[0] == 0 ? 1 : 0); j <= numYDivs && top < H; j++) {
1181 if (j == numYDivs) {
1182 bottom = H;
1183 } else {
1184 bottom = yDivs[j];
1185 }
1186 left = 0;
1187 // The initial xDiv and whether the first column is considered
1188 // stretchable or not depends on whether xDiv[0] was zero or not.
1189 for (i = xDivs[0] == 0 ? 1 : 0; i <= numXDivs && left < W; i++) {
1190 if (i == numXDivs) {
1191 right = W;
1192 } else {
1193 right = xDivs[i];
1194 }
1195 c = getColor(image->rows.data(), left, top, right - 1, bottom - 1);
1196 image->colors[colorIndex++] = c;
1197 if (kDebug) {
1198 if (c != android::Res_png_9patch::NO_COLOR) {
1199 hasColor = true;
1200 }
1201 }
1202 left = right;
1203 }
1204 top = bottom;
1205 }
1206
1207 assert(colorIndex == numColors);
1208
1209 if (kDebug && hasColor) {
1210 for (i = 0; i < numColors; i++) {
1211 if (i == 0) printf("Colors:\n");
1212 printf(" #%08x", image->colors[i]);
1213 if (i == numColors - 1) printf("\n");
1214 }
1215 }
1216 getout:
1217 if (errorMsg) {
1218 std::stringstream err;
1219 err << "9-patch malformed: " << errorMsg;
1220 if (errorEdge) {
1221 err << "." << std::endl;
1222 if (errorPixel >= 0) {
1223 err << "Found at pixel #" << errorPixel << " along " << errorEdge
1224 << " edge";
1225 } else {
1226 err << "Found along " << errorEdge << " edge";
1227 }
1228 }
1229 *outError = err.str();
1230 return false;
1231 }
1232 return true;
1233 }
1234
process(const Source & source,std::istream * input,BigBuffer * outBuffer,const PngOptions & options)1235 bool Png::process(const Source& source, std::istream* input,
1236 BigBuffer* outBuffer, const PngOptions& options) {
1237 TRACE_CALL();
1238 png_byte signature[kPngSignatureSize];
1239
1240 // Read the PNG signature first.
1241 if (!input->read(reinterpret_cast<char*>(signature), kPngSignatureSize)) {
1242 mDiag->Error(DiagMessage() << strerror(errno));
1243 return false;
1244 }
1245
1246 // If the PNG signature doesn't match, bail early.
1247 if (png_sig_cmp(signature, 0, kPngSignatureSize) != 0) {
1248 mDiag->Error(DiagMessage() << "not a valid png file");
1249 return false;
1250 }
1251
1252 bool result = false;
1253 png_structp readPtr = nullptr;
1254 png_infop infoPtr = nullptr;
1255 png_structp writePtr = nullptr;
1256 png_infop writeInfoPtr = nullptr;
1257 PngInfo pngInfo = {};
1258
1259 readPtr = png_create_read_struct(PNG_LIBPNG_VER_STRING, 0, nullptr, nullptr);
1260 if (!readPtr) {
1261 mDiag->Error(DiagMessage() << "failed to allocate read ptr");
1262 goto bail;
1263 }
1264
1265 infoPtr = png_create_info_struct(readPtr);
1266 if (!infoPtr) {
1267 mDiag->Error(DiagMessage() << "failed to allocate info ptr");
1268 goto bail;
1269 }
1270
1271 png_set_error_fn(readPtr, reinterpret_cast<png_voidp>(mDiag), nullptr,
1272 logWarning);
1273
1274 // Set the read function to read from std::istream.
1275 png_set_read_fn(readPtr, (png_voidp)input, readDataFromStream);
1276
1277 if (!readPng(mDiag, readPtr, infoPtr, &pngInfo)) {
1278 goto bail;
1279 }
1280
1281 if (util::EndsWith(source.path, ".9.png")) {
1282 std::string errorMsg;
1283 if (!do9Patch(&pngInfo, &errorMsg)) {
1284 mDiag->Error(DiagMessage() << errorMsg);
1285 goto bail;
1286 }
1287 }
1288
1289 writePtr =
1290 png_create_write_struct(PNG_LIBPNG_VER_STRING, 0, nullptr, nullptr);
1291 if (!writePtr) {
1292 mDiag->Error(DiagMessage() << "failed to allocate write ptr");
1293 goto bail;
1294 }
1295
1296 writeInfoPtr = png_create_info_struct(writePtr);
1297 if (!writeInfoPtr) {
1298 mDiag->Error(DiagMessage() << "failed to allocate write info ptr");
1299 goto bail;
1300 }
1301
1302 png_set_error_fn(writePtr, nullptr, nullptr, logWarning);
1303
1304 // Set the write function to write to std::ostream.
1305 png_set_write_fn(writePtr, (png_voidp)outBuffer, writeDataToStream,
1306 flushDataToStream);
1307
1308 if (!writePng(mDiag, writePtr, writeInfoPtr, &pngInfo,
1309 options.grayscale_tolerance)) {
1310 goto bail;
1311 }
1312
1313 result = true;
1314 bail:
1315 if (readPtr) {
1316 png_destroy_read_struct(&readPtr, &infoPtr, nullptr);
1317 }
1318
1319 if (writePtr) {
1320 png_destroy_write_struct(&writePtr, &writeInfoPtr);
1321 }
1322 return result;
1323 }
1324
1325 } // namespace aapt
1326