1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "ReaderWriter_3_2.h"
15 #include "legacy_bitcode.h"
16 #include "ValueEnumerator.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/Bitcode/BitstreamWriter.h"
19 #include "llvm/Bitcode/LLVMBitCodes.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/InlineAsm.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/Operator.h"
27 #include "llvm/IR/UseListOrder.h"
28 #include "llvm/IR/ValueSymbolTable.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Support/Program.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <cctype>
35 #include <map>
36 using namespace llvm;
37
38 /// These are manifest constants used by the bitcode writer. They do not need to
39 /// be kept in sync with the reader, but need to be consistent within this file.
40 enum {
41 // VALUE_SYMTAB_BLOCK abbrev id's.
42 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
43 VST_ENTRY_7_ABBREV,
44 VST_ENTRY_6_ABBREV,
45 VST_BBENTRY_6_ABBREV,
46
47 // CONSTANTS_BLOCK abbrev id's.
48 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
49 CONSTANTS_INTEGER_ABBREV,
50 CONSTANTS_CE_CAST_Abbrev,
51 CONSTANTS_NULL_Abbrev,
52
53 // FUNCTION_BLOCK abbrev id's.
54 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
55 FUNCTION_INST_BINOP_ABBREV,
56 FUNCTION_INST_BINOP_FLAGS_ABBREV,
57 FUNCTION_INST_CAST_ABBREV,
58 FUNCTION_INST_RET_VOID_ABBREV,
59 FUNCTION_INST_RET_VAL_ABBREV,
60 FUNCTION_INST_UNREACHABLE_ABBREV
61 };
62
GetEncodedCastOpcode(unsigned Opcode)63 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
64 switch (Opcode) {
65 default: llvm_unreachable("Unknown cast instruction!");
66 case Instruction::Trunc : return bitc::CAST_TRUNC;
67 case Instruction::ZExt : return bitc::CAST_ZEXT;
68 case Instruction::SExt : return bitc::CAST_SEXT;
69 case Instruction::FPToUI : return bitc::CAST_FPTOUI;
70 case Instruction::FPToSI : return bitc::CAST_FPTOSI;
71 case Instruction::UIToFP : return bitc::CAST_UITOFP;
72 case Instruction::SIToFP : return bitc::CAST_SITOFP;
73 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
74 case Instruction::FPExt : return bitc::CAST_FPEXT;
75 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
76 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
77 case Instruction::BitCast : return bitc::CAST_BITCAST;
78 }
79 }
80
GetEncodedBinaryOpcode(unsigned Opcode)81 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
82 switch (Opcode) {
83 default: llvm_unreachable("Unknown binary instruction!");
84 case Instruction::Add:
85 case Instruction::FAdd: return bitc::BINOP_ADD;
86 case Instruction::Sub:
87 case Instruction::FSub: return bitc::BINOP_SUB;
88 case Instruction::Mul:
89 case Instruction::FMul: return bitc::BINOP_MUL;
90 case Instruction::UDiv: return bitc::BINOP_UDIV;
91 case Instruction::FDiv:
92 case Instruction::SDiv: return bitc::BINOP_SDIV;
93 case Instruction::URem: return bitc::BINOP_UREM;
94 case Instruction::FRem:
95 case Instruction::SRem: return bitc::BINOP_SREM;
96 case Instruction::Shl: return bitc::BINOP_SHL;
97 case Instruction::LShr: return bitc::BINOP_LSHR;
98 case Instruction::AShr: return bitc::BINOP_ASHR;
99 case Instruction::And: return bitc::BINOP_AND;
100 case Instruction::Or: return bitc::BINOP_OR;
101 case Instruction::Xor: return bitc::BINOP_XOR;
102 }
103 }
104
GetEncodedRMWOperation(AtomicRMWInst::BinOp Op)105 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
106 switch (Op) {
107 default: llvm_unreachable("Unknown RMW operation!");
108 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
109 case AtomicRMWInst::Add: return bitc::RMW_ADD;
110 case AtomicRMWInst::Sub: return bitc::RMW_SUB;
111 case AtomicRMWInst::And: return bitc::RMW_AND;
112 case AtomicRMWInst::Nand: return bitc::RMW_NAND;
113 case AtomicRMWInst::Or: return bitc::RMW_OR;
114 case AtomicRMWInst::Xor: return bitc::RMW_XOR;
115 case AtomicRMWInst::Max: return bitc::RMW_MAX;
116 case AtomicRMWInst::Min: return bitc::RMW_MIN;
117 case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
118 case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
119 }
120 }
121
GetEncodedOrdering(AtomicOrdering Ordering)122 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
123 switch (Ordering) {
124 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
125 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
126 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
127 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
128 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
129 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
130 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
131 }
132 llvm_unreachable("Invalid ordering");
133 }
134
GetEncodedSynchScope(SynchronizationScope SynchScope)135 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
136 switch (SynchScope) {
137 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
138 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
139 }
140 llvm_unreachable("Invalid synch scope");
141 }
142
WriteStringRecord(unsigned Code,StringRef Str,unsigned AbbrevToUse,BitstreamWriter & Stream)143 static void WriteStringRecord(unsigned Code, StringRef Str,
144 unsigned AbbrevToUse, BitstreamWriter &Stream) {
145 SmallVector<unsigned, 64> Vals;
146
147 // Code: [strchar x N]
148 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
149 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
150 AbbrevToUse = 0;
151 Vals.push_back(Str[i]);
152 }
153
154 // Emit the finished record.
155 Stream.EmitRecord(Code, Vals, AbbrevToUse);
156 }
157
158 // Emit information about parameter attributes.
WriteAttributeTable(const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)159 static void WriteAttributeTable(const llvm_3_2::ValueEnumerator &VE,
160 BitstreamWriter &Stream) {
161 const std::vector<AttributeSet> &Attrs = VE.getAttributes();
162 if (Attrs.empty()) return;
163
164 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
165
166 SmallVector<uint64_t, 64> Record;
167 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
168 const AttributeSet &A = Attrs[i];
169 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
170 Record.push_back(A.getSlotIndex(i));
171 Record.push_back(encodeLLVMAttributesForBitcode(A, A.getSlotIndex(i)));
172 }
173
174 // This needs to use the 3.2 entry type
175 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY_OLD, Record);
176 Record.clear();
177 }
178
179 Stream.ExitBlock();
180 }
181
182 /// WriteTypeTable - Write out the type table for a module.
WriteTypeTable(const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)183 static void WriteTypeTable(const llvm_3_2::ValueEnumerator &VE,
184 BitstreamWriter &Stream) {
185 const llvm_3_2::ValueEnumerator::TypeList &TypeList = VE.getTypes();
186
187 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
188 SmallVector<uint64_t, 64> TypeVals;
189
190 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1);
191
192 // Abbrev for TYPE_CODE_POINTER.
193 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
194 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
196 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
197 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
198
199 // Abbrev for TYPE_CODE_FUNCTION.
200 Abbv = new BitCodeAbbrev();
201 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
204 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
205
206 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
207
208 // Abbrev for TYPE_CODE_STRUCT_ANON.
209 Abbv = new BitCodeAbbrev();
210 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
214
215 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
216
217 // Abbrev for TYPE_CODE_STRUCT_NAME.
218 Abbv = new BitCodeAbbrev();
219 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
221 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
222 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
223
224 // Abbrev for TYPE_CODE_STRUCT_NAMED.
225 Abbv = new BitCodeAbbrev();
226 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
227 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
228 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
230
231 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
232
233 // Abbrev for TYPE_CODE_ARRAY.
234 Abbv = new BitCodeAbbrev();
235 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
236 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
237 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
238
239 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
240
241 // Emit an entry count so the reader can reserve space.
242 TypeVals.push_back(TypeList.size());
243 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
244 TypeVals.clear();
245
246 // Loop over all of the types, emitting each in turn.
247 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
248 Type *T = TypeList[i];
249 int AbbrevToUse = 0;
250 unsigned Code = 0;
251
252 switch (T->getTypeID()) {
253 default: llvm_unreachable("Unknown type!");
254 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
255 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
256 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
257 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
258 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
259 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
260 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
261 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
262 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
263 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
264 case Type::IntegerTyID:
265 // INTEGER: [width]
266 Code = bitc::TYPE_CODE_INTEGER;
267 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
268 break;
269 case Type::PointerTyID: {
270 PointerType *PTy = cast<PointerType>(T);
271 // POINTER: [pointee type, address space]
272 Code = bitc::TYPE_CODE_POINTER;
273 TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
274 unsigned AddressSpace = PTy->getAddressSpace();
275 TypeVals.push_back(AddressSpace);
276 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
277 break;
278 }
279 case Type::FunctionTyID: {
280 FunctionType *FT = cast<FunctionType>(T);
281 // FUNCTION: [isvararg, retty, paramty x N]
282 Code = bitc::TYPE_CODE_FUNCTION;
283 TypeVals.push_back(FT->isVarArg());
284 TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
285 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
286 TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
287 AbbrevToUse = FunctionAbbrev;
288 break;
289 }
290 case Type::StructTyID: {
291 StructType *ST = cast<StructType>(T);
292 // STRUCT: [ispacked, eltty x N]
293 TypeVals.push_back(ST->isPacked());
294 // Output all of the element types.
295 for (StructType::element_iterator I = ST->element_begin(),
296 E = ST->element_end(); I != E; ++I)
297 TypeVals.push_back(VE.getTypeID(*I));
298
299 if (ST->isLiteral()) {
300 Code = bitc::TYPE_CODE_STRUCT_ANON;
301 AbbrevToUse = StructAnonAbbrev;
302 } else {
303 if (ST->isOpaque()) {
304 Code = bitc::TYPE_CODE_OPAQUE;
305 } else {
306 Code = bitc::TYPE_CODE_STRUCT_NAMED;
307 AbbrevToUse = StructNamedAbbrev;
308 }
309
310 // Emit the name if it is present.
311 if (!ST->getName().empty())
312 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
313 StructNameAbbrev, Stream);
314 }
315 break;
316 }
317 case Type::ArrayTyID: {
318 ArrayType *AT = cast<ArrayType>(T);
319 // ARRAY: [numelts, eltty]
320 Code = bitc::TYPE_CODE_ARRAY;
321 TypeVals.push_back(AT->getNumElements());
322 TypeVals.push_back(VE.getTypeID(AT->getElementType()));
323 AbbrevToUse = ArrayAbbrev;
324 break;
325 }
326 case Type::VectorTyID: {
327 VectorType *VT = cast<VectorType>(T);
328 // VECTOR [numelts, eltty]
329 Code = bitc::TYPE_CODE_VECTOR;
330 TypeVals.push_back(VT->getNumElements());
331 TypeVals.push_back(VE.getTypeID(VT->getElementType()));
332 break;
333 }
334 }
335
336 // Emit the finished record.
337 Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
338 TypeVals.clear();
339 }
340
341 Stream.ExitBlock();
342 }
343
getEncodedLinkage(const GlobalValue & GV)344 static unsigned getEncodedLinkage(const GlobalValue &GV) {
345 switch (GV.getLinkage()) {
346 case GlobalValue::ExternalLinkage:
347 return 0;
348 case GlobalValue::WeakAnyLinkage:
349 return 1;
350 case GlobalValue::AppendingLinkage:
351 return 2;
352 case GlobalValue::InternalLinkage:
353 return 3;
354 case GlobalValue::LinkOnceAnyLinkage:
355 return 4;
356 case GlobalValue::ExternalWeakLinkage:
357 return 7;
358 case GlobalValue::CommonLinkage:
359 return 8;
360 case GlobalValue::PrivateLinkage:
361 return 9;
362 case GlobalValue::WeakODRLinkage:
363 return 10;
364 case GlobalValue::LinkOnceODRLinkage:
365 return 11;
366 case GlobalValue::AvailableExternallyLinkage:
367 return 12;
368 }
369 llvm_unreachable("Invalid linkage");
370 }
371
getEncodedVisibility(const GlobalValue & GV)372 static unsigned getEncodedVisibility(const GlobalValue &GV) {
373 switch (GV.getVisibility()) {
374 case GlobalValue::DefaultVisibility: return 0;
375 case GlobalValue::HiddenVisibility: return 1;
376 case GlobalValue::ProtectedVisibility: return 2;
377 }
378 llvm_unreachable("Invalid visibility");
379 }
380
getEncodedThreadLocalMode(const GlobalVariable & GV)381 static unsigned getEncodedThreadLocalMode(const GlobalVariable &GV) {
382 switch (GV.getThreadLocalMode()) {
383 case GlobalVariable::NotThreadLocal: return 0;
384 case GlobalVariable::GeneralDynamicTLSModel: return 1;
385 case GlobalVariable::LocalDynamicTLSModel: return 2;
386 case GlobalVariable::InitialExecTLSModel: return 3;
387 case GlobalVariable::LocalExecTLSModel: return 4;
388 }
389 llvm_unreachable("Invalid TLS model");
390 }
391
392 // Emit top-level description of module, including target triple, inline asm,
393 // descriptors for global variables, and function prototype info.
WriteModuleInfo(const Module * M,const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)394 static void WriteModuleInfo(const Module *M,
395 const llvm_3_2::ValueEnumerator &VE,
396 BitstreamWriter &Stream) {
397 // Emit various pieces of data attached to a module.
398 if (!M->getTargetTriple().empty())
399 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
400 0/*TODO*/, Stream);
401 const std::string &DL = M->getDataLayoutStr();
402 if (!DL.empty())
403 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream);
404 if (!M->getModuleInlineAsm().empty())
405 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
406 0/*TODO*/, Stream);
407
408 // Emit information about sections and GC, computing how many there are. Also
409 // compute the maximum alignment value.
410 std::map<std::string, unsigned> SectionMap;
411 std::map<std::string, unsigned> GCMap;
412 unsigned MaxAlignment = 0;
413 unsigned MaxGlobalType = 0;
414 for (const GlobalValue &GV : M->globals()) {
415 MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
416 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType()));
417 if (GV.hasSection()) {
418 // Give section names unique ID's.
419 unsigned &Entry = SectionMap[GV.getSection()];
420 if (!Entry) {
421 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
422 0/*TODO*/, Stream);
423 Entry = SectionMap.size();
424 }
425 }
426 }
427 for (const Function &F : *M) {
428 MaxAlignment = std::max(MaxAlignment, F.getAlignment());
429 if (F.hasSection()) {
430 // Give section names unique ID's.
431 unsigned &Entry = SectionMap[F.getSection()];
432 if (!Entry) {
433 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
434 0/*TODO*/, Stream);
435 Entry = SectionMap.size();
436 }
437 }
438 if (F.hasGC()) {
439 // Same for GC names.
440 unsigned &Entry = GCMap[F.getGC()];
441 if (!Entry) {
442 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(),
443 0/*TODO*/, Stream);
444 Entry = GCMap.size();
445 }
446 }
447 }
448
449 // Emit abbrev for globals, now that we know # sections and max alignment.
450 unsigned SimpleGVarAbbrev = 0;
451 if (!M->global_empty()) {
452 // Add an abbrev for common globals with no visibility or thread localness.
453 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
454 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
456 Log2_32_Ceil(MaxGlobalType+1)));
457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant.
458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage.
460 if (MaxAlignment == 0) // Alignment.
461 Abbv->Add(BitCodeAbbrevOp(0));
462 else {
463 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
465 Log2_32_Ceil(MaxEncAlignment+1)));
466 }
467 if (SectionMap.empty()) // Section.
468 Abbv->Add(BitCodeAbbrevOp(0));
469 else
470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
471 Log2_32_Ceil(SectionMap.size()+1)));
472 // Don't bother emitting vis + thread local.
473 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
474 }
475
476 // Emit the global variable information.
477 SmallVector<unsigned, 64> Vals;
478 for (const GlobalVariable &GV : M->globals()) {
479 unsigned AbbrevToUse = 0;
480
481 // GLOBALVAR: [type, isconst, initid,
482 // linkage, alignment, section, visibility, threadlocal,
483 // unnamed_addr]
484 Vals.push_back(VE.getTypeID(GV.getType()));
485 Vals.push_back(GV.isConstant());
486 Vals.push_back(GV.isDeclaration() ? 0 :
487 (VE.getValueID(GV.getInitializer()) + 1));
488 Vals.push_back(getEncodedLinkage(GV));
489 Vals.push_back(Log2_32(GV.getAlignment())+1);
490 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
491 if (GV.isThreadLocal() ||
492 GV.getVisibility() != GlobalValue::DefaultVisibility ||
493 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
494 GV.isExternallyInitialized()) {
495 Vals.push_back(getEncodedVisibility(GV));
496 Vals.push_back(getEncodedThreadLocalMode(GV));
497 Vals.push_back(GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
498 Vals.push_back(GV.isExternallyInitialized());
499 } else {
500 AbbrevToUse = SimpleGVarAbbrev;
501 }
502
503 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
504 Vals.clear();
505 }
506
507 // Emit the function proto information.
508 for (const Function &F : *M) {
509 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment,
510 // section, visibility, gc, unnamed_addr]
511 Vals.push_back(VE.getTypeID(F.getType()));
512 Vals.push_back(F.getCallingConv());
513 Vals.push_back(F.isDeclaration());
514 Vals.push_back(getEncodedLinkage(F));
515 Vals.push_back(VE.getAttributeID(F.getAttributes()));
516 Vals.push_back(Log2_32(F.getAlignment())+1);
517 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
518 Vals.push_back(getEncodedVisibility(F));
519 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
520 Vals.push_back(F.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
521
522 unsigned AbbrevToUse = 0;
523 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
524 Vals.clear();
525 }
526
527 // Emit the alias information.
528 for (const GlobalAlias &A : M->aliases()) {
529 // ALIAS: [alias type, aliasee val#, linkage, visibility]
530 Vals.push_back(VE.getTypeID(A.getType()));
531 Vals.push_back(VE.getValueID(A.getAliasee()));
532 Vals.push_back(getEncodedLinkage(A));
533 Vals.push_back(getEncodedVisibility(A));
534 unsigned AbbrevToUse = 0;
535 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD, Vals, AbbrevToUse);
536 Vals.clear();
537 }
538 }
539
GetOptimizationFlags(const Value * V)540 static uint64_t GetOptimizationFlags(const Value *V) {
541 uint64_t Flags = 0;
542
543 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
544 if (OBO->hasNoSignedWrap())
545 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
546 if (OBO->hasNoUnsignedWrap())
547 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
548 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
549 if (PEO->isExact())
550 Flags |= 1 << bitc::PEO_EXACT;
551 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
552 // FIXME(srhines): We don't handle fast math in llvm-rs-cc today.
553 if (false) {
554 if (FPMO->hasUnsafeAlgebra())
555 Flags |= FastMathFlags::UnsafeAlgebra;
556 if (FPMO->hasNoNaNs())
557 Flags |= FastMathFlags::NoNaNs;
558 if (FPMO->hasNoInfs())
559 Flags |= FastMathFlags::NoInfs;
560 if (FPMO->hasNoSignedZeros())
561 Flags |= FastMathFlags::NoSignedZeros;
562 if (FPMO->hasAllowReciprocal())
563 Flags |= FastMathFlags::AllowReciprocal;
564 }
565 }
566
567 return Flags;
568 }
569
WriteValueAsMetadata(const ValueAsMetadata * MD,const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream,SmallVectorImpl<uint64_t> & Record)570 static void WriteValueAsMetadata(const ValueAsMetadata *MD,
571 const llvm_3_2::ValueEnumerator &VE,
572 BitstreamWriter &Stream,
573 SmallVectorImpl<uint64_t> &Record) {
574 // Mimic an MDNode with a value as one operand.
575 Value *V = MD->getValue();
576 Record.push_back(VE.getTypeID(V->getType()));
577 Record.push_back(VE.getValueID(V));
578 Stream.EmitRecord(bitc::METADATA_OLD_NODE, Record, 0);
579 Record.clear();
580 }
581
WriteMDTuple(const MDTuple * N,const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)582 static void WriteMDTuple(const MDTuple *N, const llvm_3_2::ValueEnumerator &VE,
583 BitstreamWriter &Stream,
584 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
585 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
586 Metadata *MD = N->getOperand(i);
587 assert(!(MD && isa<LocalAsMetadata>(MD)) &&
588 "Unexpected function-local metadata");
589 if (!MD) {
590 // TODO(srhines): I don't believe this case can exist for RS.
591 Record.push_back(VE.getTypeID(llvm::Type::getVoidTy(N->getContext())));
592 Record.push_back(0);
593 } else if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) {
594 Record.push_back(VE.getTypeID(MDC->getType()));
595 Record.push_back(VE.getValueID(MDC->getValue()));
596 } else {
597 Record.push_back(VE.getTypeID(
598 llvm::Type::getMetadataTy(N->getContext())));
599 Record.push_back(VE.getMetadataID(MD));
600 }
601 }
602 Stream.EmitRecord(bitc::METADATA_OLD_NODE, Record, Abbrev);
603 Record.clear();
604 }
605
606 /*static void WriteMDLocation(const MDLocation *N, const llvm_3_2::ValueEnumerator &VE,
607 BitstreamWriter &Stream,
608 SmallVectorImpl<uint64_t> &Record,
609 unsigned Abbrev) {
610 Record.push_back(N->isDistinct());
611 Record.push_back(N->getLine());
612 Record.push_back(N->getColumn());
613 Record.push_back(VE.getMetadataID(N->getScope()));
614 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
615
616 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
617 Record.clear();
618 }
619
620 static void WriteGenericDebugNode(const GenericDebugNode *,
621 const llvm_3_2::ValueEnumerator &, BitstreamWriter &,
622 SmallVectorImpl<uint64_t> &, unsigned) {
623 llvm_unreachable("unimplemented");
624 }*/
625
WriteModuleMetadata(const Module * M,const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)626 static void WriteModuleMetadata(const Module *M,
627 const llvm_3_2::ValueEnumerator &VE,
628 BitstreamWriter &Stream) {
629 const auto &MDs = VE.getMDs();
630 if (MDs.empty() && M->named_metadata_empty())
631 return;
632
633 // RenderScript files *ALWAYS* have metadata!
634 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
635
636 unsigned MDSAbbrev = 0;
637 if (VE.hasMDString()) {
638 // Abbrev for METADATA_STRING.
639 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
640 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING_OLD));
641 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
642 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
643 MDSAbbrev = Stream.EmitAbbrev(Abbv);
644 }
645
646 unsigned MDLocationAbbrev = 0;
647 if (VE.hasDILocation()) {
648 // TODO(srhines): Should be unreachable for RenderScript.
649 // Abbrev for METADATA_LOCATION.
650 //
651 // Assume the column is usually under 128, and always output the inlined-at
652 // location (it's never more expensive than building an array size 1).
653 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
654 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
655 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
656 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
657 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
658 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
659 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
660 MDLocationAbbrev = Stream.EmitAbbrev(Abbv);
661 }
662
663 unsigned NameAbbrev = 0;
664 if (!M->named_metadata_empty()) {
665 // Abbrev for METADATA_NAME.
666 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
667 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
668 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
669 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
670 NameAbbrev = Stream.EmitAbbrev(Abbv);
671 }
672
673 unsigned MDTupleAbbrev = 0;
674 //unsigned GenericDebugNodeAbbrev = 0;
675 SmallVector<uint64_t, 64> Record;
676 for (const Metadata *MD : MDs) {
677 if (const MDNode *N = dyn_cast<MDNode>(MD)) {
678 switch (N->getMetadataID()) {
679 default:
680 llvm_unreachable("Invalid MDNode subclass");
681 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)
682 #define HANDLE_MDNODE_LEAF(CLASS) \
683 case Metadata::CLASS##Kind: \
684 Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \
685 continue;
686 #include "llvm/IR/Metadata.def"
687 }
688 }
689 if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) {
690 WriteValueAsMetadata(MDC, VE, Stream, Record);
691 continue;
692 }
693 const MDString *MDS = cast<MDString>(MD);
694 // Code: [strchar x N]
695 Record.append(MDS->bytes_begin(), MDS->bytes_end());
696
697 // Emit the finished record.
698 Stream.EmitRecord(bitc::METADATA_STRING_OLD, Record, MDSAbbrev);
699 Record.clear();
700 }
701
702 // Write named metadata.
703 for (const NamedMDNode &NMD : M->named_metadata()) {
704 // Write name.
705 StringRef Str = NMD.getName();
706 Record.append(Str.bytes_begin(), Str.bytes_end());
707 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
708 Record.clear();
709
710 // Write named metadata operands.
711 for (const MDNode *N : NMD.operands())
712 Record.push_back(VE.getMetadataID(N));
713 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
714 Record.clear();
715 }
716
717 Stream.ExitBlock();
718 }
719
WriteFunctionLocalMetadata(const Function & F,const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)720 static void WriteFunctionLocalMetadata(const Function &F,
721 const llvm_3_2::ValueEnumerator &VE,
722 BitstreamWriter &Stream) {
723 bool StartedMetadataBlock = false;
724 SmallVector<uint64_t, 64> Record;
725 const SmallVectorImpl<const LocalAsMetadata *> &MDs =
726 VE.getFunctionLocalMDs();
727 for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
728 assert(MDs[i] && "Expected valid function-local metadata");
729 if (!StartedMetadataBlock) {
730 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
731 StartedMetadataBlock = true;
732 }
733 WriteValueAsMetadata(MDs[i], VE, Stream, Record);
734 }
735
736 if (StartedMetadataBlock)
737 Stream.ExitBlock();
738 }
739
WriteMetadataAttachment(const Function & F,const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)740 static void WriteMetadataAttachment(const Function &F,
741 const llvm_3_2::ValueEnumerator &VE,
742 BitstreamWriter &Stream) {
743 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
744
745 SmallVector<uint64_t, 64> Record;
746
747 // Write metadata attachments
748 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
749 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
750
751 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
752 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
753 I != E; ++I) {
754 MDs.clear();
755 I->getAllMetadataOtherThanDebugLoc(MDs);
756
757 // If no metadata, ignore instruction.
758 if (MDs.empty()) continue;
759
760 Record.push_back(VE.getInstructionID(&*I));
761
762 for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
763 Record.push_back(MDs[i].first);
764 Record.push_back(VE.getMetadataID(MDs[i].second));
765 }
766 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
767 Record.clear();
768 }
769
770 Stream.ExitBlock();
771 }
772
WriteModuleMetadataStore(const Module * M,BitstreamWriter & Stream)773 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
774 SmallVector<uint64_t, 64> Record;
775
776 // Write metadata kinds
777 // METADATA_KIND - [n x [id, name]]
778 SmallVector<StringRef, 4> Names;
779 M->getMDKindNames(Names);
780
781 if (Names.empty()) return;
782
783 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
784
785 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
786 Record.push_back(MDKindID);
787 StringRef KName = Names[MDKindID];
788 Record.append(KName.begin(), KName.end());
789
790 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
791 Record.clear();
792 }
793
794 Stream.ExitBlock();
795 }
796
emitSignedInt64(SmallVectorImpl<uint64_t> & Vals,uint64_t V)797 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
798 if ((int64_t)V >= 0)
799 Vals.push_back(V << 1);
800 else
801 Vals.push_back((-V << 1) | 1);
802 }
803
WriteConstants(unsigned FirstVal,unsigned LastVal,const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream,bool isGlobal)804 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
805 const llvm_3_2::ValueEnumerator &VE,
806 BitstreamWriter &Stream, bool isGlobal) {
807 if (FirstVal == LastVal) return;
808
809 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
810
811 unsigned AggregateAbbrev = 0;
812 unsigned String8Abbrev = 0;
813 unsigned CString7Abbrev = 0;
814 unsigned CString6Abbrev = 0;
815 // If this is a constant pool for the module, emit module-specific abbrevs.
816 if (isGlobal) {
817 // Abbrev for CST_CODE_AGGREGATE.
818 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
819 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
822 AggregateAbbrev = Stream.EmitAbbrev(Abbv);
823
824 // Abbrev for CST_CODE_STRING.
825 Abbv = new BitCodeAbbrev();
826 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
827 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
829 String8Abbrev = Stream.EmitAbbrev(Abbv);
830 // Abbrev for CST_CODE_CSTRING.
831 Abbv = new BitCodeAbbrev();
832 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
833 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
834 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
835 CString7Abbrev = Stream.EmitAbbrev(Abbv);
836 // Abbrev for CST_CODE_CSTRING.
837 Abbv = new BitCodeAbbrev();
838 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
840 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
841 CString6Abbrev = Stream.EmitAbbrev(Abbv);
842 }
843
844 SmallVector<uint64_t, 64> Record;
845
846 const llvm_3_2::ValueEnumerator::ValueList &Vals = VE.getValues();
847 Type *LastTy = nullptr;
848 for (unsigned i = FirstVal; i != LastVal; ++i) {
849 const Value *V = Vals[i].first;
850 // If we need to switch types, do so now.
851 if (V->getType() != LastTy) {
852 LastTy = V->getType();
853 Record.push_back(VE.getTypeID(LastTy));
854 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
855 CONSTANTS_SETTYPE_ABBREV);
856 Record.clear();
857 }
858
859 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
860 Record.push_back(unsigned(IA->hasSideEffects()) |
861 unsigned(IA->isAlignStack()) << 1 |
862 unsigned(IA->getDialect()&1) << 2);
863
864 // Add the asm string.
865 const std::string &AsmStr = IA->getAsmString();
866 Record.push_back(AsmStr.size());
867 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
868 Record.push_back(AsmStr[i]);
869
870 // Add the constraint string.
871 const std::string &ConstraintStr = IA->getConstraintString();
872 Record.push_back(ConstraintStr.size());
873 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
874 Record.push_back(ConstraintStr[i]);
875 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
876 Record.clear();
877 continue;
878 }
879 const Constant *C = cast<Constant>(V);
880 unsigned Code = -1U;
881 unsigned AbbrevToUse = 0;
882 if (C->isNullValue()) {
883 Code = bitc::CST_CODE_NULL;
884 } else if (isa<UndefValue>(C)) {
885 Code = bitc::CST_CODE_UNDEF;
886 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
887 if (IV->getBitWidth() <= 64) {
888 uint64_t V = IV->getSExtValue();
889 emitSignedInt64(Record, V);
890 Code = bitc::CST_CODE_INTEGER;
891 AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
892 } else { // Wide integers, > 64 bits in size.
893 // We have an arbitrary precision integer value to write whose
894 // bit width is > 64. However, in canonical unsigned integer
895 // format it is likely that the high bits are going to be zero.
896 // So, we only write the number of active words.
897 unsigned NWords = IV->getValue().getActiveWords();
898 const uint64_t *RawWords = IV->getValue().getRawData();
899 for (unsigned i = 0; i != NWords; ++i) {
900 emitSignedInt64(Record, RawWords[i]);
901 }
902 Code = bitc::CST_CODE_WIDE_INTEGER;
903 }
904 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
905 Code = bitc::CST_CODE_FLOAT;
906 Type *Ty = CFP->getType();
907 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
908 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
909 } else if (Ty->isX86_FP80Ty()) {
910 // api needed to prevent premature destruction
911 // bits are not in the same order as a normal i80 APInt, compensate.
912 APInt api = CFP->getValueAPF().bitcastToAPInt();
913 const uint64_t *p = api.getRawData();
914 Record.push_back((p[1] << 48) | (p[0] >> 16));
915 Record.push_back(p[0] & 0xffffLL);
916 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
917 APInt api = CFP->getValueAPF().bitcastToAPInt();
918 const uint64_t *p = api.getRawData();
919 Record.push_back(p[0]);
920 Record.push_back(p[1]);
921 } else {
922 assert (0 && "Unknown FP type!");
923 }
924 } else if (isa<ConstantDataSequential>(C) &&
925 cast<ConstantDataSequential>(C)->isString()) {
926 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
927 // Emit constant strings specially.
928 unsigned NumElts = Str->getNumElements();
929 // If this is a null-terminated string, use the denser CSTRING encoding.
930 if (Str->isCString()) {
931 Code = bitc::CST_CODE_CSTRING;
932 --NumElts; // Don't encode the null, which isn't allowed by char6.
933 } else {
934 Code = bitc::CST_CODE_STRING;
935 AbbrevToUse = String8Abbrev;
936 }
937 bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
938 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
939 for (unsigned i = 0; i != NumElts; ++i) {
940 unsigned char V = Str->getElementAsInteger(i);
941 Record.push_back(V);
942 isCStr7 &= (V & 128) == 0;
943 if (isCStrChar6)
944 isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
945 }
946
947 if (isCStrChar6)
948 AbbrevToUse = CString6Abbrev;
949 else if (isCStr7)
950 AbbrevToUse = CString7Abbrev;
951 } else if (const ConstantDataSequential *CDS =
952 dyn_cast<ConstantDataSequential>(C)) {
953 Code = bitc::CST_CODE_DATA;
954 Type *EltTy = CDS->getType()->getElementType();
955 if (isa<IntegerType>(EltTy)) {
956 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
957 Record.push_back(CDS->getElementAsInteger(i));
958 } else {
959 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
960 Record.push_back(
961 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
962 }
963 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
964 isa<ConstantVector>(C)) {
965 Code = bitc::CST_CODE_AGGREGATE;
966 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
967 Record.push_back(VE.getValueID(C->getOperand(i)));
968 AbbrevToUse = AggregateAbbrev;
969 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
970 switch (CE->getOpcode()) {
971 default:
972 if (Instruction::isCast(CE->getOpcode())) {
973 Code = bitc::CST_CODE_CE_CAST;
974 Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
975 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
976 Record.push_back(VE.getValueID(C->getOperand(0)));
977 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
978 } else {
979 assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
980 Code = bitc::CST_CODE_CE_BINOP;
981 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
982 Record.push_back(VE.getValueID(C->getOperand(0)));
983 Record.push_back(VE.getValueID(C->getOperand(1)));
984 uint64_t Flags = GetOptimizationFlags(CE);
985 if (Flags != 0)
986 Record.push_back(Flags);
987 }
988 break;
989 case Instruction::GetElementPtr:
990 Code = bitc::CST_CODE_CE_GEP;
991 if (cast<GEPOperator>(C)->isInBounds())
992 Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
993 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
994 Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
995 Record.push_back(VE.getValueID(C->getOperand(i)));
996 }
997 break;
998 case Instruction::Select:
999 Code = bitc::CST_CODE_CE_SELECT;
1000 Record.push_back(VE.getValueID(C->getOperand(0)));
1001 Record.push_back(VE.getValueID(C->getOperand(1)));
1002 Record.push_back(VE.getValueID(C->getOperand(2)));
1003 break;
1004 case Instruction::ExtractElement:
1005 Code = bitc::CST_CODE_CE_EXTRACTELT;
1006 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1007 Record.push_back(VE.getValueID(C->getOperand(0)));
1008 Record.push_back(VE.getValueID(C->getOperand(1)));
1009 break;
1010 case Instruction::InsertElement:
1011 Code = bitc::CST_CODE_CE_INSERTELT;
1012 Record.push_back(VE.getValueID(C->getOperand(0)));
1013 Record.push_back(VE.getValueID(C->getOperand(1)));
1014 Record.push_back(VE.getValueID(C->getOperand(2)));
1015 break;
1016 case Instruction::ShuffleVector:
1017 // If the return type and argument types are the same, this is a
1018 // standard shufflevector instruction. If the types are different,
1019 // then the shuffle is widening or truncating the input vectors, and
1020 // the argument type must also be encoded.
1021 if (C->getType() == C->getOperand(0)->getType()) {
1022 Code = bitc::CST_CODE_CE_SHUFFLEVEC;
1023 } else {
1024 Code = bitc::CST_CODE_CE_SHUFVEC_EX;
1025 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1026 }
1027 Record.push_back(VE.getValueID(C->getOperand(0)));
1028 Record.push_back(VE.getValueID(C->getOperand(1)));
1029 Record.push_back(VE.getValueID(C->getOperand(2)));
1030 break;
1031 case Instruction::ICmp:
1032 case Instruction::FCmp:
1033 Code = bitc::CST_CODE_CE_CMP;
1034 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1035 Record.push_back(VE.getValueID(C->getOperand(0)));
1036 Record.push_back(VE.getValueID(C->getOperand(1)));
1037 Record.push_back(CE->getPredicate());
1038 break;
1039 }
1040 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
1041 Code = bitc::CST_CODE_BLOCKADDRESS;
1042 Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
1043 Record.push_back(VE.getValueID(BA->getFunction()));
1044 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
1045 } else {
1046 #ifndef NDEBUG
1047 C->dump();
1048 #endif
1049 llvm_unreachable("Unknown constant!");
1050 }
1051 Stream.EmitRecord(Code, Record, AbbrevToUse);
1052 Record.clear();
1053 }
1054
1055 Stream.ExitBlock();
1056 }
1057
WriteModuleConstants(const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)1058 static void WriteModuleConstants(const llvm_3_2::ValueEnumerator &VE,
1059 BitstreamWriter &Stream) {
1060 const llvm_3_2::ValueEnumerator::ValueList &Vals = VE.getValues();
1061
1062 // Find the first constant to emit, which is the first non-globalvalue value.
1063 // We know globalvalues have been emitted by WriteModuleInfo.
1064 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1065 if (!isa<GlobalValue>(Vals[i].first)) {
1066 WriteConstants(i, Vals.size(), VE, Stream, true);
1067 return;
1068 }
1069 }
1070 }
1071
1072 /// PushValueAndType - The file has to encode both the value and type id for
1073 /// many values, because we need to know what type to create for forward
1074 /// references. However, most operands are not forward references, so this type
1075 /// field is not needed.
1076 ///
1077 /// This function adds V's value ID to Vals. If the value ID is higher than the
1078 /// instruction ID, then it is a forward reference, and it also includes the
1079 /// type ID.
PushValueAndType(const Value * V,unsigned InstID,SmallVector<unsigned,64> & Vals,llvm_3_2::ValueEnumerator & VE)1080 static bool PushValueAndType(const Value *V, unsigned InstID,
1081 SmallVector<unsigned, 64> &Vals,
1082 llvm_3_2::ValueEnumerator &VE) {
1083 unsigned ValID = VE.getValueID(V);
1084 Vals.push_back(ValID);
1085 if (ValID >= InstID) {
1086 Vals.push_back(VE.getTypeID(V->getType()));
1087 return true;
1088 }
1089 return false;
1090 }
1091
1092 /// WriteInstruction - Emit an instruction to the specified stream.
WriteInstruction(const Instruction & I,unsigned InstID,llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream,SmallVector<unsigned,64> & Vals)1093 static void WriteInstruction(const Instruction &I, unsigned InstID,
1094 llvm_3_2::ValueEnumerator &VE,
1095 BitstreamWriter &Stream,
1096 SmallVector<unsigned, 64> &Vals) {
1097 unsigned Code = 0;
1098 unsigned AbbrevToUse = 0;
1099 VE.setInstructionID(&I);
1100 switch (I.getOpcode()) {
1101 default:
1102 if (Instruction::isCast(I.getOpcode())) {
1103 Code = bitc::FUNC_CODE_INST_CAST;
1104 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1105 AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1106 Vals.push_back(VE.getTypeID(I.getType()));
1107 Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1108 } else {
1109 assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1110 Code = bitc::FUNC_CODE_INST_BINOP;
1111 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1112 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1113 Vals.push_back(VE.getValueID(I.getOperand(1)));
1114 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1115 uint64_t Flags = GetOptimizationFlags(&I);
1116 if (Flags != 0) {
1117 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1118 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1119 Vals.push_back(Flags);
1120 }
1121 }
1122 break;
1123
1124 case Instruction::GetElementPtr:
1125 Code = bitc::FUNC_CODE_INST_GEP_OLD;
1126 if (cast<GEPOperator>(&I)->isInBounds())
1127 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
1128 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1129 PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1130 break;
1131 case Instruction::ExtractValue: {
1132 Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1133 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1134 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1135 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1136 Vals.push_back(*i);
1137 break;
1138 }
1139 case Instruction::InsertValue: {
1140 Code = bitc::FUNC_CODE_INST_INSERTVAL;
1141 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1142 PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1143 const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1144 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1145 Vals.push_back(*i);
1146 break;
1147 }
1148 case Instruction::Select:
1149 Code = bitc::FUNC_CODE_INST_VSELECT;
1150 PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1151 Vals.push_back(VE.getValueID(I.getOperand(2)));
1152 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1153 break;
1154 case Instruction::ExtractElement:
1155 Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1156 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1157 Vals.push_back(VE.getValueID(I.getOperand(1)));
1158 break;
1159 case Instruction::InsertElement:
1160 Code = bitc::FUNC_CODE_INST_INSERTELT;
1161 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1162 Vals.push_back(VE.getValueID(I.getOperand(1)));
1163 Vals.push_back(VE.getValueID(I.getOperand(2)));
1164 break;
1165 case Instruction::ShuffleVector:
1166 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1167 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1168 Vals.push_back(VE.getValueID(I.getOperand(1)));
1169 Vals.push_back(VE.getValueID(I.getOperand(2)));
1170 break;
1171 case Instruction::ICmp:
1172 case Instruction::FCmp:
1173 // compare returning Int1Ty or vector of Int1Ty
1174 Code = bitc::FUNC_CODE_INST_CMP2;
1175 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1176 Vals.push_back(VE.getValueID(I.getOperand(1)));
1177 Vals.push_back(cast<CmpInst>(I).getPredicate());
1178 break;
1179
1180 case Instruction::Ret:
1181 {
1182 Code = bitc::FUNC_CODE_INST_RET;
1183 unsigned NumOperands = I.getNumOperands();
1184 if (NumOperands == 0)
1185 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1186 else if (NumOperands == 1) {
1187 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1188 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1189 } else {
1190 for (unsigned i = 0, e = NumOperands; i != e; ++i)
1191 PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1192 }
1193 }
1194 break;
1195 case Instruction::Br:
1196 {
1197 Code = bitc::FUNC_CODE_INST_BR;
1198 const BranchInst &II = cast<BranchInst>(I);
1199 Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1200 if (II.isConditional()) {
1201 Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1202 Vals.push_back(VE.getValueID(II.getCondition()));
1203 }
1204 }
1205 break;
1206 case Instruction::Switch:
1207 {
1208 Code = bitc::FUNC_CODE_INST_SWITCH;
1209 const SwitchInst &SI = cast<SwitchInst>(I);
1210 Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
1211 Vals.push_back(VE.getValueID(SI.getCondition()));
1212 Vals.push_back(VE.getValueID(SI.getDefaultDest()));
1213 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
1214 i != e; ++i) {
1215 Vals.push_back(VE.getValueID(i.getCaseValue()));
1216 Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
1217 }
1218 }
1219 break;
1220 case Instruction::IndirectBr:
1221 Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1222 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1223 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1224 Vals.push_back(VE.getValueID(I.getOperand(i)));
1225 break;
1226
1227 case Instruction::Invoke: {
1228 const InvokeInst *II = cast<InvokeInst>(&I);
1229 const Value *Callee(II->getCalledValue());
1230 PointerType *PTy = cast<PointerType>(Callee->getType());
1231 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1232 Code = bitc::FUNC_CODE_INST_INVOKE;
1233
1234 Vals.push_back(VE.getAttributeID(II->getAttributes()));
1235 Vals.push_back(II->getCallingConv());
1236 Vals.push_back(VE.getValueID(II->getNormalDest()));
1237 Vals.push_back(VE.getValueID(II->getUnwindDest()));
1238 PushValueAndType(Callee, InstID, Vals, VE);
1239
1240 // Emit value #'s for the fixed parameters.
1241 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1242 Vals.push_back(VE.getValueID(I.getOperand(i))); // fixed param.
1243
1244 // Emit type/value pairs for varargs params.
1245 if (FTy->isVarArg()) {
1246 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1247 i != e; ++i)
1248 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1249 }
1250 break;
1251 }
1252 case Instruction::Resume:
1253 Code = bitc::FUNC_CODE_INST_RESUME;
1254 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1255 break;
1256 case Instruction::Unreachable:
1257 Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1258 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1259 break;
1260
1261 case Instruction::PHI: {
1262 const PHINode &PN = cast<PHINode>(I);
1263 Code = bitc::FUNC_CODE_INST_PHI;
1264 Vals.push_back(VE.getTypeID(PN.getType()));
1265 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1266 Vals.push_back(VE.getValueID(PN.getIncomingValue(i)));
1267 Vals.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1268 }
1269 break;
1270 }
1271
1272 case Instruction::LandingPad: {
1273 const LandingPadInst &LP = cast<LandingPadInst>(I);
1274 Code = bitc::FUNC_CODE_INST_LANDINGPAD_OLD;
1275 Vals.push_back(VE.getTypeID(LP.getType()));
1276 // TODO (rebase): is this fix enough?
1277 // PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
1278 Vals.push_back(LP.isCleanup());
1279 Vals.push_back(LP.getNumClauses());
1280 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
1281 if (LP.isCatch(I))
1282 Vals.push_back(LandingPadInst::Catch);
1283 else
1284 Vals.push_back(LandingPadInst::Filter);
1285 PushValueAndType(LP.getClause(I), InstID, Vals, VE);
1286 }
1287 break;
1288 }
1289
1290 case Instruction::Alloca: {
1291 Code = bitc::FUNC_CODE_INST_ALLOCA;
1292 Vals.push_back(VE.getTypeID(I.getType()));
1293 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1294 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1295 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1296 break;
1297 }
1298
1299 case Instruction::Load:
1300 if (cast<LoadInst>(I).isAtomic()) {
1301 Code = bitc::FUNC_CODE_INST_LOADATOMIC;
1302 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1303 } else {
1304 Code = bitc::FUNC_CODE_INST_LOAD;
1305 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
1306 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1307 }
1308 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1309 Vals.push_back(cast<LoadInst>(I).isVolatile());
1310 if (cast<LoadInst>(I).isAtomic()) {
1311 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
1312 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
1313 }
1314 break;
1315 case Instruction::Store:
1316 if (cast<StoreInst>(I).isAtomic())
1317 Code = bitc::FUNC_CODE_INST_STOREATOMIC;
1318 else
1319 Code = bitc::FUNC_CODE_INST_STORE_OLD;
1320 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr
1321 Vals.push_back(VE.getValueID(I.getOperand(0))); // val.
1322 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1323 Vals.push_back(cast<StoreInst>(I).isVolatile());
1324 if (cast<StoreInst>(I).isAtomic()) {
1325 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
1326 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
1327 }
1328 break;
1329 case Instruction::AtomicCmpXchg:
1330 Code = bitc::FUNC_CODE_INST_CMPXCHG;
1331 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
1332 Vals.push_back(VE.getValueID(I.getOperand(1))); // cmp.
1333 Vals.push_back(VE.getValueID(I.getOperand(2))); // newval.
1334 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
1335 Vals.push_back(GetEncodedOrdering(
1336 cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
1337 Vals.push_back(GetEncodedSynchScope(
1338 cast<AtomicCmpXchgInst>(I).getSynchScope()));
1339 break;
1340 case Instruction::AtomicRMW:
1341 Code = bitc::FUNC_CODE_INST_ATOMICRMW;
1342 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
1343 Vals.push_back(VE.getValueID(I.getOperand(1))); // val.
1344 Vals.push_back(GetEncodedRMWOperation(
1345 cast<AtomicRMWInst>(I).getOperation()));
1346 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
1347 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
1348 Vals.push_back(GetEncodedSynchScope(
1349 cast<AtomicRMWInst>(I).getSynchScope()));
1350 break;
1351 case Instruction::Fence:
1352 Code = bitc::FUNC_CODE_INST_FENCE;
1353 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
1354 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
1355 break;
1356 case Instruction::Call: {
1357 const CallInst &CI = cast<CallInst>(I);
1358 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1359 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1360
1361 Code = bitc::FUNC_CODE_INST_CALL;
1362
1363 Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1364 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
1365 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee
1366
1367 // Emit value #'s for the fixed parameters.
1368 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1369 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); // fixed param.
1370
1371 // Emit type/value pairs for varargs params.
1372 if (FTy->isVarArg()) {
1373 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1374 i != e; ++i)
1375 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs
1376 }
1377 break;
1378 }
1379 case Instruction::VAArg:
1380 Code = bitc::FUNC_CODE_INST_VAARG;
1381 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
1382 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1383 Vals.push_back(VE.getTypeID(I.getType())); // restype.
1384 break;
1385 }
1386
1387 Stream.EmitRecord(Code, Vals, AbbrevToUse);
1388 Vals.clear();
1389 }
1390
1391 // Emit names for globals/functions etc.
WriteValueSymbolTable(const ValueSymbolTable & VST,const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)1392 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1393 const llvm_3_2::ValueEnumerator &VE,
1394 BitstreamWriter &Stream) {
1395 if (VST.empty()) return;
1396 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1397
1398 // FIXME: Set up the abbrev, we know how many values there are!
1399 // FIXME: We know if the type names can use 7-bit ascii.
1400 SmallVector<unsigned, 64> NameVals;
1401
1402 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1403 SI != SE; ++SI) {
1404
1405 const ValueName &Name = *SI;
1406
1407 // Figure out the encoding to use for the name.
1408 bool is7Bit = true;
1409 bool isChar6 = true;
1410 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1411 C != E; ++C) {
1412 if (isChar6)
1413 isChar6 = BitCodeAbbrevOp::isChar6(*C);
1414 if ((unsigned char)*C & 128) {
1415 is7Bit = false;
1416 break; // don't bother scanning the rest.
1417 }
1418 }
1419
1420 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1421
1422 // VST_ENTRY: [valueid, namechar x N]
1423 // VST_BBENTRY: [bbid, namechar x N]
1424 unsigned Code;
1425 if (isa<BasicBlock>(SI->getValue())) {
1426 Code = bitc::VST_CODE_BBENTRY;
1427 if (isChar6)
1428 AbbrevToUse = VST_BBENTRY_6_ABBREV;
1429 } else {
1430 Code = bitc::VST_CODE_ENTRY;
1431 if (isChar6)
1432 AbbrevToUse = VST_ENTRY_6_ABBREV;
1433 else if (is7Bit)
1434 AbbrevToUse = VST_ENTRY_7_ABBREV;
1435 }
1436
1437 NameVals.push_back(VE.getValueID(SI->getValue()));
1438 for (const char *P = Name.getKeyData(),
1439 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1440 NameVals.push_back((unsigned char)*P);
1441
1442 // Emit the finished record.
1443 Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1444 NameVals.clear();
1445 }
1446 Stream.ExitBlock();
1447 }
1448
WriteUseList(llvm_3_2::ValueEnumerator & VE,UseListOrder && Order,BitstreamWriter & Stream)1449 static void WriteUseList(llvm_3_2::ValueEnumerator &VE, UseListOrder &&Order,
1450 BitstreamWriter &Stream) {
1451 assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
1452 unsigned Code;
1453 if (isa<BasicBlock>(Order.V))
1454 Code = bitc::USELIST_CODE_BB;
1455 else
1456 Code = bitc::USELIST_CODE_DEFAULT;
1457
1458 SmallVector<uint64_t, 64> Record;
1459 for (unsigned I : Order.Shuffle)
1460 Record.push_back(I);
1461 Record.push_back(VE.getValueID(Order.V));
1462 Stream.EmitRecord(Code, Record);
1463 }
1464
WriteUseListBlock(const Function * F,llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)1465 static void WriteUseListBlock(const Function *F, llvm_3_2::ValueEnumerator &VE,
1466 BitstreamWriter &Stream) {
1467 auto hasMore = [&]() {
1468 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
1469 };
1470 if (!hasMore())
1471 // Nothing to do.
1472 return;
1473
1474 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
1475 while (hasMore()) {
1476 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream);
1477 VE.UseListOrders.pop_back();
1478 }
1479 Stream.ExitBlock();
1480 }
1481
1482 /// WriteFunction - Emit a function body to the module stream.
WriteFunction(const Function & F,llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)1483 static void WriteFunction(const Function &F, llvm_3_2::ValueEnumerator &VE,
1484 BitstreamWriter &Stream) {
1485 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1486 VE.incorporateFunction(F);
1487
1488 SmallVector<unsigned, 64> Vals;
1489
1490 // Emit the number of basic blocks, so the reader can create them ahead of
1491 // time.
1492 Vals.push_back(VE.getBasicBlocks().size());
1493 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1494 Vals.clear();
1495
1496 // If there are function-local constants, emit them now.
1497 unsigned CstStart, CstEnd;
1498 VE.getFunctionConstantRange(CstStart, CstEnd);
1499 WriteConstants(CstStart, CstEnd, VE, Stream, false);
1500
1501 // If there is function-local metadata, emit it now.
1502 WriteFunctionLocalMetadata(F, VE, Stream);
1503
1504 // Keep a running idea of what the instruction ID is.
1505 unsigned InstID = CstEnd;
1506
1507 bool NeedsMetadataAttachment = false;
1508
1509 DILocation *LastDL = nullptr;
1510
1511 // Finally, emit all the instructions, in order.
1512 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1513 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1514 I != E; ++I) {
1515 WriteInstruction(*I, InstID, VE, Stream, Vals);
1516
1517 if (!I->getType()->isVoidTy())
1518 ++InstID;
1519
1520 // If the instruction has metadata, write a metadata attachment later.
1521 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1522
1523 // If the instruction has a debug location, emit it.
1524 DILocation *DL = I->getDebugLoc();
1525 if (!DL)
1526 continue;
1527
1528 if (DL == LastDL) {
1529 // Just repeat the same debug loc as last time.
1530 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1531 continue;
1532 }
1533
1534 Vals.push_back(DL->getLine());
1535 Vals.push_back(DL->getColumn());
1536 Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
1537 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
1538 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
1539 Vals.clear();
1540
1541 // Fixme(pirama): The following line is missing from upstream
1542 // https://llvm.org/bugs/show_bug.cgi?id=23436
1543 LastDL = DL;
1544 }
1545
1546 // Emit names for all the instructions etc.
1547 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1548
1549 if (NeedsMetadataAttachment)
1550 WriteMetadataAttachment(F, VE, Stream);
1551 if (false)
1552 WriteUseListBlock(&F, VE, Stream);
1553 VE.purgeFunction();
1554 Stream.ExitBlock();
1555 }
1556
1557 // Emit blockinfo, which defines the standard abbreviations etc.
WriteBlockInfo(const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)1558 static void WriteBlockInfo(const llvm_3_2::ValueEnumerator &VE,
1559 BitstreamWriter &Stream) {
1560 // We only want to emit block info records for blocks that have multiple
1561 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other
1562 // blocks can defined their abbrevs inline.
1563 Stream.EnterBlockInfoBlock(2);
1564
1565 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1566 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1567 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1568 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1571 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1572 Abbv) != VST_ENTRY_8_ABBREV)
1573 llvm_unreachable("Unexpected abbrev ordering!");
1574 }
1575
1576 { // 7-bit fixed width VST_ENTRY strings.
1577 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1578 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1582 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1583 Abbv) != VST_ENTRY_7_ABBREV)
1584 llvm_unreachable("Unexpected abbrev ordering!");
1585 }
1586 { // 6-bit char6 VST_ENTRY strings.
1587 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1588 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1592 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1593 Abbv) != VST_ENTRY_6_ABBREV)
1594 llvm_unreachable("Unexpected abbrev ordering!");
1595 }
1596 { // 6-bit char6 VST_BBENTRY strings.
1597 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1598 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1599 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1602 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1603 Abbv) != VST_BBENTRY_6_ABBREV)
1604 llvm_unreachable("Unexpected abbrev ordering!");
1605 }
1606
1607
1608
1609 { // SETTYPE abbrev for CONSTANTS_BLOCK.
1610 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1611 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1612 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1613 Log2_32_Ceil(VE.getTypes().size()+1)));
1614 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1615 Abbv) != CONSTANTS_SETTYPE_ABBREV)
1616 llvm_unreachable("Unexpected abbrev ordering!");
1617 }
1618
1619 { // INTEGER abbrev for CONSTANTS_BLOCK.
1620 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1621 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1622 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1623 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1624 Abbv) != CONSTANTS_INTEGER_ABBREV)
1625 llvm_unreachable("Unexpected abbrev ordering!");
1626 }
1627
1628 { // CE_CAST abbrev for CONSTANTS_BLOCK.
1629 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1630 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1631 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
1632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
1633 Log2_32_Ceil(VE.getTypes().size()+1)));
1634 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
1635
1636 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1637 Abbv) != CONSTANTS_CE_CAST_Abbrev)
1638 llvm_unreachable("Unexpected abbrev ordering!");
1639 }
1640 { // NULL abbrev for CONSTANTS_BLOCK.
1641 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1642 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1643 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1644 Abbv) != CONSTANTS_NULL_Abbrev)
1645 llvm_unreachable("Unexpected abbrev ordering!");
1646 }
1647
1648 // FIXME: This should only use space for first class types!
1649
1650 { // INST_LOAD abbrev for FUNCTION_BLOCK.
1651 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1652 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1653 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1654 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1655 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1656 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1657 Abbv) != FUNCTION_INST_LOAD_ABBREV)
1658 llvm_unreachable("Unexpected abbrev ordering!");
1659 }
1660 { // INST_BINOP abbrev for FUNCTION_BLOCK.
1661 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1662 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1663 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1664 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1665 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1666 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1667 Abbv) != FUNCTION_INST_BINOP_ABBREV)
1668 llvm_unreachable("Unexpected abbrev ordering!");
1669 }
1670 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1671 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1672 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1673 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1674 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1675 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1676 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1677 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1678 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1679 llvm_unreachable("Unexpected abbrev ordering!");
1680 }
1681 { // INST_CAST abbrev for FUNCTION_BLOCK.
1682 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1683 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1684 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
1685 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
1686 Log2_32_Ceil(VE.getTypes().size()+1)));
1687 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1688 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1689 Abbv) != FUNCTION_INST_CAST_ABBREV)
1690 llvm_unreachable("Unexpected abbrev ordering!");
1691 }
1692
1693 { // INST_RET abbrev for FUNCTION_BLOCK.
1694 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1695 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1696 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1697 Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1698 llvm_unreachable("Unexpected abbrev ordering!");
1699 }
1700 { // INST_RET abbrev for FUNCTION_BLOCK.
1701 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1702 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1703 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1704 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1705 Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1706 llvm_unreachable("Unexpected abbrev ordering!");
1707 }
1708 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1709 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1710 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1711 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1712 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1713 llvm_unreachable("Unexpected abbrev ordering!");
1714 }
1715
1716 Stream.ExitBlock();
1717 }
1718
1719 /// WriteModule - Emit the specified module to the bitstream.
WriteModule(const Module * M,BitstreamWriter & Stream)1720 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1721 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1722
1723 SmallVector<unsigned, 1> Vals;
1724 // TODO(srhines): RenderScript is always version 0 for now.
1725 unsigned CurVersion = 0;
1726 if (CurVersion) {
1727 Vals.push_back(CurVersion);
1728 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1729 }
1730
1731 // Analyze the module, enumerating globals, functions, etc.
1732 llvm_3_2::ValueEnumerator VE(*M);
1733
1734 // Emit blockinfo, which defines the standard abbreviations etc.
1735 WriteBlockInfo(VE, Stream);
1736
1737 // Emit information about parameter attributes.
1738 WriteAttributeTable(VE, Stream);
1739
1740 // Emit information describing all of the types in the module.
1741 WriteTypeTable(VE, Stream);
1742
1743 // Emit top-level description of module, including target triple, inline asm,
1744 // descriptors for global variables, and function prototype info.
1745 WriteModuleInfo(M, VE, Stream);
1746
1747 // Emit constants.
1748 WriteModuleConstants(VE, Stream);
1749
1750 // Emit metadata.
1751 WriteModuleMetadata(M, VE, Stream);
1752
1753 // Emit metadata.
1754 WriteModuleMetadataStore(M, Stream);
1755
1756 // Emit names for globals/functions etc.
1757 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1758
1759 // Emit module-level use-lists.
1760 if (false)
1761 WriteUseListBlock(nullptr, VE, Stream);
1762
1763 // Emit function bodies.
1764 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
1765 if (!F->isDeclaration())
1766 WriteFunction(*F, VE, Stream);
1767
1768 Stream.ExitBlock();
1769 }
1770
1771 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1772 /// header and trailer to make it compatible with the system archiver. To do
1773 /// this we emit the following header, and then emit a trailer that pads the
1774 /// file out to be a multiple of 16 bytes.
1775 ///
1776 /// struct bc_header {
1777 /// uint32_t Magic; // 0x0B17C0DE
1778 /// uint32_t Version; // Version, currently always 0.
1779 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1780 /// uint32_t BitcodeSize; // Size of traditional bitcode file.
1781 /// uint32_t CPUType; // CPU specifier.
1782 /// ... potentially more later ...
1783 /// };
1784 enum {
1785 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1786 DarwinBCHeaderSize = 5*4
1787 };
1788
WriteInt32ToBuffer(uint32_t Value,SmallVectorImpl<char> & Buffer,uint32_t & Position)1789 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
1790 uint32_t &Position) {
1791 Buffer[Position + 0] = (unsigned char) (Value >> 0);
1792 Buffer[Position + 1] = (unsigned char) (Value >> 8);
1793 Buffer[Position + 2] = (unsigned char) (Value >> 16);
1794 Buffer[Position + 3] = (unsigned char) (Value >> 24);
1795 Position += 4;
1796 }
1797
EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> & Buffer,const Triple & TT)1798 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
1799 const Triple &TT) {
1800 unsigned CPUType = ~0U;
1801
1802 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
1803 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
1804 // number from /usr/include/mach/machine.h. It is ok to reproduce the
1805 // specific constants here because they are implicitly part of the Darwin ABI.
1806 enum {
1807 DARWIN_CPU_ARCH_ABI64 = 0x01000000,
1808 DARWIN_CPU_TYPE_X86 = 7,
1809 DARWIN_CPU_TYPE_ARM = 12,
1810 DARWIN_CPU_TYPE_POWERPC = 18
1811 };
1812
1813 Triple::ArchType Arch = TT.getArch();
1814 if (Arch == Triple::x86_64)
1815 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1816 else if (Arch == Triple::x86)
1817 CPUType = DARWIN_CPU_TYPE_X86;
1818 else if (Arch == Triple::ppc)
1819 CPUType = DARWIN_CPU_TYPE_POWERPC;
1820 else if (Arch == Triple::ppc64)
1821 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1822 else if (Arch == Triple::arm || Arch == Triple::thumb)
1823 CPUType = DARWIN_CPU_TYPE_ARM;
1824
1825 // Traditional Bitcode starts after header.
1826 assert(Buffer.size() >= DarwinBCHeaderSize &&
1827 "Expected header size to be reserved");
1828 unsigned BCOffset = DarwinBCHeaderSize;
1829 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
1830
1831 // Write the magic and version.
1832 unsigned Position = 0;
1833 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
1834 WriteInt32ToBuffer(0 , Buffer, Position); // Version.
1835 WriteInt32ToBuffer(BCOffset , Buffer, Position);
1836 WriteInt32ToBuffer(BCSize , Buffer, Position);
1837 WriteInt32ToBuffer(CPUType , Buffer, Position);
1838
1839 // If the file is not a multiple of 16 bytes, insert placeholder padding.
1840 while (Buffer.size() & 15)
1841 Buffer.push_back(0);
1842 }
1843
1844 /// WriteBitcodeToFile - Write the specified module to the specified output
1845 /// stream.
WriteBitcodeToFile(const Module * M,raw_ostream & Out)1846 void llvm_3_2::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1847 SmallVector<char, 0> Buffer;
1848 Buffer.reserve(256*1024);
1849
1850 // If this is darwin or another generic macho target, reserve space for the
1851 // header.
1852 Triple TT(M->getTargetTriple());
1853 if (TT.isOSDarwin())
1854 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
1855
1856 // Emit the module into the buffer.
1857 {
1858 BitstreamWriter Stream(Buffer);
1859
1860 // Emit the file header.
1861 Stream.Emit((unsigned)'B', 8);
1862 Stream.Emit((unsigned)'C', 8);
1863 Stream.Emit(0x0, 4);
1864 Stream.Emit(0xC, 4);
1865 Stream.Emit(0xE, 4);
1866 Stream.Emit(0xD, 4);
1867
1868 // Emit the module.
1869 WriteModule(M, Stream);
1870 }
1871
1872 if (TT.isOSDarwin())
1873 EmitDarwinBCHeaderAndTrailer(Buffer, TT);
1874
1875 // Write the generated bitstream to "Out".
1876 Out.write((char*)&Buffer.front(), Buffer.size());
1877 }
1878