1 /*
2 * Copyright (C) 2017 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "OperationsUtils.h"
18 #define LOG_TAG "Operations"
19
20 #include <tensorflow/lite/kernels/internal/optimized/legacy_optimized_ops.h>
21 #include <tensorflow/lite/kernels/internal/reference/legacy_reference_ops.h>
22 #include <tensorflow/lite/kernels/internal/reference/reference_ops.h>
23 #include <tensorflow/lite/kernels/internal/types.h>
24
25 #include <algorithm>
26 #include <iterator>
27 #include <vector>
28
29 #include "CpuOperationUtils.h"
30 #include "HalInterfaces.h"
31 #include "OperationResolver.h"
32 #include "Tracing.h"
33
34 namespace android {
35 namespace nn {
36 namespace concatenation {
37
38 constexpr char kOperationName[] = "CONCATENATION";
39
40 constexpr uint32_t kNumOutputs = 1;
41 constexpr uint32_t kOutputTensor = 0;
42
43 namespace {
44
45 using namespace hal;
46
47 template <typename T>
concatenation(const std::vector<const T * > & inputDataPtrs,const std::vector<Shape> & inputShapes,int32_t axis,T * outputData,const Shape & outputShape)48 bool concatenation(const std::vector<const T*>& inputDataPtrs,
49 const std::vector<Shape>& inputShapes, int32_t axis, T* outputData,
50 const Shape& outputShape) {
51 NNTRACE_TRANS("concatenation");
52 int num_inputs = inputShapes.size();
53 std::vector<tflite::Dims<4>*> inputDimsPtr(num_inputs);
54 std::vector<tflite::Dims<4>> inputDims(num_inputs);
55 for (int i = 0; i < num_inputs; i++) {
56 inputDims[i] = convertShapeToDims(inputShapes[i]);
57 inputDimsPtr[i] = &inputDims[i];
58 }
59 NNTRACE_COMP_SWITCH("optimized_ops::Concatenation");
60 tflite::optimized_ops::Concatenation<tflite::FusedActivationFunctionType::kNone, T>(
61 getNumberOfDimensions(outputShape) - axis - 1, inputDataPtrs.data(),
62 inputDimsPtr.data(), num_inputs, outputData, convertShapeToDims(outputShape));
63
64 return true;
65 }
66
67 template <>
concatenation(const std::vector<const uint8_t * > & inputDataPtrs,const std::vector<Shape> & inputShapes,int32_t axis,uint8_t * outputData,const Shape & outputShape)68 bool concatenation<uint8_t>(const std::vector<const uint8_t*>& inputDataPtrs,
69 const std::vector<Shape>& inputShapes, int32_t axis,
70 uint8_t* outputData, const Shape& outputShape) {
71 NNTRACE_TRANS("concatenationQuant8");
72 int num_inputs = inputShapes.size();
73 std::vector<float> inputScales(num_inputs);
74 std::vector<int32> inputOffsets(num_inputs);
75 std::vector<tflite::Dims<4>*> inputDimsPtr(num_inputs);
76 std::vector<tflite::Dims<4>> inputDims(num_inputs);
77 for (int i = 0; i < num_inputs; i++) {
78 inputScales[i] = inputShapes[i].scale;
79 inputOffsets[i] = inputShapes[i].offset;
80 inputDims[i] = convertShapeToDims(inputShapes[i]);
81 inputDimsPtr[i] = &inputDims[i];
82 }
83
84 NNTRACE_COMP_SWITCH("reference_ops::Concatenation");
85 tflite::reference_ops::Concatenation(
86 getNumberOfDimensions(outputShape) - axis - 1, inputDataPtrs.data(),
87 inputDimsPtr.data(), inputOffsets.data(), inputScales.data(), num_inputs, outputData,
88 convertShapeToDims(outputShape), outputShape.offset, outputShape.scale);
89
90 return true;
91 }
92
93 template <typename T>
concatenation(IOperationExecutionContext * context)94 inline bool concatenation(IOperationExecutionContext* context) {
95 uint32_t inputCount = context->getNumInputs() - 1;
96 std::vector<const T*> inputDatas;
97 std::vector<Shape> inputShapes;
98 for (uint32_t i = 0; i < inputCount; ++i) {
99 const T* buffer = context->getInputBuffer<T>(i);
100 if (buffer == nullptr) continue;
101 inputDatas.push_back(buffer);
102 inputShapes.push_back(context->getInputShape(i));
103 }
104 return concatenation(inputDatas, inputShapes, context->getInputValue<int32_t>(inputCount),
105 context->getOutputBuffer<T>(kOutputTensor),
106 context->getOutputShape(kOutputTensor));
107 }
108
109 template <>
concatenation(IOperationExecutionContext * context)110 inline bool concatenation<int8_t>(IOperationExecutionContext* context) {
111 uint32_t inputCount = context->getNumInputs() - 1;
112 std::vector<std::vector<uint8_t>> inputs_uint8(inputCount);
113 for (int i = 0; i < inputCount; ++i) {
114 const auto currentSize = getNumberOfElements(context->getInputShape(i));
115 inputs_uint8[i].resize(currentSize);
116 if (currentSize != 0) {
117 convertInt8ToUInt8(context->getInputBuffer<int8_t>(i), &inputs_uint8[i]);
118 }
119 }
120 std::vector<const uint8_t*> inputDatas;
121 std::vector<Shape> inputShapes;
122 for (uint32_t i = 0; i < inputCount; ++i) {
123 inputDatas.push_back(inputs_uint8[i].data());
124 inputShapes.push_back(context->getInputShape(i));
125 inputShapes[i].offset += 128;
126 }
127
128 std::vector<uint8_t> output_uint8(getNumberOfElements(context->getOutputShape(kOutputTensor)));
129 Shape outputShape(context->getOutputShape(kOutputTensor));
130 outputShape.offset += 128;
131 NN_RET_CHECK(concatenation(inputDatas, inputShapes, context->getInputValue<int32_t>(inputCount),
132 output_uint8.data(), outputShape));
133
134 convertUInt8ToInt8(output_uint8, context->getOutputBuffer<int8_t>(kOutputTensor));
135
136 return true;
137 }
138
139 } // namespace
140
validate(const IOperationValidationContext * context)141 bool validate(const IOperationValidationContext* context) {
142 uint32_t inputCount = context->getNumInputs();
143 NN_RET_CHECK_GE(inputCount, 2);
144 NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
145 const OperandType inputType = context->getInputType(0);
146 if (inputType == OperandType::TENSOR_FLOAT32 || inputType == OperandType::TENSOR_QUANT8_ASYMM) {
147 NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_0));
148 } else if (inputType == OperandType::TENSOR_FLOAT16) {
149 NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_2));
150 } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
151 NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_3));
152 } else {
153 NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
154 }
155 std::vector<OperandType> inExpectedTypes(inputCount - 1, inputType);
156 inExpectedTypes.push_back(OperandType::INT32);
157 if (context->getHalVersion() < HalVersion::V1_2 &&
158 inputType == OperandType::TENSOR_QUANT8_ASYMM) {
159 const Shape& output = context->getOutputShape(kOutputTensor);
160 for (uint32_t i = 0; i < inputCount - 1; ++i) {
161 const Shape& input = context->getInputShape(i);
162 NN_RET_CHECK_EQ(input.scale, output.scale);
163 NN_RET_CHECK_EQ(input.offset, output.offset);
164 }
165 }
166 for (uint32_t i = 0; i < inputCount - 1; ++i) {
167 const uint32_t inputRank = getNumberOfDimensions(context->getInputShape(i));
168 if (inputRank != 0) {
169 NN_RET_CHECK_LE(inputRank, 4);
170 }
171 }
172 return validateInputTypes(context, inExpectedTypes) &&
173 validateOutputTypes(context, {inputType});
174 }
175
prepare(IOperationExecutionContext * context)176 bool prepare(IOperationExecutionContext* context) {
177 uint32_t numInputs = context->getNumInputs();
178 NN_RET_CHECK_GE(numInputs, 2);
179 const Shape& input0 = context->getInputShape(0);
180 uint32_t numDimensions = getNumberOfDimensions(input0);
181 int32_t axis = context->getInputValue<int32_t>(numInputs - 1);
182 NN_RET_CHECK_GE(axis, 0);
183 NN_RET_CHECK_LT(axis, numDimensions);
184 NN_RET_CHECK_LE(numDimensions, 4);
185
186 uint32_t sumAxis = getSizeOfDimension(input0, axis);
187 for (uint32_t i = 1; i < numInputs - 1; ++i) {
188 const Shape& input = context->getInputShape(i);
189 NN_RET_CHECK_EQ(getNumberOfDimensions(input), numDimensions);
190 NN_RET_CHECK(input.type == input0.type);
191 for (uint32_t d = 0; d < numDimensions; ++d) {
192 if (d == axis) {
193 sumAxis += getSizeOfDimension(input, axis);
194 } else {
195 NN_RET_CHECK_EQ(getSizeOfDimension(input0, d), getSizeOfDimension(input, d));
196 }
197 }
198 }
199
200 Shape output = context->getOutputShape(kOutputTensor);
201 output.type = input0.type;
202 output.dimensions = input0.dimensions;
203 output.dimensions[axis] = sumAxis;
204 return context->setOutputShape(kOutputTensor, output);
205 }
206
execute(IOperationExecutionContext * context)207 bool execute(IOperationExecutionContext* context) {
208 // Bypass execution in the case of zero-sized input.
209 if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
210 switch (context->getInputType(0)) {
211 case OperandType::TENSOR_FLOAT16:
212 return concatenation<_Float16>(context);
213 case OperandType::TENSOR_FLOAT32:
214 return concatenation<float>(context);
215 case OperandType::TENSOR_QUANT8_ASYMM:
216 return concatenation<uint8_t>(context);
217 case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
218 return concatenation<int8_t>(context);
219 default:
220 NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
221 }
222 }
223
224 } // namespace concatenation
225
226 NN_REGISTER_OPERATION(CONCATENATION, concatenation::kOperationName, concatenation::validate,
227 concatenation::prepare, concatenation::execute, .allowZeroSizedInput = true);
228
229 } // namespace nn
230 } // namespace android
231