1 /*
2  * Copyright (C) 2017 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "EmbeddingLookup.h"
18 
19 #include "NeuralNetworksWrapper.h"
20 
21 #include <gmock/gmock-matchers.h>
22 #include <gtest/gtest.h>
23 
24 using ::testing::FloatNear;
25 using ::testing::Matcher;
26 
27 namespace android {
28 namespace nn {
29 namespace wrapper {
30 
31 namespace {
32 
ArrayFloatNear(const std::vector<float> & values,float max_abs_error=1.e-6)33 std::vector<Matcher<float>> ArrayFloatNear(const std::vector<float>& values,
34                                            float max_abs_error = 1.e-6) {
35     std::vector<Matcher<float>> matchers;
36     matchers.reserve(values.size());
37     for (const float& v : values) {
38         matchers.emplace_back(FloatNear(v, max_abs_error));
39     }
40     return matchers;
41 }
42 
43 }  // namespace
44 
45 using ::testing::ElementsAreArray;
46 
47 #define FOR_ALL_INPUT_AND_WEIGHT_TENSORS(ACTION) \
48     ACTION(Value, float)                         \
49     ACTION(Lookup, int)
50 
51 // For all output and intermediate states
52 #define FOR_ALL_OUTPUT_TENSORS(ACTION) ACTION(Output, float)
53 
54 class EmbeddingLookupOpModel {
55    public:
EmbeddingLookupOpModel(std::initializer_list<uint32_t> index_shape,std::initializer_list<uint32_t> weight_shape)56     EmbeddingLookupOpModel(std::initializer_list<uint32_t> index_shape,
57                            std::initializer_list<uint32_t> weight_shape) {
58         auto it = weight_shape.begin();
59         rows_ = *it++;
60         columns_ = *it++;
61         features_ = *it;
62 
63         std::vector<uint32_t> inputs;
64 
65         OperandType LookupTy(Type::TENSOR_INT32, index_shape);
66         inputs.push_back(model_.addOperand(&LookupTy));
67 
68         OperandType ValueTy(Type::TENSOR_FLOAT32, weight_shape);
69         inputs.push_back(model_.addOperand(&ValueTy));
70 
71         std::vector<uint32_t> outputs;
72 
73         OperandType OutputOpndTy(Type::TENSOR_FLOAT32, weight_shape);
74         outputs.push_back(model_.addOperand(&OutputOpndTy));
75 
76         auto multiAll = [](const std::vector<uint32_t>& dims) -> uint32_t {
77             uint32_t sz = 1;
78             for (uint32_t d : dims) {
79                 sz *= d;
80             }
81             return sz;
82         };
83 
84         Value_.insert(Value_.end(), multiAll(weight_shape), 0.f);
85         Output_.insert(Output_.end(), multiAll(weight_shape), 0.f);
86 
87         model_.addOperation(ANEURALNETWORKS_EMBEDDING_LOOKUP, inputs, outputs);
88         model_.identifyInputsAndOutputs(inputs, outputs);
89 
90         model_.finish();
91     }
92 
Invoke()93     void Invoke() {
94         ASSERT_TRUE(model_.isValid());
95 
96         Compilation compilation(&model_);
97         compilation.finish();
98         Execution execution(&compilation);
99 
100 #define SetInputOrWeight(X, T)                                               \
101     ASSERT_EQ(execution.setInput(EmbeddingLookup::k##X##Tensor, X##_.data(), \
102                                  sizeof(T) * X##_.size()),                   \
103               Result::NO_ERROR);
104 
105         FOR_ALL_INPUT_AND_WEIGHT_TENSORS(SetInputOrWeight);
106 
107 #undef SetInputOrWeight
108 
109 #define SetOutput(X, T)                                                       \
110     ASSERT_EQ(execution.setOutput(EmbeddingLookup::k##X##Tensor, X##_.data(), \
111                                   sizeof(T) * X##_.size()),                   \
112               Result::NO_ERROR);
113 
114         FOR_ALL_OUTPUT_TENSORS(SetOutput);
115 
116 #undef SetOutput
117 
118         ASSERT_EQ(execution.compute(), Result::NO_ERROR);
119     }
120 
121 #define DefineSetter(X, T) \
122     void Set##X(const std::vector<T>& f) { X##_.insert(X##_.end(), f.begin(), f.end()); }
123 
124     FOR_ALL_INPUT_AND_WEIGHT_TENSORS(DefineSetter);
125 
126 #undef DefineSetter
127 
Set3DWeightMatrix(const std::function<float (int,int,int)> & function)128     void Set3DWeightMatrix(const std::function<float(int, int, int)>& function) {
129         for (uint32_t i = 0; i < rows_; i++) {
130             for (uint32_t j = 0; j < columns_; j++) {
131                 for (uint32_t k = 0; k < features_; k++) {
132                     Value_[(i * columns_ + j) * features_ + k] = function(i, j, k);
133                 }
134             }
135         }
136     }
137 
GetOutput() const138     const std::vector<float>& GetOutput() const { return Output_; }
139 
140    private:
141     Model model_;
142     uint32_t rows_;
143     uint32_t columns_;
144     uint32_t features_;
145 
146 #define DefineTensor(X, T) std::vector<T> X##_;
147 
148     FOR_ALL_INPUT_AND_WEIGHT_TENSORS(DefineTensor);
149     FOR_ALL_OUTPUT_TENSORS(DefineTensor);
150 
151 #undef DefineTensor
152 };
153 
154 // TODO: write more tests that exercise the details of the op, such as
155 // lookup errors and variable input shapes.
TEST(EmbeddingLookupOpTest,SimpleTest)156 TEST(EmbeddingLookupOpTest, SimpleTest) {
157     EmbeddingLookupOpModel m({3}, {3, 2, 4});
158     m.SetLookup({1, 0, 2});
159     m.Set3DWeightMatrix([](int i, int j, int k) { return i + j / 10.0f + k / 100.0f; });
160 
161     m.Invoke();
162 
163     EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear({
164                                        1.00, 1.01, 1.02, 1.03, 1.10, 1.11, 1.12, 1.13,  // Row 1
165                                        0.00, 0.01, 0.02, 0.03, 0.10, 0.11, 0.12, 0.13,  // Row 0
166                                        2.00, 2.01, 2.02, 2.03, 2.10, 2.11, 2.12, 2.13,  // Row 2
167                                })));
168 }
169 
170 }  // namespace wrapper
171 }  // namespace nn
172 }  // namespace android
173