1 /*
2 * Copyright (C) 2020 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "GeneratedTestUtils.h"
18
19 #include <android-base/logging.h>
20 #include <gtest/gtest.h>
21
22 #include <algorithm>
23 #include <memory>
24 #include <string>
25 #include <utility>
26 #include <vector>
27
28 #include "TestHarness.h"
29 #include "TestNeuralNetworksWrapper.h"
30
31 namespace android::nn::generated_tests {
32 using namespace test_wrapper;
33 using namespace test_helper;
34
getOperandType(const TestOperand & op,bool testDynamicOutputShape)35 static OperandType getOperandType(const TestOperand& op, bool testDynamicOutputShape) {
36 auto dims = op.dimensions;
37 if (testDynamicOutputShape && op.lifetime == TestOperandLifeTime::SUBGRAPH_OUTPUT) {
38 dims.assign(dims.size(), 0);
39 }
40 if (op.type == TestOperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
41 return OperandType(
42 static_cast<Type>(op.type), dims,
43 SymmPerChannelQuantParams(op.channelQuant.scales, op.channelQuant.channelDim));
44 } else {
45 return OperandType(static_cast<Type>(op.type), dims, op.scale, op.zeroPoint);
46 }
47 }
48
49 // A Memory object that owns AHardwareBuffer
50 class MemoryAHWB : public Memory {
51 public:
create(uint32_t size)52 static std::unique_ptr<MemoryAHWB> create(uint32_t size) {
53 const uint64_t usage =
54 AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN | AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN;
55 AHardwareBuffer_Desc desc = {
56 .width = size,
57 .height = 1,
58 .layers = 1,
59 .format = AHARDWAREBUFFER_FORMAT_BLOB,
60 .usage = usage,
61 };
62 AHardwareBuffer* ahwb = nullptr;
63 EXPECT_EQ(AHardwareBuffer_allocate(&desc, &ahwb), 0);
64 EXPECT_NE(ahwb, nullptr);
65
66 void* buffer = nullptr;
67 EXPECT_EQ(AHardwareBuffer_lock(ahwb, usage, -1, nullptr, &buffer), 0);
68 EXPECT_NE(buffer, nullptr);
69
70 return std::unique_ptr<MemoryAHWB>(new MemoryAHWB(ahwb, buffer));
71 }
72
~MemoryAHWB()73 ~MemoryAHWB() override {
74 EXPECT_EQ(AHardwareBuffer_unlock(mAhwb, nullptr), 0);
75 AHardwareBuffer_release(mAhwb);
76 }
77
getPointer() const78 void* getPointer() const { return mBuffer; }
79
80 private:
MemoryAHWB(AHardwareBuffer * ahwb,void * buffer)81 MemoryAHWB(AHardwareBuffer* ahwb, void* buffer) : Memory(ahwb), mAhwb(ahwb), mBuffer(buffer) {}
82
83 AHardwareBuffer* mAhwb;
84 void* mBuffer;
85 };
86
createConstantReferenceMemory(const TestModel & testModel)87 static std::unique_ptr<MemoryAHWB> createConstantReferenceMemory(const TestModel& testModel) {
88 uint32_t size = 0;
89
90 auto processSubgraph = [&size](const TestSubgraph& subgraph) {
91 for (const TestOperand& operand : subgraph.operands) {
92 if (operand.lifetime == TestOperandLifeTime::CONSTANT_REFERENCE) {
93 size += operand.data.alignedSize();
94 }
95 }
96 };
97
98 processSubgraph(testModel.main);
99 for (const TestSubgraph& subgraph : testModel.referenced) {
100 processSubgraph(subgraph);
101 }
102 return size == 0 ? nullptr : MemoryAHWB::create(size);
103 }
104
createModelFromSubgraph(const TestSubgraph & subgraph,bool testDynamicOutputShape,const std::vector<TestSubgraph> & refSubgraphs,const std::unique_ptr<MemoryAHWB> & memory,uint32_t * memoryOffset,Model * model,Model * refModels)105 static void createModelFromSubgraph(const TestSubgraph& subgraph, bool testDynamicOutputShape,
106 const std::vector<TestSubgraph>& refSubgraphs,
107 const std::unique_ptr<MemoryAHWB>& memory,
108 uint32_t* memoryOffset, Model* model, Model* refModels) {
109 // Operands.
110 for (const auto& operand : subgraph.operands) {
111 auto type = getOperandType(operand, testDynamicOutputShape);
112 auto index = model->addOperand(&type);
113
114 switch (operand.lifetime) {
115 case TestOperandLifeTime::CONSTANT_COPY: {
116 model->setOperandValue(index, operand.data.get<void>(), operand.data.size());
117 } break;
118 case TestOperandLifeTime::CONSTANT_REFERENCE: {
119 const uint32_t length = operand.data.size();
120 std::memcpy(static_cast<uint8_t*>(memory->getPointer()) + *memoryOffset,
121 operand.data.get<void>(), length);
122 model->setOperandValueFromMemory(index, memory.get(), *memoryOffset, length);
123 *memoryOffset += operand.data.alignedSize();
124 } break;
125 case TestOperandLifeTime::NO_VALUE: {
126 model->setOperandValue(index, nullptr, 0);
127 } break;
128 case TestOperandLifeTime::SUBGRAPH: {
129 uint32_t refIndex = *operand.data.get<uint32_t>();
130 CHECK_LT(refIndex, refSubgraphs.size());
131 const TestSubgraph& refSubgraph = refSubgraphs[refIndex];
132 Model* refModel = &refModels[refIndex];
133 if (!refModel->isFinished()) {
134 createModelFromSubgraph(refSubgraph, testDynamicOutputShape, refSubgraphs,
135 memory, memoryOffset, refModel, refModels);
136 ASSERT_EQ(refModel->finish(), Result::NO_ERROR);
137 ASSERT_TRUE(refModel->isValid());
138 }
139 model->setOperandValueFromModel(index, refModel);
140 } break;
141 case TestOperandLifeTime::SUBGRAPH_INPUT:
142 case TestOperandLifeTime::SUBGRAPH_OUTPUT:
143 case TestOperandLifeTime::TEMPORARY_VARIABLE: {
144 // Nothing to do here.
145 } break;
146 }
147 }
148
149 // Operations.
150 for (const auto& operation : subgraph.operations) {
151 model->addOperation(static_cast<int>(operation.type), operation.inputs, operation.outputs);
152 }
153
154 // Inputs and outputs.
155 model->identifyInputsAndOutputs(subgraph.inputIndexes, subgraph.outputIndexes);
156 }
157
createModel(const TestModel & testModel,bool testDynamicOutputShape,GeneratedModel * model)158 void createModel(const TestModel& testModel, bool testDynamicOutputShape, GeneratedModel* model) {
159 ASSERT_NE(nullptr, model);
160
161 std::unique_ptr<MemoryAHWB> memory = createConstantReferenceMemory(testModel);
162 uint32_t memoryOffset = 0;
163 std::vector<Model> refModels(testModel.referenced.size());
164 createModelFromSubgraph(testModel.main, testDynamicOutputShape, testModel.referenced, memory,
165 &memoryOffset, model, refModels.data());
166 model->setRefModels(std::move(refModels));
167 model->setConstantReferenceMemory(std::move(memory));
168
169 // Relaxed computation.
170 model->relaxComputationFloat32toFloat16(testModel.isRelaxed);
171
172 if (!testModel.expectFailure) {
173 ASSERT_TRUE(model->isValid());
174 }
175 }
176
createRequest(const TestModel & testModel,Execution * execution,std::vector<TestBuffer> * outputs)177 void createRequest(const TestModel& testModel, Execution* execution,
178 std::vector<TestBuffer>* outputs) {
179 ASSERT_NE(nullptr, execution);
180 ASSERT_NE(nullptr, outputs);
181
182 // Model inputs.
183 for (uint32_t i = 0; i < testModel.main.inputIndexes.size(); i++) {
184 const auto& operand = testModel.main.operands[testModel.main.inputIndexes[i]];
185 ASSERT_EQ(Result::NO_ERROR,
186 execution->setInput(i, operand.data.get<void>(), operand.data.size()));
187 }
188
189 // Model outputs.
190 for (uint32_t i = 0; i < testModel.main.outputIndexes.size(); i++) {
191 const auto& operand = testModel.main.operands[testModel.main.outputIndexes[i]];
192
193 // In the case of zero-sized output, we should at least provide a one-byte buffer.
194 // This is because zero-sized tensors are only supported internally to the runtime, or
195 // reported in output shapes. It is illegal for the client to pre-specify a zero-sized
196 // tensor as model output. Otherwise, we will have two semantic conflicts:
197 // - "Zero dimension" conflicts with "unspecified dimension".
198 // - "Omitted operand buffer" conflicts with "zero-sized operand buffer".
199 const size_t bufferSize = std::max<size_t>(operand.data.size(), 1);
200
201 outputs->emplace_back(bufferSize);
202 ASSERT_EQ(Result::NO_ERROR,
203 execution->setOutput(i, outputs->back().getMutable<void>(), bufferSize));
204 }
205 }
206
207 } // namespace android::nn::generated_tests
208