1 /*
2 * Copyright (C) 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "libtimeinstate"
18
19 #include "cputimeinstate.h"
20 #include <bpf_timeinstate.h>
21
22 #include <dirent.h>
23 #include <errno.h>
24 #include <inttypes.h>
25 #include <sys/sysinfo.h>
26
27 #include <mutex>
28 #include <numeric>
29 #include <optional>
30 #include <set>
31 #include <string>
32 #include <unordered_map>
33 #include <vector>
34
35 #include <android-base/file.h>
36 #include <android-base/parseint.h>
37 #include <android-base/stringprintf.h>
38 #include <android-base/strings.h>
39 #include <android-base/unique_fd.h>
40 #include <bpf/BpfMap.h>
41 #include <libbpf.h>
42 #include <log/log.h>
43
44 using android::base::StringPrintf;
45 using android::base::unique_fd;
46
47 namespace android {
48 namespace bpf {
49
50 static std::mutex gInitializedMutex;
51 static bool gInitialized = false;
52 static std::mutex gTrackingMutex;
53 static bool gTracking = false;
54 static uint32_t gNPolicies = 0;
55 static uint32_t gNCpus = 0;
56 static std::vector<std::vector<uint32_t>> gPolicyFreqs;
57 static std::vector<std::vector<uint32_t>> gPolicyCpus;
58 static std::set<uint32_t> gAllFreqs;
59 static unique_fd gTisMapFd;
60 static unique_fd gConcurrentMapFd;
61 static unique_fd gUidLastUpdateMapFd;
62
readNumbersFromFile(const std::string & path)63 static std::optional<std::vector<uint32_t>> readNumbersFromFile(const std::string &path) {
64 std::string data;
65
66 if (!android::base::ReadFileToString(path, &data)) return {};
67
68 auto strings = android::base::Split(data, " \n");
69 std::vector<uint32_t> ret;
70 for (const auto &s : strings) {
71 if (s.empty()) continue;
72 uint32_t n;
73 if (!android::base::ParseUint(s, &n)) return {};
74 ret.emplace_back(n);
75 }
76 return ret;
77 }
78
isPolicyFile(const struct dirent * d)79 static int isPolicyFile(const struct dirent *d) {
80 return android::base::StartsWith(d->d_name, "policy");
81 }
82
comparePolicyFiles(const struct dirent ** d1,const struct dirent ** d2)83 static int comparePolicyFiles(const struct dirent **d1, const struct dirent **d2) {
84 uint32_t policyN1, policyN2;
85 if (sscanf((*d1)->d_name, "policy%" SCNu32 "", &policyN1) != 1 ||
86 sscanf((*d2)->d_name, "policy%" SCNu32 "", &policyN2) != 1)
87 return 0;
88 return policyN1 - policyN2;
89 }
90
initGlobals()91 static bool initGlobals() {
92 std::lock_guard<std::mutex> guard(gInitializedMutex);
93 if (gInitialized) return true;
94
95 gNCpus = get_nprocs_conf();
96
97 struct dirent **dirlist;
98 const char basepath[] = "/sys/devices/system/cpu/cpufreq";
99 int ret = scandir(basepath, &dirlist, isPolicyFile, comparePolicyFiles);
100 if (ret == -1) return false;
101 gNPolicies = ret;
102
103 std::vector<std::string> policyFileNames;
104 for (uint32_t i = 0; i < gNPolicies; ++i) {
105 policyFileNames.emplace_back(dirlist[i]->d_name);
106 free(dirlist[i]);
107 }
108 free(dirlist);
109
110 for (const auto &policy : policyFileNames) {
111 std::vector<uint32_t> freqs;
112 for (const auto &name : {"available", "boost"}) {
113 std::string path =
114 StringPrintf("%s/%s/scaling_%s_frequencies", basepath, policy.c_str(), name);
115 auto nums = readNumbersFromFile(path);
116 if (!nums) continue;
117 freqs.insert(freqs.end(), nums->begin(), nums->end());
118 }
119 if (freqs.empty()) return false;
120 std::sort(freqs.begin(), freqs.end());
121 gPolicyFreqs.emplace_back(freqs);
122
123 for (auto freq : freqs) gAllFreqs.insert(freq);
124
125 std::string path = StringPrintf("%s/%s/%s", basepath, policy.c_str(), "related_cpus");
126 auto cpus = readNumbersFromFile(path);
127 if (!cpus) return false;
128 gPolicyCpus.emplace_back(*cpus);
129 }
130
131 gTisMapFd = unique_fd{bpf_obj_get(BPF_FS_PATH "map_time_in_state_uid_time_in_state_map")};
132 if (gTisMapFd < 0) return false;
133
134 gConcurrentMapFd =
135 unique_fd{bpf_obj_get(BPF_FS_PATH "map_time_in_state_uid_concurrent_times_map")};
136 if (gConcurrentMapFd < 0) return false;
137
138 gUidLastUpdateMapFd =
139 unique_fd{bpf_obj_get(BPF_FS_PATH "map_time_in_state_uid_last_update_map")};
140 if (gUidLastUpdateMapFd < 0) return false;
141
142 gInitialized = true;
143 return true;
144 }
145
attachTracepointProgram(const std::string & eventType,const std::string & eventName)146 static bool attachTracepointProgram(const std::string &eventType, const std::string &eventName) {
147 std::string path = StringPrintf(BPF_FS_PATH "prog_time_in_state_tracepoint_%s_%s",
148 eventType.c_str(), eventName.c_str());
149 int prog_fd = retrieveProgram(path.c_str());
150 if (prog_fd < 0) return false;
151 return bpf_attach_tracepoint(prog_fd, eventType.c_str(), eventName.c_str()) >= 0;
152 }
153
getPolicyFreqIdx(uint32_t policy)154 static std::optional<uint32_t> getPolicyFreqIdx(uint32_t policy) {
155 auto path = StringPrintf("/sys/devices/system/cpu/cpufreq/policy%u/scaling_cur_freq",
156 gPolicyCpus[policy][0]);
157 auto freqVec = readNumbersFromFile(path);
158 if (!freqVec.has_value() || freqVec->size() != 1) return {};
159 for (uint32_t idx = 0; idx < gPolicyFreqs[policy].size(); ++idx) {
160 if ((*freqVec)[0] == gPolicyFreqs[policy][idx]) return idx + 1;
161 }
162 return {};
163 }
164
165 // Start tracking and aggregating data to be reported by getUidCpuFreqTimes and getUidsCpuFreqTimes.
166 // Returns true on success, false otherwise.
167 // Tracking is active only once a live process has successfully called this function; if the calling
168 // process dies then it must be called again to resume tracking.
169 // This function should *not* be called while tracking is already active; doing so is unnecessary
170 // and can lead to accounting errors.
startTrackingUidTimes()171 bool startTrackingUidTimes() {
172 std::lock_guard<std::mutex> guard(gTrackingMutex);
173 if (!initGlobals()) return false;
174 if (gTracking) return true;
175
176 unique_fd cpuPolicyFd(mapRetrieveWO(BPF_FS_PATH "map_time_in_state_cpu_policy_map"));
177 if (cpuPolicyFd < 0) return false;
178
179 for (uint32_t i = 0; i < gPolicyCpus.size(); ++i) {
180 for (auto &cpu : gPolicyCpus[i]) {
181 if (writeToMapEntry(cpuPolicyFd, &cpu, &i, BPF_ANY)) return false;
182 }
183 }
184
185 unique_fd freqToIdxFd(mapRetrieveWO(BPF_FS_PATH "map_time_in_state_freq_to_idx_map"));
186 if (freqToIdxFd < 0) return false;
187 freq_idx_key_t key;
188 for (uint32_t i = 0; i < gNPolicies; ++i) {
189 key.policy = i;
190 for (uint32_t j = 0; j < gPolicyFreqs[i].size(); ++j) {
191 key.freq = gPolicyFreqs[i][j];
192 // Start indexes at 1 so that uninitialized state is distinguishable from lowest freq.
193 // The uid_times map still uses 0-based indexes, and the sched_switch program handles
194 // conversion between them, so this does not affect our map reading code.
195 uint32_t idx = j + 1;
196 if (writeToMapEntry(freqToIdxFd, &key, &idx, BPF_ANY)) return false;
197 }
198 }
199
200 unique_fd cpuLastUpdateFd(mapRetrieveWO(BPF_FS_PATH "map_time_in_state_cpu_last_update_map"));
201 if (cpuLastUpdateFd < 0) return false;
202 std::vector<uint64_t> zeros(get_nprocs_conf(), 0);
203 uint32_t zero = 0;
204 if (writeToMapEntry(cpuLastUpdateFd, &zero, zeros.data(), BPF_ANY)) return false;
205
206 unique_fd nrActiveFd(mapRetrieveWO(BPF_FS_PATH "map_time_in_state_nr_active_map"));
207 if (nrActiveFd < 0) return false;
208 if (writeToMapEntry(nrActiveFd, &zero, &zero, BPF_ANY)) return false;
209
210 unique_fd policyNrActiveFd(mapRetrieveWO(BPF_FS_PATH "map_time_in_state_policy_nr_active_map"));
211 if (policyNrActiveFd < 0) return false;
212 for (uint32_t i = 0; i < gNPolicies; ++i) {
213 if (writeToMapEntry(policyNrActiveFd, &i, &zero, BPF_ANY)) return false;
214 }
215
216 unique_fd policyFreqIdxFd(mapRetrieveWO(BPF_FS_PATH "map_time_in_state_policy_freq_idx_map"));
217 if (policyFreqIdxFd < 0) return false;
218 for (uint32_t i = 0; i < gNPolicies; ++i) {
219 auto freqIdx = getPolicyFreqIdx(i);
220 if (!freqIdx.has_value()) return false;
221 if (writeToMapEntry(policyFreqIdxFd, &i, &(*freqIdx), BPF_ANY)) return false;
222 }
223
224 gTracking = attachTracepointProgram("sched", "sched_switch") &&
225 attachTracepointProgram("power", "cpu_frequency");
226 return gTracking;
227 }
228
getCpuFreqs()229 std::optional<std::vector<std::vector<uint32_t>>> getCpuFreqs() {
230 if (!gInitialized && !initGlobals()) return {};
231 return gPolicyFreqs;
232 }
233
234 // Retrieve the times in ns that uid spent running at each CPU frequency.
235 // Return contains no value on error, otherwise it contains a vector of vectors using the format:
236 // [[t0_0, t0_1, ...],
237 // [t1_0, t1_1, ...], ...]
238 // where ti_j is the ns that uid spent running on the ith cluster at that cluster's jth lowest freq.
getUidCpuFreqTimes(uint32_t uid)239 std::optional<std::vector<std::vector<uint64_t>>> getUidCpuFreqTimes(uint32_t uid) {
240 if (!gInitialized && !initGlobals()) return {};
241
242 std::vector<std::vector<uint64_t>> out;
243 uint32_t maxFreqCount = 0;
244 for (const auto &freqList : gPolicyFreqs) {
245 if (freqList.size() > maxFreqCount) maxFreqCount = freqList.size();
246 out.emplace_back(freqList.size(), 0);
247 }
248
249 std::vector<tis_val_t> vals(gNCpus);
250 time_key_t key = {.uid = uid};
251 for (uint32_t i = 0; i <= (maxFreqCount - 1) / FREQS_PER_ENTRY; ++i) {
252 key.bucket = i;
253 if (findMapEntry(gTisMapFd, &key, vals.data())) {
254 if (errno != ENOENT) return {};
255 continue;
256 }
257
258 auto offset = i * FREQS_PER_ENTRY;
259 auto nextOffset = (i + 1) * FREQS_PER_ENTRY;
260 for (uint32_t j = 0; j < gNPolicies; ++j) {
261 if (offset >= gPolicyFreqs[j].size()) continue;
262 auto begin = out[j].begin() + offset;
263 auto end = nextOffset < gPolicyFreqs[j].size() ? begin + FREQS_PER_ENTRY : out[j].end();
264
265 for (const auto &cpu : gPolicyCpus[j]) {
266 std::transform(begin, end, std::begin(vals[cpu].ar), begin, std::plus<uint64_t>());
267 }
268 }
269 }
270
271 return out;
272 }
273
uidUpdatedSince(uint32_t uid,uint64_t lastUpdate,uint64_t * newLastUpdate)274 static std::optional<bool> uidUpdatedSince(uint32_t uid, uint64_t lastUpdate,
275 uint64_t *newLastUpdate) {
276 uint64_t uidLastUpdate;
277 if (findMapEntry(gUidLastUpdateMapFd, &uid, &uidLastUpdate)) return {};
278 // Updates that occurred during the previous read may have been missed. To mitigate
279 // this, don't ignore entries updated up to 1s before *lastUpdate
280 constexpr uint64_t NSEC_PER_SEC = 1000000000;
281 if (uidLastUpdate + NSEC_PER_SEC < lastUpdate) return false;
282 if (uidLastUpdate > *newLastUpdate) *newLastUpdate = uidLastUpdate;
283 return true;
284 }
285
286 // Retrieve the times in ns that each uid spent running at each CPU freq.
287 // Return contains no value on error, otherwise it contains a map from uids to vectors of vectors
288 // using the format:
289 // { uid0 -> [[t0_0_0, t0_0_1, ...], [t0_1_0, t0_1_1, ...], ...],
290 // uid1 -> [[t1_0_0, t1_0_1, ...], [t1_1_0, t1_1_1, ...], ...], ... }
291 // where ti_j_k is the ns uid i spent running on the jth cluster at the cluster's kth lowest freq.
292 std::optional<std::unordered_map<uint32_t, std::vector<std::vector<uint64_t>>>>
getUidsCpuFreqTimes()293 getUidsCpuFreqTimes() {
294 return getUidsUpdatedCpuFreqTimes(nullptr);
295 }
296
297 // Retrieve the times in ns that each uid spent running at each CPU freq, excluding UIDs that have
298 // not run since before lastUpdate.
299 // Return format is the same as getUidsCpuFreqTimes()
300 std::optional<std::unordered_map<uint32_t, std::vector<std::vector<uint64_t>>>>
getUidsUpdatedCpuFreqTimes(uint64_t * lastUpdate)301 getUidsUpdatedCpuFreqTimes(uint64_t *lastUpdate) {
302 if (!gInitialized && !initGlobals()) return {};
303 time_key_t key, prevKey;
304 std::unordered_map<uint32_t, std::vector<std::vector<uint64_t>>> map;
305 if (getFirstMapKey(gTisMapFd, &key)) {
306 if (errno == ENOENT) return map;
307 return std::nullopt;
308 }
309
310 std::vector<std::vector<uint64_t>> mapFormat;
311 for (const auto &freqList : gPolicyFreqs) mapFormat.emplace_back(freqList.size(), 0);
312
313 uint64_t newLastUpdate = lastUpdate ? *lastUpdate : 0;
314 std::vector<tis_val_t> vals(gNCpus);
315 do {
316 if (lastUpdate) {
317 auto uidUpdated = uidUpdatedSince(key.uid, *lastUpdate, &newLastUpdate);
318 if (!uidUpdated.has_value()) return {};
319 if (!*uidUpdated) continue;
320 }
321 if (findMapEntry(gTisMapFd, &key, vals.data())) return {};
322 if (map.find(key.uid) == map.end()) map.emplace(key.uid, mapFormat);
323
324 auto offset = key.bucket * FREQS_PER_ENTRY;
325 auto nextOffset = (key.bucket + 1) * FREQS_PER_ENTRY;
326 for (uint32_t i = 0; i < gNPolicies; ++i) {
327 if (offset >= gPolicyFreqs[i].size()) continue;
328 auto begin = map[key.uid][i].begin() + offset;
329 auto end = nextOffset < gPolicyFreqs[i].size() ? begin + FREQS_PER_ENTRY :
330 map[key.uid][i].end();
331 for (const auto &cpu : gPolicyCpus[i]) {
332 std::transform(begin, end, std::begin(vals[cpu].ar), begin, std::plus<uint64_t>());
333 }
334 }
335 prevKey = key;
336 } while (prevKey = key, !getNextMapKey(gTisMapFd, &prevKey, &key));
337 if (errno != ENOENT) return {};
338 if (lastUpdate && newLastUpdate > *lastUpdate) *lastUpdate = newLastUpdate;
339 return map;
340 }
341
verifyConcurrentTimes(const concurrent_time_t & ct)342 static bool verifyConcurrentTimes(const concurrent_time_t &ct) {
343 uint64_t activeSum = std::accumulate(ct.active.begin(), ct.active.end(), (uint64_t)0);
344 uint64_t policySum = 0;
345 for (const auto &vec : ct.policy) {
346 policySum += std::accumulate(vec.begin(), vec.end(), (uint64_t)0);
347 }
348 return activeSum == policySum;
349 }
350
351 // Retrieve the times in ns that uid spent running concurrently with each possible number of other
352 // tasks on each cluster (policy times) and overall (active times).
353 // Return contains no value on error, otherwise it contains a concurrent_time_t with the format:
354 // {.active = [a0, a1, ...], .policy = [[p0_0, p0_1, ...], [p1_0, p1_1, ...], ...]}
355 // where ai is the ns spent running concurrently with tasks on i other cpus and pi_j is the ns spent
356 // running on the ith cluster, concurrently with tasks on j other cpus in the same cluster
getUidConcurrentTimes(uint32_t uid,bool retry)357 std::optional<concurrent_time_t> getUidConcurrentTimes(uint32_t uid, bool retry) {
358 if (!gInitialized && !initGlobals()) return {};
359 concurrent_time_t ret = {.active = std::vector<uint64_t>(gNCpus, 0)};
360 for (const auto &cpuList : gPolicyCpus) ret.policy.emplace_back(cpuList.size(), 0);
361 std::vector<concurrent_val_t> vals(gNCpus);
362 time_key_t key = {.uid = uid};
363 for (key.bucket = 0; key.bucket <= (gNCpus - 1) / CPUS_PER_ENTRY; ++key.bucket) {
364 if (findMapEntry(gConcurrentMapFd, &key, vals.data())) {
365 if (errno != ENOENT) return {};
366 continue;
367 }
368 auto offset = key.bucket * CPUS_PER_ENTRY;
369 auto nextOffset = (key.bucket + 1) * CPUS_PER_ENTRY;
370
371 auto activeBegin = ret.active.begin() + offset;
372 auto activeEnd = nextOffset < gNCpus ? activeBegin + CPUS_PER_ENTRY : ret.active.end();
373
374 for (uint32_t cpu = 0; cpu < gNCpus; ++cpu) {
375 std::transform(activeBegin, activeEnd, std::begin(vals[cpu].active), activeBegin,
376 std::plus<uint64_t>());
377 }
378
379 for (uint32_t policy = 0; policy < gNPolicies; ++policy) {
380 if (offset >= gPolicyCpus[policy].size()) continue;
381 auto policyBegin = ret.policy[policy].begin() + offset;
382 auto policyEnd = nextOffset < gPolicyCpus[policy].size() ? policyBegin + CPUS_PER_ENTRY
383 : ret.policy[policy].end();
384
385 for (const auto &cpu : gPolicyCpus[policy]) {
386 std::transform(policyBegin, policyEnd, std::begin(vals[cpu].policy), policyBegin,
387 std::plus<uint64_t>());
388 }
389 }
390 }
391 if (!verifyConcurrentTimes(ret) && retry) return getUidConcurrentTimes(uid, false);
392 return ret;
393 }
394
395 // Retrieve the times in ns that each uid spent running concurrently with each possible number of
396 // other tasks on each cluster (policy times) and overall (active times).
397 // Return contains no value on error, otherwise it contains a map from uids to concurrent_time_t's
398 // using the format:
399 // { uid0 -> {.active = [a0, a1, ...], .policy = [[p0_0, p0_1, ...], [p1_0, p1_1, ...], ...] }, ...}
400 // where ai is the ns spent running concurrently with tasks on i other cpus and pi_j is the ns spent
401 // running on the ith cluster, concurrently with tasks on j other cpus in the same cluster.
getUidsConcurrentTimes()402 std::optional<std::unordered_map<uint32_t, concurrent_time_t>> getUidsConcurrentTimes() {
403 return getUidsUpdatedConcurrentTimes(nullptr);
404 }
405
406 // Retrieve the times in ns that each uid spent running concurrently with each possible number of
407 // other tasks on each cluster (policy times) and overall (active times), excluding UIDs that have
408 // not run since before lastUpdate.
409 // Return format is the same as getUidsConcurrentTimes()
getUidsUpdatedConcurrentTimes(uint64_t * lastUpdate)410 std::optional<std::unordered_map<uint32_t, concurrent_time_t>> getUidsUpdatedConcurrentTimes(
411 uint64_t *lastUpdate) {
412 if (!gInitialized && !initGlobals()) return {};
413 time_key_t key, prevKey;
414 std::unordered_map<uint32_t, concurrent_time_t> ret;
415 if (getFirstMapKey(gConcurrentMapFd, &key)) {
416 if (errno == ENOENT) return ret;
417 return {};
418 }
419
420 concurrent_time_t retFormat = {.active = std::vector<uint64_t>(gNCpus, 0)};
421 for (const auto &cpuList : gPolicyCpus) retFormat.policy.emplace_back(cpuList.size(), 0);
422
423 std::vector<concurrent_val_t> vals(gNCpus);
424 std::vector<uint64_t>::iterator activeBegin, activeEnd, policyBegin, policyEnd;
425
426 uint64_t newLastUpdate = lastUpdate ? *lastUpdate : 0;
427 do {
428 if (lastUpdate) {
429 auto uidUpdated = uidUpdatedSince(key.uid, *lastUpdate, &newLastUpdate);
430 if (!uidUpdated.has_value()) return {};
431 if (!*uidUpdated) continue;
432 }
433 if (findMapEntry(gConcurrentMapFd, &key, vals.data())) return {};
434 if (ret.find(key.uid) == ret.end()) ret.emplace(key.uid, retFormat);
435
436 auto offset = key.bucket * CPUS_PER_ENTRY;
437 auto nextOffset = (key.bucket + 1) * CPUS_PER_ENTRY;
438
439 activeBegin = ret[key.uid].active.begin();
440 activeEnd = nextOffset < gNCpus ? activeBegin + CPUS_PER_ENTRY : ret[key.uid].active.end();
441
442 for (uint32_t cpu = 0; cpu < gNCpus; ++cpu) {
443 std::transform(activeBegin, activeEnd, std::begin(vals[cpu].active), activeBegin,
444 std::plus<uint64_t>());
445 }
446
447 for (uint32_t policy = 0; policy < gNPolicies; ++policy) {
448 if (offset >= gPolicyCpus[policy].size()) continue;
449 policyBegin = ret[key.uid].policy[policy].begin() + offset;
450 policyEnd = nextOffset < gPolicyCpus[policy].size() ? policyBegin + CPUS_PER_ENTRY
451 : ret[key.uid].policy[policy].end();
452
453 for (const auto &cpu : gPolicyCpus[policy]) {
454 std::transform(policyBegin, policyEnd, std::begin(vals[cpu].policy), policyBegin,
455 std::plus<uint64_t>());
456 }
457 }
458 } while (prevKey = key, !getNextMapKey(gConcurrentMapFd, &prevKey, &key));
459 if (errno != ENOENT) return {};
460 for (const auto &[key, value] : ret) {
461 if (!verifyConcurrentTimes(value)) {
462 auto val = getUidConcurrentTimes(key, false);
463 if (val.has_value()) ret[key] = val.value();
464 }
465 }
466 if (lastUpdate && newLastUpdate > *lastUpdate) *lastUpdate = newLastUpdate;
467 return ret;
468 }
469
470 // Clear all time in state data for a given uid. Returns false on error, true otherwise.
471 // This is only suitable for clearing data when an app is uninstalled; if called on a UID with
472 // running tasks it will cause time in state vs. concurrent time totals to be inconsistent for that
473 // UID.
clearUidTimes(uint32_t uid)474 bool clearUidTimes(uint32_t uid) {
475 if (!gInitialized && !initGlobals()) return false;
476
477 time_key_t key = {.uid = uid};
478
479 uint32_t maxFreqCount = 0;
480 for (const auto &freqList : gPolicyFreqs) {
481 if (freqList.size() > maxFreqCount) maxFreqCount = freqList.size();
482 }
483
484 tis_val_t zeros = {0};
485 std::vector<tis_val_t> vals(gNCpus, zeros);
486 for (key.bucket = 0; key.bucket <= (maxFreqCount - 1) / FREQS_PER_ENTRY; ++key.bucket) {
487 if (writeToMapEntry(gTisMapFd, &key, vals.data(), BPF_EXIST) && errno != ENOENT)
488 return false;
489 if (deleteMapEntry(gTisMapFd, &key) && errno != ENOENT) return false;
490 }
491
492 concurrent_val_t czeros = {.policy = {0}, .active = {0}};
493 std::vector<concurrent_val_t> cvals(gNCpus, czeros);
494 for (key.bucket = 0; key.bucket <= (gNCpus - 1) / CPUS_PER_ENTRY; ++key.bucket) {
495 if (writeToMapEntry(gConcurrentMapFd, &key, cvals.data(), BPF_EXIST) && errno != ENOENT)
496 return false;
497 if (deleteMapEntry(gConcurrentMapFd, &key) && errno != ENOENT) return false;
498 }
499
500 if (deleteMapEntry(gUidLastUpdateMapFd, &uid) && errno != ENOENT) return false;
501 return true;
502 }
503
504 } // namespace bpf
505 } // namespace android
506