1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 *
16 */
17
18 /*
19 * Hardware Composer Test Library
20 * Utility library functions for use by the Hardware Composer test cases
21 */
22
23 #include <arpa/inet.h> // For ntohl() and htonl()
24
25 #include <cmath>
26 #include <sstream>
27 #include <string>
28
29 #include "hwcTestLib.h"
30
31 #include "EGLUtils.h"
32
33 // Defines
34 #define NUMA(a) (sizeof(a) / sizeof((a)[0]))
35
36 // Function Prototypes
37 static void printGLString(const char *name, GLenum s);
38 static void checkEglError(const char* op, EGLBoolean returnVal = EGL_TRUE);
39 static void printEGLConfiguration(EGLDisplay dpy, EGLConfig config);
40
41 using namespace std;
42 using namespace android;
43
44
45 #define BITSPERBYTE 8 // TODO: Obtain from <values.h>, once
46 // it has been added
47
48 // Initialize Display
hwcTestInitDisplay(bool verbose,EGLDisplay * dpy,EGLSurface * surface,EGLint * width,EGLint * height)49 void hwcTestInitDisplay(bool verbose, EGLDisplay *dpy, EGLSurface *surface,
50 EGLint *width, EGLint *height)
51 {
52 static EGLContext context;
53
54 EGLBoolean returnValue;
55 EGLConfig myConfig = {0};
56 EGLint contextAttribs[] = { EGL_CONTEXT_CLIENT_VERSION, 2, EGL_NONE };
57 EGLint sConfigAttribs[] = {
58 EGL_SURFACE_TYPE, EGL_WINDOW_BIT,
59 EGL_RENDERABLE_TYPE, EGL_OPENGL_ES2_BIT,
60 EGL_NONE };
61 EGLint majorVersion, minorVersion;
62
63 checkEglError("<init>");
64 *dpy = eglGetDisplay(EGL_DEFAULT_DISPLAY);
65 checkEglError("eglGetDisplay");
66 if (*dpy == EGL_NO_DISPLAY) {
67 testPrintE("eglGetDisplay returned EGL_NO_DISPLAY");
68 exit(70);
69 }
70
71 returnValue = eglInitialize(*dpy, &majorVersion, &minorVersion);
72 checkEglError("eglInitialize", returnValue);
73 if (verbose) {
74 testPrintI("EGL version %d.%d", majorVersion, minorVersion);
75 }
76 if (returnValue != EGL_TRUE) {
77 testPrintE("eglInitialize failed");
78 exit(71);
79 }
80
81 // The tests want to stop the framework and play with the hardware
82 // composer, which means it doesn't make sense to use WindowSurface
83 // here. android_createDisplaySurface() is going away, so just
84 // politely fail here.
85 EGLNativeWindowType window = NULL; //android_createDisplaySurface();
86 if (window == NULL) {
87 testPrintE("android_createDisplaySurface failed");
88 exit(72);
89 }
90 returnValue = EGLUtils::selectConfigForNativeWindow(*dpy,
91 sConfigAttribs, window, &myConfig);
92 if (returnValue) {
93 testPrintE("EGLUtils::selectConfigForNativeWindow() returned %d",
94 returnValue);
95 exit(73);
96 }
97 checkEglError("EGLUtils::selectConfigForNativeWindow");
98
99 if (verbose) {
100 testPrintI("Chose this configuration:");
101 printEGLConfiguration(*dpy, myConfig);
102 }
103
104 *surface = eglCreateWindowSurface(*dpy, myConfig, window, NULL);
105 checkEglError("eglCreateWindowSurface");
106 if (*surface == EGL_NO_SURFACE) {
107 testPrintE("gelCreateWindowSurface failed.");
108 exit(74);
109 }
110
111 context = eglCreateContext(*dpy, myConfig, EGL_NO_CONTEXT, contextAttribs);
112 checkEglError("eglCreateContext");
113 if (context == EGL_NO_CONTEXT) {
114 testPrintE("eglCreateContext failed");
115 exit(75);
116 }
117 returnValue = eglMakeCurrent(*dpy, *surface, *surface, context);
118 checkEglError("eglMakeCurrent", returnValue);
119 if (returnValue != EGL_TRUE) {
120 testPrintE("eglMakeCurrent failed");
121 exit(76);
122 }
123 eglQuerySurface(*dpy, *surface, EGL_WIDTH, width);
124 checkEglError("eglQuerySurface");
125 eglQuerySurface(*dpy, *surface, EGL_HEIGHT, height);
126 checkEglError("eglQuerySurface");
127
128 if (verbose) {
129 testPrintI("Window dimensions: %d x %d", *width, *height);
130
131 printGLString("Version", GL_VERSION);
132 printGLString("Vendor", GL_VENDOR);
133 printGLString("Renderer", GL_RENDERER);
134 printGLString("Extensions", GL_EXTENSIONS);
135 }
136 }
137
138 // Open Hardware Composer Device
hwcTestOpenHwc(hwc_composer_device_1_t ** hwcDevicePtr)139 void hwcTestOpenHwc(hwc_composer_device_1_t **hwcDevicePtr)
140 {
141 int rv;
142 hw_module_t const *hwcModule;
143
144 if ((rv = hw_get_module(HWC_HARDWARE_MODULE_ID, &hwcModule)) != 0) {
145 testPrintE("hw_get_module failed, rv: %i", rv);
146 errno = -rv;
147 perror(NULL);
148 exit(77);
149 }
150 if ((rv = hwc_open_1(hwcModule, hwcDevicePtr)) != 0) {
151 testPrintE("hwc_open failed, rv: %i", rv);
152 errno = -rv;
153 perror(NULL);
154 exit(78);
155 }
156 }
157
158 // Color fraction class to string conversion
operator string()159 ColorFract::operator string()
160 {
161 ostringstream out;
162
163 out << '[' << this->c1() << ", "
164 << this->c2() << ", "
165 << this->c3() << ']';
166
167 return out.str();
168 }
169
170 // Dimension class to string conversion
operator string()171 HwcTestDim::operator string()
172 {
173 ostringstream out;
174
175 out << '[' << this->width() << ", "
176 << this->height() << ']';
177
178 return out.str();
179 }
180
181 // Dimension class to hwc_rect conversion
operator hwc_rect() const182 HwcTestDim::operator hwc_rect() const
183 {
184 hwc_rect rect;
185
186 rect.left = rect.top = 0;
187
188 rect.right = this->_w;
189 rect.bottom = this->_h;
190
191 return rect;
192 }
193
194 // Hardware Composer rectangle to string conversion
hwcTestRect2str(const struct hwc_rect & rect)195 string hwcTestRect2str(const struct hwc_rect& rect)
196 {
197 ostringstream out;
198
199 out << '[';
200 out << rect.left << ", ";
201 out << rect.top << ", ";
202 out << rect.right << ", ";
203 out << rect.bottom;
204 out << ']';
205
206 return out.str();
207 }
208
209 // Parse HWC rectangle description of form [left, top, right, bottom]
hwcTestParseHwcRect(istringstream & in,bool & error)210 struct hwc_rect hwcTestParseHwcRect(istringstream& in, bool& error)
211 {
212 struct hwc_rect rect;
213 char chStart, ch;
214
215 // Defensively specify that an error occurred. Will clear
216 // error flag if all of parsing succeeds.
217 error = true;
218
219 // First character should be a [ or <
220 in >> chStart;
221 if (!in || ((chStart != '<') && (chStart != '['))) { return rect; }
222
223 // Left
224 in >> rect.left;
225 if (!in) { return rect; }
226 in >> ch;
227 if (!in || (ch != ',')) { return rect; }
228
229 // Top
230 in >> rect.top;
231 if (!in) { return rect; }
232 in >> ch;
233 if (!in || (ch != ',')) { return rect; }
234
235 // Right
236 in >> rect.right;
237 if (!in) { return rect; }
238 in >> ch;
239 if (!in || (ch != ',')) { return rect; }
240
241 // Bottom
242 in >> rect.bottom;
243 if (!in) { return rect; }
244
245 // Closing > or ]
246 in >> ch;
247 if (!in) { return rect; }
248 if (((chStart == '<') && (ch != '>'))
249 || ((chStart == '[') && (ch != ']'))) { return rect; }
250
251 // Validate right and bottom are greater than left and top
252 if ((rect.right <= rect.left) || (rect.bottom <= rect.top)) { return rect; }
253
254 // Made It, clear error indicator
255 error = false;
256
257 return rect;
258 }
259
260 // Parse dimension of form [width, height]
hwcTestParseDim(istringstream & in,bool & error)261 HwcTestDim hwcTestParseDim(istringstream& in, bool& error)
262 {
263 HwcTestDim dim;
264 char chStart, ch;
265 uint32_t val;
266
267 // Defensively specify that an error occurred. Will clear
268 // error flag if all of parsing succeeds.
269 error = true;
270
271 // First character should be a [ or <
272 in >> chStart;
273 if (!in || ((chStart != '<') && (chStart != '['))) { return dim; }
274
275 // Width
276 in >> val;
277 if (!in) { return dim; }
278 dim.setWidth(val);
279 in >> ch;
280 if (!in || (ch != ',')) { return dim; }
281
282 // Height
283 in >> val;
284 if (!in) { return dim; }
285 dim.setHeight(val);
286
287 // Closing > or ]
288 in >> ch;
289 if (!in) { return dim; }
290 if (((chStart == '<') && (ch != '>'))
291 || ((chStart == '[') && (ch != ']'))) { return dim; }
292
293 // Validate width and height greater than 0
294 if ((dim.width() <= 0) || (dim.height() <= 0)) { return dim; }
295
296 // Made It, clear error indicator
297 error = false;
298 return dim;
299 }
300
301 // Parse fractional color of form [0.##, 0.##, 0.##]
302 // Fractional values can be from 0.0 to 1.0 inclusive. Note, integer
303 // values of 0.0 and 1.0, which are non-fractional, are considered valid.
304 // They are an exception, all other valid inputs are fractions.
hwcTestParseColor(istringstream & in,bool & error)305 ColorFract hwcTestParseColor(istringstream& in, bool& error)
306 {
307 ColorFract color;
308 char chStart, ch;
309 float c1, c2, c3;
310
311 // Defensively specify that an error occurred. Will clear
312 // error flag if all of parsing succeeds.
313 error = true;
314
315 // First character should be a [ or <
316 in >> chStart;
317 if (!in || ((chStart != '<') && (chStart != '['))) { return color; }
318
319 // 1st Component
320 in >> c1;
321 if (!in) { return color; }
322 if ((c1 < 0.0) || (c1 > 1.0)) { return color; }
323 in >> ch;
324 if (!in || (ch != ',')) { return color; }
325
326 // 2nd Component
327 in >> c2;
328 if (!in) { return color; }
329 if ((c2 < 0.0) || (c2 > 1.0)) { return color; }
330 in >> ch;
331 if (!in || (ch != ',')) { return color; }
332
333 // 3rd Component
334 in >> c3;
335 if (!in) { return color; }
336 if ((c3 < 0.0) || (c3 > 1.0)) { return color; }
337
338 // Closing > or ]
339 in >> ch;
340 if (!in) { return color; }
341 if (((chStart == '<') && (ch != '>'))
342 || ((chStart == '[') && (ch != ']'))) { return color; }
343
344 // Are all the components fractional
345 if ((c1 < 0.0) || (c1 > 1.0)
346 || (c2 < 0.0) || (c2 > 1.0)
347 || (c3 < 0.0) || (c3 > 1.0)) { return color; }
348
349 // Made It, clear error indicator
350 error = false;
351
352 return ColorFract(c1, c2, c3);
353 }
354
355 // Look up and return pointer to structure with the characteristics
356 // of the graphic format named by the desc parameter. Search failure
357 // indicated by the return of NULL.
hwcTestGraphicFormatLookup(const char * desc)358 const struct hwcTestGraphicFormat *hwcTestGraphicFormatLookup(const char *desc)
359 {
360 for (unsigned int n1 = 0; n1 < NUMA(hwcTestGraphicFormat); n1++) {
361 if (string(desc) == string(hwcTestGraphicFormat[n1].desc)) {
362 return &hwcTestGraphicFormat[n1];
363 }
364 }
365
366 return NULL;
367 }
368
369 // Look up and return pointer to structure with the characteristics
370 // of the graphic format specified by the id parameter. Search failure
371 // indicated by the return of NULL.
hwcTestGraphicFormatLookup(uint32_t id)372 const struct hwcTestGraphicFormat *hwcTestGraphicFormatLookup(uint32_t id)
373 {
374 for (unsigned int n1 = 0; n1 < NUMA(hwcTestGraphicFormat); n1++) {
375 if (id == hwcTestGraphicFormat[n1].format) {
376 return &hwcTestGraphicFormat[n1];
377 }
378 }
379
380 return NULL;
381 }
382
383
384 // Given the integer ID of a graphic format, return a pointer to
385 // a string that describes the format.
hwcTestGraphicFormat2str(uint32_t format)386 const char *hwcTestGraphicFormat2str(uint32_t format)
387 {
388 const static char *unknown = "unknown";
389
390 for (unsigned int n1 = 0; n1 < NUMA(hwcTestGraphicFormat); n1++) {
391 if (format == hwcTestGraphicFormat[n1].format) {
392 return hwcTestGraphicFormat[n1].desc;
393 }
394 }
395
396 return unknown;
397 }
398
399 /*
400 * hwcTestCreateLayerList
401 * Dynamically creates layer list with numLayers worth
402 * of hwLayers entries.
403 */
hwcTestCreateLayerList(size_t numLayers)404 hwc_display_contents_1_t *hwcTestCreateLayerList(size_t numLayers)
405 {
406 hwc_display_contents_1_t *list;
407
408 size_t size = sizeof(hwc_display_contents_1_t) + numLayers * sizeof(hwc_layer_1_t);
409 if ((list = (hwc_display_contents_1_t *) calloc(1, size)) == NULL) {
410 return NULL;
411 }
412 list->flags = HWC_GEOMETRY_CHANGED;
413 list->numHwLayers = numLayers;
414
415 return list;
416 }
417
418 /*
419 * hwcTestFreeLayerList
420 * Frees memory previous allocated via hwcTestCreateLayerList().
421 */
hwcTestFreeLayerList(hwc_display_contents_1_t * list)422 void hwcTestFreeLayerList(hwc_display_contents_1_t *list)
423 {
424 free(list);
425 }
426
427 // Display the settings of the layer list pointed to by list
hwcTestDisplayList(hwc_display_contents_1_t * list)428 void hwcTestDisplayList(hwc_display_contents_1_t *list)
429 {
430 testPrintI(" flags: %#x%s", list->flags,
431 (list->flags & HWC_GEOMETRY_CHANGED) ? " GEOMETRY_CHANGED" : "");
432 testPrintI(" numHwLayers: %u", list->numHwLayers);
433
434 for (unsigned int layer = 0; layer < list->numHwLayers; layer++) {
435 testPrintI(" layer %u compositionType: %#x%s%s", layer,
436 list->hwLayers[layer].compositionType,
437 (list->hwLayers[layer].compositionType == HWC_FRAMEBUFFER)
438 ? " FRAMEBUFFER" : "",
439 (list->hwLayers[layer].compositionType == HWC_OVERLAY)
440 ? " OVERLAY" : "");
441
442 testPrintI(" hints: %#x",
443 list->hwLayers[layer].hints,
444 (list->hwLayers[layer].hints & HWC_HINT_TRIPLE_BUFFER)
445 ? " TRIPLE_BUFFER" : "",
446 (list->hwLayers[layer].hints & HWC_HINT_CLEAR_FB)
447 ? " CLEAR_FB" : "");
448
449 testPrintI(" flags: %#x%s",
450 list->hwLayers[layer].flags,
451 (list->hwLayers[layer].flags & HWC_SKIP_LAYER)
452 ? " SKIP_LAYER" : "");
453
454 testPrintI(" handle: %p",
455 list->hwLayers[layer].handle);
456
457 // Intentionally skipped display of ROT_180 & ROT_270,
458 // which are formed from combinations of the other flags.
459 testPrintI(" transform: %#x%s%s%s",
460 list->hwLayers[layer].transform,
461 (list->hwLayers[layer].transform & HWC_TRANSFORM_FLIP_H)
462 ? " FLIP_H" : "",
463 (list->hwLayers[layer].transform & HWC_TRANSFORM_FLIP_V)
464 ? " FLIP_V" : "",
465 (list->hwLayers[layer].transform & HWC_TRANSFORM_ROT_90)
466 ? " ROT_90" : "");
467
468 testPrintI(" blending: %#x%s%s%s",
469 list->hwLayers[layer].blending,
470 (list->hwLayers[layer].blending == HWC_BLENDING_NONE)
471 ? " NONE" : "",
472 (list->hwLayers[layer].blending == HWC_BLENDING_PREMULT)
473 ? " PREMULT" : "",
474 (list->hwLayers[layer].blending == HWC_BLENDING_COVERAGE)
475 ? " COVERAGE" : "");
476
477 testPrintI(" sourceCrop: %s",
478 hwcTestRect2str(list->hwLayers[layer].sourceCrop).c_str());
479 testPrintI(" displayFrame: %s",
480 hwcTestRect2str(list->hwLayers[layer].displayFrame).c_str());
481 testPrintI(" scaleFactor: [%f, %f]",
482 (float) (list->hwLayers[layer].sourceCrop.right
483 - list->hwLayers[layer].sourceCrop.left)
484 / (float) (list->hwLayers[layer].displayFrame.right
485 - list->hwLayers[layer].displayFrame.left),
486 (float) (list->hwLayers[layer].sourceCrop.bottom
487 - list->hwLayers[layer].sourceCrop.top)
488 / (float) (list->hwLayers[layer].displayFrame.bottom
489 - list->hwLayers[layer].displayFrame.top));
490 }
491 }
492
493 /*
494 * Display List Prepare Modifiable
495 *
496 * Displays the portions of a list that are meant to be modified by
497 * a prepare call.
498 */
hwcTestDisplayListPrepareModifiable(hwc_display_contents_1_t * list)499 void hwcTestDisplayListPrepareModifiable(hwc_display_contents_1_t *list)
500 {
501 uint32_t numOverlays = 0;
502 for (unsigned int layer = 0; layer < list->numHwLayers; layer++) {
503 if (list->hwLayers[layer].compositionType == HWC_OVERLAY) {
504 numOverlays++;
505 }
506 testPrintI(" layer %u compositionType: %#x%s%s", layer,
507 list->hwLayers[layer].compositionType,
508 (list->hwLayers[layer].compositionType == HWC_FRAMEBUFFER)
509 ? " FRAMEBUFFER" : "",
510 (list->hwLayers[layer].compositionType == HWC_OVERLAY)
511 ? " OVERLAY" : "");
512 testPrintI(" hints: %#x%s%s",
513 list->hwLayers[layer].hints,
514 (list->hwLayers[layer].hints & HWC_HINT_TRIPLE_BUFFER)
515 ? " TRIPLE_BUFFER" : "",
516 (list->hwLayers[layer].hints & HWC_HINT_CLEAR_FB)
517 ? " CLEAR_FB" : "");
518 }
519 testPrintI(" numOverlays: %u", numOverlays);
520 }
521
522 /*
523 * Display List Handles
524 *
525 * Displays the handles of all the graphic buffers in the list.
526 */
hwcTestDisplayListHandles(hwc_display_contents_1_t * list)527 void hwcTestDisplayListHandles(hwc_display_contents_1_t *list)
528 {
529 const unsigned int maxLayersPerLine = 6;
530
531 ostringstream str(" layers:");
532 for (unsigned int layer = 0; layer < list->numHwLayers; layer++) {
533 str << ' ' << list->hwLayers[layer].handle;
534 if (((layer % maxLayersPerLine) == (maxLayersPerLine - 1))
535 && (layer != list->numHwLayers - 1)) {
536 testPrintI("%s", str.str().c_str());
537 str.str(" ");
538 }
539 }
540 testPrintI("%s", str.str().c_str());
541 }
542
543 // Returns a uint32_t that contains a format specific representation of a
544 // single pixel of the given color and alpha values.
hwcTestColor2Pixel(uint32_t format,ColorFract color,float alpha)545 uint32_t hwcTestColor2Pixel(uint32_t format, ColorFract color, float alpha)
546 {
547 const struct attrib {
548 uint32_t format;
549 bool hostByteOrder;
550 size_t bytes;
551 size_t c1Offset;
552 size_t c1Size;
553 size_t c2Offset;
554 size_t c2Size;
555 size_t c3Offset;
556 size_t c3Size;
557 size_t aOffset;
558 size_t aSize;
559 } attributes[] = {
560 {HAL_PIXEL_FORMAT_RGBA_8888, false, 4, 0, 8, 8, 8, 16, 8, 24, 8},
561 {HAL_PIXEL_FORMAT_RGBX_8888, false, 4, 0, 8, 8, 8, 16, 8, 0, 0},
562 {HAL_PIXEL_FORMAT_RGB_888, false, 3, 0, 8, 8, 8, 16, 8, 0, 0},
563 {HAL_PIXEL_FORMAT_RGB_565, true, 2, 0, 5, 5, 6, 11, 5, 0, 0},
564 {HAL_PIXEL_FORMAT_BGRA_8888, false, 4, 16, 8, 8, 8, 0, 8, 24, 8},
565 {HAL_PIXEL_FORMAT_YV12, true, 3, 16, 8, 8, 8, 0, 8, 0, 0},
566 };
567
568 const struct attrib *attrib;
569 for (attrib = attributes; attrib < attributes + NUMA(attributes);
570 attrib++) {
571 if (attrib->format == format) { break; }
572 }
573 if (attrib >= attributes + NUMA(attributes)) {
574 testPrintE("colorFract2Pixel unsupported format of: %u", format);
575 exit(80);
576 }
577
578 uint32_t pixel;
579 pixel = htonl((uint32_t) round((((1 << attrib->c1Size) - 1) * color.c1()))
580 << ((sizeof(pixel) * BITSPERBYTE)
581 - (attrib->c1Offset + attrib->c1Size)));
582 pixel |= htonl((uint32_t) round((((1 << attrib->c2Size) - 1) * color.c2()))
583 << ((sizeof(pixel) * BITSPERBYTE)
584 - (attrib->c2Offset + attrib->c2Size)));
585 pixel |= htonl((uint32_t) round((((1 << attrib->c3Size) - 1) * color.c3()))
586 << ((sizeof(pixel) * BITSPERBYTE)
587 - (attrib->c3Offset + attrib->c3Size)));
588 if (attrib->aSize) {
589 pixel |= htonl((uint32_t) round((((1 << attrib->aSize) - 1) * alpha))
590 << ((sizeof(pixel) * BITSPERBYTE)
591 - (attrib->aOffset + attrib->aSize)));
592 }
593 if (attrib->hostByteOrder) {
594 pixel = ntohl(pixel);
595 pixel >>= sizeof(pixel) * BITSPERBYTE - attrib->bytes * BITSPERBYTE;
596 }
597
598 return pixel;
599 }
600
601 // Sets the pixel at the given x and y coordinates to the color and alpha
602 // value given by pixel. The contents of pixel is format specific. It's
603 // value should come from a call to hwcTestColor2Pixel().
hwcTestSetPixel(GraphicBuffer * gBuf,unsigned char * buf,uint32_t x,uint32_t y,uint32_t pixel)604 void hwcTestSetPixel(GraphicBuffer *gBuf, unsigned char *buf,
605 uint32_t x, uint32_t y, uint32_t pixel)
606 {
607
608 const struct attrib {
609 int format;
610 size_t bytes;
611 } attributes[] = {
612 {HAL_PIXEL_FORMAT_RGBA_8888, 4},
613 {HAL_PIXEL_FORMAT_RGBX_8888, 4},
614 {HAL_PIXEL_FORMAT_RGB_888, 3},
615 {HAL_PIXEL_FORMAT_RGB_565, 2},
616 {HAL_PIXEL_FORMAT_BGRA_8888, 4},
617 };
618
619 if (gBuf->getPixelFormat() == HAL_PIXEL_FORMAT_YV12) {
620 uint32_t yPlaneOffset, uPlaneOffset, vPlaneOffset;
621 uint32_t yPlaneStride = gBuf->getStride();
622 uint32_t uPlaneStride = ((gBuf->getStride() / 2) + 0xf) & ~0xf;
623 uint32_t vPlaneStride = uPlaneStride;
624 yPlaneOffset = 0;
625 vPlaneOffset = yPlaneOffset + yPlaneStride * gBuf->getHeight();
626 uPlaneOffset = vPlaneOffset
627 + vPlaneStride * (gBuf->getHeight() / 2);
628 *(buf + yPlaneOffset + y * yPlaneStride + x) = pixel & 0xff;
629 *(buf + uPlaneOffset + (y / 2) * uPlaneStride + (x / 2))
630 = (pixel & 0xff00) >> 8;
631 *(buf + vPlaneOffset + (y / 2) * vPlaneStride + (x / 2))
632 = (pixel & 0xff0000) >> 16;
633
634 return;
635 }
636
637 const struct attrib *attrib;
638 for (attrib = attributes; attrib < attributes + NUMA(attributes);
639 attrib++) {
640 if (attrib->format == gBuf->getPixelFormat()) { break; }
641 }
642 if (attrib >= attributes + NUMA(attributes)) {
643 testPrintE("setPixel unsupported format of: %u",
644 gBuf->getPixelFormat());
645 exit(90);
646 }
647
648 memmove(buf + ((gBuf->getStride() * attrib->bytes) * y)
649 + (attrib->bytes * x), &pixel, attrib->bytes);
650 }
651
652 // Fill a given graphic buffer with a uniform color and alpha
hwcTestFillColor(GraphicBuffer * gBuf,ColorFract color,float alpha)653 void hwcTestFillColor(GraphicBuffer *gBuf, ColorFract color, float alpha)
654 {
655 unsigned char* buf = NULL;
656 status_t err;
657 uint32_t pixel;
658
659 pixel = hwcTestColor2Pixel(gBuf->getPixelFormat(), color, alpha);
660
661 err = gBuf->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, (void**)(&buf));
662 if (err != 0) {
663 testPrintE("hwcTestFillColor lock failed: %d", err);
664 exit(100);
665 }
666
667 for (unsigned int x = 0; x < gBuf->getStride(); x++) {
668 for (unsigned int y = 0; y < gBuf->getHeight(); y++) {
669 hwcTestSetPixel(gBuf, buf, x, y, (x < gBuf->getWidth())
670 ? pixel : testRand());
671 }
672 }
673
674 err = gBuf->unlock();
675 if (err != 0) {
676 testPrintE("hwcTestFillColor unlock failed: %d", err);
677 exit(101);
678 }
679 }
680
681 // Fill the given buffer with a horizontal blend of colors, with the left
682 // side color given by startColor and the right side color given by
683 // endColor. The startColor and endColor values are specified in the format
684 // given by colorFormat, which might be different from the format of the
685 // graphic buffer. When different, a color conversion is done when possible
686 // to the graphic format of the graphic buffer. A color of black is
687 // produced for cases where the conversion is impossible (e.g. out of gamut
688 // values).
hwcTestFillColorHBlend(GraphicBuffer * gBuf,uint32_t colorFormat,ColorFract startColor,ColorFract endColor)689 void hwcTestFillColorHBlend(GraphicBuffer *gBuf, uint32_t colorFormat,
690 ColorFract startColor, ColorFract endColor)
691 {
692 status_t err;
693 unsigned char* buf = NULL;
694 const uint32_t width = gBuf->getWidth();
695 const uint32_t height = gBuf->getHeight();
696 const uint32_t stride = gBuf->getStride();
697
698 err = gBuf->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, (void**)(&buf));
699 if (err != 0) {
700 testPrintE("hwcTestFillColorHBlend lock failed: %d", err);
701 exit(110);
702 }
703
704 for (unsigned int x = 0; x < stride; x++) {
705 uint32_t pixel;
706 if (x < width) {
707 ColorFract color(startColor.c1() + (endColor.c1() - startColor.c1())
708 * ((float) x / (float) (width - 1)),
709 startColor.c2() + (endColor.c2() - startColor.c2())
710 * ((float) x / (float) (width - 1)),
711 startColor.c3() + (endColor.c3() - startColor.c3())
712 * ((float) x / (float) (width - 1)));
713
714 // When formats differ, convert colors.
715 // Important to not convert when formats are the same, since
716 // out of gamut colors are always converted to black.
717 if (colorFormat != (uint32_t) gBuf->getPixelFormat()) {
718 hwcTestColorConvert(colorFormat, gBuf->getPixelFormat(), color);
719 }
720 pixel = hwcTestColor2Pixel(gBuf->getPixelFormat(), color, 1.0);
721 } else {
722 // Fill pad with random values
723 pixel = testRand();
724 }
725
726 for (unsigned int y = 0; y < height; y++) {
727 hwcTestSetPixel(gBuf, buf, x, y, pixel);
728 }
729 }
730
731 err = gBuf->unlock();
732 if (err != 0) {
733 testPrintE("hwcTestFillColorHBlend unlock failed: %d", err);
734 exit(111);
735 }
736 }
737
738 /*
739 * When possible, converts color specified as a full range value in
740 * the fromFormat, into an equivalent full range color in the toFormat.
741 * When conversion is impossible (e.g. out of gamut color) a color
742 * or black in the full range output format is produced. The input
743 * color is given as a fractional color in the parameter named color.
744 * The produced color is written over the same parameter used to
745 * provide the input color.
746 *
747 * Each graphic format has 3 color components and each of these
748 * components has both a full and in gamut range. This function uses
749 * a table that provides the full and in gamut ranges of each of the
750 * supported graphic formats. The full range is given by members named
751 * c[123]Min to c[123]Max, while the in gamut range is given by members
752 * named c[123]Low to c[123]High. In most cases the full and in gamut
753 * ranges are equivalent. This occurs when the c[123]Min == c[123]Low and
754 * c[123]High == c[123]Max.
755 *
756 * The input and produced colors are both specified as a fractional amount
757 * of the full range. The diagram below provides an overview of the
758 * conversion process. The main steps are:
759 *
760 * 1. Produce black if the input color is out of gamut.
761 *
762 * 2. Convert the in gamut color into the fraction of the fromFromat
763 * in gamut range.
764 *
765 * 3. Convert from the fraction of the in gamut from format range to
766 * the fraction of the in gamut to format range. Produce black
767 * if an equivalent color does not exists.
768 *
769 * 4. Covert from the fraction of the in gamut to format to the
770 * fraction of the full range to format.
771 *
772 * From Format To Format
773 * max high high max
774 * ----+ +-----------+
775 * high \ / \ high
776 * ------\-------------+ +-------->
777 * \
778 * \ +--- black --+
779 * \ / \
780 * \ / +-->
781 * low \ / low
782 * -------- ---+-- black --+
783 * min low low min
784 * ^ ^ ^ ^ ^
785 * | | | | |
786 * | | | | +-- fraction of full range
787 * | | | +-- fraction of valid range
788 * | | +-- fromFormat to toFormat color conversion
789 * | +-- fraction of valid range
790 * +-- fraction of full range
791 */
hwcTestColorConvert(uint32_t fromFormat,uint32_t toFormat,ColorFract & color)792 void hwcTestColorConvert(uint32_t fromFormat, uint32_t toFormat,
793 ColorFract& color)
794 {
795 const struct attrib {
796 uint32_t format;
797 bool rgb;
798 bool yuv;
799 int c1Min, c1Low, c1High, c1Max;
800 int c2Min, c2Low, c2High, c2Max;
801 int c3Min, c3Low, c3High, c3Max;
802 } attributes[] = {
803 {HAL_PIXEL_FORMAT_RGBA_8888, true, false,
804 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255},
805 {HAL_PIXEL_FORMAT_RGBX_8888, true, false,
806 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255},
807 {HAL_PIXEL_FORMAT_RGB_888, true, false,
808 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255},
809 {HAL_PIXEL_FORMAT_RGB_565, true, false,
810 0, 0, 31, 31, 0, 0, 63, 63, 0, 0, 31, 31},
811 {HAL_PIXEL_FORMAT_BGRA_8888, true, false,
812 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255},
813 {HAL_PIXEL_FORMAT_YV12, false, true,
814 0, 16, 235, 255, 0, 16, 240, 255, 0, 16, 240, 255},
815 };
816
817 const struct attrib *fromAttrib;
818 for (fromAttrib = attributes; fromAttrib < attributes + NUMA(attributes);
819 fromAttrib++) {
820 if (fromAttrib->format == fromFormat) { break; }
821 }
822 if (fromAttrib >= attributes + NUMA(attributes)) {
823 testPrintE("hwcTestColorConvert unsupported from format of: %u",
824 fromFormat);
825 exit(120);
826 }
827
828 const struct attrib *toAttrib;
829 for (toAttrib = attributes; toAttrib < attributes + NUMA(attributes);
830 toAttrib++) {
831 if (toAttrib->format == toFormat) { break; }
832 }
833 if (toAttrib >= attributes + NUMA(attributes)) {
834 testPrintE("hwcTestColorConvert unsupported to format of: %u",
835 toFormat);
836 exit(121);
837 }
838
839 // Produce black if any of the from components are outside the
840 // valid color range
841 float c1Val = fromAttrib->c1Min
842 + ((float) (fromAttrib->c1Max - fromAttrib->c1Min) * color.c1());
843 float c2Val = fromAttrib->c2Min
844 + ((float) (fromAttrib->c2Max - fromAttrib->c2Min) * color.c2());
845 float c3Val = fromAttrib->c3Min
846 + ((float) (fromAttrib->c3Max - fromAttrib->c3Min) * color.c3());
847 if ((c1Val < fromAttrib->c1Low) || (c1Val > fromAttrib->c1High)
848 || (c2Val < fromAttrib->c2Low) || (c2Val > fromAttrib->c2High)
849 || (c3Val < fromAttrib->c3Low) || (c3Val > fromAttrib->c3High)) {
850
851 // Return black
852 // Will use representation of black from RGBA8888 graphic format
853 // and recursively convert it to the requested graphic format.
854 color = ColorFract(0.0, 0.0, 0.0);
855 hwcTestColorConvert(HAL_PIXEL_FORMAT_RGBA_8888, toFormat, color);
856 return;
857 }
858
859 // Within from format, convert from fraction of full range
860 // to fraction of valid range
861 color = ColorFract((c1Val - fromAttrib->c1Low)
862 / (fromAttrib->c1High - fromAttrib->c1Low),
863 (c2Val - fromAttrib->c2Low)
864 / (fromAttrib->c2High - fromAttrib->c2Low),
865 (c3Val - fromAttrib->c3Low)
866 / (fromAttrib->c3High - fromAttrib->c3Low));
867
868 // If needed perform RGB to YUV conversion
869 float wr = 0.2126, wg = 0.7152, wb = 0.0722; // ITU709 recommended constants
870 if (fromAttrib->rgb && toAttrib->yuv) {
871 float r = color.c1(), g = color.c2(), b = color.c3();
872 float y = wr * r + wg * g + wb * b;
873 float u = 0.5 * ((b - y) / (1.0 - wb)) + 0.5;
874 float v = 0.5 * ((r - y) / (1.0 - wr)) + 0.5;
875
876 // Produce black if color is outside the YUV gamut
877 if ((y < 0.0) || (y > 1.0)
878 || (u < 0.0) || (u > 1.0)
879 || (v < 0.0) || (v > 1.0)) {
880 y = 0.0;
881 u = v = 0.5;
882 }
883
884 color = ColorFract(y, u, v);
885 }
886
887 // If needed perform YUV to RGB conversion
888 // Equations determined from the ITU709 equations for RGB to YUV
889 // conversion, plus the following algebra:
890 //
891 // u = 0.5 * ((b - y) / (1.0 - wb)) + 0.5
892 // 0.5 * ((b - y) / (1.0 - wb)) = u - 0.5
893 // (b - y) / (1.0 - wb) = 2 * (u - 0.5)
894 // b - y = 2 * (u - 0.5) * (1.0 - wb)
895 // b = 2 * (u - 0.5) * (1.0 - wb) + y
896 //
897 // v = 0.5 * ((r -y) / (1.0 - wr)) + 0.5
898 // 0.5 * ((r - y) / (1.0 - wr)) = v - 0.5
899 // (r - y) / (1.0 - wr) = 2 * (v - 0.5)
900 // r - y = 2 * (v - 0.5) * (1.0 - wr)
901 // r = 2 * (v - 0.5) * (1.0 - wr) + y
902 //
903 // y = wr * r + wg * g + wb * b
904 // wr * r + wg * g + wb * b = y
905 // wg * g = y - wr * r - wb * b
906 // g = (y - wr * r - wb * b) / wg
907 if (fromAttrib->yuv && toAttrib->rgb) {
908 float y = color.c1(), u = color.c2(), v = color.c3();
909 float r = 2.0 * (v - 0.5) * (1.0 - wr) + y;
910 float b = 2.0 * (u - 0.5) * (1.0 - wb) + y;
911 float g = (y - wr * r - wb * b) / wg;
912
913 // Produce black if color is outside the RGB gamut
914 if ((r < 0.0) || (r > 1.0)
915 || (g < 0.0) || (g > 1.0)
916 || (b < 0.0) || (b > 1.0)) {
917 r = g = b = 0.0;
918 }
919
920 color = ColorFract(r, g, b);
921 }
922
923 // Within to format, convert from fraction of valid range
924 // to fraction of full range
925 c1Val = (toAttrib->c1Low
926 + (float) (toAttrib->c1High - toAttrib->c1Low) * color.c1());
927 c2Val = (toAttrib->c1Low
928 + (float) (toAttrib->c2High - toAttrib->c2Low) * color.c2());
929 c3Val = (toAttrib->c1Low
930 + (float) (toAttrib->c3High - toAttrib->c3Low) * color.c3());
931 color = ColorFract((float) (c1Val - toAttrib->c1Min)
932 / (float) (toAttrib->c1Max - toAttrib->c1Min),
933 (float) (c2Val - toAttrib->c2Min)
934 / (float) (toAttrib->c2Max - toAttrib->c2Min),
935 (float) (c3Val - toAttrib->c3Min)
936 / (float) (toAttrib->c3Max - toAttrib->c3Min));
937 }
938
939 // TODO: Use PrintGLString, CechckGlError, and PrintEGLConfiguration
940 // from libglTest
printGLString(const char * name,GLenum s)941 static void printGLString(const char *name, GLenum s)
942 {
943 const char *v = (const char *) glGetString(s);
944
945 if (v == NULL) {
946 testPrintI("GL %s unknown", name);
947 } else {
948 testPrintI("GL %s = %s", name, v);
949 }
950 }
951
checkEglError(const char * op,EGLBoolean returnVal)952 static void checkEglError(const char* op, EGLBoolean returnVal)
953 {
954 if (returnVal != EGL_TRUE) {
955 testPrintE("%s() returned %d", op, returnVal);
956 }
957
958 for (EGLint error = eglGetError(); error != EGL_SUCCESS; error
959 = eglGetError()) {
960 testPrintE("after %s() eglError %s (0x%x)",
961 op, EGLUtils::strerror(error), error);
962 }
963 }
964
printEGLConfiguration(EGLDisplay dpy,EGLConfig config)965 static void printEGLConfiguration(EGLDisplay dpy, EGLConfig config)
966 {
967
968 #define X(VAL) {VAL, #VAL}
969 struct {EGLint attribute; const char* name;} names[] = {
970 X(EGL_BUFFER_SIZE),
971 X(EGL_ALPHA_SIZE),
972 X(EGL_BLUE_SIZE),
973 X(EGL_GREEN_SIZE),
974 X(EGL_RED_SIZE),
975 X(EGL_DEPTH_SIZE),
976 X(EGL_STENCIL_SIZE),
977 X(EGL_CONFIG_CAVEAT),
978 X(EGL_CONFIG_ID),
979 X(EGL_LEVEL),
980 X(EGL_MAX_PBUFFER_HEIGHT),
981 X(EGL_MAX_PBUFFER_PIXELS),
982 X(EGL_MAX_PBUFFER_WIDTH),
983 X(EGL_NATIVE_RENDERABLE),
984 X(EGL_NATIVE_VISUAL_ID),
985 X(EGL_NATIVE_VISUAL_TYPE),
986 X(EGL_SAMPLES),
987 X(EGL_SAMPLE_BUFFERS),
988 X(EGL_SURFACE_TYPE),
989 X(EGL_TRANSPARENT_TYPE),
990 X(EGL_TRANSPARENT_RED_VALUE),
991 X(EGL_TRANSPARENT_GREEN_VALUE),
992 X(EGL_TRANSPARENT_BLUE_VALUE),
993 X(EGL_BIND_TO_TEXTURE_RGB),
994 X(EGL_BIND_TO_TEXTURE_RGBA),
995 X(EGL_MIN_SWAP_INTERVAL),
996 X(EGL_MAX_SWAP_INTERVAL),
997 X(EGL_LUMINANCE_SIZE),
998 X(EGL_ALPHA_MASK_SIZE),
999 X(EGL_COLOR_BUFFER_TYPE),
1000 X(EGL_RENDERABLE_TYPE),
1001 X(EGL_CONFORMANT),
1002 };
1003 #undef X
1004
1005 for (size_t j = 0; j < sizeof(names) / sizeof(names[0]); j++) {
1006 EGLint value = -1;
1007 EGLint returnVal = eglGetConfigAttrib(dpy, config, names[j].attribute,
1008 &value);
1009 EGLint error = eglGetError();
1010 if (returnVal && error == EGL_SUCCESS) {
1011 testPrintI(" %s: %d (%#x)", names[j].name, value, value);
1012 }
1013 }
1014 testPrintI("");
1015 }
1016