1 /*
2 * Copyright (C) 2018 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "neuralnetworks_hidl_hal_test"
18
19 #include "VtsHalNeuralnetworks.h"
20 #include <android-base/logging.h>
21 #include <hidl/ServiceManagement.h>
22 #include <string>
23 #include <utility>
24 #include "1.0/Utils.h"
25 #include "1.3/Callbacks.h"
26 #include "1.3/Utils.h"
27 #include "GeneratedTestHarness.h"
28 #include "TestHarness.h"
29 #include "Utils.h"
30
31 namespace android::hardware::neuralnetworks::V1_3::vts::functional {
32
33 using HidlToken =
34 hidl_array<uint8_t, static_cast<uint32_t>(V1_2::Constant::BYTE_SIZE_OF_CACHE_TOKEN)>;
35 using implementation::PreparedModelCallback;
36 using V1_1::ExecutionPreference;
37
38 // internal helper function
createPreparedModel(const sp<IDevice> & device,const Model & model,sp<IPreparedModel> * preparedModel,bool reportSkipping)39 void createPreparedModel(const sp<IDevice>& device, const Model& model,
40 sp<IPreparedModel>* preparedModel, bool reportSkipping) {
41 ASSERT_NE(nullptr, preparedModel);
42 *preparedModel = nullptr;
43
44 // see if service can handle model
45 bool fullySupportsModel = false;
46 const Return<void> supportedCall = device->getSupportedOperations_1_3(
47 model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
48 ASSERT_EQ(ErrorStatus::NONE, status);
49 ASSERT_NE(0ul, supported.size());
50 fullySupportsModel = std::all_of(supported.begin(), supported.end(),
51 [](bool valid) { return valid; });
52 });
53 ASSERT_TRUE(supportedCall.isOk());
54
55 // launch prepare model
56 const sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
57 const Return<ErrorStatus> prepareLaunchStatus = device->prepareModel_1_3(
58 model, ExecutionPreference::FAST_SINGLE_ANSWER, kDefaultPriority, {},
59 hidl_vec<hidl_handle>(), hidl_vec<hidl_handle>(), HidlToken(), preparedModelCallback);
60 ASSERT_TRUE(prepareLaunchStatus.isOk());
61 ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
62
63 // retrieve prepared model
64 preparedModelCallback->wait();
65 const ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
66 *preparedModel = getPreparedModel_1_3(preparedModelCallback);
67
68 // The getSupportedOperations_1_3 call returns a list of operations that are
69 // guaranteed not to fail if prepareModel_1_3 is called, and
70 // 'fullySupportsModel' is true i.f.f. the entire model is guaranteed.
71 // If a driver has any doubt that it can prepare an operation, it must
72 // return false. So here, if a driver isn't sure if it can support an
73 // operation, but reports that it successfully prepared the model, the test
74 // can continue.
75 if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
76 ASSERT_EQ(nullptr, preparedModel->get());
77 if (!reportSkipping) {
78 return;
79 }
80 LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot prepare "
81 "model that it does not support.";
82 std::cout << "[ ] Early termination of test because vendor service cannot "
83 "prepare model that it does not support."
84 << std::endl;
85 GTEST_SKIP();
86 }
87
88 ASSERT_EQ(ErrorStatus::NONE, prepareReturnStatus);
89 ASSERT_NE(nullptr, preparedModel->get());
90 }
91
SetUp()92 void NeuralnetworksHidlTest::SetUp() {
93 testing::TestWithParam<NeuralnetworksHidlTestParam>::SetUp();
94 ASSERT_NE(kDevice, nullptr);
95 }
96
makeNamedDevice(const std::string & name)97 static NamedDevice makeNamedDevice(const std::string& name) {
98 return {name, IDevice::getService(name)};
99 }
100
getNamedDevicesImpl()101 static std::vector<NamedDevice> getNamedDevicesImpl() {
102 // Retrieves the name of all service instances that implement IDevice,
103 // including any Lazy HAL instances.
104 const std::vector<std::string> names = hardware::getAllHalInstanceNames(IDevice::descriptor);
105
106 // Get a handle to each device and pair it with its name.
107 std::vector<NamedDevice> namedDevices;
108 namedDevices.reserve(names.size());
109 std::transform(names.begin(), names.end(), std::back_inserter(namedDevices), makeNamedDevice);
110 return namedDevices;
111 }
112
getNamedDevices()113 const std::vector<NamedDevice>& getNamedDevices() {
114 const static std::vector<NamedDevice> devices = getNamedDevicesImpl();
115 return devices;
116 }
117
printNeuralnetworksHidlTest(const testing::TestParamInfo<NeuralnetworksHidlTestParam> & info)118 std::string printNeuralnetworksHidlTest(
119 const testing::TestParamInfo<NeuralnetworksHidlTestParam>& info) {
120 return gtestCompliantName(getName(info.param));
121 }
122
123 INSTANTIATE_DEVICE_TEST(NeuralnetworksHidlTest);
124
125 // Forward declaration from ValidateModel.cpp
126 void validateModel(const sp<IDevice>& device, const Model& model);
127 // Forward declaration from ValidateRequest.cpp
128 void validateRequest(const sp<IPreparedModel>& preparedModel, const Request& request);
129 // Forward declaration from ValidateRequest.cpp
130 void validateRequestFailure(const sp<IPreparedModel>& preparedModel, const Request& request);
131 // Forward declaration from ValidateBurst.cpp
132 void validateBurst(const sp<IPreparedModel>& preparedModel, const V1_0::Request& request);
133
134 // Validate sync_fence handles for dispatch with valid input
validateExecuteFenced(const sp<IPreparedModel> & preparedModel,const Request & request)135 void validateExecuteFenced(const sp<IPreparedModel>& preparedModel, const Request& request) {
136 SCOPED_TRACE("Expecting request to fail [executeFenced]");
137 Return<void> ret_null = preparedModel->executeFenced(
138 request, {hidl_handle(nullptr)}, V1_2::MeasureTiming::NO, {}, {}, {},
139 [](ErrorStatus error, const hidl_handle& handle,
140 const sp<IFencedExecutionCallback>& callback) {
141 ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, error);
142 ASSERT_EQ(handle.getNativeHandle(), nullptr);
143 ASSERT_EQ(callback, nullptr);
144 });
145 ASSERT_TRUE(ret_null.isOk());
146 }
147
validateEverything(const sp<IDevice> & device,const Model & model,const Request & request)148 void validateEverything(const sp<IDevice>& device, const Model& model, const Request& request) {
149 validateModel(device, model);
150
151 // Create IPreparedModel.
152 sp<IPreparedModel> preparedModel;
153 createPreparedModel(device, model, &preparedModel);
154 if (preparedModel == nullptr) return;
155
156 validateRequest(preparedModel, request);
157 validateExecuteFenced(preparedModel, request);
158
159 // TODO(butlermichael): Check if we need to test burst in V1_3 if the interface remains V1_2.
160 ASSERT_TRUE(nn::compliantWithV1_0(request));
161 V1_0::Request request10 = nn::convertToV1_0(request);
162 validateBurst(preparedModel, request10);
163 }
164
validateFailure(const sp<IDevice> & device,const Model & model,const Request & request)165 void validateFailure(const sp<IDevice>& device, const Model& model, const Request& request) {
166 // TODO: Should this always succeed?
167 // What if the invalid input is part of the model (i.e., a parameter).
168 validateModel(device, model);
169
170 // Create IPreparedModel.
171 sp<IPreparedModel> preparedModel;
172 createPreparedModel(device, model, &preparedModel);
173 if (preparedModel == nullptr) return;
174
175 validateRequestFailure(preparedModel, request);
176 }
177
TEST_P(ValidationTest,Test)178 TEST_P(ValidationTest, Test) {
179 const Model model = createModel(kTestModel);
180 ExecutionContext context;
181 const Request request = nn::convertToV1_3(context.createRequest(kTestModel));
182 if (kTestModel.expectFailure) {
183 validateFailure(kDevice, model, request);
184 } else {
185 validateEverything(kDevice, model, request);
186 }
187 }
188
__anon0223bf380402(const std::string& testName) 189 INSTANTIATE_GENERATED_TEST(ValidationTest, [](const std::string& testName) {
190 // Skip validation for the "inputs_as_internal" and "all_tensors_as_inputs"
191 // generated tests.
192 return testName.find("inputs_as_internal") == std::string::npos &&
193 testName.find("all_tensors_as_inputs") == std::string::npos;
194 });
195
getPreparedModel_1_3(const sp<PreparedModelCallback> & callback)196 sp<IPreparedModel> getPreparedModel_1_3(const sp<PreparedModelCallback>& callback) {
197 sp<V1_0::IPreparedModel> preparedModelV1_0 = callback->getPreparedModel();
198 return IPreparedModel::castFrom(preparedModelV1_0).withDefault(nullptr);
199 }
200
toString(Executor executor)201 std::string toString(Executor executor) {
202 switch (executor) {
203 case Executor::ASYNC:
204 return "ASYNC";
205 case Executor::SYNC:
206 return "SYNC";
207 case Executor::BURST:
208 return "BURST";
209 case Executor::FENCED:
210 return "FENCED";
211 default:
212 CHECK(false);
213 }
214 }
215
216 } // namespace android::hardware::neuralnetworks::V1_3::vts::functional
217