1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "convert.h"
18
19 #include <android-base/logging.h>
20
21 namespace android {
22 namespace hardware {
23 namespace sensors {
24 namespace V1_0 {
25 namespace implementation {
26
convertFromSensor(const sensor_t & src,SensorInfo * dst)27 void convertFromSensor(const sensor_t &src, SensorInfo *dst) {
28 dst->name = src.name;
29 dst->vendor = src.vendor;
30 dst->version = src.version;
31 dst->sensorHandle = src.handle;
32 dst->type = (SensorType)src.type;
33 dst->maxRange = src.maxRange;
34 dst->resolution = src.resolution;
35 dst->power = src.power;
36 dst->minDelay = src.minDelay;
37 dst->fifoReservedEventCount = src.fifoReservedEventCount;
38 dst->fifoMaxEventCount = src.fifoMaxEventCount;
39 dst->typeAsString = src.stringType;
40 dst->requiredPermission = src.requiredPermission;
41 dst->maxDelay = src.maxDelay;
42 dst->flags = src.flags;
43 }
44
convertToSensor(const::android::hardware::sensors::V1_0::SensorInfo & src,sensor_t * dst)45 void convertToSensor(
46 const ::android::hardware::sensors::V1_0::SensorInfo &src,
47 sensor_t *dst) {
48 dst->name = strdup(src.name.c_str());
49 dst->vendor = strdup(src.vendor.c_str());
50 dst->version = src.version;
51 dst->handle = src.sensorHandle;
52 dst->type = (int)src.type;
53 dst->maxRange = src.maxRange;
54 dst->resolution = src.resolution;
55 dst->power = src.power;
56 dst->minDelay = src.minDelay;
57 dst->fifoReservedEventCount = src.fifoReservedEventCount;
58 dst->fifoMaxEventCount = src.fifoMaxEventCount;
59 dst->stringType = strdup(src.typeAsString.c_str());
60 dst->requiredPermission = strdup(src.requiredPermission.c_str());
61 dst->maxDelay = src.maxDelay;
62 dst->flags = src.flags;
63 dst->reserved[0] = dst->reserved[1] = 0;
64 }
65
convertFromSensorEvent(const sensors_event_t & src,Event * dst)66 void convertFromSensorEvent(const sensors_event_t &src, Event *dst) {
67 typedef ::android::hardware::sensors::V1_0::SensorType SensorType;
68 typedef ::android::hardware::sensors::V1_0::MetaDataEventType MetaDataEventType;
69
70 *dst = {
71 .timestamp = src.timestamp,
72 .sensorHandle = src.sensor,
73 .sensorType = (SensorType)src.type,
74 };
75
76 switch (dst->sensorType) {
77 case SensorType::META_DATA: {
78 dst->u.meta.what = (MetaDataEventType)src.meta_data.what;
79 // Legacy HALs contain the handle reference in the meta data field.
80 // Copy that over to the handle of the event. In legacy HALs this
81 // field was expected to be 0.
82 dst->sensorHandle = src.meta_data.sensor;
83 break;
84 }
85
86 case SensorType::ACCELEROMETER:
87 case SensorType::MAGNETIC_FIELD:
88 case SensorType::ORIENTATION:
89 case SensorType::GYROSCOPE:
90 case SensorType::GRAVITY:
91 case SensorType::LINEAR_ACCELERATION: {
92 dst->u.vec3.x = src.acceleration.x;
93 dst->u.vec3.y = src.acceleration.y;
94 dst->u.vec3.z = src.acceleration.z;
95 dst->u.vec3.status = (SensorStatus)src.acceleration.status;
96 break;
97 }
98
99 case SensorType::GAME_ROTATION_VECTOR: {
100 dst->u.vec4.x = src.data[0];
101 dst->u.vec4.y = src.data[1];
102 dst->u.vec4.z = src.data[2];
103 dst->u.vec4.w = src.data[3];
104 break;
105 }
106
107 case SensorType::ROTATION_VECTOR:
108 case SensorType::GEOMAGNETIC_ROTATION_VECTOR: {
109 dst->u.data[0] = src.data[0];
110 dst->u.data[1] = src.data[1];
111 dst->u.data[2] = src.data[2];
112 dst->u.data[3] = src.data[3];
113 dst->u.data[4] = src.data[4];
114 break;
115 }
116
117 case SensorType::MAGNETIC_FIELD_UNCALIBRATED:
118 case SensorType::GYROSCOPE_UNCALIBRATED:
119 case SensorType::ACCELEROMETER_UNCALIBRATED: {
120 dst->u.uncal.x = src.uncalibrated_gyro.x_uncalib;
121 dst->u.uncal.y = src.uncalibrated_gyro.y_uncalib;
122 dst->u.uncal.z = src.uncalibrated_gyro.z_uncalib;
123 dst->u.uncal.x_bias = src.uncalibrated_gyro.x_bias;
124 dst->u.uncal.y_bias = src.uncalibrated_gyro.y_bias;
125 dst->u.uncal.z_bias = src.uncalibrated_gyro.z_bias;
126 break;
127 }
128
129 case SensorType::DEVICE_ORIENTATION:
130 case SensorType::LIGHT:
131 case SensorType::PRESSURE:
132 case SensorType::TEMPERATURE:
133 case SensorType::PROXIMITY:
134 case SensorType::RELATIVE_HUMIDITY:
135 case SensorType::AMBIENT_TEMPERATURE:
136 case SensorType::SIGNIFICANT_MOTION:
137 case SensorType::STEP_DETECTOR:
138 case SensorType::TILT_DETECTOR:
139 case SensorType::WAKE_GESTURE:
140 case SensorType::GLANCE_GESTURE:
141 case SensorType::PICK_UP_GESTURE:
142 case SensorType::WRIST_TILT_GESTURE:
143 case SensorType::STATIONARY_DETECT:
144 case SensorType::MOTION_DETECT:
145 case SensorType::HEART_BEAT:
146 case SensorType::LOW_LATENCY_OFFBODY_DETECT: {
147 dst->u.scalar = src.data[0];
148 break;
149 }
150
151 case SensorType::STEP_COUNTER: {
152 dst->u.stepCount = src.u64.step_counter;
153 break;
154 }
155
156 case SensorType::HEART_RATE: {
157 dst->u.heartRate.bpm = src.heart_rate.bpm;
158 dst->u.heartRate.status = (SensorStatus)src.heart_rate.status;
159 break;
160 }
161
162 case SensorType::POSE_6DOF: { // 15 floats
163 for (size_t i = 0; i < 15; ++i) {
164 dst->u.pose6DOF[i] = src.data[i];
165 }
166 break;
167 }
168
169 case SensorType::DYNAMIC_SENSOR_META: {
170 dst->u.dynamic.connected = src.dynamic_sensor_meta.connected;
171 dst->u.dynamic.sensorHandle = src.dynamic_sensor_meta.handle;
172
173 memcpy(dst->u.dynamic.uuid.data(), src.dynamic_sensor_meta.uuid, 16);
174
175 break;
176 }
177
178 case SensorType::ADDITIONAL_INFO: {
179 ::android::hardware::sensors::V1_0::AdditionalInfo* dstInfo = &dst->u.additional;
180
181 const additional_info_event_t& srcInfo = src.additional_info;
182
183 dstInfo->type = (::android::hardware::sensors::V1_0::AdditionalInfoType)srcInfo.type;
184
185 dstInfo->serial = srcInfo.serial;
186
187 CHECK_EQ(sizeof(dstInfo->u), sizeof(srcInfo.data_int32));
188 memcpy(&dstInfo->u, srcInfo.data_int32, sizeof(srcInfo.data_int32));
189 break;
190 }
191
192 default: {
193 CHECK_GE((int32_t)dst->sensorType, (int32_t)SensorType::DEVICE_PRIVATE_BASE);
194
195 memcpy(dst->u.data.data(), src.data, 16 * sizeof(float));
196 break;
197 }
198 }
199 }
200
convertToSensorEvent(const Event & src,sensors_event_t * dst)201 void convertToSensorEvent(const Event &src, sensors_event_t *dst) {
202 *dst = {.version = sizeof(sensors_event_t),
203 .sensor = src.sensorHandle,
204 .type = (int32_t)src.sensorType,
205 .reserved0 = 0,
206 .timestamp = src.timestamp};
207
208 switch (src.sensorType) {
209 case SensorType::META_DATA: {
210 // Legacy HALs expect the handle reference in the meta data field.
211 // Copy it over from the handle of the event.
212 dst->meta_data.what = (int32_t)src.u.meta.what;
213 dst->meta_data.sensor = src.sensorHandle;
214 // Set the sensor handle to 0 to maintain compatibility.
215 dst->sensor = 0;
216 break;
217 }
218
219 case SensorType::ACCELEROMETER:
220 case SensorType::MAGNETIC_FIELD:
221 case SensorType::ORIENTATION:
222 case SensorType::GYROSCOPE:
223 case SensorType::GRAVITY:
224 case SensorType::LINEAR_ACCELERATION: {
225 dst->acceleration.x = src.u.vec3.x;
226 dst->acceleration.y = src.u.vec3.y;
227 dst->acceleration.z = src.u.vec3.z;
228 dst->acceleration.status = (int8_t)src.u.vec3.status;
229 break;
230 }
231
232 case SensorType::GAME_ROTATION_VECTOR: {
233 dst->data[0] = src.u.vec4.x;
234 dst->data[1] = src.u.vec4.y;
235 dst->data[2] = src.u.vec4.z;
236 dst->data[3] = src.u.vec4.w;
237 break;
238 }
239
240 case SensorType::ROTATION_VECTOR:
241 case SensorType::GEOMAGNETIC_ROTATION_VECTOR: {
242 dst->data[0] = src.u.data[0];
243 dst->data[1] = src.u.data[1];
244 dst->data[2] = src.u.data[2];
245 dst->data[3] = src.u.data[3];
246 dst->data[4] = src.u.data[4];
247 break;
248 }
249
250 case SensorType::MAGNETIC_FIELD_UNCALIBRATED:
251 case SensorType::GYROSCOPE_UNCALIBRATED:
252 case SensorType::ACCELEROMETER_UNCALIBRATED:
253 {
254 dst->uncalibrated_gyro.x_uncalib = src.u.uncal.x;
255 dst->uncalibrated_gyro.y_uncalib = src.u.uncal.y;
256 dst->uncalibrated_gyro.z_uncalib = src.u.uncal.z;
257 dst->uncalibrated_gyro.x_bias = src.u.uncal.x_bias;
258 dst->uncalibrated_gyro.y_bias = src.u.uncal.y_bias;
259 dst->uncalibrated_gyro.z_bias = src.u.uncal.z_bias;
260 break;
261 }
262
263 case SensorType::DEVICE_ORIENTATION:
264 case SensorType::LIGHT:
265 case SensorType::PRESSURE:
266 case SensorType::TEMPERATURE:
267 case SensorType::PROXIMITY:
268 case SensorType::RELATIVE_HUMIDITY:
269 case SensorType::AMBIENT_TEMPERATURE:
270 case SensorType::SIGNIFICANT_MOTION:
271 case SensorType::STEP_DETECTOR:
272 case SensorType::TILT_DETECTOR:
273 case SensorType::WAKE_GESTURE:
274 case SensorType::GLANCE_GESTURE:
275 case SensorType::PICK_UP_GESTURE:
276 case SensorType::WRIST_TILT_GESTURE:
277 case SensorType::STATIONARY_DETECT:
278 case SensorType::MOTION_DETECT:
279 case SensorType::HEART_BEAT:
280 case SensorType::LOW_LATENCY_OFFBODY_DETECT: {
281 dst->data[0] = src.u.scalar;
282 break;
283 }
284
285 case SensorType::STEP_COUNTER: {
286 dst->u64.step_counter = src.u.stepCount;
287 break;
288 }
289
290 case SensorType::HEART_RATE: {
291 dst->heart_rate.bpm = src.u.heartRate.bpm;
292 dst->heart_rate.status = (int8_t)src.u.heartRate.status;
293 break;
294 }
295
296 case SensorType::POSE_6DOF: { // 15 floats
297 for (size_t i = 0; i < 15; ++i) {
298 dst->data[i] = src.u.pose6DOF[i];
299 }
300 break;
301 }
302
303 case SensorType::DYNAMIC_SENSOR_META: {
304 dst->dynamic_sensor_meta.connected = src.u.dynamic.connected;
305 dst->dynamic_sensor_meta.handle = src.u.dynamic.sensorHandle;
306 dst->dynamic_sensor_meta.sensor = NULL; // to be filled in later
307
308 memcpy(dst->dynamic_sensor_meta.uuid,
309 src.u.dynamic.uuid.data(),
310 16);
311
312 break;
313 }
314
315 case SensorType::ADDITIONAL_INFO: {
316 const ::android::hardware::sensors::V1_0::AdditionalInfo &srcInfo =
317 src.u.additional;
318
319 additional_info_event_t *dstInfo = &dst->additional_info;
320 dstInfo->type = (int32_t)srcInfo.type;
321 dstInfo->serial = srcInfo.serial;
322
323 CHECK_EQ(sizeof(srcInfo.u), sizeof(dstInfo->data_int32));
324
325 memcpy(dstInfo->data_int32,
326 &srcInfo.u,
327 sizeof(dstInfo->data_int32));
328
329 break;
330 }
331
332 default: {
333 CHECK_GE((int32_t)src.sensorType,
334 (int32_t)SensorType::DEVICE_PRIVATE_BASE);
335
336 memcpy(dst->data, src.u.data.data(), 16 * sizeof(float));
337 break;
338 }
339 }
340 }
341
convertFromSharedMemInfo(const SharedMemInfo & memIn,sensors_direct_mem_t * memOut)342 bool convertFromSharedMemInfo(const SharedMemInfo& memIn, sensors_direct_mem_t *memOut) {
343 if (memOut == nullptr) {
344 return false;
345 }
346
347 switch(memIn.type) {
348 case SharedMemType::ASHMEM:
349 memOut->type = SENSOR_DIRECT_MEM_TYPE_ASHMEM;
350 break;
351 case SharedMemType::GRALLOC:
352 memOut->type = SENSOR_DIRECT_MEM_TYPE_GRALLOC;
353 break;
354 default:
355 return false;
356 }
357
358 switch(memIn.format) {
359 case SharedMemFormat::SENSORS_EVENT:
360 memOut->format = SENSOR_DIRECT_FMT_SENSORS_EVENT;
361 break;
362 default:
363 return false;
364 }
365
366 if (memIn.memoryHandle == nullptr) {
367 return false;
368 }
369
370 memOut->size = memIn.size;
371 memOut->handle = memIn.memoryHandle;
372 return true;
373 }
374
convertFromRateLevel(RateLevel rate)375 int convertFromRateLevel(RateLevel rate) {
376 switch(rate) {
377 case RateLevel::STOP:
378 return SENSOR_DIRECT_RATE_STOP;
379 case RateLevel::NORMAL:
380 return SENSOR_DIRECT_RATE_NORMAL;
381 case RateLevel::FAST:
382 return SENSOR_DIRECT_RATE_FAST;
383 case RateLevel::VERY_FAST:
384 return SENSOR_DIRECT_RATE_VERY_FAST;
385 default:
386 return -1;
387 }
388 }
389
390 } // namespace implementation
391 } // namespace V1_0
392 } // namespace sensors
393 } // namespace hardware
394 } // namespace android
395
396