1 /******************************************************************************
2 *
3 * Copyright 2014 Google, Inc.
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at:
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 *
17 ******************************************************************************/
18
19 #define LOG_TAG "bt_osi_thread"
20
21 #include "osi/include/thread.h"
22
23 #include <atomic>
24
25 #include <base/logging.h>
26 #include <errno.h>
27 #include <malloc.h>
28 #include <pthread.h>
29 #include <string.h>
30 #include <sys/prctl.h>
31 #include <sys/resource.h>
32 #include <sys/types.h>
33 #include <unistd.h>
34
35 #include "osi/include/allocator.h"
36 #include "osi/include/compat.h"
37 #include "osi/include/fixed_queue.h"
38 #include "osi/include/log.h"
39 #include "osi/include/reactor.h"
40 #include "osi/include/semaphore.h"
41
42 struct thread_t {
43 std::atomic_bool is_joined{false};
44 pthread_t pthread;
45 pid_t tid;
46 char name[THREAD_NAME_MAX + 1];
47 reactor_t* reactor;
48 fixed_queue_t* work_queue;
49 };
50
51 struct start_arg {
52 thread_t* thread;
53 semaphore_t* start_sem;
54 int error;
55 };
56
57 typedef struct {
58 thread_fn func;
59 void* context;
60 } work_item_t;
61
62 static void* run_thread(void* start_arg);
63 static void work_queue_read_cb(void* context);
64
65 static const size_t DEFAULT_WORK_QUEUE_CAPACITY = 128;
66
thread_new_sized(const char * name,size_t work_queue_capacity)67 thread_t* thread_new_sized(const char* name, size_t work_queue_capacity) {
68 CHECK(name != NULL);
69 CHECK(work_queue_capacity != 0);
70
71 thread_t* ret = static_cast<thread_t*>(osi_calloc(sizeof(thread_t)));
72
73 ret->reactor = reactor_new();
74 if (!ret->reactor) goto error;
75
76 ret->work_queue = fixed_queue_new(work_queue_capacity);
77 if (!ret->work_queue) goto error;
78
79 // Start is on the stack, but we use a semaphore, so it's safe
80 struct start_arg start;
81 start.start_sem = semaphore_new(0);
82 if (!start.start_sem) goto error;
83
84 strncpy(ret->name, name, THREAD_NAME_MAX);
85 start.thread = ret;
86 start.error = 0;
87 pthread_create(&ret->pthread, NULL, run_thread, &start);
88 semaphore_wait(start.start_sem);
89 semaphore_free(start.start_sem);
90
91 if (start.error) goto error;
92
93 return ret;
94
95 error:;
96 if (ret) {
97 fixed_queue_free(ret->work_queue, osi_free);
98 reactor_free(ret->reactor);
99 }
100 osi_free(ret);
101 return NULL;
102 }
103
thread_new(const char * name)104 thread_t* thread_new(const char* name) {
105 return thread_new_sized(name, DEFAULT_WORK_QUEUE_CAPACITY);
106 }
107
thread_free(thread_t * thread)108 void thread_free(thread_t* thread) {
109 if (!thread) return;
110
111 thread_stop(thread);
112 thread_join(thread);
113
114 fixed_queue_free(thread->work_queue, osi_free);
115 reactor_free(thread->reactor);
116 osi_free(thread);
117 }
118
thread_join(thread_t * thread)119 void thread_join(thread_t* thread) {
120 CHECK(thread != NULL);
121
122 if (!std::atomic_exchange(&thread->is_joined, true))
123 pthread_join(thread->pthread, NULL);
124 }
125
thread_post(thread_t * thread,thread_fn func,void * context)126 bool thread_post(thread_t* thread, thread_fn func, void* context) {
127 CHECK(thread != NULL);
128 CHECK(func != NULL);
129
130 // TODO(sharvil): if the current thread == |thread| and we've run out
131 // of queue space, we should abort this operation, otherwise we'll
132 // deadlock.
133
134 // Queue item is freed either when the queue itself is destroyed
135 // or when the item is removed from the queue for dispatch.
136 work_item_t* item = (work_item_t*)osi_malloc(sizeof(work_item_t));
137 item->func = func;
138 item->context = context;
139 fixed_queue_enqueue(thread->work_queue, item);
140 return true;
141 }
142
thread_stop(thread_t * thread)143 void thread_stop(thread_t* thread) {
144 CHECK(thread != NULL);
145 reactor_stop(thread->reactor);
146 }
147
thread_set_priority(thread_t * thread,int priority)148 bool thread_set_priority(thread_t* thread, int priority) {
149 if (!thread) return false;
150
151 const int rc = setpriority(PRIO_PROCESS, thread->tid, priority);
152 if (rc < 0) {
153 LOG_ERROR("%s unable to set thread priority %d for tid %d, error %d",
154 __func__, priority, thread->tid, rc);
155 return false;
156 }
157
158 return true;
159 }
160
thread_set_rt_priority(thread_t * thread,int priority)161 bool thread_set_rt_priority(thread_t* thread, int priority) {
162 if (!thread) return false;
163
164 struct sched_param rt_params;
165 rt_params.sched_priority = priority;
166
167 const int rc = sched_setscheduler(thread->tid, SCHED_FIFO, &rt_params);
168 if (rc != 0) {
169 LOG_ERROR("%s unable to set SCHED_FIFO priority %d for tid %d, error %s",
170 __func__, priority, thread->tid, strerror(errno));
171 return false;
172 }
173
174 return true;
175 }
176
thread_is_self(const thread_t * thread)177 bool thread_is_self(const thread_t* thread) {
178 CHECK(thread != NULL);
179 return !!pthread_equal(pthread_self(), thread->pthread);
180 }
181
thread_get_reactor(const thread_t * thread)182 reactor_t* thread_get_reactor(const thread_t* thread) {
183 CHECK(thread != NULL);
184 return thread->reactor;
185 }
186
thread_name(const thread_t * thread)187 const char* thread_name(const thread_t* thread) {
188 CHECK(thread != NULL);
189 return thread->name;
190 }
191
run_thread(void * start_arg)192 static void* run_thread(void* start_arg) {
193 CHECK(start_arg != NULL);
194
195 struct start_arg* start = static_cast<struct start_arg*>(start_arg);
196 thread_t* thread = start->thread;
197
198 CHECK(thread != NULL);
199
200 if (prctl(PR_SET_NAME, (unsigned long)thread->name) == -1) {
201 LOG_ERROR("%s unable to set thread name: %s", __func__, strerror(errno));
202 start->error = errno;
203 semaphore_post(start->start_sem);
204 return NULL;
205 }
206 thread->tid = gettid();
207
208 LOG_INFO("%s: thread id %d, thread name %s started", __func__, thread->tid,
209 thread->name);
210
211 semaphore_post(start->start_sem);
212
213 int fd = fixed_queue_get_dequeue_fd(thread->work_queue);
214 void* context = thread->work_queue;
215
216 reactor_object_t* work_queue_object =
217 reactor_register(thread->reactor, fd, context, work_queue_read_cb, NULL);
218 reactor_start(thread->reactor);
219 reactor_unregister(work_queue_object);
220
221 // Make sure we dispatch all queued work items before exiting the thread.
222 // This allows a caller to safely tear down by enqueuing a teardown
223 // work item and then joining the thread.
224 size_t count = 0;
225 work_item_t* item =
226 static_cast<work_item_t*>(fixed_queue_try_dequeue(thread->work_queue));
227 while (item && count <= fixed_queue_capacity(thread->work_queue)) {
228 item->func(item->context);
229 osi_free(item);
230 item =
231 static_cast<work_item_t*>(fixed_queue_try_dequeue(thread->work_queue));
232 ++count;
233 }
234
235 if (count > fixed_queue_capacity(thread->work_queue))
236 LOG_DEBUG("%s growing event queue on shutdown.", __func__);
237
238 LOG_WARN("%s: thread id %d, thread name %s exited", __func__, thread->tid,
239 thread->name);
240 return NULL;
241 }
242
work_queue_read_cb(void * context)243 static void work_queue_read_cb(void* context) {
244 CHECK(context != NULL);
245
246 fixed_queue_t* queue = (fixed_queue_t*)context;
247 work_item_t* item = static_cast<work_item_t*>(fixed_queue_dequeue(queue));
248 item->func(item->context);
249 osi_free(item);
250 }
251