1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17
18 // SOME COMMENTS ABOUT USAGE:
19
20 // This provides primarily wp<> weak pointer types and RefBase, which work
21 // together with sp<> from <StrongPointer.h>.
22
23 // sp<> (and wp<>) are a type of smart pointer that use a well defined protocol
24 // to operate. As long as the object they are templated with implements that
25 // protocol, these smart pointers work. In several places the platform
26 // instantiates sp<> with non-RefBase objects; the two are not tied to each
27 // other.
28
29 // RefBase is such an implementation and it supports strong pointers, weak
30 // pointers and some magic features for the binder.
31
32 // So, when using RefBase objects, you have the ability to use strong and weak
33 // pointers through sp<> and wp<>.
34
35 // Normally, when the last strong pointer goes away, the object is destroyed,
36 // i.e. it's destructor is called. HOWEVER, parts of its associated memory is not
37 // freed until the last weak pointer is released.
38
39 // Weak pointers are essentially "safe" pointers. They are always safe to
40 // access through promote(). They may return nullptr if the object was
41 // destroyed because it ran out of strong pointers. This makes them good candidates
42 // for keys in a cache for instance.
43
44 // Weak pointers remain valid for comparison purposes even after the underlying
45 // object has been destroyed. Even if object A is destroyed and its memory reused
46 // for B, A remaining weak pointer to A will not compare equal to one to B.
47 // This again makes them attractive for use as keys.
48
49 // How is this supposed / intended to be used?
50
51 // Our recommendation is to use strong references (sp<>) when there is an
52 // ownership relation. e.g. when an object "owns" another one, use a strong
53 // ref. And of course use strong refs as arguments of functions (it's extremely
54 // rare that a function will take a wp<>).
55
56 // Typically a newly allocated object will immediately be used to initialize
57 // a strong pointer, which may then be used to construct or assign to other
58 // strong and weak pointers.
59
60 // Use weak references when there are no ownership relation. e.g. the keys in a
61 // cache (you cannot use plain pointers because there is no safe way to acquire
62 // a strong reference from a vanilla pointer).
63
64 // This implies that two objects should never (or very rarely) have sp<> on
65 // each other, because they can't both own each other.
66
67
68 // Caveats with reference counting
69
70 // Obviously, circular strong references are a big problem; this creates leaks
71 // and it's hard to debug -- except it's in fact really easy because RefBase has
72 // tons of debugging code for that. It can basically tell you exactly where the
73 // leak is.
74
75 // Another problem has to do with destructors with side effects. You must
76 // assume that the destructor of reference counted objects can be called AT ANY
77 // TIME. For instance code as simple as this:
78
79 // void setStuff(const sp<Stuff>& stuff) {
80 // std::lock_guard<std::mutex> lock(mMutex);
81 // mStuff = stuff;
82 // }
83
84 // is very dangerous. This code WILL deadlock one day or another.
85
86 // What isn't obvious is that ~Stuff() can be called as a result of the
87 // assignment. And it gets called with the lock held. First of all, the lock is
88 // protecting mStuff, not ~Stuff(). Secondly, if ~Stuff() uses its own internal
89 // mutex, now you have mutex ordering issues. Even worse, if ~Stuff() is
90 // virtual, now you're calling into "user" code (potentially), by that, I mean,
91 // code you didn't even write.
92
93 // A correct way to write this code is something like:
94
95 // void setStuff(const sp<Stuff>& stuff) {
96 // std::unique_lock<std::mutex> lock(mMutex);
97 // sp<Stuff> hold = mStuff;
98 // mStuff = stuff;
99 // lock.unlock();
100 // }
101
102 // More importantly, reference counted objects should do as little work as
103 // possible in their destructor, or at least be mindful that their destructor
104 // could be called from very weird and unintended places.
105
106 // Other more specific restrictions for wp<> and sp<>:
107
108 // Do not construct a strong pointer to "this" in an object's constructor.
109 // The onFirstRef() callback would be made on an incompletely constructed
110 // object.
111 // Construction of a weak pointer to "this" in an object's constructor is also
112 // discouraged. But the implementation was recently changed so that, in the
113 // absence of extendObjectLifetime() calls, weak pointers no longer impact
114 // object lifetime, and hence this no longer risks premature deallocation,
115 // and hence usually works correctly.
116
117 // Such strong or weak pointers can be safely created in the RefBase onFirstRef()
118 // callback.
119
120 // Use of wp::unsafe_get() for any purpose other than debugging is almost
121 // always wrong. Unless you somehow know that there is a longer-lived sp<> to
122 // the same object, it may well return a pointer to a deallocated object that
123 // has since been reallocated for a different purpose. (And if you know there
124 // is a longer-lived sp<>, why not use an sp<> directly?) A wp<> should only be
125 // dereferenced by using promote().
126
127 // Any object inheriting from RefBase should always be destroyed as the result
128 // of a reference count decrement, not via any other means. Such objects
129 // should never be stack allocated, or appear directly as data members in other
130 // objects. Objects inheriting from RefBase should have their strong reference
131 // count incremented as soon as possible after construction. Usually this
132 // will be done via construction of an sp<> to the object, but may instead
133 // involve other means of calling RefBase::incStrong().
134 // Explicitly deleting or otherwise destroying a RefBase object with outstanding
135 // wp<> or sp<> pointers to it will result in an abort or heap corruption.
136
137 // It is particularly important not to mix sp<> and direct storage management
138 // since the sp from raw pointer constructor is implicit. Thus if a RefBase-
139 // -derived object of type T is managed without ever incrementing its strong
140 // count, and accidentally passed to f(sp<T>), a strong pointer to the object
141 // will be temporarily constructed and destroyed, prematurely deallocating the
142 // object, and resulting in heap corruption. None of this would be easily
143 // visible in the source.
144
145 // Extra Features:
146
147 // RefBase::extendObjectLifetime() can be used to prevent destruction of the
148 // object while there are still weak references. This is really special purpose
149 // functionality to support Binder.
150
151 // Wp::promote(), implemented via the attemptIncStrong() member function, is
152 // used to try to convert a weak pointer back to a strong pointer. It's the
153 // normal way to try to access the fields of an object referenced only through
154 // a wp<>. Binder code also sometimes uses attemptIncStrong() directly.
155
156 // RefBase provides a number of additional callbacks for certain reference count
157 // events, as well as some debugging facilities.
158
159 // Debugging support can be enabled by turning on DEBUG_REFS in RefBase.cpp.
160 // Otherwise little checking is provided.
161
162 // Thread safety:
163
164 // Like std::shared_ptr, sp<> and wp<> allow concurrent accesses to DIFFERENT
165 // sp<> and wp<> instances that happen to refer to the same underlying object.
166 // They do NOT support concurrent access (where at least one access is a write)
167 // to THE SAME sp<> or wp<>. In effect, their thread-safety properties are
168 // exactly like those of T*, NOT atomic<T*>.
169
170 #ifndef ANDROID_REF_BASE_H
171 #define ANDROID_REF_BASE_H
172
173 #include <atomic>
174 #include <functional>
175 #include <type_traits> // for common_type.
176
177 #include <stdint.h>
178 #include <sys/types.h>
179 #include <stdlib.h>
180 #include <string.h>
181
182 // LightRefBase used to be declared in this header, so we have to include it
183 #include <utils/LightRefBase.h>
184
185 #include <utils/StrongPointer.h>
186 #include <utils/TypeHelpers.h>
187
188 // ---------------------------------------------------------------------------
189 namespace android {
190
191 // ---------------------------------------------------------------------------
192
193 #define COMPARE_WEAK(_op_) \
194 template<typename U> \
195 inline bool operator _op_ (const U* o) const { \
196 return m_ptr _op_ o; \
197 } \
198 /* Needed to handle type inference for nullptr: */ \
199 inline bool operator _op_ (const T* o) const { \
200 return m_ptr _op_ o; \
201 }
202
203 template<template<typename C> class comparator, typename T, typename U>
_wp_compare_(T * a,U * b)204 static inline bool _wp_compare_(T* a, U* b) {
205 return comparator<typename std::common_type<T*, U*>::type>()(a, b);
206 }
207
208 // Use std::less and friends to avoid undefined behavior when ordering pointers
209 // to different objects.
210 #define COMPARE_WEAK_FUNCTIONAL(_op_, _compare_) \
211 template<typename U> \
212 inline bool operator _op_ (const U* o) const { \
213 return _wp_compare_<_compare_>(m_ptr, o); \
214 }
215
216 // ---------------------------------------------------------------------------
217
218 // RefererenceRenamer is pure abstract, there is no virtual method
219 // implementation to put in a translation unit in order to silence the
220 // weak vtables warning.
221 #if defined(__clang__)
222 #pragma clang diagnostic push
223 #pragma clang diagnostic ignored "-Wweak-vtables"
224 #endif
225
226 class ReferenceRenamer {
227 protected:
228 // destructor is purposely not virtual so we avoid code overhead from
229 // subclasses; we have to make it protected to guarantee that it
230 // cannot be called from this base class (and to make strict compilers
231 // happy).
~ReferenceRenamer()232 ~ReferenceRenamer() { }
233 public:
234 virtual void operator()(size_t i) const = 0;
235 };
236
237 #if defined(__clang__)
238 #pragma clang diagnostic pop
239 #endif
240
241 // ---------------------------------------------------------------------------
242
243 class RefBase
244 {
245 public:
246 void incStrong(const void* id) const;
247 void decStrong(const void* id) const;
248
249 void forceIncStrong(const void* id) const;
250
251 //! DEBUGGING ONLY: Get current strong ref count.
252 int32_t getStrongCount() const;
253
254 class weakref_type
255 {
256 public:
257 RefBase* refBase() const;
258
259 void incWeak(const void* id);
260 void decWeak(const void* id);
261
262 // acquires a strong reference if there is already one.
263 bool attemptIncStrong(const void* id);
264
265 // acquires a weak reference if there is already one.
266 // This is not always safe. see ProcessState.cpp and BpBinder.cpp
267 // for proper use.
268 bool attemptIncWeak(const void* id);
269
270 //! DEBUGGING ONLY: Get current weak ref count.
271 int32_t getWeakCount() const;
272
273 //! DEBUGGING ONLY: Print references held on object.
274 void printRefs() const;
275
276 //! DEBUGGING ONLY: Enable tracking for this object.
277 // enable -- enable/disable tracking
278 // retain -- when tracking is enable, if true, then we save a stack trace
279 // for each reference and dereference; when retain == false, we
280 // match up references and dereferences and keep only the
281 // outstanding ones.
282
283 void trackMe(bool enable, bool retain);
284 };
285
286 weakref_type* createWeak(const void* id) const;
287
288 weakref_type* getWeakRefs() const;
289
290 //! DEBUGGING ONLY: Print references held on object.
printRefs()291 inline void printRefs() const { getWeakRefs()->printRefs(); }
292
293 //! DEBUGGING ONLY: Enable tracking of object.
trackMe(bool enable,bool retain)294 inline void trackMe(bool enable, bool retain)
295 {
296 getWeakRefs()->trackMe(enable, retain);
297 }
298
299 protected:
300 // When constructing these objects, prefer using sp::make<>. Using a RefBase
301 // object on the stack or with other refcount mechanisms (e.g.
302 // std::shared_ptr) is inherently wrong. RefBase types have an implicit
303 // ownership model and cannot be safely used with other ownership models.
304
305 RefBase();
306 virtual ~RefBase();
307
308 //! Flags for extendObjectLifetime()
309 enum {
310 OBJECT_LIFETIME_STRONG = 0x0000,
311 OBJECT_LIFETIME_WEAK = 0x0001,
312 OBJECT_LIFETIME_MASK = 0x0001
313 };
314
315 void extendObjectLifetime(int32_t mode);
316
317 //! Flags for onIncStrongAttempted()
318 enum {
319 FIRST_INC_STRONG = 0x0001
320 };
321
322 // Invoked after creation of initial strong pointer/reference.
323 virtual void onFirstRef();
324 // Invoked when either the last strong reference goes away, or we need to undo
325 // the effect of an unnecessary onIncStrongAttempted.
326 virtual void onLastStrongRef(const void* id);
327 // Only called in OBJECT_LIFETIME_WEAK case. Returns true if OK to promote to
328 // strong reference. May have side effects if it returns true.
329 // The first flags argument is always FIRST_INC_STRONG.
330 // TODO: Remove initial flag argument.
331 virtual bool onIncStrongAttempted(uint32_t flags, const void* id);
332 // Invoked in the OBJECT_LIFETIME_WEAK case when the last reference of either
333 // kind goes away. Unused.
334 // TODO: Remove.
335 virtual void onLastWeakRef(const void* id);
336
337 private:
338 friend class weakref_type;
339 class weakref_impl;
340
341 RefBase(const RefBase& o);
342 RefBase& operator=(const RefBase& o);
343
344 private:
345 friend class ReferenceMover;
346
347 static void renameRefs(size_t n, const ReferenceRenamer& renamer);
348
349 static void renameRefId(weakref_type* ref,
350 const void* old_id, const void* new_id);
351
352 static void renameRefId(RefBase* ref,
353 const void* old_id, const void* new_id);
354
355 weakref_impl* const mRefs;
356 };
357
358 // ---------------------------------------------------------------------------
359
360 template <typename T>
361 class wp
362 {
363 public:
364 typedef typename RefBase::weakref_type weakref_type;
365
wp()366 inline wp() : m_ptr(nullptr), m_refs(nullptr) { }
367
368 wp(T* other); // NOLINT(implicit)
369 wp(const wp<T>& other);
370 explicit wp(const sp<T>& other);
371 template<typename U> wp(U* other); // NOLINT(implicit)
372 template<typename U> wp(const sp<U>& other); // NOLINT(implicit)
373 template<typename U> wp(const wp<U>& other); // NOLINT(implicit)
374
375 ~wp();
376
377 // Assignment
378
379 wp& operator = (T* other);
380 wp& operator = (const wp<T>& other);
381 wp& operator = (const sp<T>& other);
382
383 template<typename U> wp& operator = (U* other);
384 template<typename U> wp& operator = (const wp<U>& other);
385 template<typename U> wp& operator = (const sp<U>& other);
386
387 void set_object_and_refs(T* other, weakref_type* refs);
388
389 // promotion to sp
390
391 sp<T> promote() const;
392
393 // Reset
394
395 void clear();
396
397 // Accessors
398
get_refs()399 inline weakref_type* get_refs() const { return m_refs; }
400
unsafe_get()401 inline T* unsafe_get() const { return m_ptr; }
402
403 // Operators
404
405 COMPARE_WEAK(==)
406 COMPARE_WEAK(!=)
407 COMPARE_WEAK_FUNCTIONAL(>, std::greater)
408 COMPARE_WEAK_FUNCTIONAL(<, std::less)
409 COMPARE_WEAK_FUNCTIONAL(<=, std::less_equal)
410 COMPARE_WEAK_FUNCTIONAL(>=, std::greater_equal)
411
412 template<typename U>
413 inline bool operator == (const wp<U>& o) const {
414 return m_refs == o.m_refs; // Implies m_ptr == o.mptr; see invariants below.
415 }
416
417 template<typename U>
418 inline bool operator == (const sp<U>& o) const {
419 // Just comparing m_ptr fields is often dangerous, since wp<> may refer to an older
420 // object at the same address.
421 if (o == nullptr) {
422 return m_ptr == nullptr;
423 } else {
424 return m_refs == o->getWeakRefs(); // Implies m_ptr == o.mptr.
425 }
426 }
427
428 template<typename U>
429 inline bool operator != (const sp<U>& o) const {
430 return !(*this == o);
431 }
432
433 template<typename U>
434 inline bool operator > (const wp<U>& o) const {
435 if (m_ptr == o.m_ptr) {
436 return _wp_compare_<std::greater>(m_refs, o.m_refs);
437 } else {
438 return _wp_compare_<std::greater>(m_ptr, o.m_ptr);
439 }
440 }
441
442 template<typename U>
443 inline bool operator < (const wp<U>& o) const {
444 if (m_ptr == o.m_ptr) {
445 return _wp_compare_<std::less>(m_refs, o.m_refs);
446 } else {
447 return _wp_compare_<std::less>(m_ptr, o.m_ptr);
448 }
449 }
450 template<typename U> inline bool operator != (const wp<U>& o) const { return !operator == (o); }
451 template<typename U> inline bool operator <= (const wp<U>& o) const { return !operator > (o); }
452 template<typename U> inline bool operator >= (const wp<U>& o) const { return !operator < (o); }
453
454 private:
455 template<typename Y> friend class sp;
456 template<typename Y> friend class wp;
457
458 T* m_ptr;
459 weakref_type* m_refs;
460 };
461
462 #undef COMPARE_WEAK
463 #undef COMPARE_WEAK_FUNCTIONAL
464
465 // ---------------------------------------------------------------------------
466 // No user serviceable parts below here.
467
468 // Implementation invariants:
469 // Either
470 // 1) m_ptr and m_refs are both null, or
471 // 2) m_refs == m_ptr->mRefs, or
472 // 3) *m_ptr is no longer live, and m_refs points to the weakref_type object that corresponded
473 // to m_ptr while it was live. *m_refs remains live while a wp<> refers to it.
474 //
475 // The m_refs field in a RefBase object is allocated on construction, unique to that RefBase
476 // object, and never changes. Thus if two wp's have identical m_refs fields, they are either both
477 // null or point to the same object. If two wp's have identical m_ptr fields, they either both
478 // point to the same live object and thus have the same m_ref fields, or at least one of the
479 // objects is no longer live.
480 //
481 // Note that the above comparison operations go out of their way to provide an ordering consistent
482 // with ordinary pointer comparison; otherwise they could ignore m_ptr, and just compare m_refs.
483
484 template<typename T>
wp(T * other)485 wp<T>::wp(T* other)
486 : m_ptr(other)
487 {
488 m_refs = other ? m_refs = other->createWeak(this) : nullptr;
489 }
490
491 template<typename T>
wp(const wp<T> & other)492 wp<T>::wp(const wp<T>& other)
493 : m_ptr(other.m_ptr), m_refs(other.m_refs)
494 {
495 if (m_ptr) m_refs->incWeak(this);
496 }
497
498 template<typename T>
wp(const sp<T> & other)499 wp<T>::wp(const sp<T>& other)
500 : m_ptr(other.m_ptr)
501 {
502 m_refs = m_ptr ? m_ptr->createWeak(this) : nullptr;
503 }
504
505 template<typename T> template<typename U>
wp(U * other)506 wp<T>::wp(U* other)
507 : m_ptr(other)
508 {
509 m_refs = other ? other->createWeak(this) : nullptr;
510 }
511
512 template<typename T> template<typename U>
wp(const wp<U> & other)513 wp<T>::wp(const wp<U>& other)
514 : m_ptr(other.m_ptr)
515 {
516 if (m_ptr) {
517 m_refs = other.m_refs;
518 m_refs->incWeak(this);
519 } else {
520 m_refs = nullptr;
521 }
522 }
523
524 template<typename T> template<typename U>
wp(const sp<U> & other)525 wp<T>::wp(const sp<U>& other)
526 : m_ptr(other.m_ptr)
527 {
528 m_refs = m_ptr ? m_ptr->createWeak(this) : nullptr;
529 }
530
531 template<typename T>
~wp()532 wp<T>::~wp()
533 {
534 if (m_ptr) m_refs->decWeak(this);
535 }
536
537 template<typename T>
538 wp<T>& wp<T>::operator = (T* other)
539 {
540 weakref_type* newRefs =
541 other ? other->createWeak(this) : nullptr;
542 if (m_ptr) m_refs->decWeak(this);
543 m_ptr = other;
544 m_refs = newRefs;
545 return *this;
546 }
547
548 template<typename T>
549 wp<T>& wp<T>::operator = (const wp<T>& other)
550 {
551 weakref_type* otherRefs(other.m_refs);
552 T* otherPtr(other.m_ptr);
553 if (otherPtr) otherRefs->incWeak(this);
554 if (m_ptr) m_refs->decWeak(this);
555 m_ptr = otherPtr;
556 m_refs = otherRefs;
557 return *this;
558 }
559
560 template<typename T>
561 wp<T>& wp<T>::operator = (const sp<T>& other)
562 {
563 weakref_type* newRefs =
564 other != nullptr ? other->createWeak(this) : nullptr;
565 T* otherPtr(other.m_ptr);
566 if (m_ptr) m_refs->decWeak(this);
567 m_ptr = otherPtr;
568 m_refs = newRefs;
569 return *this;
570 }
571
572 template<typename T> template<typename U>
573 wp<T>& wp<T>::operator = (U* other)
574 {
575 weakref_type* newRefs =
576 other ? other->createWeak(this) : 0;
577 if (m_ptr) m_refs->decWeak(this);
578 m_ptr = other;
579 m_refs = newRefs;
580 return *this;
581 }
582
583 template<typename T> template<typename U>
584 wp<T>& wp<T>::operator = (const wp<U>& other)
585 {
586 weakref_type* otherRefs(other.m_refs);
587 U* otherPtr(other.m_ptr);
588 if (otherPtr) otherRefs->incWeak(this);
589 if (m_ptr) m_refs->decWeak(this);
590 m_ptr = otherPtr;
591 m_refs = otherRefs;
592 return *this;
593 }
594
595 template<typename T> template<typename U>
596 wp<T>& wp<T>::operator = (const sp<U>& other)
597 {
598 weakref_type* newRefs =
599 other != nullptr ? other->createWeak(this) : 0;
600 U* otherPtr(other.m_ptr);
601 if (m_ptr) m_refs->decWeak(this);
602 m_ptr = otherPtr;
603 m_refs = newRefs;
604 return *this;
605 }
606
607 template<typename T>
set_object_and_refs(T * other,weakref_type * refs)608 void wp<T>::set_object_and_refs(T* other, weakref_type* refs)
609 {
610 if (other) refs->incWeak(this);
611 if (m_ptr) m_refs->decWeak(this);
612 m_ptr = other;
613 m_refs = refs;
614 }
615
616 template<typename T>
promote()617 sp<T> wp<T>::promote() const
618 {
619 sp<T> result;
620 if (m_ptr && m_refs->attemptIncStrong(&result)) {
621 result.set_pointer(m_ptr);
622 }
623 return result;
624 }
625
626 template<typename T>
clear()627 void wp<T>::clear()
628 {
629 if (m_ptr) {
630 m_refs->decWeak(this);
631 m_refs = 0;
632 m_ptr = 0;
633 }
634 }
635
636 // ---------------------------------------------------------------------------
637
638 // this class just serves as a namespace so TYPE::moveReferences can stay
639 // private.
640 class ReferenceMover {
641 public:
642 // it would be nice if we could make sure no extra code is generated
643 // for sp<TYPE> or wp<TYPE> when TYPE is a descendant of RefBase:
644 // Using a sp<RefBase> override doesn't work; it's a bit like we wanted
645 // a template<typename TYPE inherits RefBase> template...
646
647 template<typename TYPE> static inline
move_references(sp<TYPE> * dest,sp<TYPE> const * src,size_t n)648 void move_references(sp<TYPE>* dest, sp<TYPE> const* src, size_t n) {
649
650 class Renamer : public ReferenceRenamer {
651 sp<TYPE>* d_;
652 sp<TYPE> const* s_;
653 virtual void operator()(size_t i) const {
654 // The id are known to be the sp<>'s this pointer
655 TYPE::renameRefId(d_[i].get(), &s_[i], &d_[i]);
656 }
657 public:
658 Renamer(sp<TYPE>* d, sp<TYPE> const* s) : d_(d), s_(s) { }
659 virtual ~Renamer() { }
660 };
661
662 memmove(dest, src, n*sizeof(sp<TYPE>));
663 TYPE::renameRefs(n, Renamer(dest, src));
664 }
665
666
667 template<typename TYPE> static inline
move_references(wp<TYPE> * dest,wp<TYPE> const * src,size_t n)668 void move_references(wp<TYPE>* dest, wp<TYPE> const* src, size_t n) {
669
670 class Renamer : public ReferenceRenamer {
671 wp<TYPE>* d_;
672 wp<TYPE> const* s_;
673 virtual void operator()(size_t i) const {
674 // The id are known to be the wp<>'s this pointer
675 TYPE::renameRefId(d_[i].get_refs(), &s_[i], &d_[i]);
676 }
677 public:
678 Renamer(wp<TYPE>* rd, wp<TYPE> const* rs) : d_(rd), s_(rs) { }
679 virtual ~Renamer() { }
680 };
681
682 memmove(dest, src, n*sizeof(wp<TYPE>));
683 TYPE::renameRefs(n, Renamer(dest, src));
684 }
685 };
686
687 // specialization for moving sp<> and wp<> types.
688 // these are used by the [Sorted|Keyed]Vector<> implementations
689 // sp<> and wp<> need to be handled specially, because they do not
690 // have trivial copy operation in the general case (see RefBase.cpp
691 // when DEBUG ops are enabled), but can be implemented very
692 // efficiently in most cases.
693
694 template<typename TYPE> inline
move_forward_type(sp<TYPE> * d,sp<TYPE> const * s,size_t n)695 void move_forward_type(sp<TYPE>* d, sp<TYPE> const* s, size_t n) {
696 ReferenceMover::move_references(d, s, n);
697 }
698
699 template<typename TYPE> inline
move_backward_type(sp<TYPE> * d,sp<TYPE> const * s,size_t n)700 void move_backward_type(sp<TYPE>* d, sp<TYPE> const* s, size_t n) {
701 ReferenceMover::move_references(d, s, n);
702 }
703
704 template<typename TYPE> inline
move_forward_type(wp<TYPE> * d,wp<TYPE> const * s,size_t n)705 void move_forward_type(wp<TYPE>* d, wp<TYPE> const* s, size_t n) {
706 ReferenceMover::move_references(d, s, n);
707 }
708
709 template<typename TYPE> inline
move_backward_type(wp<TYPE> * d,wp<TYPE> const * s,size_t n)710 void move_backward_type(wp<TYPE>* d, wp<TYPE> const* s, size_t n) {
711 ReferenceMover::move_references(d, s, n);
712 }
713
714 } // namespace android
715
716 // ---------------------------------------------------------------------------
717
718 #endif // ANDROID_REF_BASE_H
719