1 /*
2 * Copyright (C) 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "HalProxy.h"
18
19 #include "SubHal.h"
20
21 #include <android/hardware/sensors/2.0/types.h>
22
23 #include <android-base/file.h>
24 #include "hardware_legacy/power.h"
25
26 #include <dlfcn.h>
27
28 #include <cinttypes>
29 #include <cmath>
30 #include <fstream>
31 #include <functional>
32 #include <thread>
33
34 namespace android {
35 namespace hardware {
36 namespace sensors {
37 namespace V2_0 {
38 namespace implementation {
39
40 using ::android::hardware::sensors::V2_0::EventQueueFlagBits;
41 using ::android::hardware::sensors::V2_0::WakeLockQueueFlagBits;
42 using ::android::hardware::sensors::V2_0::implementation::getTimeNow;
43 using ::android::hardware::sensors::V2_0::implementation::kWakelockTimeoutNs;
44
45 typedef ISensorsSubHal*(SensorsHalGetSubHalFunc)(uint32_t*);
46
47 static constexpr int32_t kBitsAfterSubHalIndex = 24;
48
49 /**
50 * Set the subhal index as first byte of sensor handle and return this modified version.
51 *
52 * @param sensorHandle The sensor handle to modify.
53 * @param subHalIndex The index in the hal proxy of the sub hal this sensor belongs to.
54 *
55 * @return The modified sensor handle.
56 */
setSubHalIndex(int32_t sensorHandle,size_t subHalIndex)57 int32_t setSubHalIndex(int32_t sensorHandle, size_t subHalIndex) {
58 return sensorHandle | (static_cast<int32_t>(subHalIndex) << kBitsAfterSubHalIndex);
59 }
60
61 /**
62 * Extract the subHalIndex from sensorHandle.
63 *
64 * @param sensorHandle The sensorHandle to extract from.
65 *
66 * @return The subhal index.
67 */
extractSubHalIndex(int32_t sensorHandle)68 size_t extractSubHalIndex(int32_t sensorHandle) {
69 return static_cast<size_t>(sensorHandle >> kBitsAfterSubHalIndex);
70 }
71
72 /**
73 * Convert nanoseconds to milliseconds.
74 *
75 * @param nanos The nanoseconds input.
76 *
77 * @return The milliseconds count.
78 */
msFromNs(int64_t nanos)79 int64_t msFromNs(int64_t nanos) {
80 constexpr int64_t nanosecondsInAMillsecond = 1000000;
81 return nanos / nanosecondsInAMillsecond;
82 }
83
HalProxy()84 HalProxy::HalProxy() {
85 const char* kMultiHalConfigFile = "/vendor/etc/sensors/hals.conf";
86 initializeSubHalListFromConfigFile(kMultiHalConfigFile);
87 init();
88 }
89
HalProxy(std::vector<ISensorsSubHal * > & subHalList)90 HalProxy::HalProxy(std::vector<ISensorsSubHal*>& subHalList) : mSubHalList(subHalList) {
91 init();
92 }
93
~HalProxy()94 HalProxy::~HalProxy() {
95 stopThreads();
96 }
97
getSensorsList(getSensorsList_cb _hidl_cb)98 Return<void> HalProxy::getSensorsList(getSensorsList_cb _hidl_cb) {
99 std::vector<SensorInfo> sensors;
100 for (const auto& iter : mSensors) {
101 sensors.push_back(iter.second);
102 }
103 _hidl_cb(sensors);
104 return Void();
105 }
106
setOperationMode(OperationMode mode)107 Return<Result> HalProxy::setOperationMode(OperationMode mode) {
108 Result result = Result::OK;
109 size_t subHalIndex;
110 for (subHalIndex = 0; subHalIndex < mSubHalList.size(); subHalIndex++) {
111 ISensorsSubHal* subHal = mSubHalList[subHalIndex];
112 result = subHal->setOperationMode(mode);
113 if (result != Result::OK) {
114 ALOGE("setOperationMode failed for SubHal: %s", subHal->getName().c_str());
115 break;
116 }
117 }
118 if (result != Result::OK) {
119 // Reset the subhal operation modes that have been flipped
120 for (size_t i = 0; i < subHalIndex; i++) {
121 ISensorsSubHal* subHal = mSubHalList[i];
122 subHal->setOperationMode(mCurrentOperationMode);
123 }
124 } else {
125 mCurrentOperationMode = mode;
126 }
127 return result;
128 }
129
activate(int32_t sensorHandle,bool enabled)130 Return<Result> HalProxy::activate(int32_t sensorHandle, bool enabled) {
131 if (!isSubHalIndexValid(sensorHandle)) {
132 return Result::BAD_VALUE;
133 }
134 return getSubHalForSensorHandle(sensorHandle)
135 ->activate(clearSubHalIndex(sensorHandle), enabled);
136 }
137
initialize(const::android::hardware::MQDescriptorSync<Event> & eventQueueDescriptor,const::android::hardware::MQDescriptorSync<uint32_t> & wakeLockDescriptor,const sp<ISensorsCallback> & sensorsCallback)138 Return<Result> HalProxy::initialize(
139 const ::android::hardware::MQDescriptorSync<Event>& eventQueueDescriptor,
140 const ::android::hardware::MQDescriptorSync<uint32_t>& wakeLockDescriptor,
141 const sp<ISensorsCallback>& sensorsCallback) {
142 Result result = Result::OK;
143
144 stopThreads();
145 resetSharedWakelock();
146
147 // So that the pending write events queue can be cleared safely and when we start threads
148 // again we do not get new events until after initialize resets the subhals.
149 disableAllSensors();
150
151 // Clears the queue if any events were pending write before.
152 mPendingWriteEventsQueue = std::queue<std::pair<std::vector<Event>, size_t>>();
153 mSizePendingWriteEventsQueue = 0;
154
155 // Clears previously connected dynamic sensors
156 mDynamicSensors.clear();
157
158 mDynamicSensorsCallback = sensorsCallback;
159
160 // Create the Event FMQ from the eventQueueDescriptor. Reset the read/write positions.
161 mEventQueue =
162 std::make_unique<EventMessageQueue>(eventQueueDescriptor, true /* resetPointers */);
163
164 // Create the Wake Lock FMQ that is used by the framework to communicate whenever WAKE_UP
165 // events have been successfully read and handled by the framework.
166 mWakeLockQueue =
167 std::make_unique<WakeLockMessageQueue>(wakeLockDescriptor, true /* resetPointers */);
168
169 if (mEventQueueFlag != nullptr) {
170 EventFlag::deleteEventFlag(&mEventQueueFlag);
171 }
172 if (mWakelockQueueFlag != nullptr) {
173 EventFlag::deleteEventFlag(&mWakelockQueueFlag);
174 }
175 if (EventFlag::createEventFlag(mEventQueue->getEventFlagWord(), &mEventQueueFlag) != OK) {
176 result = Result::BAD_VALUE;
177 }
178 if (EventFlag::createEventFlag(mWakeLockQueue->getEventFlagWord(), &mWakelockQueueFlag) != OK) {
179 result = Result::BAD_VALUE;
180 }
181 if (!mDynamicSensorsCallback || !mEventQueue || !mWakeLockQueue || mEventQueueFlag == nullptr) {
182 result = Result::BAD_VALUE;
183 }
184
185 mThreadsRun.store(true);
186
187 mPendingWritesThread = std::thread(startPendingWritesThread, this);
188 mWakelockThread = std::thread(startWakelockThread, this);
189
190 for (size_t i = 0; i < mSubHalList.size(); i++) {
191 auto subHal = mSubHalList[i];
192 const auto& subHalCallback = mSubHalCallbacks[i];
193 Result currRes = subHal->initialize(subHalCallback);
194 if (currRes != Result::OK) {
195 result = currRes;
196 ALOGE("Subhal '%s' failed to initialize.", subHal->getName().c_str());
197 break;
198 }
199 }
200
201 mCurrentOperationMode = OperationMode::NORMAL;
202
203 return result;
204 }
205
batch(int32_t sensorHandle,int64_t samplingPeriodNs,int64_t maxReportLatencyNs)206 Return<Result> HalProxy::batch(int32_t sensorHandle, int64_t samplingPeriodNs,
207 int64_t maxReportLatencyNs) {
208 if (!isSubHalIndexValid(sensorHandle)) {
209 return Result::BAD_VALUE;
210 }
211 return getSubHalForSensorHandle(sensorHandle)
212 ->batch(clearSubHalIndex(sensorHandle), samplingPeriodNs, maxReportLatencyNs);
213 }
214
flush(int32_t sensorHandle)215 Return<Result> HalProxy::flush(int32_t sensorHandle) {
216 if (!isSubHalIndexValid(sensorHandle)) {
217 return Result::BAD_VALUE;
218 }
219 return getSubHalForSensorHandle(sensorHandle)->flush(clearSubHalIndex(sensorHandle));
220 }
221
injectSensorData(const Event & event)222 Return<Result> HalProxy::injectSensorData(const Event& event) {
223 Result result = Result::OK;
224 if (mCurrentOperationMode == OperationMode::NORMAL &&
225 event.sensorType != V1_0::SensorType::ADDITIONAL_INFO) {
226 ALOGE("An event with type != ADDITIONAL_INFO passed to injectSensorData while operation"
227 " mode was NORMAL.");
228 result = Result::BAD_VALUE;
229 }
230 if (result == Result::OK) {
231 Event subHalEvent = event;
232 if (!isSubHalIndexValid(event.sensorHandle)) {
233 return Result::BAD_VALUE;
234 }
235 subHalEvent.sensorHandle = clearSubHalIndex(event.sensorHandle);
236 result = getSubHalForSensorHandle(event.sensorHandle)->injectSensorData(subHalEvent);
237 }
238 return result;
239 }
240
registerDirectChannel(const SharedMemInfo & mem,registerDirectChannel_cb _hidl_cb)241 Return<void> HalProxy::registerDirectChannel(const SharedMemInfo& mem,
242 registerDirectChannel_cb _hidl_cb) {
243 if (mDirectChannelSubHal == nullptr) {
244 _hidl_cb(Result::INVALID_OPERATION, -1 /* channelHandle */);
245 } else {
246 mDirectChannelSubHal->registerDirectChannel(mem, _hidl_cb);
247 }
248 return Return<void>();
249 }
250
unregisterDirectChannel(int32_t channelHandle)251 Return<Result> HalProxy::unregisterDirectChannel(int32_t channelHandle) {
252 Result result;
253 if (mDirectChannelSubHal == nullptr) {
254 result = Result::INVALID_OPERATION;
255 } else {
256 result = mDirectChannelSubHal->unregisterDirectChannel(channelHandle);
257 }
258 return result;
259 }
260
configDirectReport(int32_t sensorHandle,int32_t channelHandle,RateLevel rate,configDirectReport_cb _hidl_cb)261 Return<void> HalProxy::configDirectReport(int32_t sensorHandle, int32_t channelHandle,
262 RateLevel rate, configDirectReport_cb _hidl_cb) {
263 if (mDirectChannelSubHal == nullptr) {
264 _hidl_cb(Result::INVALID_OPERATION, -1 /* reportToken */);
265 } else {
266 mDirectChannelSubHal->configDirectReport(clearSubHalIndex(sensorHandle), channelHandle,
267 rate, _hidl_cb);
268 }
269 return Return<void>();
270 }
271
debug(const hidl_handle & fd,const hidl_vec<hidl_string> &)272 Return<void> HalProxy::debug(const hidl_handle& fd, const hidl_vec<hidl_string>& /*args*/) {
273 if (fd.getNativeHandle() == nullptr || fd->numFds < 1) {
274 ALOGE("%s: missing fd for writing", __FUNCTION__);
275 return Void();
276 }
277
278 android::base::borrowed_fd writeFd = dup(fd->data[0]);
279
280 std::ostringstream stream;
281 stream << "===HalProxy===" << std::endl;
282 stream << "Internal values:" << std::endl;
283 stream << " Threads are running: " << (mThreadsRun.load() ? "true" : "false") << std::endl;
284 int64_t now = getTimeNow();
285 stream << " Wakelock timeout start time: " << msFromNs(now - mWakelockTimeoutStartTime)
286 << " ms ago" << std::endl;
287 stream << " Wakelock timeout reset time: " << msFromNs(now - mWakelockTimeoutResetTime)
288 << " ms ago" << std::endl;
289 // TODO(b/142969448): Add logging for history of wakelock acquisition per subhal.
290 stream << " Wakelock ref count: " << mWakelockRefCount << std::endl;
291 stream << " # of events on pending write writes queue: " << mSizePendingWriteEventsQueue
292 << std::endl;
293 stream << " Most events seen on pending write events queue: "
294 << mMostEventsObservedPendingWriteEventsQueue << std::endl;
295 if (!mPendingWriteEventsQueue.empty()) {
296 stream << " Size of events list on front of pending writes queue: "
297 << mPendingWriteEventsQueue.front().first.size() << std::endl;
298 }
299 stream << " # of non-dynamic sensors across all subhals: " << mSensors.size() << std::endl;
300 stream << " # of dynamic sensors across all subhals: " << mDynamicSensors.size() << std::endl;
301 stream << "SubHals (" << mSubHalList.size() << "):" << std::endl;
302 for (ISensorsSubHal* subHal : mSubHalList) {
303 stream << " Name: " << subHal->getName() << std::endl;
304 stream << " Debug dump: " << std::endl;
305 android::base::WriteStringToFd(stream.str(), writeFd);
306 subHal->debug(fd, {});
307 stream.str("");
308 stream << std::endl;
309 }
310 android::base::WriteStringToFd(stream.str(), writeFd);
311 return Return<void>();
312 }
313
onDynamicSensorsConnected(const hidl_vec<SensorInfo> & dynamicSensorsAdded,int32_t subHalIndex)314 Return<void> HalProxy::onDynamicSensorsConnected(const hidl_vec<SensorInfo>& dynamicSensorsAdded,
315 int32_t subHalIndex) {
316 std::vector<SensorInfo> sensors;
317 {
318 std::lock_guard<std::mutex> lock(mDynamicSensorsMutex);
319 for (SensorInfo sensor : dynamicSensorsAdded) {
320 if (!subHalIndexIsClear(sensor.sensorHandle)) {
321 ALOGE("Dynamic sensor added %s had sensorHandle with first byte not 0.",
322 sensor.name.c_str());
323 } else {
324 sensor.sensorHandle = setSubHalIndex(sensor.sensorHandle, subHalIndex);
325 mDynamicSensors[sensor.sensorHandle] = sensor;
326 sensors.push_back(sensor);
327 }
328 }
329 }
330 mDynamicSensorsCallback->onDynamicSensorsConnected(sensors);
331 return Return<void>();
332 }
333
onDynamicSensorsDisconnected(const hidl_vec<int32_t> & dynamicSensorHandlesRemoved,int32_t subHalIndex)334 Return<void> HalProxy::onDynamicSensorsDisconnected(
335 const hidl_vec<int32_t>& dynamicSensorHandlesRemoved, int32_t subHalIndex) {
336 // TODO(b/143302327): Block this call until all pending events are flushed from queue
337 std::vector<int32_t> sensorHandles;
338 {
339 std::lock_guard<std::mutex> lock(mDynamicSensorsMutex);
340 for (int32_t sensorHandle : dynamicSensorHandlesRemoved) {
341 if (!subHalIndexIsClear(sensorHandle)) {
342 ALOGE("Dynamic sensorHandle removed had first byte not 0.");
343 } else {
344 sensorHandle = setSubHalIndex(sensorHandle, subHalIndex);
345 if (mDynamicSensors.find(sensorHandle) != mDynamicSensors.end()) {
346 mDynamicSensors.erase(sensorHandle);
347 sensorHandles.push_back(sensorHandle);
348 }
349 }
350 }
351 }
352 mDynamicSensorsCallback->onDynamicSensorsDisconnected(sensorHandles);
353 return Return<void>();
354 }
355
initializeSubHalListFromConfigFile(const char * configFileName)356 void HalProxy::initializeSubHalListFromConfigFile(const char* configFileName) {
357 std::ifstream subHalConfigStream(configFileName);
358 if (!subHalConfigStream) {
359 ALOGE("Failed to load subHal config file: %s", configFileName);
360 } else {
361 std::string subHalLibraryFile;
362 while (subHalConfigStream >> subHalLibraryFile) {
363 void* handle = getHandleForSubHalSharedObject(subHalLibraryFile);
364 if (handle == nullptr) {
365 ALOGE("dlopen failed for library: %s", subHalLibraryFile.c_str());
366 } else {
367 SensorsHalGetSubHalFunc* sensorsHalGetSubHalPtr =
368 (SensorsHalGetSubHalFunc*)dlsym(handle, "sensorsHalGetSubHal");
369 if (sensorsHalGetSubHalPtr == nullptr) {
370 ALOGE("Failed to locate sensorsHalGetSubHal function for library: %s",
371 subHalLibraryFile.c_str());
372 } else {
373 std::function<SensorsHalGetSubHalFunc> sensorsHalGetSubHal =
374 *sensorsHalGetSubHalPtr;
375 uint32_t version;
376 ISensorsSubHal* subHal = sensorsHalGetSubHal(&version);
377 if (version != SUB_HAL_2_0_VERSION) {
378 ALOGE("SubHal version was not 2.0 for library: %s",
379 subHalLibraryFile.c_str());
380 } else {
381 ALOGV("Loaded SubHal from library: %s", subHalLibraryFile.c_str());
382 mSubHalList.push_back(subHal);
383 }
384 }
385 }
386 }
387 }
388 }
389
initializeSubHalCallbacks()390 void HalProxy::initializeSubHalCallbacks() {
391 for (size_t subHalIndex = 0; subHalIndex < mSubHalList.size(); subHalIndex++) {
392 sp<IHalProxyCallback> callback = new HalProxyCallback(this, subHalIndex);
393 mSubHalCallbacks.push_back(callback);
394 }
395 }
396
initializeSensorList()397 void HalProxy::initializeSensorList() {
398 for (size_t subHalIndex = 0; subHalIndex < mSubHalList.size(); subHalIndex++) {
399 ISensorsSubHal* subHal = mSubHalList[subHalIndex];
400 auto result = subHal->getSensorsList([&](const auto& list) {
401 for (SensorInfo sensor : list) {
402 if (!subHalIndexIsClear(sensor.sensorHandle)) {
403 ALOGE("SubHal sensorHandle's first byte was not 0");
404 } else {
405 ALOGV("Loaded sensor: %s", sensor.name.c_str());
406 sensor.sensorHandle = setSubHalIndex(sensor.sensorHandle, subHalIndex);
407 setDirectChannelFlags(&sensor, subHal);
408 mSensors[sensor.sensorHandle] = sensor;
409 }
410 }
411 });
412 if (!result.isOk()) {
413 ALOGE("getSensorsList call failed for SubHal: %s", subHal->getName().c_str());
414 }
415 }
416 }
417
getHandleForSubHalSharedObject(const std::string & filename)418 void* HalProxy::getHandleForSubHalSharedObject(const std::string& filename) {
419 static const std::string kSubHalShareObjectLocations[] = {
420 "", // Default locations will be searched
421 #ifdef __LP64__
422 "/vendor/lib64/hw/", "/odm/lib64/", "/odm/lib64/hw/"
423 #else
424 "/vendor/lib/hw/", "/odm/lib/", "/odm/lib/hw/"
425 #endif
426 };
427
428 for (const std::string& dir : kSubHalShareObjectLocations) {
429 void* handle = dlopen((dir + filename).c_str(), RTLD_NOW);
430 if (handle != nullptr) {
431 return handle;
432 }
433 }
434 return nullptr;
435 }
436
init()437 void HalProxy::init() {
438 initializeSubHalCallbacks();
439 initializeSensorList();
440 }
441
stopThreads()442 void HalProxy::stopThreads() {
443 mThreadsRun.store(false);
444 if (mEventQueueFlag != nullptr && mEventQueue != nullptr) {
445 size_t numToRead = mEventQueue->availableToRead();
446 std::vector<Event> events(numToRead);
447 mEventQueue->read(events.data(), numToRead);
448 mEventQueueFlag->wake(static_cast<uint32_t>(EventQueueFlagBits::EVENTS_READ));
449 }
450 if (mWakelockQueueFlag != nullptr && mWakeLockQueue != nullptr) {
451 uint32_t kZero = 0;
452 mWakeLockQueue->write(&kZero);
453 mWakelockQueueFlag->wake(static_cast<uint32_t>(WakeLockQueueFlagBits::DATA_WRITTEN));
454 }
455 mWakelockCV.notify_one();
456 mEventQueueWriteCV.notify_one();
457 if (mPendingWritesThread.joinable()) {
458 mPendingWritesThread.join();
459 }
460 if (mWakelockThread.joinable()) {
461 mWakelockThread.join();
462 }
463 }
464
disableAllSensors()465 void HalProxy::disableAllSensors() {
466 for (const auto& sensorEntry : mSensors) {
467 int32_t sensorHandle = sensorEntry.first;
468 activate(sensorHandle, false /* enabled */);
469 }
470 std::lock_guard<std::mutex> dynamicSensorsLock(mDynamicSensorsMutex);
471 for (const auto& sensorEntry : mDynamicSensors) {
472 int32_t sensorHandle = sensorEntry.first;
473 activate(sensorHandle, false /* enabled */);
474 }
475 }
476
startPendingWritesThread(HalProxy * halProxy)477 void HalProxy::startPendingWritesThread(HalProxy* halProxy) {
478 halProxy->handlePendingWrites();
479 }
480
handlePendingWrites()481 void HalProxy::handlePendingWrites() {
482 // TODO(b/143302327): Find a way to optimize locking strategy maybe using two mutexes instead of
483 // one.
484 std::unique_lock<std::mutex> lock(mEventQueueWriteMutex);
485 while (mThreadsRun.load()) {
486 mEventQueueWriteCV.wait(
487 lock, [&] { return !mPendingWriteEventsQueue.empty() || !mThreadsRun.load(); });
488 if (mThreadsRun.load()) {
489 std::vector<Event>& pendingWriteEvents = mPendingWriteEventsQueue.front().first;
490 size_t numWakeupEvents = mPendingWriteEventsQueue.front().second;
491 size_t eventQueueSize = mEventQueue->getQuantumCount();
492 size_t numToWrite = std::min(pendingWriteEvents.size(), eventQueueSize);
493 lock.unlock();
494 if (!mEventQueue->writeBlocking(
495 pendingWriteEvents.data(), numToWrite,
496 static_cast<uint32_t>(EventQueueFlagBits::EVENTS_READ),
497 static_cast<uint32_t>(EventQueueFlagBits::READ_AND_PROCESS),
498 kPendingWriteTimeoutNs, mEventQueueFlag)) {
499 ALOGE("Dropping %zu events after blockingWrite failed.", numToWrite);
500 if (numWakeupEvents > 0) {
501 if (pendingWriteEvents.size() > eventQueueSize) {
502 decrementRefCountAndMaybeReleaseWakelock(
503 countNumWakeupEvents(pendingWriteEvents, eventQueueSize));
504 } else {
505 decrementRefCountAndMaybeReleaseWakelock(numWakeupEvents);
506 }
507 }
508 }
509 lock.lock();
510 mSizePendingWriteEventsQueue -= numToWrite;
511 if (pendingWriteEvents.size() > eventQueueSize) {
512 // TODO(b/143302327): Check if this erase operation is too inefficient. It will copy
513 // all the events ahead of it down to fill gap off array at front after the erase.
514 pendingWriteEvents.erase(pendingWriteEvents.begin(),
515 pendingWriteEvents.begin() + eventQueueSize);
516 } else {
517 mPendingWriteEventsQueue.pop();
518 }
519 }
520 }
521 }
522
startWakelockThread(HalProxy * halProxy)523 void HalProxy::startWakelockThread(HalProxy* halProxy) {
524 halProxy->handleWakelocks();
525 }
526
handleWakelocks()527 void HalProxy::handleWakelocks() {
528 std::unique_lock<std::recursive_mutex> lock(mWakelockMutex);
529 while (mThreadsRun.load()) {
530 mWakelockCV.wait(lock, [&] { return mWakelockRefCount > 0 || !mThreadsRun.load(); });
531 if (mThreadsRun.load()) {
532 int64_t timeLeft;
533 if (sharedWakelockDidTimeout(&timeLeft)) {
534 resetSharedWakelock();
535 } else {
536 uint32_t numWakeLocksProcessed;
537 lock.unlock();
538 bool success = mWakeLockQueue->readBlocking(
539 &numWakeLocksProcessed, 1, 0,
540 static_cast<uint32_t>(WakeLockQueueFlagBits::DATA_WRITTEN), timeLeft);
541 lock.lock();
542 if (success) {
543 decrementRefCountAndMaybeReleaseWakelock(
544 static_cast<size_t>(numWakeLocksProcessed));
545 }
546 }
547 }
548 }
549 resetSharedWakelock();
550 }
551
sharedWakelockDidTimeout(int64_t * timeLeft)552 bool HalProxy::sharedWakelockDidTimeout(int64_t* timeLeft) {
553 bool didTimeout;
554 int64_t duration = getTimeNow() - mWakelockTimeoutStartTime;
555 if (duration > kWakelockTimeoutNs) {
556 didTimeout = true;
557 } else {
558 didTimeout = false;
559 *timeLeft = kWakelockTimeoutNs - duration;
560 }
561 return didTimeout;
562 }
563
resetSharedWakelock()564 void HalProxy::resetSharedWakelock() {
565 std::lock_guard<std::recursive_mutex> lockGuard(mWakelockMutex);
566 decrementRefCountAndMaybeReleaseWakelock(mWakelockRefCount);
567 mWakelockTimeoutResetTime = getTimeNow();
568 }
569
postEventsToMessageQueue(const std::vector<Event> & events,size_t numWakeupEvents,ScopedWakelock wakelock)570 void HalProxy::postEventsToMessageQueue(const std::vector<Event>& events, size_t numWakeupEvents,
571 ScopedWakelock wakelock) {
572 size_t numToWrite = 0;
573 std::lock_guard<std::mutex> lock(mEventQueueWriteMutex);
574 if (wakelock.isLocked()) {
575 incrementRefCountAndMaybeAcquireWakelock(numWakeupEvents);
576 }
577 if (mPendingWriteEventsQueue.empty()) {
578 numToWrite = std::min(events.size(), mEventQueue->availableToWrite());
579 if (numToWrite > 0) {
580 if (mEventQueue->write(events.data(), numToWrite)) {
581 // TODO(b/143302327): While loop if mEventQueue->avaiableToWrite > 0 to possibly fit
582 // in more writes immediately
583 mEventQueueFlag->wake(static_cast<uint32_t>(EventQueueFlagBits::READ_AND_PROCESS));
584 } else {
585 numToWrite = 0;
586 }
587 }
588 }
589 size_t numLeft = events.size() - numToWrite;
590 if (numToWrite < events.size() &&
591 mSizePendingWriteEventsQueue + numLeft <= kMaxSizePendingWriteEventsQueue) {
592 std::vector<Event> eventsLeft(events.begin() + numToWrite, events.end());
593 mPendingWriteEventsQueue.push({eventsLeft, numWakeupEvents});
594 mSizePendingWriteEventsQueue += numLeft;
595 mMostEventsObservedPendingWriteEventsQueue =
596 std::max(mMostEventsObservedPendingWriteEventsQueue, mSizePendingWriteEventsQueue);
597 mEventQueueWriteCV.notify_one();
598 }
599 }
600
incrementRefCountAndMaybeAcquireWakelock(size_t delta,int64_t * timeoutStart)601 bool HalProxy::incrementRefCountAndMaybeAcquireWakelock(size_t delta,
602 int64_t* timeoutStart /* = nullptr */) {
603 if (!mThreadsRun.load()) return false;
604 std::lock_guard<std::recursive_mutex> lockGuard(mWakelockMutex);
605 if (mWakelockRefCount == 0) {
606 acquire_wake_lock(PARTIAL_WAKE_LOCK, kWakelockName);
607 mWakelockCV.notify_one();
608 }
609 mWakelockTimeoutStartTime = getTimeNow();
610 mWakelockRefCount += delta;
611 if (timeoutStart != nullptr) {
612 *timeoutStart = mWakelockTimeoutStartTime;
613 }
614 return true;
615 }
616
decrementRefCountAndMaybeReleaseWakelock(size_t delta,int64_t timeoutStart)617 void HalProxy::decrementRefCountAndMaybeReleaseWakelock(size_t delta,
618 int64_t timeoutStart /* = -1 */) {
619 if (!mThreadsRun.load()) return;
620 std::lock_guard<std::recursive_mutex> lockGuard(mWakelockMutex);
621 if (timeoutStart == -1) timeoutStart = mWakelockTimeoutResetTime;
622 if (mWakelockRefCount == 0 || timeoutStart < mWakelockTimeoutResetTime) return;
623 mWakelockRefCount -= std::min(mWakelockRefCount, delta);
624 if (mWakelockRefCount == 0) {
625 release_wake_lock(kWakelockName);
626 }
627 }
628
setDirectChannelFlags(SensorInfo * sensorInfo,ISensorsSubHal * subHal)629 void HalProxy::setDirectChannelFlags(SensorInfo* sensorInfo, ISensorsSubHal* subHal) {
630 bool sensorSupportsDirectChannel =
631 (sensorInfo->flags & (V1_0::SensorFlagBits::MASK_DIRECT_REPORT |
632 V1_0::SensorFlagBits::MASK_DIRECT_CHANNEL)) != 0;
633 if (mDirectChannelSubHal == nullptr && sensorSupportsDirectChannel) {
634 mDirectChannelSubHal = subHal;
635 } else if (mDirectChannelSubHal != nullptr && subHal != mDirectChannelSubHal) {
636 // disable direct channel capability for sensors in subHals that are not
637 // the only one we will enable
638 sensorInfo->flags &= ~(V1_0::SensorFlagBits::MASK_DIRECT_REPORT |
639 V1_0::SensorFlagBits::MASK_DIRECT_CHANNEL);
640 }
641 }
642
getSubHalForSensorHandle(int32_t sensorHandle)643 ISensorsSubHal* HalProxy::getSubHalForSensorHandle(int32_t sensorHandle) {
644 return mSubHalList[extractSubHalIndex(sensorHandle)];
645 }
646
isSubHalIndexValid(int32_t sensorHandle)647 bool HalProxy::isSubHalIndexValid(int32_t sensorHandle) {
648 return extractSubHalIndex(sensorHandle) < mSubHalList.size();
649 }
650
countNumWakeupEvents(const std::vector<Event> & events,size_t n)651 size_t HalProxy::countNumWakeupEvents(const std::vector<Event>& events, size_t n) {
652 size_t numWakeupEvents = 0;
653 for (size_t i = 0; i < n; i++) {
654 int32_t sensorHandle = events[i].sensorHandle;
655 if (mSensors[sensorHandle].flags & static_cast<uint32_t>(V1_0::SensorFlagBits::WAKE_UP)) {
656 numWakeupEvents++;
657 }
658 }
659 return numWakeupEvents;
660 }
661
clearSubHalIndex(int32_t sensorHandle)662 int32_t HalProxy::clearSubHalIndex(int32_t sensorHandle) {
663 return sensorHandle & (~kSensorHandleSubHalIndexMask);
664 }
665
subHalIndexIsClear(int32_t sensorHandle)666 bool HalProxy::subHalIndexIsClear(int32_t sensorHandle) {
667 return (sensorHandle & kSensorHandleSubHalIndexMask) == 0;
668 }
669
postEvents(const std::vector<Event> & events,ScopedWakelock wakelock)670 void HalProxyCallback::postEvents(const std::vector<Event>& events, ScopedWakelock wakelock) {
671 if (events.empty() || !mHalProxy->areThreadsRunning()) return;
672 size_t numWakeupEvents;
673 std::vector<Event> processedEvents = processEvents(events, &numWakeupEvents);
674 if (numWakeupEvents > 0) {
675 ALOG_ASSERT(wakelock.isLocked(),
676 "Wakeup events posted while wakelock unlocked for subhal"
677 " w/ index %" PRId32 ".",
678 mSubHalIndex);
679 } else {
680 ALOG_ASSERT(!wakelock.isLocked(),
681 "No Wakeup events posted but wakelock locked for subhal"
682 " w/ index %" PRId32 ".",
683 mSubHalIndex);
684 }
685 mHalProxy->postEventsToMessageQueue(processedEvents, numWakeupEvents, std::move(wakelock));
686 }
687
createScopedWakelock(bool lock)688 ScopedWakelock HalProxyCallback::createScopedWakelock(bool lock) {
689 ScopedWakelock wakelock(mHalProxy, lock);
690 return wakelock;
691 }
692
processEvents(const std::vector<Event> & events,size_t * numWakeupEvents) const693 std::vector<Event> HalProxyCallback::processEvents(const std::vector<Event>& events,
694 size_t* numWakeupEvents) const {
695 *numWakeupEvents = 0;
696 std::vector<Event> eventsOut;
697 for (Event event : events) {
698 event.sensorHandle = setSubHalIndex(event.sensorHandle, mSubHalIndex);
699 eventsOut.push_back(event);
700 const SensorInfo& sensor = mHalProxy->getSensorInfo(event.sensorHandle);
701 if ((sensor.flags & V1_0::SensorFlagBits::WAKE_UP) != 0) {
702 (*numWakeupEvents)++;
703 }
704 }
705 return eventsOut;
706 }
707
708 } // namespace implementation
709 } // namespace V2_0
710 } // namespace sensors
711 } // namespace hardware
712 } // namespace android
713